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Abstract—Pervasive and critical software systems have dor-
mant vulnerabilities that attackers can trigger and cascade to
make the program act as a weird machine. In fact, they harbor
exploitable programming models that can be used to compose
vulnerabilities and mount attacks. This paper presents a type
system to derive the abstract weird machines that programs
expose. The type system tracks information flow types to detect
vulnerabilities, and abstracts the control flow between vulnera-
bilities to capture weird machines. We formally prove that the
inferred weird machine covers the weird runtime behaviors that
the program can exhibit. The resulting machine can then be
examined to detect patterns of attacks. An important observation
is that attacks are often simple and recurring patterns. We model
the abstract machines as regular expressions on vulnerability
types. This abstract representation is platform-independent and
can be used as a uniform description language for attacks.
Further, language inclusion and similar decisions about regular
expressions are remarkably more efficient than the same decisions
for concrete programs or other formal languages.

Index Terms—Vulnerabilities, Weird Machines, Composed At-
tacks, Type Systems

I. INTRODUCTION

Modern attacks exploit a long chain of dormant vulnerabil-

ities inside deployed functional systems. The composition of

these vulnerabilities can give attackers powerful capabilities.

In fact, these systems seem to harbor programming models

that let attackers compose vulnerabilities and mount attacks

that appear as weird machines [10], [21]. For example, a

composition of vulnerabilities such as buffer overflow and

code injection for just-in-time compilers can emerge as a

weird machine that can execute arbitrary code. This paper puts

forward a new venue of investigation for a type theory that

tracks the composition of unintended in addition to intended

computation. Detecting the presence or absence of composed

attacks can aid many who strive for more secure software.

Information flow type systems have been used to enforce the

correct flow of information. For example, they prevent leaking

confidential data, or degrading the integrity or availability

of data. They track the types of values that the program

manipulates, and let the information flow only if the type of the

destination is no less restrictive than the source. However, they

do not track vulnerabilities and their composition for higher-

level malicious behavior.

This paper presents a type system that derives abstract

weird machines of programs as regular expressions over

vulnerability types. We capture vulnerabilities as effect types.

An important observation is that attacks are often simple

and recurring patterns of vulnerabilities. We model attacks

as regular expressions on vulnerability types. This abstract

representation is platform-independent and can be used as a
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while (true) {

x = input();

if (x == 1)

...

∗ptr(x) = f(x);

else if (x == 2)

...

out = IRptr ;

else if (x == 3)

...

p = jit(IRptr )

}

Fig. 1. A simple refinement between the concrete browser program and the
DOJITA weird machine.

uniform description language for exploitable weird machines.

Further, language inclusion and other decisions about regular

expressions are remarkably more efficient than the same

decisions for the concrete program or other formal languages.

The type system tracks information flow to capture vul-

nerabilities present in the program. For example, a buffer

overflow is a vulnerability if the user input with low integrity

can flow into it. It further tracks the control flow between

vulnerabilities. Given a program or a system composed of

several components, the type system can infer the present

flow of vulnerabilities as a regular expression. We prove a

refinement relation between the concrete program and the

abstract weird machine that the type system derives for it.

The weird machine that the type system associates with a

program covers the attacks that the executions of that program

can exhibit.

The derived weird machine can be used to detect and

prevent attacks. Composition is the key to both a successful

attack and a successful mitigation: if the abstract program of

an attack is exploiting a given sequence of vulnerabilities,

sandboxing one vulnerability or reordering their flow can

disrupt the attack.

In the following sections, we first consider example attacks

that compose multiple vulnerabilities. Then, we present a core

language (§ III), its operational semantics (§ IV), and the

vulnerability flow type system that can associate abstract weird

machines with programs (§ V). We then state and prove the

type-safety properties (§ VI). We close the paper with the

discussion of related works and conclusion (§ VII and § VIII).



II. OVERVIEW

Let us take the DOJITA attack [25] as an example and

consider the weird machine that it exploits. In this attack, the

adversary injects malicious code into the code section of a

browser by leveraging its JIT compilation feature. When a

hot function is about to be compiled, the adversary injects its

payload into the intermediate representation of the function,

and gets it compiled by the JIT compiler. Since the output

of the JIT compiler is accepted as safe executable code, the

adversary overcomes protections against code injection such as

Data Execution Prevention (DEP) or writable xor executable

memory (W⊕X).

To perform this attack, the adversary exploits a few vul-

nerabilities in sequence. First, it exploits a vulnerability to

leak the address that the JIT compiler uses to store the IR

(intermediate representation) of the function that it compiles.

The IR is a syntax tree represented as C++ objects. Second, it

exploits a vulnerability to inject a payload containing crafted

C++ objects representing the malicious code, and writes it into

the IR address. Finally, it uses the JIT compiler to compile

the IR of the injected code. The left side of Fig. 1 captures a

sketch of a browser as a loop that takes the user input and

performs different actions based on that input. In the first

branch, the browser contains an injection vulnerability where

a value derived from the input is written to an address derived

from the input. In the second branch, the browser contains a

leak vulnerability where the address of the IR is leaked to a

variable that will be visible to the adversary. In the last branch,

it compiles the syntax tree stored at the IR pointer.

The concrete browser program provides an abstract weird

machine. That machine provides the adversary with a language

to compose lurking vulnerabilities, and program attacks such

as DOJITA. In Fig. 1, the example browser program on the left

provides the abstract weird machine on the right that can be

represented as the regular expression (Injection | Leak | Jit)∗.

The while statement is abstracted to a Kleene closure, and

the if statements are abstracted to alternations. This machine

can be used to program many emergent behaviors including

the DOJITA attack that is represented as Leak · Injection ·
Jit, i.e., the flow sequence of a leak, an injection, and a JIT

compilation. In fact, there is refinement between the concrete

program on the left and the abstract program on the right.

Any emergent behavior from the captured vulnerabilities of

the concrete program is a behavior of the abstract program.

An important observation is that attacks are often com-

positional, simple and platform independent patterns. In this

simple example, we saw that regular expressions can capture

vulnerabilities, their composition and patterns of attacks. This

abstract representation is platform independent and can be

used as a uniform description language for exploitable weird

machines.

We will present a vulnerability flow type system that tracks

information flow to capture vulnerabilities such as Leak,

Jit and Injection that we saw above, and more importantly

associates an abstract weird machine with the concrete pro-

gram. The abstract weird machine is represented as a regular

language that attacks such as DOJITA can be programmed

with. The resulting weird machine can be examined to de-

tect the presence and absence of attack patterns. Language

inclusion and other decisions about regular expressions are

remarkably more efficient than the same decisions for the

concrete program or other formal languages such as context-

free grammars. For example, given the regular expression

(Injection | Leak | Jit)∗ as the weird machine, the complexity

of deciding the membership of the DOJITA attack Leak ·
Injection · Jit is O(n). Further, given the regular expression,

the possibility of new classes of unintended behaviors can

be examined. Once an attack pattern is found, sandboxing

a vulnerability or disrupting an essential control flow can

neutralize the the attack pattern in the resulting weird machine.

Further, if more expressive languages are necessary to capture

particular weird machines, the vulnerability flow type system

can be simply adapted to derive abstract programs in those

languages.

Next, we first define the syntax of a core language, and then,

the operational semantics, and the instrumented operational

semantics. Finally, we present the type system and the type-

safety theorems.

III. CORE LANGUAGE

Fig. 2 shows the language syntax. An expression e is a

value n, a variable x, an operation e1 ⊕ e2, a sequence

e1; e2, a conditional if e e1 else e2, a loop while e e′, an

assignment x := e, or a JIT compilation of an expression jit e.

This expression is used to model the just-in-time compilation

features of our browser use-case.

The type system associates a weird machine w to a program

expression e. We model weird machines as regular expression

terms. The alphabet of this language are vulnerability types

such as Leak that represents leaking secrets, Injection that

represents injection of payloads into the memory space of the

process, and Jit that represents jit compilation (of injected

code). A weird machine can be the concatenation w ·w′ or the

alternation w |w′ of two machines w and w′, or the Kleene

closure w∗ of a machine w. These operators can capture

the common patterns of vulnerabilities. The void machine is

represented as ǫ. A weird machine w is included in another

w′, written as w ⊆ w′, if any instance of the former is an

instance of the latter. For example Leak ⊆ Leak | Injection. A

weird machine w is a prefix of another w′, written as w ⋐ w′,

if any instance of the former is a prefix of an instance of the

latter. For example Leak ⊆ Leak · Injection.

In order to detect vulnerabilities, the type system associates

to each expression e an information flow type f in addition to

the weird machine term w. An information flow type f is a

tuple 〈c, i〉 of the confidentiality type c and the integrity type

i. The confidentiality and integrity types form lattices ⊑, for

example with low L and high H elements. Accordingly, the

lattice ⊑ of the flow type f is the product of the two lattices

of its elements.
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e := n | x | v | e1 ⊕ e2 Program

| e1; e2
| if e e1 else e2 | while e e′

| x := e | jit e

t := w, f Types

w := w · w | w |w | w∗ | ǫ Weird Machine

| Leak | Injection | Jit Vulnerability Types

f := 〈c, i〉 Information Flow Type

c := L | H Confidentiality Type

i := L | H Integrity Type

v := 〈n, f〉 Instrumented Value

R := [ ] | R ⊕ e | v ⊕ R Reduction Context

| R; e | if R e else e

| x := R | jit R

σ := [x 7→ n] State

γ := [x 7→ 〈n, f〉] Instrumented State

Γ := [x 7→ f ] Type Environment

Confidentiality Lattice c:

⊥ = L, ⊤ = H, L ⊑ H

Integrity Lattice i:

⊥ = H, ⊤ = L, H ⊑ L

Product Lattice 〈c, i〉:
⊥ = 〈L,H〉, ⊤ = 〈H, L〉

Fig. 2. Syntax

IV. OPERATIONAL SEMANTICS

We first present the operational semantics, and then the

instrumented operational semantics that keeps track of the

information flow types and further the weird behaviors. We

will show the equivalence of the two semantics, and later use

the latter to state the type-safety properties.

Operational Semantics. As shown in Fig. 3, the state σ is

a mapping from variables to values. The operational semantics

defines the relation 〈σ, e〉 → 〈σ′, e′〉 that in the pre-state σ,

executes the program e for one step, and results in the post-

state σ′ and the rest of the program e′. The reduction context

R captures the location of the next step in the program.

The rule VAR-SEM evaluates a variable x by extracting

its value from the store σ. The rule ASSN-SEM evaluates

an assignment to a variable x by updating the value that it

is mapped to in the store σ. The rule CTX-SEM evaluates

the expression e in the reduction context R without changing

the store. The rule OP-SEM evaluates an operation n1 ⊕ n2,

and the rule SEQ-SEM reduces the sequence v; e, where

the first expression is already fully evaluated, to the second

expression e. The rules IF-THEN-SEM and IF-ELSE-SEM

reduce the conditional expression to either the then or else

expressions depending on whether the condition is non-zero.

The rules WHILE-SEM reduces the loop expression while e e′

by unrolling it once: if e (e′; while e e′) else 0. The rule

JIT-SEM reduces jit n to n, as the result of a JIT-optimized

expression stays the same.

Instrumented Operational Semantics. In order to cap-

ture the vulnerabilities of the program during execution, we

define the instrumented operational semantics. It captures the

trace of vulnerabilities that a program execution exhibits. The

instrumented state is 〈Γ, γ, fx, e〉. In order to detect vulnera-

bilities during assignments to variables, the type environment

Γ specifies the expected flow types for each variable. For

example, a variable with the flow type 〈c, i〉 expects at most

the confidentiality c, and at least the integrity i. Otherwise,

the vulnerabilities Leak and Injection happen respectively. In

order to track the information flow types for each variable,

the store is instrumented: the instrumented store γ maps each

variable x to an instrumented value v that is the pair 〈n, f〉
of a value n and its flow type f . The instrumented semantics

further tracks the implicit (or context) information flow type

during the execution, and stores it as fx.

The rule VAR-ISEM evaluates a variable x by extracting its

value from the store γ, and does not incur any vulnerabilities.

The rule ASSN-ISEM evaluates an assignment of a value v

to a variable x by updating the value that x is mapped to

in the store γ. Further, an assignment can exhibit a Leak

vulnerability if the join of confidentiality of the value and

the implicit confidentiality cannot flow to the confidentiality

of the variable. For example, a value with confidentiality H

cannot flow to a variable with confidentiality L. Similarly, an

assignment can exhibit an Injection vulnerability if the join

of integrity of the value and the implicit integrity cannot flow

to the integrity of the variable. For example, a value with

integrity L cannot flow to a variable with integrity H. As

before, the rule CTX-ISEM evaluates the expression e in the

reduction context R without changing the store. The rule OP-

ISEM evaluates an operation n1 ⊕ n2, and further calculates

the join of the accompanying flow types. As before, the rule

SEQ-ISEM reduces the sequence v; e to e. The rules IF-THEN-

ISEM and IF-ELSE-ISEM reduce the conditional expression

to either the then or else expressions, and further, update the

implicit flow type to incorporate the flow type of the condition.

The rules WHILE-ISEM unrolls the loop as before. The rule

JIT-ISEM reduces jit v to v, and further, checks that the join

of integrity of the value and the implicit integrity is high.

Otherwise, JIT is either applied to a low integrity expression,

or is called through low integrity control flow that may be

controlled by the adversary. In this case, the label captures

the Jit vulnerability.

Equivalence. The semantics and the instrumented seman-

tics have tightly related steps: for any step in one, there is a

corresponding step in the other one. We formally capture this

relation.
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VAR-SEM

〈σ,R[x]〉 →
〈σ,R[σ(x)]〉

ASSN-SEM

〈σ,R[x := n]〉 →
〈σ[x 7→ n],R[n]〉

CTX-SEM

e → e′

〈σ,R[e]〉 → 〈σ,R[e′]〉

OP-SEM

n1 ⊕ n2 = n3

n1 ⊕ n2 → n3

SEQ-SEM

v; e → e

IF-THEN-SEM

v 6= 0

if v e1 else e2 → e1

IF-ELSE-SEM

if 0 e1 else e2 → e2

WHILE-SEM

while e e′ →
if e (e′; while e e′) else 0

JIT-SEM

jit n → n

Fig. 3. Operational Semantics. 〈σ, e〉 → 〈σ, e〉

VAR-ISEM

〈Γ, γ, fx,R[x]〉 →
〈Γ, γ, fx,R[γ(x)]〉

ASSN-ISEM

Γ(x) = 〈c, i〉 fx = 〈cx, ix〉 v = 〈n, 〈c′, i′〉〉

w1 =

{

ǫ if c′ ⊔ cx ⊑ c

Leak else
w2 =

{

ǫ if i′ ⊔ ix ⊑ i

Injection else
w = w1 · w2

〈Γ, γ, fx,R[x := v]〉
w
→ 〈Γ, γ[x 7→ v], fx,R[v]〉

CTX-ISEM

〈fx, e〉
w
→ 〈f ′

x
, e′〉

〈Γ, γ, fx,R[e]〉
w
→ 〈Γ, γ, f ′

x
,R[e′]〉

OP-ISEM

n1 ⊕ n2 = n3 f1 ⊔ f2 = f3

〈fx, 〈n1, f1〉 ⊕ 〈n2, f2〉〉 → 〈fx, 〈n3, f3〉〉

SEQ-ISEM

〈fx, v; e〉 → 〈fx, e〉

IF-THEN-ISEM

n 6= 0

〈fx, if 〈n, f
′

x
〉 e1 else e2〉 → 〈fx ⊔ f ′

x
, e1〉

IF-ELSE-ISEM

〈fx, if 〈0, f
′

x
〉 e1 else e2〉 → 〈fx ⊔ f ′

x
, e2〉

WHILE-ISEM

〈fx,while e e′〉 →
〈fx, if e (e′; while e e′) else 0〉

JIT-ISEM

fx = 〈cx, ix〉 v = 〈n, 〈c, i〉〉

w =

{

ǫ if i ⊔ ix ⊑ H

Jit else

〈fx, jit v〉
w
→ 〈fx, v〉

Fig. 4. Instrumented Operational Semantics. 〈Γ, γ, fx, e〉
w

→ 〈Γ, γ, fx, e〉

We define the function pure that removes the instrumented

flow types from an instrumented store.

Definition 1 (pure(γ)).
pure([x 7→ 〈n, f〉]) := [x 7→ n].

Further, we overload the function pure on expressions to

remove instrumented flow types from values.

Definition 2 (pure(e)).
pure(〈n, f〉) := n,

pure(e1 ⊕ e2) := pure(e1) ⊕ pure(e2)
pure(e1; e2) := pure(e1); pure(e2)
pure(if e e1 else e2) := if pure(e) pure(e1) else pure(e2)
pure(while e e′) := while pure(e) pure(e′)
pure(x := e) := x := pure(e)
pure(jit e) := jit pure(e)

To avoid unnecessary clutter, we leave implicit rewriting of

literals n to instrumented literals 〈n,⊥〉. The instrumented se-

mantics works with instrumented literals; thus, any literal in an

expression should be converted to its equivalent instrumented

literal before being evaluated by the instrumented semantics.

We can now state the following equivalence theorem. For

every execution with the operational semantics, there is a

corresponding execution with the instrumented operational

semantics, and vice versa.

Theorem 1. For all Γ, γ1, fx1 and e1, then

(1) For all γ2, fx2, e2 and w,

if 〈Γ, γ1, fx1, e1〉
w

→∗ 〈Γ, γ2, fx2, e2〉
then 〈pure(γ1), pure(e1)〉 →

∗ 〈pure(γ2), pure(e2)〉.
(2) Further, for all σ2, e′2,

if 〈pure(γ1), pure(e1)〉 →
∗ 〈σ2, e

′

2〉,
then there exists w, γ2, fx2 and e2 such that

〈Γ, γ1, fx1, e1〉
w

→∗ 〈Γ, γ2, fx2, e2〉 where

σ2 = pure(γ2) and e′2 = pure(e2).

Proof. Straightforward by induction on the length of execu-

tion, and then case analysis on the step.

This theorem lets us use the instrumented semantics to state

the type-safety theorem in the next sections.

V. TYPE SYSTEM

The type system has judgments of the form Γ, fx ⊢ e : w, f
where Γ is the type environment, fx is the context or implicit
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information flow type, e is the program expression that is being

typed, w is the weird machine of e, and f is the information

flow type of e. The judgment is read as follows: under the

environment Γ, and the context information flow type fx,

the expression e exposes the abstract weird machine w and

has the information flow type f . The type environment Γ
maps variables to their flow types f . The context or implicit

information flow type fx represents the flow type of the

context under which e is typed, i.e., the type of the enclosing

conditions. The type system is presented in Fig. 5.

The rule VAL-TYPE simply type-checks a value n with

the void weird machine ǫ and the flow type ⊥ (that is

low confidentiality and high integrity). The rule IVAL-TYPE

simply type-checks an instrumented value 〈n, f〉 with the void

weird machine ǫ and the accompanying flow type f . Similarly,

the rule VAR-TYPE type-checks a variable x according to the

environment Γ.

The rule OP-TYPE type-checks an operation. The resulting

weird machine is the concatenation of the weird machines of

the operands, and the resulting flow type is join of their flow

types. The concatenation operator captures the control flow

order of vulnerabilities. Similarly, the rule SEQ-TYPE type-

checks a sequence of two expressions. As for operations, the

resulting weird machine is the concatenation. However, the

resulting flow type is the flow type of the latter operand as

the result of a sequence is the result of its second operand.

The rule IF-TYPE type-checks a conditional expression

if e e′ else e′′. The resulting weird machine is w · (w′ | w′′),
the concatenation of the weird machine w of the condition

e with the alternation of the weird machines w′ and w′′ of

the two branches e′ and e′′. The alternation captures the fact

that the vulnerability of either branch is possible. Each of the

two branches e′ and e′′ are type-checked as f ′ and f ′′ under

the given context flow type fx joined with the flow f of the

condition e. The resulting flow type is the join of the flow types

f ′ and f ′′ of the two branches, as the result a conditional can

be the result of either of its branches.

The rule WHILE-TYPE type-checks a loop expression

while e e′. It first type-checks the condition e as the weird

machine w and flow type f . We note that because the condition

e can be recalculated, it is type-checked under the the implicit

flow fx joined with f itself. Then, under the same implicit

flow, the rule type-checks the body e′ as the weird machine

w′ and flow type f ′. The loop expression is associated with the

weird expression w · (w′ ·w)∗ that captures the sequence of w

from the condition, and the Kleene closure of the sequence of

w′ and w from the body and the re-execution of the condition.

The rule ASSN-TYPE type-checks an assignment expression

x := e. Let the context flow type be 〈cx, ix〉. The rule first

obtains the flow types 〈c, i〉 and 〈c′, i′〉 for x and e, and the

weird machine w for e. It then checks whether the flow is

safe. If the join of c′ and cx cannot flow to c, then x may not

have enough confidentiality to receive the value of e, and the

assignment is associated with a Leak vulnerability w′. Dually,

if the join of i′ and ix cannot flow to i, then the value of e

may not have enough integrity to be assigned to x, and the

assignment is associated with an Injection vulnerability w′′.

On the other hand, in both of the above checks, if the flow is

legal, the weird machine is void ǫ. The resulting weird machine

is the concatenation of the three weird machines w, w′ and

w′′. As the return value of the assignment is the value of x,

the resulting flow type is simply the flow type of x.

The rule JIT-TYPE type-checks a JIT expression jit e. Let

the context flow type be 〈cx, ix〉. The rule first type-checks e

with the weird machine w and flow type 〈c, i〉. The rule checks

whether the flow to the JIT compiler has high integrity. If the

join of i and ix cannot flow to H, then the passed expression

e or the implicit flow leading to the JIT expression may not

have enough integrity, and the JIT compilation is associated

with a Jit weird machine w′. Otherwise, the weird machine

w′ is void ǫ. The resulting weird machine is the concatenation

of the two weird machines w and w′. As the expression jit e

returns the result of compiling e, its flow type is the same as

that of e.

The type system tracks information flow to capture vul-

nerabilities. It can be simple extended to accept vulnerability

annotations on the program as well.

VI. TYPE-SAFETY

We now state the type-safety theorem for the type system.

We first present a few helper definitions.

We say that an instrumented store γ is consistent with a type

environment Γ, written as Γ � γ, if the type of each variable

in the store γ flows to its type in the environment Γ.

Definition 3 (Consistency).

Γ � γ := ∀(x 7→ 〈 , f〉) ∈ γ. f ⊑ Γ(x)

If a program is typed in an environment Γ, it is executed

only with a store γ that is consistent with Γ.

The following preservation lemma states that if an expres-

sion e is typed with a weird machine w, then if it steps to an

expression e′ with a weird behavior w′, then w′ is included

in a prefix w1 of w. Intuitively, the weird machine w that the

type system derives covers any weird step w′. Further, let w2

be the remainder of w, i.e., w = w1 · w2. Then, e′ is typed

with a weird machine that is included in w2.

Lemma 1 (Preservation). For all Γ, fx, e, w, f , γ, w′, γ′, f ′

x

and e′, if

Γ, fx ⊢ e : w, f ,

Γ � γ, and

〈Γ, γ, fx, e〉
w

′

→ 〈Γ, γ′, f ′

x
, e′〉,

then there exist w′′, f ′, w1 and w2 such that

Γ, f ′

x
⊢ e′ : w′′, f ′,

w = w1 · w2,

w′ ⊆ w1, and

w′′ ⊆ w2.

The above inclusion property for weird behaviors can be

generalized from every step to every execution. If the type

system associates a weird machine to a program, that weird

machine covers the weird behavior that the executions of the

program can exhibit. If the type system type-checks a program
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VAL-TYPE

Γ, fx ⊢ n : ǫ,⊥
IVAL-TYPE

Γ, fx ⊢ 〈n, f〉 : ǫ, f

VAR-TYPE

Γ(x) = f

Γ, fx ⊢ x : ǫ, f

OP-TYPE

Γ, fx ⊢ e : w, f Γ, fx ⊢ e′ : w′, f ′

Γ, fx ⊢ e ⊕ e′ : w · w′, f ⊔ f ′

SEQ-TYPE

Γ, fx ⊢ e : w, f Γ, fx ⊢ e′ : w′, f ′

Γ, fx ⊢ e; e′ : w · w′, f ′

IF-TYPE

Γ, fx ⊢ e : w, f
Γ, fx ⊔ f ⊢ e′ : w′, f ′ Γ, fx ⊔ f ⊢ e′′ : w′′, f ′′

Γ, fx ⊢ if e e′ else e′′ : w · (w′ | w′′), f ′ ⊔ f ′′

WHILE-TYPE

Γ, fx ⊔ f ⊢ e : w, f
Γ, fx ⊔ f ⊢ e′ : w′, f ′

Γ, fx ⊢ while e e′ : w · (w′ · w)∗,⊥

ASSN-TYPE

Γ(x) = 〈c, i〉 Γ, 〈cx, ix〉 ⊢ e : w, 〈c′, i′〉

w′ =

{

ǫ if c′ ⊔ cx ⊑ c

Leak else

w′′ =

{

ǫ if i′ ⊔ ix ⊑ i

Injection else

Γ, 〈cx, ix〉 ⊢ x := e : w · w′ · w′′, 〈c, i〉

JIT-TYPE

Γ, 〈cx, ix〉 ⊢ e : w, 〈c, i〉

w′ =

{

ǫ if i ⊔ ix ⊑ H

Jit else

Γ, 〈cx, ix〉 ⊢ jit e : w · w′, 〈c, i〉

Fig. 5. Type System. Γ, f ⊢ e : w, f

e as the weird machine w, then any behavior w′ that an

execution of e exhibits is a prefix of w.

Theorem 2 (Type-safety). For all Γ, fx, e w, f , γ, w′, γ′, f ′

x
,

and e′, if

Γ, fx ⊢ e : w, f ,

Γ � γ, and

〈Γ, γ, fx, e〉
w

′

→∗ 〈Γ, γ′, f ′

x
, e′〉,

then

w′ ⋐ w.

The above type-safety theorem immediately implies the

following corollary. If the type system type-checks a program

e as the weird machine w, and w does not intersect with

an attack pattern w′, then no execution of the program can

produce an instance of that attack.

Corollary 2.1. For all Γ, fx, e w, f , γ, w′, γ′, f ′

x
, and e′, if

Γ, fx ⊢ e : w, f ,

Γ � γ,

w ∩ w′ = ∅, and

w′′ ⊆ w′,

then

〈Γ, γ, fx, e〉
w

′′

6→∗ 〈Γ, γ′, f ′

x
, e′〉.

In above corollary, the weird behavior w′′ is an instance of

the attack pattern w′.

VII. RELATED WORKS

Discussion. The goal of this paper is to design type

systems that derive the abstract weird machines that programs

expose. It notes the need for type theories that track unintended

in addition to intended behavior of programs, and their com-

position. Type systems have been applied to check security

properties of programs such as non-interference and memory

safety. We summarize the relevant works on security type

systems, typed assembly language and proof-carrying code

below. However, these works do not track vulnerabilities and

their composition for higher-level malicious behavior. To the

best of our knowledge, this project is the first to present a type

system that models vulnerability types and derives the abstract

weird machines that the composition of these vulnerabilities

can expose. Recently, program logics have been designed to

show the incorrectness of programs. These logics can show the

presence of bugs; however, they do not consider whether and

how these bugs can be exploited, and composed into attacks.

Fuzzing is another popular technique that feeds random input

to the program to trigger bugs. However, it cannot provide any

formal guarantees for the security of the program.

Type Systems. Security type systems [20], [46], [43], [51],

[38], [28], [15] have been used to enforce information flow

control, and guarantee non-interference. They have been used

both to enforce confidentiality and integrity [9], [59] policies.

Recently, they have been used to enforce availability and

resiliency policies [60], [61], [33] as well. Further, information

flow type systems have been used to reason about security

properties of composed systems [18], [34] in several domains

including concurrent programs [35], app stores [22], and smart

contracts [12].

Typed assembly languages [37], [36], [55], [17] model the

desired security properties such as control-flow safety as type

safety. They design a series of typed intermediate languages

and type-preserving transformations between them. Given a

well-typed high-level program, they translate the program

to a well-typed assembly program. Therefore, the security

properties of the high-level program is preserved during the

compilation.

Proof-carrying code [40], [8], [23], [52] carries a proof that

the code has the desired properties. This principle allows a

process to validate the code received from another process

efficiently. The sender of the code needs to construct the

proof and the receiver can often machine-check the proof with

a small trusted computing base in a small amount of time.
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The approach has been shown [16] to scale to verifying large

programs.

Program Logics. Years after the Hoare-Floyd program

logic [27] provided means of proving the correctness of

programs, a succession of logics appeared to prove the in-

correctness of programs. Reverse [19] and incorrectness [41]

logics, its extensions [44], [50], [45], and later its application

in practice [32] were based on triples [p] c [q] that state that for

any post-state in q (i.e., incorrect post-states), there is a pre-

state in p. Later, reachability logic [39] noted that one incorrect

post-state is enough to show a bug, and proposed triples that

state the for any pre-state in p, there is a post-state that is in q

(i.e., is incorrect). This further provides pre-states that trigger

the bug. Later, outcome logic [62] adopted a similar triple, and

further presented a unified theory to support both correctness

and incorrectness.

Fuzz Testing. Fuzz testing has been a popular testing

technique in recent years. It feeds a sequence of random

and/or mutated arguments to the program in order to trigger

bugs. Many fuzzers have been developed for various software

targets, including both user space programs [5], [24], [26],

[11], [58], [49], [13], [14], [57], [48] and OS kernels [7],

[30], [3], [47], [53], [42], [31], [29], [56]. Fuzzers are recently

applied continuously 24/7 [6], [1], [2] and, indeed, have been

shown to be effective in finding real-world bugs [4], [54].

VIII. CONCLUSION

In order to derive the weird machines that programs expose,

this paper models vulnerabilities as effect types, and captures

the flow between vulnerabilities. It presents a type system that

tracks information flow types to detect vulnerabilities such

as leak, inject and jit compilation, and abstracts the control

flow of vulnerabilities as regular expressions. Both weird

machines and composed attacks have simple and recurring

patterns, and regular expressions can serve as a uniform

platform-independent representation for them. More impor-

tantly, language inclusion and intersection that the presence of

certain attacks reduce to are efficiently calculated for regular

expressions. We formally prove that if the weird machine that

the type system infers for a program does not intersect an

attack pattern, then the executions of that program are not

prone to that attack.
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[22] Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart
Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros,
Ravi Bhoraskar, Seungyeop Han, et al. Collaborative verification of
information flow for a high-assurance app store. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pages 1092–1104, 2014.

[23] Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. An open
framework for foundational proof-carrying code. In Proceedings of the

2007 ACM SIGPLAN international workshop on Types in languages

design and implementation, pages 67–78, 2007.

[24] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In 14th

USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[25] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. Jitguard: hardening just-in-time compilers with sgx. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 2405–2419, 2017.

[26] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE

Symposium on Security and Privacy (SP), 2018.

[27] Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580, 1969.

[28] Sebastian Hunt and David Sands. On flow-sensitive security types. ACM

SIGPLAN Notices, 41(1):79–90, 2006.

[29] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,
and Insik Shin. Razzer: Finding kernel race bugs through fuzzing. In
40th IEEE Symposium on Security and Privacy, 2019.

[30] Dave Jones. Triforce linux syscall fuzzer. https://github.com/nccgroup/
TriforceLinuxSyscallFuzzer, 2016.

[31] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. HFL: hybrid fuzzing on the linux kernel.
In 27th Annual Network and Distributed System Security Symposium,

NDSS, 2020.

[32] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer,
and Peter W O’Hearn. Finding real bugs in big programs with incor-

7



rectness logic. Proceedings of the ACM on Programming Languages,
6(OOPSLA1):1–27, 2022.

[33] Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hamraz: Resilient
partitioning and replication. In 2022 IEEE Symposium on Security and

Privacy (S&P), pages 2267–2284. IEEE, 2022.

[34] Heiko Mantel. On the composition of secure systems. In Proceedings

2002 IEEE Symposium on Security and Privacy, pages 88–101. IEEE,
2002.

[35] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions
and guarantees for compositional noninterference. In 2011 IEEE 24th

Computer Security Foundations Symposium, pages 218–232. IEEE,
2011.

[36] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-
based typed assembly language. In International Workshop on Types

in Compilation, pages 28–52. Springer, 1998.

[37] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system
f to typed assembly language. ACM Transactions on Programming

Languages and Systems (TOPLAS), 21(3):527–568, 1999.

[38] Andrew C Myers. Jflow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 228–241, 1999.

[39] Nico Naus, Freek Verbeek, Marc Schoolderman, and Binoy Ravin-
dran. Reachability logic for low-level programs. arXiv preprint

arXiv:2204.00076, 2022.

[40] George C Necula. Proof-carrying code. In Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 106–119, 1997.

[41] Peter W O’Hearn. Incorrectness logic. Proceedings of the ACM on

Programming Languages, 4(POPL):1–32, 2019.

[42] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Op-
timizing OS fuzzer seed selection with trace distillation. In 27th

USENIX Security Symposium (USENIX Security 18), pages 729–743,
Baltimore, MD, 2018. USENIX Association. URL: https://www.usenix.
org/conference/usenixsecurity18/presentation/pailoor.

[43] Francois Pottier and Vincent Simonet. Information flow inference for
ml. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 319–330, 2002.

[44] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter
O’Hearn, and Jules Villard. Local reasoning about the presence of
bugs: Incorrectness separation logic. In Computer Aided Verification:

32nd International Conference, CAV 2020, Los Angeles, CA, USA, July

21–24, 2020, Proceedings, Part II 32, pages 225–252. Springer, 2020.

[45] Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn. A
general approach to under-approximate reasoning about concurrent
programs. In 34th International Conference on Concurrency Theory

(CONCUR 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2023.

[46] Andrei Sabelfeld and Andrew C Myers. Language-based information-
flow security. IEEE Journal on selected areas in communications,
21(1):5–19, 2003.

[47] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz.
kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels. In Proc.

USENIX Security Symposium, 2017.

[48] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray,
and Suman Jana. Neuzz: a neural-network-assisted fuzzer. In IEEE

Security and Privacy, 2019.

[49] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, 2016.

[50] Julien Vanegue. Adversarial logic. In International Static Analysis

Symposium, pages 422–448. Springer, 2022.

[51] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of computer security, 4(2-
3):167–187, 1996.

[52] David Walker. A type system for expressive security policies. In Pro-

ceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 254–267, 2000.

[53] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. Abu-Ghazaleh. SyzVegas: Beating Kernel Fuzzing Odds with
Reinforcement Learning. In Proc. USENIX Security Symposium, 2021.

[54] J. Wilk and M. Rash. A collection of vulnerabilities discovered by the
AFL fuzzer (afl-fuzz). https://github.com/mrash/afl-cve, 2017.

[55] Hongwei Xi and Robert Harper. A dependently typed assembly
language. In Proceedings of the sixth ACM SIGPLAN international

conference on Functional programming, pages 169–180, 2001.
[56] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:

Data race fuzzing for kernel file systems. In 41st IEEE Symposium on

Security and Privacy, 2020.
[57] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu,

and Xu Zhou. Ecofuzz: Adaptive energy-saving greybox fuzzing as a
variant of the adversarial multi-armed bandit. In 29th USENIX Security

Symposium (USENIX Security 20), 2020.
[58] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.

QSYM : A practical concolic execution engine tailored for hybrid
fuzzing. In 27th USENIX Security Symposium (USENIX Security 18),
2018.

[59] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C
Myers. Secure program partitioning. ACM Transactions on Computer

Systems (TOCS), 20(3):283–328, 2002.
[60] Lantian Zheng and Andrew C Myers. End-to-end availability policies

and noninterference. In 18th IEEE Computer Security Foundations

Workshop (CSFW’05), pages 272–286. IEEE, 2005.
[61] Lantian Zheng and Andrew C Myers. A language-based approach to

secure quorum replication. PLAS ’14, pages 27–39, 2014.
[62] Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic:

A unifying foundation for correctness and incorrectness reasoning. Pro-

ceedings of the ACM on Programming Languages, 7(OOPSLA1):522–
550, 2023.

8



IX. PROOFS

Theorem 3 (Type Safety). For all Γ, fx, e w, f , γ, w′, γ′,

f ′

x
, and e′, if

Γ, fx ⊢ e : w, f ,

Γ � γ, and

〈Γ, γ, fx, e〉
w

′

→∗ 〈Γ, γ′, f ′

x
, e′〉,

then

w′ ⋐ w.

Proof.

We assume

(1) Γ, fx ⊢ e : w, f
(2) Γ � γ

(3) 〈Γ, γ, fx, e〉
w

′

→∗ 〈Γ, γ′, f ′

x
, e′〉

We show that

w′ ⋐ w.

Let

(4) w′ = w′

1 · ... · w
′

n

(5) 〈Γ, γ, fx, e〉
w

′

1→ 〈Γ, γ1, fx1, e1〉
w

′

2→ ...
w

′

n→ 〈Γ, γ′, f ′

x
, e′〉

By induction on the derivation of [3] and Lemma 2, there

exists w1 ... wn and wn such that

w = w1 · ... · wn · wn+1,

w′

1 ⊆ w1, ..., w′

n
⊆ wn

Therefore,

w′ ⋐ w.

Lemma 2 (Preservation). For all Γ, fx, e, w, f , γ, w′, γ′, f ′

x

and e′, if

Γ, fx ⊢ e : w, f ,

Γ � γ, and

〈Γ, γ, fx, e〉
w

′

→ 〈Γ, γ′, f ′

x
, e′〉,

then there exist w′′, f ′, w1 and w2 such that

Γ, f ′

x
⊢ e′ : w′′, f ′,

w = w1 · w2,

w′ ⊆ w1, and

w′′ ⊆ w2.

Proof.

We assume

(1) Γ, fx ⊢ e : w, f
(2) Γ � γ

(3) 〈Γ, γ, fx, e〉
w

′

→ 〈Γ, γ′, f ′

x
, e′〉,

We show that there exist f ′ such that

Γ, f ′

x
⊢ e′ : w′′, f ′,

w = w1 · w2,

w′ ⊆ w1, and

w′′ ⊆ w2.

The proof is by case analysis on [3]:

Case VAR-ISEM:

(4) e = R[x]
(5) 〈Γ, γ, fx,R[x]〉 → 〈Γ, γ, fx,R[γ(x)]〉

(6) w′ = ǫ

By Lemma 3 on [1] and [4],

(7) Γ, fx ⊢ x : w1, f
′′

(8) w = w1 · w2

By inversion on [7],

(9) Γ(x) = f ′′

(10) w1 = ǫ

By [8] and [10],

(11) w = w2

By [2] on [9], there exists n and f ′′′ such that

(10) γ(x) = 〈n, f ′′′〉
(11) f ′′′ ⊑ f ′′

By IVAL-TYPE on [10],

(12) Γ, fx ⊢ γ(x) : ǫ, f ′′′

By Lemma 4 on [1], [4], [8], [7], [12], and [11], there exists

f ′ such that

(13) Γ, fx ⊢ R[γ(x)] : w, f ′

By [6], [10] and [11], it is straightforward that

(15) w′ ⊆ w1

(16) w ⊆ w2

The conclusion is [13], [8], [15] and [16].

Case ASSN-ISEM:

(4) e = R[x := v]
(5) Γ(x) = 〈c, i〉
(6) fx = 〈cx, ix〉
(7) v = 〈n, 〈c′, i′〉〉

(8) w′

1 =

{

ǫ if c′ ⊔ cx ⊑ c

Leak else

(9) w′

2 =

{

ǫ if i′ ⊔ ix ⊑ i

Injection else
(10) w′ = w′

1 · w
′

2

(11) 〈Γ, γ, fx,R[x := v]〉
w

′

→ 〈Γ, γ[x 7→ v], fx,R[v]〉
By Lemma 3 on [1] and [4],

(12) Γ, fx ⊢ x := v : wI , f
′′

(13) w = wI · wII

By inversion on [12],

(14) Γ(x) = 〈c, i〉
(15) Γ, 〈cx, ix〉 ⊢ v : w0, 〈c

′, i′〉

(16) w1 =

{

ǫ if c′ ⊔ cx ⊑ c

Leak else

(17) w2 =

{

ǫ if i′ ⊔ ix ⊑ i

Injection else
(18) Γ, 〈cx, ix〉 ⊢ x := v : w0 · w1 · w2, 〈c, i〉
(19) wI = w0 · w1 · w2

By inversion on [15],

(20) w0 = ǫ

By IVAL-TYPE,

(21) Γ, fx ⊢ v : ǫ,⊥
Trivially,

(22) ⊥ ⊑ f ′′

By Lemma 4 on [1], [4], [13], [12], [21], and [22], there

exists f ′ such that

(23) Γ, fx ⊢ R[v] : wII , f
′

By [8] and [16],
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(24) w′

1 = w1

By [9] and [17],

(25) w′

2 = w2

By [13], [19], [20], [24], [25] and [10],

(26) w = w′ · wII

It is straightforward that

(27) w′ ⊆ w′, and

(28) wII ⊆ wII

The conclusion is [23], [26], [27] and [28].

Case CTX-ISEM:

(4) e = R[e1]

(5) 〈fx, e1〉
w

′

→ 〈f ′

x
, e2〉

(6) 〈Γ, γ, fx,R[e1]〉
w

′

→ 〈Γ, γ, f ′

x
,R[e2]〉

By Lemma 3 on [1] and [4], there exists w1, w′′ and f1 such

that

(7) Γ, fx ⊢ e1 : w1, f1
(8) w = w1 · w

′′

By Lemma 6 on [7] and [5], then there exist w′′, f ′′, w11

and w12 such that

(9) Γ, f ′

x
⊢ e2 : w2, f

′′

(10) f ′′ ⊑ f1
(11) w1 = w11 · w12

(12) w′ ⊆ w11

(13) w2 ⊆ w12

By [1], [4], and [8],

(14) Γ, fx ⊢ R[e] : w1 · w
′′, f

By Lemma 3 on [14], [7], [9], and [10],

(15) Γ, f ′

x
⊢ R[e2] : w2 · w

′′, f ′

From [8] and [11],

(16) w = w11 · w12 · w
′′

From [13],

(17) w2 · w
′′ ⊆ w12 · w

′′

The conclusion is [15], [16], [12] and [17].

Lemma 3. For all Γ, fx, R, e, w and f , if

Γ, fx ⊢ R[e] : w, f ,

then there exist w1, w2 and f1 such that

Γ, fx ⊢ e : w1, f1, and

w = w1 · w2.

Proof. Straightforward by structural induction on R, and

inversion on the typing judgment.

Lemma 4. For all Γ, fx, R, e1, w1, w′, f , e1, f1, w2 and f2,

if

Γ, fx ⊢ R[e1] : w1 · w
′, f ,

Γ, fx ⊢ e1 : w1, f1,

Γ, fx ⊢ e2 : w2, f2, and

f2 ⊑ f1,

then there exist f ′ such that

Γ, fx ⊢ R[e2] : w2 · w
′, f ′, and

f ′ ⊑ f .

Proof.

We assume

(1) Γ, fx ⊢ R[e1] : w1 · w
′, f

(2) Γ, fx ⊢ e1 : w1, f1
(3) Γ, fx ⊢ e2 : w2, f2
(4) f2 ⊑ f1

We show that there exist f ′ such that

Γ, fx ⊢ R[e2] : w2 · w
′, f ′

f ′ ⊑ f

The proof is by structural induction on R:

Case [ ]:
From [1],

(5) Γ, fx ⊢ e1 : w1 · w
′, f

By Lemma 5 on [5] and [2],

(6) w′ = ǫ

(7) f = f1
From [3] and [6],

(8) Γ, fx ⊢ R[e2] : w2 · w
′, f2

From [4] and [7]

f2 ⊑ f

The conclusion is [8] and [9] with f ′ = f2.

Case R⊕ e:

From [1],

(5) Γ, fx ⊢ e1 + e : w1 · w
′, f

By inversion on [5], there exists w11, f11, w12 and f12 such

that

(6) Γ, fx ⊢ e1 : w11, f11
(7) Γ, fx ⊢ e : w12, f12
(8) Γ, fx ⊢ e1 ⊕ e : w11 · w12, f11 ⊔ f12
(9) w1 · w

′ = w11 · w12

(10) f = f11 ⊔ f12
By Lemma 5 on [2] and [6],

(11) w1 = w11

(12) f1 = f11
By OP-TYPE on [3] and [7]

(13) Γ, fx ⊢ e2 ⊕ e : w2 · w12, f2 ⊔ f12
By [9] and [11],

(14) w′ = w12

By [13] and [14],

(15) Γ, fx ⊢ e2 ⊕ e : w2 · w
′, f2 ⊔ f12

By [4] and [12],

(16) f2 ⊔ f12 ⊑ f11 ⊔ f12
By [16] and [10],

(17) f2 ⊔ f12 ⊑ f

The conclusion is [15] and [17] with f ′ = f2 ⊔ f12.

The proof for the other cases v ⊕ R, R; e, if R e else e,

x := R and jit R are closely similar to the proof of the case

R⊕ e above.
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Lemma 5. For all Γ, fx, R, e, w, f , w′ and f ′, if

Γ, fx ⊢ R[e] : w, f ,

Γ, fx ⊢ R[e] : w′, f ′,

then

w = w′ and

f = f ′.

Proof. By structural induction on R, and inversion on the two

typing judgments.

Lemma 6. For all Γ, fx, e w, f ′

x
, w′ and e′, if

Γ, fx ⊢ e : w, f , and

〈fx, e〉
w

′

→ 〈f ′

x
, e′〉

then there exist w′′, f ′′, w1 and w2 such that

Γ, f ′

x
⊢ e′ : w′′, f ′′

f ′′ ⊑ f ,

w = w1 · w2,

w′ ⊆ w1, and

w′′ ⊆ w2.

Proof.

We assume

(1) Γ, fx ⊢ e : w, f

(2) 〈fx, e〉
w

′

→ 〈f ′

x
, e′〉

We show that there exist w′′, f ′′, w1 and w2 such that

Γ, fx ⊢ e′ : w′′, f ′′

f ′′ ⊑ f

w = w1 · w2

w′ ⊆ w1

w′′ ⊆ w2

Case analysis on [2]:

Case OP-ISEM:

(3) e = 〈n1, f1〉 ⊕ 〈n2, f2〉
(4) w′ = ǫ

(5) n1 ⊕ n2 = n3

(6) f1 ⊔ f2 = f3
(7) 〈fx, 〈n1, f1〉 ⊕ 〈n2, f2〉〉 → 〈fx, 〈n3, f3〉〉

By [1] and [3],

(8) Γ, fx ⊢ 〈n1, f1〉 ⊕ 〈n2, f2〉 : w, f
By inversion on [8] and its deriving judgments,

(9) w = ǫ

(10) f = f1 ⊔ f2
By IVAL-TYPE,

(11) Γ, f ⊢ 〈n3, f3〉 : ǫ, f3
By [6] and [10],

(12) f3 = f

From [4] and [9], and w1 = w2 = ǫ, it is straightforward that

(13) w = w1 · w2,

(14) w′ ⊆ w1

(15) ǫ ⊆ w2

The conclusion is [11]-[15].

Case IF-THEN-ISEM:

(3) e = if 〈n, f ′

x
〉 e1 else e2

(4) w′ = ǫ

(5) n 6= 0
(6) 〈fx, if 〈n, f

′

x
〉 e1 else e2〉 → 〈fx ⊔ f ′

x
, e1〉

By [1] and [3],

(7) Γ, fx ⊢ if 〈n, f ′

x
〉 e1 else e2 : w, f

By inversion on [7],

(8) Γ, fx ⊢ 〈n, f ′

x
〉 : w0, f0

(9) Γ, fx ⊔ f0 ⊢ e1 : w1, f1
(10) Γ, fx ⊔ f0 ⊢ e2 : w2, f2
(11) Γ, fx ⊢ if 〈n, f ′

x
〉 e1 else e2 : w0 · (w1 | w2), f1 ⊔ f2

(12) w = w0 · (w1 | w2)
(13) f = f1 ⊔ f2

By inversion on [8],

(14) f ′

x
= f0

(15) w0 = ǫ

From [9] and [14],

(16) Γ, fx ⊔ f ′

x
⊢ e1 : w1, f1

From [13],

(17) f1 ⊑ f

From [12], [15] and [4], and wI = ǫ, wII = (w1 | w2), it is

straightforward that

(18) w = wI · wII ,

(19) w′ ⊆ wI

(20) w1 ⊆ wII

The conclusion is [16]-[20],

Case IF-ELSE-ISEM:

Similar to IF-THEN-ISEM.

Case SEQ-ISEM:

Similar to IF-THEN-ISEM.

Case WHILE-ISEM:

(3) e = while e1 e2
(4) w′ = ǫ

(5) 〈fx,while e1 e2〉 →
〈fx, if e1 (e2; while e1 e2) else 0〉

By [1] and [3],

(6) Γ, fx ⊢ while e1 e2 : w, f
By inversion on [6],

(7) Γ, fx ⊔ f ⊢ e1 : w1, f

(8) Γ, fx ⊔ f ⊢ e2 : w2, f
′

(9) Γ, fx ⊢ while e e′ : w1 · (w2 · w1)
∗,⊥

(10) w = w1 · (w2 · w1)
∗

(11) f = ⊥
By VAL-TYPE,

(12) Γ, fx ⊔ f ⊢ 0 : ǫ,⊥
By WHILE-TYPE on [7] and [8],

(13) Γ, fx ⊔ f ⊢ while e1 e2 : w1 · (w2 · w1)
∗,⊥

By SEQ-TYPE on [8] and [13],

(14) Γ, fx ⊔ f ⊢ e2; while e1 e2 : w2 · w1 · (w2 · w1)
∗,⊥

that is
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(14) Γ, fx ⊔ f ⊢ e2; while e1 e2 : (w2 · w1)
+,⊥

By IF-TYPE on [7], [14] and [12],

(15) Γ, fx ⊢ if e1 (e2; while e1 e2) else 0 :
w1 · ((w2 · w1)

+|ǫ),⊥
that is

(15) Γ, fx ⊢ if e1 (e2; while e1 e2) else 0 :
w1 · (w2 · w1)

∗,⊥
Trivially,

(17) ⊥ ⊑ f

From [10], [4], and wI = ǫ, wII = w1 · (w2 · w1)
∗, it is

straightforward that

(18) w = wI · wII ,

(19) w′ ⊆ wI

(20) w1 · (w2 · w1)
∗ ⊆ wII

The conclusion is [15]-[20],

Case JIT-ISEM:

(3) e = jit v

(4) fx = 〈cx, ix〉
(5) v = 〈n, 〈c, i〉〉

(6) w′ =

{

ǫ if i ⊔ ix ⊑ H

Jit else

(7) 〈fx, jit v〉
w

′

→ 〈fx, v〉
By [1] and [3],

(8) Γ, fx ⊢ jit v, f

By inversion on [8],

(9) Γ, 〈cx, ix〉 ⊢ v : w1, 〈c, i〉

(10) w2 =

{

ǫ if i ⊔ ix ⊑ H

Jit else
(11) Γ, 〈cx, ix〉 ⊢ jit v : w1 · w2, 〈c, i〉
(12) w = w1 · w2

(13) f = 〈c, i〉
By inversion on [9],

(14) w1 = ǫ

(15) 〈c, i〉 = ⊥
By IVAL-TYPE,

(16) Γ, fx ⊢ v : ǫ,⊥
Trivially,

(17) ⊥ ⊑ f

From [12], [14], [10] and [6],

(18) w = w′

From [18], and wI = w′, wII = ǫ, it is straightforward that

(19) w = wI · wII ,

(20) w′ ⊆ wI

(21) ǫ ⊆ wII

The conclusion is [16], [17], and [19]-[21].

Theorem 4. For all Γ, γ1, fx1 and e1, then

(1) For all γ2, fx2, e2 and w,

if 〈Γ, γ1, fx1, e1〉
w

→∗ 〈Γ, γ2, fx2, e2〉
then 〈pure(γ1), pure(e1)〉 →

∗ 〈pure(γ2), pure(e2)〉.
(2) Further, for all σ2, e′2,

if 〈pure(γ1), pure(e1)〉 →
∗ 〈σ2, e

′

2〉,
then there exists w, γ2, fx2 and e2 such that

〈Γ, γ1, fx1, e1〉
w

→∗ 〈Γ, γ2, fx2, e2〉 where

σ2 = pure(γ2) and e′2 = pure(e2).

Proof. Straightforward by induction on the length of execu-

tion, and then case analysis on the step.
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