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Abstract—Enhancing 3D and Z-axis positioning accuracy is
crucial for effective rescue in indoor emergencies, ensuring
safety for emergency responders and at-risk individuals. Ad-
ditionally, reducing the dependence of a positioning system on
fixed infrastructure is crucial, given its vulnerability to power
failures and damage during emergencies. Further challenges
from a signal propagation perspective include poor indoor signal
coverage, multipath effects and the problem of Non-Line-Of-
Sight (NLOS) measurement bias. In this study, we utilize the
mobility provided by a rapidly deployable Uncrewed Aerial Ve-
hicle (UAV) based wireless network to address these challenges.
We recognize diffraction from window edges as a crucial signal
propagation mechanism and employ the Geometrical Theory
of Diffraction (GTD) to introduce a novel NLOS path length
model. Using this path length model, we propose two different
techniques to improve the indoor positioning performance for
emergency scenarios.

Index Terms—Emergency networks, UAV networks, 3D local-
ization, 3D Positioning, Indoor Positioning, GTD, NLOS path
model, Diffraction, Z-axis positioning.

I. INTRODUCTION

In emergency situations, such as fires and mass shooting
incidents, the ability to accurately locate both emergency
responders and at-risk individuals within a building is of
paramount importance. Indoor positioning, particularly for
public safety requirements, presents unique challenges, in-
cluding inadequate indoor signal coverage, a complex signal
propagation environment, and the vulnerability of fixed net-
work infrastructure to power loss or damage during emer-
gencies. Furthermore, it is crucial to prioritize enhanced Z-
axis positioning performance, as navigating between various
floors of a building poses a significant challenge. In the
United States, a collaborative solution to tackle this challenge
has been established through a public-private partnership be-
tween the federal government and AT&T, known as FirstNet
[1]. Within FirstNet, a dedicated 20 MHz spectrum in LTE
band 14 has been allocated exclusively for public safety
communication requirements.

This paper focuses on a candidate system for addressing
the communication and positioning requirements of public
safety networks. The system involves mobile UAVs equipped
with position knowledge (and are hence termed anchors).
The mobile anchors establish wireless connections with User
Equipment (UE) within a building and have been examined
to enhance indoor coverage [2] by harnessing the mobility
provided by the mobile UAVs. Additionally, sensitivity anal-
ysis of the parameters controlling positioning performance
for this system has been done [3]. The signal propaga-
tion environment in this scenario is particularly challenging
due to the prevalence of NLOS conditions. Prior research

has investigated the exploitation of Multipath Components
(MPC) to alleviate the challenges posed by NLOS conditions
and enhance positioning accuracy [4], [5]. Subsequently,
studies [6], [7] have applied Snell’s laws to model reflection
from planar surfaces, introducing the concept of a ‘virtual
anchor’ to enhance positioning performance. In our study, we
establish connections between diffraction and positioning, an
aspect that, to the best of our knowledge, has received limited
attention in the literature. By employing electromagnetic
field theory to model diffraction, we formulate a new path
length model for NLOS scenarios, utilizing it to devise novel
positioning techniques and hence gain additional system level
insights.

II. PROBLEM FORMULATION AND SYSTEM MODEL

A. Window multipath components

We assume the use of a UAV network with the UAVs
acting as base stations referred to as ‘anchors’, deployed
outside a building connected to UEs carried by at-risk
individuals acting as ‘nodes’ located within the building.
Now, we have multiple signal propagation paths between
the anchors and the nodes due to the different kinds of
interactions with the environment. In general, the signal
propagation paths referred to as ‘multipath components’
(MPCs) interact with the environment through three different
mechanisms: (a) reflection from flat surfaces, (b) transmission
through different materials, or (c) diffraction from edges. Bas
et al. [8], conducted a measurement campaign at 28 GHz and
observed that for the Outdoor-to-indoor (O2I) scenario, if the
incident electric field at the building exterior is at grazing
angles of incidence, almost all of the MPCs in the indoor
location enter the building through the window. This is due
to the fact that brick walls offer high attenuation to the signal.

To further analyze these MPCs due to the window, we
created a model of a brick building with glass windows
in Remcom’s Wireless Insight RayTracing software [9] as
shown in Fig. 1. The transmitter was placed in front of the
building on the ground 10m away from the exterior of the
building and operated at 28 GHz. We assessed N, = 1600
candidate receiver locations on the 5! floor of a building
with floor dimensions 20m x 20m. We can represent the
path followed by a particular MPC using a string such as
‘Tx-X-X-...-X-Rx’. Since each MPC begins at the transmitter
and terminate at the receiver, all possible strings start with
a ‘Tx’ and terminate with an ‘Rx’. The character ‘X’ in
the string are either ‘R’ or ‘D’ representing ‘Reflection’ or
‘Diffraction’. By reflection we mean specular reflection from
a flat surface following Snell’s laws whereas diffraction is



from edges and follows the diffraction law [10]. The number
of characters ‘X’ between the ‘Tx’ and ‘Rx’ represent the
number of interactions, and the left to right order of the
characters denotes the sequence of interactions. Reflections
happen at flat surfaces like ceilings, walls and floors whereas
diffraction happens at edges like at the window. There are
four main groups of MPCs that are formed by interactions
with the windows- MPC-1, MPC-2, MPC-3 and MPC-4.
In Table I, we see the four possible MPC groups with the
corresponding propagation mechanism represented as a string
as shown in the second row.

For every MPC group, we calculate metrics P, represent-
ing probability of existence of a particular MPC group at a
given Rx location, Py, as the probability of the first arriving
path being from a particular MPC group. These metrics are
shown in the second and third row of the table. Let N, be the
number of Rx locations where a particular MPC group exists
and Ny, be the number of Rx locations where a particular
MPC group is the first arriving path. The first arriving path
at an Rx location is defined to be the path which has the
shortest propagation delay associated with it. With this we
define P, and Py, as
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For every MPC group, the third row shows the percentage
of Rx locations where the corresponding MPC group exists

and the fourth row shows the locations where it is the first
arriving path. From Table I we can conclude that MPC-3
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TABLE I: MPCs through the windows

Group | MPC-1 MPC-2 MPC-3 MPC-4
. Tx-D-R-...Rx
String | Tx-Rx | Tx-R-Rx | Tx-D-Rx or T<-R-R... Rx
Pe 1.81% 2.56% 79.375% 100%
Prap 100% 7% 96.69% 16.25%

which is formed by a single diffraction from the window edge
(Tx-D-Rx), is present for majority of the candidate receiver
locations inside the building P, = 79.375%. Further, it is
also the first arriving path for the largest fraction of these
receiver locations Pj,, = 96.69%. Motivated by the need
to analyze these diffraction paths we develop a simplified
building model in the next section.

B. Simplified building model

To develop the simplified building model, we look to
model the diffraction from the window edges using an asymp-
totic technique from electromagnetic field theory called the
Geometrical Theory of Diffraction (GTD) [10], [11]. As a
canonical example we present diffraction due to an edge.
Note in Fig. 2a, the source A transmits a signal that diffracts
from the edge with endpoints X; and X5 resulting in a cone
of diffracting rays called the Keller cone [12]. Diffraction
occurs at the point Q., located on the edge and its coordinates
are obtained using the law of diffraction [10], [11]. The law
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Fig. 1: RayTracing setup of brick building using Remcom’s Wireless
Insight [9].

—
states that the angle =y between the incident ray AQ). and
the edge XX, is preserved after diffraction such that it is

equal to the angle between the diffracted ray QQ.B and the
edge X7 X,. Mathematically it is expressed as
[AQe - X1 X2| = QB - X1 Xa|. 2)

Here, |J\_4> . ﬁ| represents the absolute value of the vector dot
product between vectors ]\_4> and V.

Now, in MPC-3, we have two distinct diffraction paths:
one each from the upper and lower horizontal edges of the
window frame. Note that for the vertical edges if we apply
the law of diffraction (2), we observe that the diffraction
point Q. lies beyond the extremities of the vertical edges of
the window. This means there is no edge diffraction from the
vertical edge. Instead we need to model diffraction from the
corners, i.e., where the horizontal and vertical edges meet
[13]. For the scope of this paper we ignore corner diffraction
and therefore can remove the vertical edges. Consistent with
these observations we propose a simplified building model as
in Fig. 2b, where, each floor of the building consists of two
diffracting edges representing the upper and lower horizontal
edges of the window.

III. PATH LENGTH MODELING
A. A new NLOS path length model

In this section, we develop a new path length model for
the diffraction MPCs. For the derivation of the path length
we look at the upper edge diffraction MPC. Consider Fig. 2b
and let the node be located on the i** floor with the Z-axis
coordinate z,; and (X,Y) coordinate o; = [z,,,yn]". For
a building with ‘N’ floors, along the vertical axis, z,; can
take ‘N’ discrete values since the node is constrained to lie
on the lower surface of the ‘i*"’ building floor. We assume
that the vertical coordinate of the node is at the mid point
of the “i*"* building floor. Therefore, 2, ; € {(i — 1)Fy +
£1 i€ [1,N]}, where Fy is the building floor height in the
vertical dimension. Observe that the diffraction point Q. =
[@z, qy» q=])T is constrained to lie on the same floor ‘i’ as
the node. We also assume the window of vertical dimensions
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Fig. 2: 3D Edge diffraction leading to a simplified building model to analyze the diffraction MPCs.

‘w’ is located at the vertical mid point of each floor of the
building, hence the vertical coordinate of Q., ¢, is half a
window length above the vertical coordinate of the node.
Therefore, q. = 2z, + 5. Let X1 = [z1, 1, 2|7 and Xy =
[22, 92, 22T represent the end points of the upper edge of the
%t"* floor as shown in Fig. 2b. Now, the coordinates of the
diffraction point Q. can be written as a linear combination
of the end points of the upper edge as

Q = X, +(1-MXs, 0<A<L  (3)

The task now is to obtain A to uniquely determine the
diffraction point Q.. With the constraint on the Z-coordinate
of the diffraction point and an appropriate choice of the
coordinate system, we can assume that the coordinates of
the end points of the diffracting edge y; = y» = 0, and
z1=20=(—1)Fg + % From Fig. 2a, we can obtain
the unit vectors corresponding to the incident ray, diffracted
ray, and the diffracting edge in Euclidean coordinates. This
is then substituted in the law of diffraction in eq. (2) to form
an equation. On simplification of the equation, we obtain a
quadratic expression in the unknown variable A. The roots
of the quadratic equation represent two possible values of A
and are given by:
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b=2(z1 — 22) [(w2 — 24) ((21 — Zni)? + yi)
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— (22— 2,)* [(21 — za)* + 2] -
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Note, only one of the roots satisfies the diffraction law and
we drop the other root to obtain a unique solution for the
point Q. [qw,qy,qz]T. Here, from eq. (3) we have g,
Ay + (1 — Aze), ¢y = y1 = y2 = 0, and ¢, = 2

zo. Also, g, only takes discrete values corresponding to the
‘N’ floors, i.e., one value from {(i — 1)F + “tFi|i €
[1, N]}. Assuming we have ‘M’ anchors indexed by suffix ‘j’
at known locations. The path length p; ;(c;) corresponding
to the upper edge diffraction MPC between the j** anchor
and the node located on the i*” floor can be expressed as

pl](al) = \/(xa,j - Qm)z + (yayj)Q + (Za,j — qz,i)2
V(@ — 42)% + (yn)2 + (0.5w)2.

B. Range measurements of the diffraction MPCs

&)

In this section we seek to establish a link between the
range measurement conducted by a Time-of-Flight (TOF)
system that relies on estimating the first arriving path in our
021 scenario. We simulated this scenario with four anchors
as shown in Fig. 4 with the simulation parameters in Table
II. Consider a uniformly sampled grid with locations at a
distance 0.01m apart across all the floors of the building
representing possible node positions. For each node position
and for each anchor, we calculated the difference in path
length between the upper and lower edge diffraction MPC.
In Fig. 3 we show a histogram (CDF) of the difference in
path lengths and observe that the maximum value is Im. To
resolve these paths we would need a bandwidth of at least
300 MHz, which is not realistic in majority of commercial
wireless systems. For further theoretical analysis we assume
that the TOF based range measurement r; ; between a node
present on the [** floor and the j** anchor will correspond to
a noisy measurement of the path length corresponding to the
upper diffraction path p; ;(c;). This assumption is relaxed
in our evaluation of the performance of the positioning
algorithms.

IV. NLOS 3D POSITIONING ALGORITHMS

Positioning in the NLOS setting is particularly challenging
due to the presence of NLOS bias in the range measurements.
In this section, we present four techniques based on our



TABLE II: Simulation Parameters

Parameter Symbol/Value
UAVs M =4
Floors N=7

Floor Height Fr =3.5m
Floor Length L =20m
Floor Breadth B =20m
Window Height w=1lm
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Fig. 3: Difference in path length between the upper edge and lower
edge. diffraction paths.

new path length model and that incorporate varying levels
of information about the NLOS paths to improve both the
Z-axis position estimate and overall 3D position estimate.
Consider Fig. 4, where we have placed M = 4 UAV
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Fig. 4: Anchor configuration for 3D positioning.

anchors on one side of the building. This is done so that
we are able to establish a sufficient SNR to nodes located
within the building and also to address safety concerns
when deploying UAVs around a building. The noisy range
measurements between the four anchors and the node located
on an unknown floor ‘¢’, can be written as a 4 x 1 vector of the
path length corresponding to the upper edge diffraction MPC
as ry = py(ay) + n. The elements of p;(cy) are p; j(ox)
and are clearly longer than the Euclidean distance separating
the anchor and the node. This excess path length is termed as
the NLOS bias and adversely affects the positioning estimate.

Since the position of the node ¢; is not known a priori, the
NLOS bias is often modelled as a random variable following
an exponential distribution [14].

A. Stochastic NLOS bias mitigation technique

Amongst the various NLOS mitigation techniques [15]-
[19], we specifically modify a previously proposed posi-
tioning technique termed the Iterative Parallel Projection
Algorithm (IPPA) [18], which is a computationally efficient
algorithm suitable for deployment on low power mobile
platforms such as UAVs and UEs. The algorithm has been
improved to mitigate NLOS bias errors by including varying
amounts of information about the NLOS paths in [17]. We
propose to create a 2D iterative estimator based on IPPA for
each floor of the building and after all the floor estimators
have converged, we select the the one with the smallest
residual that forms the Z-axis estimate. The X,Y position
estimates on the floor are obtained from the selected floor
estimator.

All of the three primary IPPA algorithms require varying
amounts of the information about the NLOS paths. In a)
IPPA:NM(ID) - we require identification of the NLOS paths,
in b) IPPA:NM(ID,min) - we require additional information,
i.e., the lower support of the NLOS bias distribution for the
NLOS paths, and finally in ¢) [PPA:NM(ID,mean) we require
the mean of the NLOS bias distribution for the NLOS paths.
Assuming the node is on an unknown floor ‘I’, we obtain
the range measurements of the diffraction paths as an M x 1
vector r; from the ‘M’ anchors. Now, the update step for the
IPPA algorithms first calculates the contribution 3, ; for the

“5th> anchor for the “4*"’ floor estimator as

o —

X,
——— j€[l,M], i € [1,N].
e — Xl

(6)

Bij =it (rg—riy)

Here, «; is the 2D X,Y position estimate of the position for
the i*” floor which is initialized to an arbitrary location on the
same floor, X is the j** anchor position and ||.|| represents
the L2 norm. We include information about the NLOS biases
for the three IPPA:NM algorithms via a correction term 7”3 j
in the range measurements r; ;. We set ri-’yj = 0 for IPPA-
NM(ID), rﬁ”j = min(b; ;) for IPPA-NM(ID,min) and rf’ =
mean(b; ;) for IPPA-NM(ID,mean). Here, b; ; is the NLOS
bias random variable for the NLOS paths between j** anchor
and ** floor and this information can be obtained a priori
using our path model using a technique described in Section

IV-B.

Now, for every floor estimator, we iteratively update the
ith floor estimate «; with the contribution B, ; from the
4t anchor based on the condition that the current position

estimate ¢; falls within the ranging sphere centered at anchor



position X; with radius corresponding to its NLOS range
measurement 7 ;. This is expressed as

1
_ n(Nia Z 51',3'7

No = {jlj € {1, M},(r1; -

Here, n(\) is the number of elements in set \V, and 3, ; is
obtained from eq. (6). The residual for each floor estimator
¢; is defined as
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The iterative loop for each floor estimator is stopped when
the absolute difference between consecutive iterations of ¢;
is less than a fixed threshold §. Once all floor estimators
converge, we select the estimate a; with the smallest residual
¢;, along with its corresponding floor index estimate %, to
form the 3D position estimate.

B. NLOS bias characterization for the diffraction paths

It is challenging to obtain the NLOS bias statistics required
for the IPPA algorithms via an empirical measurement cam-
paign since these statistics depend on both the anchor position
and the unknown node position. Hence, we present an offline
way to obtain the the NLOS bias statistics using our proposed
path model. We can characterize the NLOS bias random
variable for a given building in two ways - (a) as a floor-wise
NLOS bias distribution or, (b) as a single composite NLOS
bias distribution. The NLOS bias distribution between the ;j**
anchor and the node located on the i floor can be expressed
as a difference of the diffraction path length p; ;(c;) and the
Euclidean distance separating the anchor and node as

bij = pijlaq) — [les = X]. ©)
To obtain the NLOS bias distribution for a fixed known
anchor position we assume the node is located on a fixed
floor ‘i’, and we uniformly sample z,, and y,, based on the
floor dimensions. The histogram of all b; ; thus obtained
can be used to approximate the distribution of the NLOS
bias between the " floor for the j*" anchor. The required
statistics for the different IPPA algorithms can now be derived
from this. Similarly, we can characterize the NLOS bias
statistics as a composite distribution for a building where
we calculate the histogram over all floors.

C. Non-linear Least Squares (NLS) for the diffraction paths

In contrast with the previous approach, this approach
treats the NLOS bias as a deterministic unknown value
and directly estimates the node position based on the noisy
range measurements. Again, we propose a 2D X,Y position
estimator for each floor of the building. Each floor estimator
estimates the coordinates of the diffraction point Q. on
the upper edge of its floor by minimizing the least squares
error on the floor. The final position estimate is obtained by

selecting the floor estimator with the smallest residual which
is the Z-axis estimate and the 2D X,Y position estimate is
provided by the selected floor estimator. The least squares
error minimization problem for the i*" floor can be written
as

M

Q; = argminz |7”j,1 - pi,j(ai)‘Q-
a; =1

(10)

Observe that the path length function p; ;(a;) in eq. (5) is

not a linear function. It is a non-linear function of both the
unknown 2D X,Y node position oy = [z, Y], in which the
floor index ‘I’ itself is unknown, the unknown location of
the diffraction point Q. on the upper edge of the It floor,
the known anchor positions X; = [Z4.;, Ya.j» 2a,j]° and the
known window dimension w. Therefore, we propose to use a
non-linear least squares iterative technique called the Gauss-
Newton method [20], [21]. The iterative update for each floor
with the subscript ‘k’ representing the iteration index is given
by

Qipr1 = g+ (H] H o) 7T HY (r = pi(ae)) . (11)

Here, r; and p;(a; ) are M x 1 vectors with elements 7; ;
and p; ; (o) respectively, and H; j is the Jacobian matrix
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V. POSITIONING PERFORMANCE

In our simulation, we considered 100,000 trials where for
each trial we uniformly sampled a 2D position on an arbitrary
floor of an ‘N’ floored building to obtain range measurements
for ‘M’ UAV anchors. The other simulation parameters are
given in Table II. Our baseline positioning performance is
compared with the traditional Linear Least Squares (LLS)
[20]. In our simulation, for each trial and for each range
measurement we select the lower or the upper edge with
50% probability. This includes the effect of noise in the range
measurements r;.

The performance is evaluated by calculating the Root
Mean Squared Error (RMSE) between the ground truth
position and the estimated position. The CDF of the 3D-
RMSE estimation errors and Z-axis estimation errors are
compared in Fig. 5. Observe that NLS offers the best 3D-
RMSE and Z-RMSE performance but requires a priori
knowledge of the coordinates of the diffracting edges for
each floor. The next best performing algorithms are the IPPA
algorithms in descending order - (a) IPPA:NM(ID,mean), (b)
IPPA:NM(ID,min) and (c) IPPA:NM(ID). This is consistent
with the level of a priori knowledge about the NLOS bias.
Finally, on comparing Fig. 5a and Fig. 5c with Fig. 5b and
Fig. 5d, observe that it is better to characterize the NLOS
bias on a floorwise basis to improve both 3D as well as Z-
axis positioning performance. An important point to note is
despite the poor anchor geometry with all anchors located
on one side of the building, the NLS technique offers < 2m
3D-RMSE performance at 80% of the indoor locations. The
baseline traditional LLS technique performs poorly due to
the presence of NLOS bias.

VI. CONCLUSION AND FUTURE WORK

Motivated by the significance of diffraction in the O2I
scenario, particularly from the context of positioning, we
have developed a new model for NLOS path length, marking
the first attempt to incorporate the Diffraction propagation

mechanism into TOF-based positioning literature. Subse-
quently, employing this path length model, we introduced
two positioning algorithms designed to enhance both 3D and
Z-axis indoor positioning performance by including varying
amounts of a priori information about the NLOS range
measurements. Demonstrating the efficacy of the developed
algorithms, we illustrated that characterizing the NLOS bias
distribution on a floorwise basis for a building significantly
improves both 3D and Z-axis positioning as compared to
treating it as a single composite distribution. In future in-
vestigations, we aim to explore the application of the new
path length model to other scenarios involving diffraction,
such as outdoor urban environments. Additionally, we intend
to assess the impact of anchor geometry on positioning
performance.
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