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Abstract—This paper examines the number of the communica-
tion modes, i.e., the degrees of freedom (DoF), that are available
in a wireless setup with a small linear intelligent surface in the
near field of a large linear intelligent surface. The framework
allows for any orientation between the surfaces and any position
in a two dimensional space assuming that the transmitting one
is placed at the origin. Therefore, apart from the length of
the two surfaces, four more parameters are considered, the
Cartesian coordinates of the center of the receiving surface and
two angles that model each surface rotation around its center. The
paper starts with the deterministic calculation of the DoF for a
generic geometric setup, which extends beyond the widely studied
paraxial setting. Subsequently, a stochastic geometry framework
is proposed to study the statistical behaviour of the DoF under a
typical geometric setup in a mmWave network. Numerical results
revealed the extreme capabilities in the achievable DoF provided
by near-field communications and allow the derivation of key
system-level insights for mmWave 6G networks.

Index Terms—Communication modes, degrees of freedom,
holographic surfaces, intelligent surfaces, near field, stochastic
geometry.

I. INTRODUCTION

One of the promising technologies for 6G communications
is the holographic multiple-input multiple output (HMIMO)
surfaces [1]. These are reconfigurable intelligent surfaces of
finite dimensions that can be treated as continuous arrays
of infinite number of infinitesimal antennas [2], capable of
controlling the radio environment in their proximity to some
degree [3]. The need for understanding the achievable funda-
mental limits of these continuous intelligent surfaces in terms
of orthogonal spatial communication modes is well recognized
[4].The number of these modes, termed degrees of freedom
(DoF), and the coupling intensity for two communicating
surfaces are two of the foundational performance indicators
of electromagnetic information theory (EIT) [5]– [7].

The increasing interest in these large surfaces along with
the relevance of higher frequencies, such as millimeter wave
(mmWave) in the current 5G systems and the sub-THz in
the future 6G systems, is expected to result in a significant
departure from the well-understood far-field regime to the
less-explored near-field region, which is of interest to this
paper [8]. Depending on the carrier frequency and the surface
dimensions, the near field region can extend from tens to
hundreds of meters. The boundary between the near-field
and the far-field region can be tens or hundreds of meters.

Consequently, unlike the traditional wireless generations, the
future 6G systems will introduce links in the near-field where
spherical wave models should be used. The novel opportunities
for beam focusing, in contrast to the beam steering available
in the far-field, will provide new capabilities in terms of
signal processing and DoF [9]. Naturally, the analysis of
key characteristics, such as DoF, require careful consideration
of the distance relative to the surfaces dimensions and the
relative geometry of the surfaces. Thus, when the paraxial
approximation that is widely adopted is not fulfilled, i.e., the
surfaces are not parallel and the distance is comparable to the
surface dimensions, then the definition of the communication
modes and the calculation of the DoF is not straightforward,
and alternative methods are required. In [10], the authors have
provided closed-form solutions for the case of a linear large
intelligent surface (LIS) and a linear small one (SIS), which
is of practical interest since it models the link between a base
station and a mobile station. While this is a key step towards
gaining a complete understanding of this regime, this work
considered a limited geometric setup and the solutions were
restricted to specific conditions.

Triggered by the aforementioned, in this work we develop a
new analytical framework for calculating the DoF for the link
between a LIS and a SIS that goes beyond the paraxial setup.
We model the surfaces as ideal electromagnetic apertures
in free space obeying the Huygens-Fresnel principle with a
holographic capability. Without putting any restrictions on the
relative positions or orientations of the two arrays, we solve
the underlying geometric problems to provide the required
parameters for the calculation of the available communication
modes. Further, to our knowledge this is also the first paper
to explore the statistical behaviour of the DoF for a practical
geometric setup under a stochastic geometry-based framework.

II. SYSTEM MODEL

Consider two linear surfaces as shown in Fig. 1, where the
origin of the reference system coincides with the center of the
transmitting surface, with the x axis oriented in the horizontal
and the y axis in the vertical direction. The transmitting
surface, Tx, is a SIS. It has a length LT and is rotated by
an angle θT with respect to y axis, considering a positive
angle for counterclockwise rotation and −π < θT ≤ π. The
endpoints of the surface are denoted as T+ and T−. The



θT

θR

rx

ry

r

0

η

(x0, y0)

Broadside 

direction

a

x− axis

y − axis

ζ

R−

R+

T+

T−

Fig. 1: The system model.

receiving surface, Rx, is a LIS of length LR, its center is
located at (x0, y0), and is rotated by an angle θR with respect
to y axis considering a positive angle for counterclockwise
rotation and −π ≤ θR ≤ π. The endpoints of the Rx surface
are denoted as R+ and R−. Both surfaces are assumed lying
on the same plane. Moreover, quite reasonably, we assume
that both surfaces radiate only in one of the two half planes.
Let η, −LT /2 ≤ η ≤ LT /2, denote the coordinate along
the transmitting surface and ζ, −LR/2 ≤ ζ ≤ LR/2, along
the receiving surface with upward positive direction when
θT = 0o and θR = 0o, respectively. Thus, the coordinates of
the two points are (η sin θT , η cos θT ) and (ζ sin θR, ζ cos θR),
respectively. The distance r between two points η and ζ on
the two surfaces is given by

r =
√
r2x + r2y =√

(x0 + η sin θT − ζ sin θR)2 + (y0 − η cos θT + ζ cos θR)2.
(1)

Since in the considered model the receiving surfaces may
be located anywhere on the plane and the two surfaces may
be rotated, there is a possibility that the receiving side of one
surface is not visible in its whole length from the transmitting
side of the other surface and vice versa. Two indicative cases
with partial visibility are depicted in Fig. 2. Therefore, based
on the values of x0, y0, θT , θR one should calculate the visible
length of the two surfaces lT , lR respectively, as well as the
points of intersection of the surfaces, denoted as η and ζ
accordingly. Based on the location of these points one may
calculate the new centers ηc, ζc of the two effective surface
segments, respectively, and replace η with (η+ηc) and ζ with
(ζ+ζc) in (1). Then, −lT /2 ≤ η ≤ lT /2, −lR/2 ≤ ζ ≤ lR/2.

There are three more useful angles to be defined for each
surface that will facilitate the calculation of the available
DoF. The angles a+, a−, a0, all in (−π, π], denote those
angles measured from the center of the transmitter to the
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Fig. 2: Two indicative cases with intersections

two endpoints LR/2, −LR/2, and the center of the receiver,
respectively. The reference zero value is measured from the
local x axis through the center of the transmitting surface.

Based on a holographic assumption and a continuous phase
profile with η, one may define a focusing function at the
transmitting surface to focus the energy at the point ζ on the
receiving surface, as

FT (η)|ζ = rect

(
η

lT

)
ej

2π
λ r(η). (2)

If the Taylor series expansion is used at η = 0 and if one
keeps only two terms of the series, then

r(η) ≈ r(0) + (η)
∂r(η)

∂η

∣∣∣∣
η=0

. (3)



The number of the terms of the series to be kept is defined
by the length of the transmitting surface, when the variables
lR, θT , θR, and x0, y0 are fixed. When two terms are kept the
distance is approximated as a linear function of η. Using (1)
the distance is written as

r(η) ≈ r(0) + η ρ = r(0) + η
sin θT − γ cos θT√

1 + γ2
, (4)

where

γ =
y0 + ζ cos θR + ζc cos θR − ηc cos θT
x0 − ζ sin θR − ζc sin θR + ηc sin θT

= tan a, (5)

and a is the angle formed by the segment from the center of
the transmitter, ηc, to the point ζ and the x axis (see Fig. 1). If
one keeps only the terms that depend on η and drop the terms
that are independent of η, which contribute a constant phase
shift to the focusing function, then

FT (η)|ζ = rect

(
η

lT

)
ej

2π
λ ρη. (6)

Thus, the approximation in (4) results in a linear phase with
η and consequently a beam steering phase profile and not a
focusing one. This means that the Tx surface concentrates
the energy towards the direction of the focal point in the far-
field and is not capable of focusing. However, since the Rx
surface is a large one, the Tx surface is in its near field and
an increased number of modes is possible. Moreover, due to
the reciprocity of the radio link, the DoF is the same if one
switches the role of the two surfaces from Tx/Rx to Rx/Tx.
Therefore, there is no need to examine separately the uplink
and the downlink cases as far as the DoF is considered, as long
as the definition of the orthonormal basis functions remains
consistent.

III. GEOMETRIC CONDITIONS FOR VISIBILITY

The first geometric conditions to be examined refer to the
mutual visibility of the two surfaces. As already explained,
the receiving surface may be located anywhere on the plane.
However, in practice its position, (x0, y0), may be confined
in a circular disk of radius R. The radius depends upon the
line-of-sight (LoS) restriction between the transmitter and the
receiver. The two surfaces may be rotated and this affects their
mutual visibility. The rotation is governed by the two angles
θT , θR and depending upon the location of the Rx surface,
there are four states: i) no visibility, ii) full mutual visibility,
iii) the full length of the transmitter is visible from the receiver
but the prolongation of the transmitting surface intersects the
receiving surface, which is shown in Fig. 2a, and iv) the full
length of the receiver is visible from the transmitter but the
prolongation of the receiving surface intersects the transmitting
surface, which is shown in Fig. 2b. For the last two states
one should calculate the point of intersection, then identify
the length of the surface lT,R, that corresponds to the visible
part, i.e., identify whether the visible part is from the point of
intersection to LT,R/2 or to −LT,R/2, and finally calculate

the center of the visible surface part ζc or ηc. The point of
intersection at the Rx surface is calculated as

ζ =
x0 cos(θT ) + y0 sin(θT )

sin(θT − θR)
, (7)

whereas the point of intersection at the Tx is calculated as

η =
x0 cos(θR) + y0 sin(θR)

sin(θT − θR)
. (8)

If these points lie in [−LT,R/2, LT,R/2], then the status is set
to iii) or iv) respectively. Then, and after identifying which
part is visible, the new center and length are calculated as

ηc =
η

2
+
LT

4
or ηc =

η

2
− LT

4

lT =

∣∣∣∣η − LT

2

∣∣∣∣ or lT =

∣∣∣∣η + LT

2

∣∣∣∣. (9)

The same equations apply for the receiver by replacing T with
R, ηc with ζc, and η with ζ.

IV. CALCULATION OF THE DOF
The methodology used for the calculation of the DoF is

based on the eigenfunction problem initially proposed in [4]
for optical systems and then in [7] for RF systems. However,
the analytical solution to this problem for a generic geometric
setup of two communicating surfaces is highly challenging.
An alternative solution was proposed in [10] using geometric
arguments and the kernel functions. The kernel function for
two points ζ, ζ ′ on the receiving surface is given through the
Green function from the point η to ζ and ζ ′ as

KR(ζ, ζ
′) =

∫ lT /2

−lT /2

G(ζ, η)G∗(ζ ′, η)dη

=

∫ lT /2

−lT /2

e−jkr

4πr

ejkr
′

4πr′
dη.

(10)

The distance factors r, r′ in the denominators may be ap-
proximated by the distance of the center of the two surfaces
d0 =

√
x20 + y20 . This approximation is valid only for the

amplitude and cannot be adopted for the phase terms in (10).
It is easily observed that the kernel function may be written
with the help of the focusing function as follows

KR(ζ, ζ
′) ≈ 1

(4πd0)2

∫ lT /2

−lT /2

e−j 2π
λ (ρ−ρ′)ηdη

=
lT

(4πd0)2
sinc

(
lT
λ
(ρ− ρ′)

)
,

(11)

where sinc(x) = sin(πx)/πx. This kernel is identical to the
field distribution at the receiving surface when the phase profile
at the transmitting surface is set to focus towards ζ ′

ψ(ζ)|ζ′ =

∫ lT /2

−lT /2

G(ζ, η)FT (η)|ζ′dη. (12)

In order to compute the number of the communication modes
that may be supported by the two surfaces, one should cal-
culate the number of the corresponding orthogonal steering



functions that fit within the length of the receiving surface.
This is accomplished by setting a reference point ζ ′ and finding
the number and location of the points on the receiving surface
where the kernel function is zero. The usefulness of the sinc
function is that one may easily calculate the points ζ where
the function takes on the zero value, i.e., at integer multiples
of lT

λ (ρ − ρ′). Thus, assume that the reference point is at
the center of the receiving surface, ζ ′ = ζc, and solve the
following equation for the points ζm that are measured with
respect to the center ζc and fall within the surface length,
−lR/2 ≤ ζm ≤ lR/2

lT
λ
(ρm − ρc) = m, m = ±1,±2,±3, ..., (13)

where

ρm =
sin θT − γm cos θT√

1 + γ2m
= sin(θT − am), (14)

γm =
y0 + ζc cos θR + ζm cos θR − ηc cos θT
x0 − ζc sin θR − ζm sin θR + ηc sin θT

. (15)

The parameters ρc, γc are calculated by setting ζm = 0.
This equation may be used to calculate the angles a+, a0, a−.
Therefore,

ζm =

γm(x0 − ζc sin θR + ηc sin θT )− y0 − ζc cos θR + ηc cos θT
γm sin θR + cos θR

,

(16)

γm = tan am = tan

(
θT − arcsin

(
ρc +m

λ

lT

))
. (17)

Substituting (17) in (16) and solving for m at ζm = lR
2 ,

−lR
2

one gets the three values m+,m− correspondingly

m+ =
lT
λ
[sin(θT − a+)− ρc],

m− =
lT
λ
[sin(θT − a−)− ρc],

(18)

where the values of γ+, γ− are given by (14) setting ζm =
+lR/2,−lR/2 respectively. The total DoF is given by

m = 1 + |m+| − |m−|, (19)

where the 1 has been added for the case when the Tx surface
is in the far field of the receiving surface and the transmitting
and receiving sides of the two surfaces are mutually visible.
Equation (19) is intended as the closest integer. In Fig. 3 a
typical calculation of the DoF based on (19) is given.

A. A Full Visibility Case

An interesting case is the one where θR = π and the
centers of the two surfaces are aligned, i.e., y0 = 0 and thus
γc = 0. In order to maintain a full mutual visibility, i.e.,
ζc = ηc = 0 and lT = LT , lR = LR, the rotation angle
of the transmitter should lie within [a− − π

2 , a+ + π
2 ], while

the coordinate x0 should be positive. Setting ζm = LR/2 then
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Fig. 3: The DoF for x0 = −5m, y0 = 5m, LT = 0.2m,
LR = 5m, f = 30GHz as given by (19).

a+ = arctan γ+ = arctan(−LR/2x0) and for ζm = −LR/2
then a− = arctan γ− = arctan(LR/2x0). Substituting in (18)

m+ =
LT

λ
[sin (θT − a+)− sin θT ]. (20)

m− =
LT

λ
[sin (θT − a−)− sin θT ]. (21)

The DoF are then given by

m = 1 +
LT

λ
[sin (θT − a+)− sin (θT − a−)]

a+=−a−
= 1 +

2LT

λ
cos θT sin a−.

(22)

For a very large receiving surface, i.e., for LR → ∞ and for
a paraxial case, i.e., θT = 0, y0 = 0, the limit for the DoF is
limLR→∞m ≈ 2LT /λ.

V. STATISTICAL ANALYSIS

In this section, the statistical behaviour of the achievable
DoF is accurately captured under the full visibility scenario
described in subsection IV.A. To this end, several key results
are presented as intermediate steps in the statistical character-
ization of the DoF. Consider a mmWave network, where the
spatial location of the center (x0, 0) of the receiving surface
is modeled as a uniform binomial point process (BPP) Φ,
and is uniformly and independently distributed in a finite
region A ⊂ R2. Without loss of generality, it is assumed
that A = b(o, R), where b(o, R) denotes a ball of radius
R centered at the origin o and the transmitting surface is
located at o. The achievable DoF are given by (22), where
a− = arctan(γ−). Notice that it is mathematically convenient
to first derive the probability density function (PDF) fS−(x)
of the random variable S− = sin a− in the following Lemma.

Lemma 1. The PDF fS−(x) of the r.v. S− is given by

fS−(x) =
2LR

πR2x2
√
1− x2

√
R2 −

( LR/2

tan(arcsin x)

)2

, (23)



where x ∈ [SLR,R, 1] and SLR,R = sin(arctan(LR/2R)).
Proof. The conditional PDF of x0 given that x0 > 0 is given

by integrating the joint PDF fx0,y0
= 1/πR2 over y0 as

fx0
(x0) =

1

P[x0 > 0]

2
√
R2 − x20
πR2

, (24)

where P[x0 > 0] = 1/2 and x0 ∈ [0, R]. Through the
continuous change of variables x

′

0 = 1/x0 and subsequently
γ− = LR

2 x
′

0, the PDF of γ− is given by

fγ−(y) =
2LR

√
R2 −

(
LR/2

y

)2

πR2y2
, y ∈ [LR/2R,∞]. (25)

Subsequently, the PDF of a− = arctan γ− can be obtained as

fa−(w) =
2LR csc2(w)

πR2y2

√
R2 −

(LR/2

tanx

)2

, (26)

where w ∈ [arctan(LR/2R), π/2]. Finally, the PDF of S− =
sin a− is given through change of variable as fS−(x) =

1√
1−x2

fa−(arcsinx). The final result given by (23) results
from algebraic manipulations. ■

Now, by deriving the PDF of the function of random variable
CθT = cos θT , the PDF of the product P = CθT · S− can
be obtained through the formula for the product of random
variables. Unfortunately, CθT and S− are dependent due to
their common random variable a−. In fact, θT is particularly
tedious to work with since both its expression and its ranges
are dependent on a−. Therefore, to derive P , the joint PDF
of CθT , S− is obtained as an intermediate step in Lemma 2.

Lemma 2. The joint PDF fCθT
,S−(c, s) of the random

variables S− and CθT is given by

fCθT
,S−(c, s) =

1

π − 2 arcsin s

4LR

√
R2 −

(
LR/2

tan(arcsin s)

)2

πR2s2
√
(1− s2)(1− c2)

,

(27)
where s ∈ [SLR,R, 1] and c ∈ [s, 1].

Proof. To obtain the joint PDF of CθT and S−, the con-
ditional PDF fCθT

|S−(c|s0) should first be obtained. Re-
call that θT ∈ [θmin

T (a−), θmax
T (a−)], where θmin

T (a−) =
a− − π

2 and θmax
T (a−) = π

2 − a− to ensure the visibility
case described in subsection IV.A. In general, θmin

T (a−) and
θmax
T (a−) are functions of a random variable as a consequence

of a− being a random variable. However, conditioned on
S− = s0 ∈ [SLR,R, 1], yields a− = arcsin s0. There-
fore, the transmitting surface is rotated by an angle θT ,

which is now uniformly and independently distributed, i.e.,
θT ∼ U [θmin

T (arcsin s0), θ
min
T (arcsin s0)]. The conditional

PDF fθT |S−(θ|s0) is given by

fθT |S−(θ|s0) =
1

π − 2 arcsin s0
× 1(θmin

T (arcsin s0) ≤ θ ≤ θmax
T (arcsin s0)),

(28)

where 1(·) denotes the indicator function. Next, the condi-
tional PDF fCθT

|S−(c|s0) is given as

fCθT
|S−(c|s0) =

2fθT |S−(arccos c|s0)√
1− c2

1(s0 ≤ c ≤ 1). (29)

Finally, by exploiting Bayes’ theorem and Lemma 1,
fCθT

,S−(c, s0) = fCθT
|S−(c|s0)fS−(s0). After substituting

and some simplifications, Lemma 2 yields. ■
Lemma 3. The PDF fP(p) of the random variable P is

given by

fP(p) =

{ ∫ smax(z)

SLR,R

1
pfCθT

,S−(p/s, s)ds, 0 ≤ p ≤ SLR,R∫√
z

z
1
pfCθT

,S−(p/s, s)ds, SLR,R < p < 1
(30)

where smax(z) = max{√z, SLR,R}.
Proof. The proof builds on the formula for the

product of dependent random variables, i.e, fP(p) =∫
Ds

1
|s|fCθT

,S−(p/s, s)ds, where Ds denotes the range for the
integration variable s. The detailed derivation of Ds is omitted
here for brevity and this completes the proof. ■

Theorem 1. The PDF fm(m) of the achievable DoF m
is given in exact form by (31) (shown at the bottom of the
page) where sgn(·) denotes the signum function defined as
sgn(x) = x

|x| and CLT ,λ = 2LT

λ .
Proof. The proof follows directly from the transformation

m = CLT ,λP + 1 and therefore fm(m) = 1
CLT ,λ

fP( m−1
CLT ,λ

).
After applying some simplifications, Theorem 1 yields. ■

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented to evaluate
the DoF achieved in a mmWave network. Similar to [10], in
all presented results, the frequency, f = 30 GHz, the length
of the transmitting surface, LT = 0.2m, and the length of the
receiving surface, LR = 2m, are fixed. The dependency of
the DoF on the distance between the two surfaces is depicted
in Fig. 4, where various distances normalized to LR are
examined. The centers of the two surfaces are aligned, i.e.,
y0 = 0, whereas θT = 0. This result reveals the advantage

fm(m) =



∫ smax

(
m−1

CLT ,λ

)
SLR,R

1
CLT ,λ

LR sgn(s)

√
4R2+L2

R

(
1− 1

s2

)
πR2s2 arccos s

√
(1−s2)

(
s2−

(
m−1

CLT ,λ

)2
)ds, 1 ≤ m ≤ CLT ,λSLR,R + 1

∫√(m−1)/CLT ,λ

(m−1)/CLT ,λ

1
CLT ,λ

LR sgn(s)

√
4R2+L2

R

(
1− 1

s2

)
πR2s2 arccos s

√
(1−s2)

(
s2−

(
m−1

CLT ,λ

)2
)ds, CLT ,λSLR,R + 1 < m < CLT ,λ + 1,

(31)
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Fig. 4: The DoF for LT = 0.2m, LR = 2m, f = 30GHz,
y0 = 0m and different normalized distance x0/LR.

provided by near-field communications in mmWave networks.
Depending on the distance between the two surfaces as well as
the rotation angle θR, the DoF takes values in the range [0,41],
as expected from (22). The zero value corresponds to the case
where no visibility is attained between the two surfaces.

Next, the statistical behaviour of the achievable DoF is cap-
tured and demonstrated. The accuracy of the analytical results
is verified by comparison with the empirical results obtained
from Monte-Carlo simulations. Fig. 5 depicts the complemen-
tary cumulative distribution function (cCDF), F c

m(mth), of
the achievable DoF for different values of the radius R. The
cCDF F c

m(mth) is defined as F c
m(mth) = 1 − P[m ≤ mth]

and is obtained through numerical integration of Theorem 1
w.r.t the appropriate range of m. A first observation is that
the probability of achieving a target value, e.g., mth = 20
modes, which corresponds to half the maximum achievable
DoF, 2LT /λ, dramatically increases with the decrease of R.
In particular, as we slightly increase the value of R (starting
from a small value), we notice a dramatic reduction in the DoF.
This result quantifies the available DoF as the links goes from
being in the near-field regime to being in the far-field regime.
Not surprisingly, the curves become steepest with the increase
in R. The Fraunhofer distance is dFF = 2L2

R/λ = 800 meters.
Interestingly, even when R = 200 meters i.e, R = 1

4dFF , the
probability that the DoF are more than 2 is hardly 20%.

VII. CONCLUSIONS

In this work, the available DoF in a wireless mmWave
network with a SIS located in the near field of a LIS is ex-
amined. The proposed deterministic framework can be applied
to general mmWave network deployments beyond the widely
studied paraxial setting. To this end, apart from the length of
the two surfaces, four more parameters are considered, namely
the Cartesian coordinates of the center of the receiving surface
and two angles that model the rotation of each surface around
its center. Subsequently, a stochastic geometry framework is
proposed to capture the statistical behavior of the achievable
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Fig. 5: cCDF of the achievable DoF versus mth for different
values of the radius R. Markers denote the analytical results.

DoF available by LIS in the near field for some typical
cases. Numerical results revealed: i) the advantage provided
by near-field communications in mmWave networks, and ii)
that for small distances between a LIS and a SIS, even small
increments in the distance can drastically change the statistical
behavior of the DoF and significantly reduce the achievable
communications modes.
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