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Abstract—We investigate a vision-aided integrated sensing
and communications (ISAC) system comprising a transmitter,
a receiver and a vision sensor (such as a camera) co-located
with the receiver. The vision-aided ISAC system uses the vision
sensor to sense the environment and share the vision data with
the receiver. The receiver decodes the transmitted message using
the received signal and the vision data. Even though this vision
data may not completely determine the channel impulse response,
some information about the environment, such as whether the
transmitter is visible from the receiver, could be potentially
useful for decoding. The objective of this paper is to understand
the value of such information, termed channel state knowledge,
using an information-theoretic formalism. We examine three
scenarios in which the vision sensor provides different amounts
of channel state knowledge to the receiver: perfect, imperfect,
and none. Further, we analyze the mutual information for the
vision-aided ISAC system using joint and sequential processing
approaches and demonstrate that the system with the joint
processing of vision data and communication signals has higher
mutual information. This analysis provides crucial insights into
the performance limits of vision-aided ISAC systems.

Index Terms—Vision-aided communications, discrete memory-
less channels, integrated sensing and communications, informa-
tion theory.

I. INTRODUCTION AND PROBLEM SETUP

Integrated sensing and communications (ISAC) has emerged
as an appealing technology for 6G and beyond wireless
networks [1]. A basic ISAC setup consists of a transmitter,
a receiver, and a sensor. The transmitter sends an encoded
sequence to the receiver through a noisy channel while the
receiver tries to decode this sequence from the noisy received
signal. Simultaneously, the sensor intercepts a distorted ver-
sion of the transmitted sequence and seeks to gain insights
into channel conditions using this sequence. In many ISAC
systems, the notable assumption is that the receiver has access
to the perfect channel knowledge, serving as ancillary infor-
mation for message decoding [1], [2], and the sensor knows
the transmitted sequence as side information to estimate the
unknown channel conditions. However, attaining the perfect
channel knowledge is a formidable challenge in practice.

Since numerous wireless transceivers are co-located with
other sensors (such as in vehicular settings), it is highly
appealing to use or repurpose existing vision sensors to
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observe the environment, which presents an alternate way of
obtaining some potentially incomplete but still useful channel
state information. Therefore, vision sensors have the potential
to provide the receiver with valuable channel insights. We term
this the vision-aided ISAC in this paper. Specifically, the chan-
nel state knowledge in this paper refers to useful knowledge
about physical effects impacting the channel state, such as the
placement of the transmitter/receiver and other objects and
obstacles. Crucially, this is different from the channel state
information (CSI), which is often estimated at the transmitter
and/or receiver (depending upon the communication strategy).
An example of the channel state knowledge to keep in mind
for this paper would be a vision sensor sensing the existence
of obstacles around the transmitter and receiver, which will
determine whether the channel is line-of-sight (LOS) and non-
line-of-sight (NLOS) and then share this information with the
receiver. Clearly, the channel state knowledge, as defined in
this paper, will impact the CSI but will usually not determine
it completely. The vision-aided setup has attracted growing
interest and has found new applications in various wireless
communication scenarios [3]–[5]. However, there remains a
gap in comprehensively understanding the degree of assistance
provided by the vision for communication, particularly from
the information-theoretic perspective, which is the main inspi-
ration behind this paper.

More specifically, we consider a vision-aided ISAC setup
where a transmitter wants to convey messages to the receiver
via a state-dependent noisy channel. A vision sensor is incor-
porated to sense and provide the receiver with channel state
knowledge. This scenario forms the basis for our investigation.
Particularly, we consider a discrete memoryless channel with-
out feedback. The setup is depicted in Fig. 1. The transmitter
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Fig. 1. The illustration of the vision-aided ISAC setup.

encodes the message M into a codeword Xn = {X1, ..., Xn}
and transmits it over the channel in n channel uses. The state
sequence Sn = {S1, ..., Sn} is independent and identically
distributed (i.i.d) according to probability distribution p(s) and
Si is fixed at each transmission but unknown to the sensor
and receiver. The vision sensor provides this state knowledge
to the receiver through vision data D, aiming to reduce the



uncertainty about the channel state. With access to the data
D, we consider two distinct approaches for processing the
communication signal Y and data D at the receiver. One
method uses a state estimator to detect and share the estimated
state Ŝ with the receiver. Upon receiving a noisy sequence Y n

and estimated state Ŝn, the receiver generates an estimate M̂
of the original message M . Alternatively, one can share the
vision data with the receiver and jointly process the data Dn

with the communication signal Y n at the decoder. This paper
will study the mutual information for both these approaches
within this vision-aided ISAC setup.

Like the typical ISAC system, the setup outlined here
serves two primary purposes: transmitting the message M
and acquiring the channel state knowledge S. However, the
key distinction lies in the assumption of many ISACs that
perfect channel knowledge is available at the receiver. In
this vision-aided ISAC setup, we examine a more realistic
scenario where the receiver uses a vision sensor to obtain
the channel state knowledge and integrates it into message
decoding. Ultimately, the vision-aided ISAC system aims to
enhance communications performance by leveraging the vision
sensor.

A. Prior Art

A typical ISAC setup uses one signal to convey messages
while sensing the target. Therefore, the design of the trans-
mitted signal affects both sensing and communication perfor-
mance. However, the optimal waveform for communication
may not be the same for sensing and vice versa [1], [6]. There-
fore, numerous studies have been dedicated to understanding
their fundamental trade-offs and assessing the performance
limits of the ISAC system, especially from an information-
theoretic perspective [7]–[10]. The rate-distortion-cost tuple is
a standard metric used to evaluate the performance of an ISAC
system. However, the sensing performance evaluated by the
rate-distortion tuple varies with different distortion measures.
Thus, there has been significant interest in constructing a
universal metric for sensing that is not affected by the choice
of distortion measure. One proposed metric is the “sensing
rate” or “sensing mutual information” [11], also adopted in
this paper. The use of mutual information as a metric for
sensing can be traced back to the radar waveform design [12].
Recently, more work has incorporated this sensing metric into
their analyses, such as [8], where the sensing rate between the
state sequence and the channel output is used to measure the
extractable state information. The authors in [13] characterize
the optimal trade-off between communication and sensing
by logarithmic loss distortion and provide one operational
meaning of the sensing rate. The study of [14] shows that the
sensing mutual information provides a universal lower bound
for the distortion metrics of sensing.

Vision-aided communications has gained increasing interest
and found new applications in various communication scenar-
ios. For example, the authors of [4] explore millimeter wave
(mmWave) communication systems equipped with cameras
at the base station. They leverage deep learning tools to di-
rectly predict mmWave beams and blockages from the camera

RGB images. Similarly, the authors of [15] use a sensor to
guide digital beamforming in a multiple-input multiple-output
(MIMO) system, forming a dual-sensing setup. Additionally,
the authors of [16] design a machine learning framework that
uses sensing information to efficiently select optimal reflection
beams in a reflecting intelligent surface. The work in [17]
jointly processes sequences of vision and wireless data frames
to identify the communication user from the other candidate
objects. However, most analyses of ISAC setup are constrained
by the assumption of the perfect state available at the receiver,
which is impractical when analyzing a vision-aided ISAC
system. Therefore, we introduce a new evaluation framework
using information theory to quantify the benefits of vision
analytically and gain insights into the performance limits of
vision-aided ISAC systems.

B. Contributions

In this paper, we quantify the degree of assistance the
vision sensor provides to communication in a vision-aided
ISAC system. We consider three scenarios involving varying
amounts of channel state knowledge and analyze the mutual
information of these vision-aided ISAC systems. As expected,
our analysis shows that more accurate state information pro-
vided by the vision sensor leads to better communication
performance at the receiver, and the performance improve-
ment is quantified by the mutual information I(X; Ŝ|Y ). The
availability of both communication signal and vision data
at the receiver presents another important task: finding the
optimal way to process these received data. We propose two
general processing approaches: one is sequential processing,
which utilizes a state estimator to detect the state before
decoding, and another is joint processing of vision data and
communication signal at the decoder. We demonstrate that
joint processing provides more information than the sequential
one. The performance difference between the two approaches
is quantified by I(S; (X,Y )|D). Most importantly, through
the analysis of the joint processing, we also establish that
the performance boundary of the vision-aided ISAC system is
described by I(X,S;Y,D), which is the mutual information
between the pair of the signal-channel (X,S) and pair of
observations (Y,D).

II. SYSTEM MODEL

We consider a state-dependent discrete memoryless com-
munication channel with input X , output Y , and state S. The
receiver observes Y through channel p(y|x, s), a collection
of the conditional probability mass functions on Y . The
transmitter uses channel n times to send Xn to the receiver.
The channel is memoryless in the sense that, without feedback,
the joint distribution is decomposable as p(yn|xn, sn) =∏n

i=1 pY |X,S(yi|xi, si). A vision sensor senses the channel
and then provides either perfect or imperfect state knowledge
to the decoder. We design three scenarios with different
amounts of channel state knowledge to better understand
this problem: (1) the perfect case where the vision sensor
can always provide the receiver with perfect channel state
knowledge S. (2) The imperfect case where the channel state



knowledge provided by the vision sensor is imperfect. (3)
The blind case where no state knowledge is available at the
receiver. We are interested in comparing the channel capacity
of these three cases to illustrate the degree of assistance
provided by the vision sensor under these assumptions.

1) Perfect Case: In this case, we assume that the vision
sensor shares the perfect states S with the receiver at each
transmission. The setup is depicted in Fig. 2. Let p(y|x) =
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Fig. 2. The illustration of the perfect case where the vision sensor provides
perfect state S to the receiver.∑

s p(y|x, s)p(s) be the discrete memoryless channel obtained
by averaging the p(y|x, s) over all states. Therefore, the
channel capacity for the perfect case is

C = max
p(x)

I(X;Y |S), (1)

where p(x) is the distribution of input X . Please refer to [18]
for its proof.

2) Imperfect Case: This is a highly realistic case where the
vision information obtained by the sensor might be noisy be-
cause of limited resolution and/or estimation errors. Denoting
the imperfect state as Ŝ, the setup is illustrated in Fig. 3. Then,
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Fig. 3. The illustration of imperfect state knowledge Ŝ is available to the
receiver.

the channel capacity is given as [18]

C = max
p(x)

I(X;Y |Ŝ). (2)

3) Blind Case: Without access to the state knowledge, the
receiver only obtains the output of the communication channel.
This scenario is illustrated in Fig. 4. The channel capacity is
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Fig. 4. In the blind case, no state information is available to the receiver.

expressed as [19]

C = max
p(x)

I(X;Y ). (3)

Considering the memoryless nature of the channel, the input
X and state S are independent. Therefore, we conclude that
I(X;Y |S) ≥ I(X;Y ) and I(X;Y |Ŝ) ≥ I(X;Y ). Moreover,
due to I(X;S|Y ) ≥ I(X; Ŝ|Y ), it follows that I(X;Y |S) ≥

I(X;Y |Ŝ). Accordingly, we can establish an inequality among
three mutual information values as follows

I(X;Y |S) ≥ I(X;Y |Ŝ) ≥ I(X;Y ). (4)

Furthermore, we can analytically characterize the performance
improvement by the equality:

I(X;Y |S) + I(X;S) = I(X;Y ) + I(X;S|Y ). (5)

The independence between X and S indicates I(X;S) = 0.
Therefore, the difference between the mutual information of
perfect and blind cases is given by

I(X;Y |S)− I(X,Y ) = I(X;S|Y ). (6)

In the next section, we study a binary symmetric setup
to derive explicit expressions for the mutual information
and illustrate the effectiveness of this information-theoretic
evaluation framework for this vision-aided ISAC system.

A. Binary Symmetric Setup

The binary symmetric setting consists of the transmission
indicator X as input with X ∼ Bernoulli(a), where a is the
transmission probability. The channel state S ∼ Bernoulli(b),
where b denotes the probability of S = 1. The independent
additive noise is Z ∼ Bernoulli(p), where p is the probability
of bit flip in a given trial. The system model is illustrated
in Fig. 5. Consequently, the output of this channel is given by
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Fig. 5. The illustration of binary symmetric state-dependent channel setting.

Y = SX ⊕ Z, (7)

where summation ⊕ denotes mod 2 addition and the output
Y ∈ Y = {0, 1}. The transition probability of this state-
dependent channel is given by

PY |X,S(y|x, s = 0) =

{
1− p, y = 0

p, y = 1,
(8)

PY |X,S(y|x, s = 1) =

{
1− p, y = x

p, y ̸= x.
(9)

Next, we will analyze the mutual information of perfect,
imperfect and blind cases, respectively.

1) Perfect case: Assuming the perfect state S is available
at the receiver, from equation (1), the mutual information is
shown in the next Proposition.

Proposition 1. The mutual information for the perfect case is
given as

I(X;Y |S) = b [(1− a)D(p||Q) + aD(p||1−Q)] , (10)

where Q = a + p − 2ap and D(·||·) is the binary relative
entropy defined as D(p||q) = p log p

q + (1− p) log 1−p
1−q .



Proof: With the definition of the mutual information, we
have

I(X;Y |S) =
∑

(x,y,s)

P (x, y, s) log
p(x, y|s)

P (x|s)P (y|s)
(11)

(a)
=

∑
(x,y,s)

P (x, y, s) log
P (y|x, s)
P (y|s)

(12)

(b)
=(1− p)(1− a)b log

1− p

1− p− a+ 2ap
(13)

+ pab log
p

1− p− a+ 2ap

+ p(1− a)b log
p

a(1− p) + (1− a)p

+ (1− p)ab log
1− p

a(1− p) + (1− a)p

=(1− a)bD(p||a+ p− 2ap)

+ abD(p||1− a− p+ 2ap),

where the step (a) follows from the independence between
X and S. Step (b) follows from algebraic manipulations of
P (x = i, y = j, s = k) log P (y=j|x=i,s=k)

P (y=j|s=k) using (8) and (9),
for i, j, k ∈ {0, 1}. For example, P (x = 0, y = 0, s = 0) = 0
and P (x = 0, y = 0, s = 1) = (1−p)(1−a)b log 1−p

1−p−a+2ap .
Then, substituting them into (12), we get (13).

Proposition 1 shows that I(X;Y |S) is a linear function in
b, multiplied by a convex summation of two binary relative
entropy terms. It is easy to show that I(X;Y |S) is convex in
p for a fixed a and is concave in a for a fixed p. Furthermore,
the channel capacity for the perfect case is achieved when
b = 1, the transmission probability a = 1

2 and the probability
of bit flip p = 0 or 1.

2) Imperfect case: In the imperfect case, we model S and
Ŝ as the input and output of a binary symmetric channel with
the probability of state error Pe = q as illustrated in Fig. 6.
Assuming that Ŝ is available at the receiver, the mutual
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Fig. 6. The illustration of binary symmetric state-dependent channel setting
with imperfect state Ŝ available at the receiver.

information for this case is given in the next Proposition.

Proposition 2. The mutual information for the imperfect case
is given as

I(X;Y |Ŝ) =(1− a)H(p)− P (ŝ = 0)H(A)

− P (ŝ = 1)H(B)

+ P (ŝ = 1)P (x = 1)H(C)

+ P (ŝ = 1)P (x = 0)H(D), (14)

where A = P (y = 0|ŝ = 0), B = P (y = 0|ŝ = 1), C =
P (y = 0|x = 1, ŝ = 1), D = P (y = 0|x = 1, ŝ = 0) and
P (ŝ = 0) = 1− b− q + 2bq.

Proof: From the definition of mutual information, we
have

I(X;Y |Ŝ) =
∑

(x,y,ŝ)

P (x, y, ŝ) log
P (x, y, ŝ)

P (x)P (y, ŝ)
. (15)

Following similar algebraic manipulations as in the proof of
Proposition 1, we calculate P (x, y, ŝ) log P (x=i,y=j,ŝ=k)

P (x=i)P (y=j,ŝ)=k ,
for all i, j, k ∈ {0, 1}. For example, given x = 0, y = 0
and s = 0, we can calculate

P (y = 0, x = 0, ŝ = 0) =(1− p)(1− a)(1− b− q + 2bq),

P (y = 0, ŝ = 0) =(1− p)(1− a)(1− b− q + 2bq)

+ (1− p)a(1− q)(1− b) + paqb,

and P (y = 0|x = 0, ŝ = 0) = 1− p. Then, substituting them
into (15), we obtain (14).

The imperfect case is more intricate than the perfect case.
Thus, we provide specific instances to understand this case bet-
ter. For example, the mutual information of the imperfect case
is equal to the perfect case Iq∈{1,0}(X;Y |Ŝ) = I(X,Y |S)
when estimated state Ŝ is the same as the perfect state S or its
inverse, for q = 1 or 0. Also, the imperfect case has the same
performance as the blind case Iq=0.5(X;Y |Ŝ) = I(X;Y )
when P (Ŝ = S) = 1

2 which indicates no useful state
knowledge available at the receiver. In addition, I(X;Y |Ŝ)
exhibits the identical convexity property as I(X;Y |S) for the
fixed state parameter b and probability of state error Pe.

3) Blind Case: Now, we consider the scenario where no
information about the state is available. Mutual information
for the blind case is given in the Proposition 3.

Proposition 3. The mutual information for the blind case is
given as

I(X;Y ) =(1− a)D(p||P (y = 1))

+ aD(p+ b− 2pb||P (y = 1)), (16)

where P (y = 1) = p+ ab− 2abp.

Proof: For the blind case, we calculate
P (x, y) log P (x=i,y=j)

P (x=i)P (y=j , for all i, j ∈ {0, 1} in the same way
of other two cases. Then, the mutual information is given as

I(X;Y ) =
∑
(x,y)

P (x, y) log
p(x, y)

P (x)P (y)
(17)

=(1− p)(1− a) log
1− p

P (y = 0)

+ (1− p− b+ 2pb)) log
1− p− b+ 2pb

P (y = 0)

+ p(1− a)b log
p

P (y = 1)

+ (p+ b− 2pb) log
p+ b− 2pb

P (y = 1)

=(1− a)D(p||P (y = 1))

+ aD(p+ b− 2pb||P (y = 1)),

which completes the proof.
Specifically, the mutual information of the blind case is the

same as that of the perfect case when the state parameter b = 1



and we have Ib=1(X;Y |S) = Ib=1(X;Y ). This observation
can be explained by the fact that when the channel state is
fixed, the state knowledge becomes inconsequential to the
receiver. However, incorporating state knowledge is crucial for
practical settings where channel states continuously vary over
time. Besides, I(X;Y ) shows the same convexity property as
I(X;Y |S) for a fixed b.

III. SEQUENTIAL AND JOINT PROCESSING

In the vision-aided ISAC system, when the transmitter con-
veys messages to the receiver, the vision sensor simultaneously
senses and shares the vision data about the state with the
receiver. Upon receiving the vision data D and communication
signal Y , there are two possibilities for processing them. One
is sequential processing, which employs a state estimator to
detect and provide the estimated state Ŝ to the receiver as
depicted in Fig. 7(a). The receiver then decodes the message by
taking Ŝ as the real state. However, the sequential processing
of Y and D may result in a loss of information. Hence, we
also direct our attention to the joint processing as illustrated
in Fig. 7(b), where the vision data is delivered to the decoder
directly without any prior state estimation. This section aims
to study mutual information for both these approaches to gain
a deeper understanding of their differences. Vision data is used
to reduce uncertainty about the channel state. Therefore, uti-
lizing mutual information I(S;D) to quantify the information
conveyed by D about the state S is reasonable.

1) Sequential Processing: In Fig. 7(a), the dotted box
frames the pieces for sensing the channel state, which can
be viewed as a sensing channel to provide state information.
The uncertainty reduction about the state is quantified by the
sensing rate ∆, which is defined by the mutual information

∆ ≤ I(S;D). (18)

The box with a solid line around it frames the pieces for
communication, and the communication rate R is defined as

R ≤ I(X;Y |Ŝ). (19)

The quantities R and ∆ share the same units when utilizing
the same logarithmic base, such as the commonly used base 2.
The communication rate R quantifies the uncertainty reduction
about X given the signal Y . Therefore, a vision-aided ISAC
system under sequential processing can be viewed as a combi-
nation of two parallel channels. Accordingly, it is reasonable to
define the mutual information of the vision-aided ISAC system
using sequential processing as the summation of the mutual
information of the two channels

R+∆ ≤I(S;D) + I(X;Y |Ŝ)
(a)

≤ I(S;D) + I(X;Y |D), (20)

where step (a) follows by the Markov chain S → D → Ŝ and
the data processing inequality.

2) Joint Processing: The sequential approach processes
Y and D separately, inevitably resulting in a potential loss
of information. Therefore, we now investigate what happens
if we process them jointly. The mutual information of the
vision-aided ISAC system with the joint processing is given
in Theorem 1.

Theorem 1. The mutual information for vision-aided ISAC
system with a state-dependent memoryless channel (X ×
S, p(y|x, s),Y, ) using the joint processing satisfies

R+∆ ≤ I(X,S;Y,D), (21)

where I(X,S;Y,D) is the mutual information between the
signal-channel pair (X,S) and observation pair (Y,D).

Proof: The proof of Theorem 1 consists of two parts. The
first is the proof of achievability. We need to demonstrate that
any pair of (R,∆) satisfying (21) for some p(x) and p(s)
is achievable. For fixed p(x), [18] shows that the transmitter
can send I(X;Y |D) bits reliably across the channel, and
the sensor can reduce I(S;D) bits uncertainty about state
via sensing channel for fixed p(s). With high probability,
the receiver can decode the codeword X from the received
signal Y . Therefore, an additional state uncertainty reduction is
from H(S|D) to H(S|X,Y,D). Accordingly, the uncertainty
reduction of channel state S is given as

∆ = I(S;D) +H(S|D)−H(S|X,Y,D)

= I(S;D) + I(S; (X,Y )|D). (22)

As a result, the mutual information for the joint approach
satisfies

R+∆ ≤ I(X;Y |D) + I(S;D) + I(S; (X,Y )|D)

= I(X,S;Y,D), (23)

for any fixed p(x) and p(s) is achievalble.
For the proof of converse, we need to show that for every

sequence of (2nR, n) codes with limn→∞ P
(n)
e = 0, it must

have R ≤ maxp(x) I(X;Y |D). Followed by the standard steps
in [18, Ch.3], we bound the communication rate by

nR =H(M)

=I(M ;Y n, Dn) +H(M |Y n, Dn)

(a)

≤ I(M ;Y n, Dn) + nϵn

(b)
=

n∑
i=1

I(M ;Yi, Di|Y i−1, Di−1) + nϵn

≤
n∑

i=1

I(M,Y i−1, Di−1;Yi, Di) + nϵn

(c)

≤
n∑

i=1

I(Xi, Y
i−1, Di−1;Yi, Di) + nϵn

(d)
=

n∑
i=1

I(Xi;Yi, Di) + nϵn, (24)

where ϵn tends to zero as n → 0. Step (a) follows the
Fano’s inequality H(M |Y n) ≤ nϵn [18, Ch.3.1], step (b)
follows by the chain rule of mutual information, step (c) is
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(a) Illustrating vision-aided ISAC system system with sequential processing.
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(b) The illustration of vision-aided ISAC system with joint processing.

Fig. 7. (a) The sequential processing involves using a state estimator, which takes the vision data as input and provides the estimated state Ŝ to the receiver.
(b) In joint processing, the vision sensor shares the vision data with the receiver directly without prior state estimation.

an outcome of data processing inequality and Xn = g(W ),
where g(·) is an encoder function, and step (d) follows from
the memoryless assumption of the channel. By leveraging the
concavity of the mutual information in the input distribution,
Jensen’s inequality and the independence between data D and
X , we have R ≤ I(X;Y |D) + ϵn.

Similarly, we bound the rates summation R+∆ by

n(R+∆) =H(M) +H(S)

≤I(M ;Y n) + I(Sn;Dn) + nϵ′n
(a)

≤ I(M ;Y n|Dn) + I(Sn;Dn|Xn) + nϵ′n

=I(M ;Y n|Dn) + I(Sn;Dn)

+ I(Sn;Xn|Dn) + nϵ′n
(b)

≤I(M ;Y n|Dn) + I(Sn;Dn)

+ I(Sn;Xn, Y n|Dn) + nϵ′n

=I(Xn;Y n|Dn) + I(Sn;Dn)

+ I(Sn;Xn, Y n|Dn) + nϵ′n

(c)
=

n∑
i=1

I(Si, Xi;Yi, Di) + nϵ′n, (25)

where ϵ′n tends to zero as n → 0. Step (a) follows from the fact
that M and Xn are independent of Sn, and conditioning on
D and X increases mutual information. Step (b) follows from
I(Sn;Xn, Y n|Dn) ≥ I(Sn;Xn|Dn) and step (c) follows
from the memoryless channel assumption. Finally, we have
R+∆ ≤ I(S,X;Y,D) + ϵ′n, which completes the proof.

To compare the performance of the sequential and joint
approaches, we define the maximum mutual information for
vision-aided ISAC using sequential processing as ISequential =
I(S;D) + I(X;Y |D) and for the joint processing as IJoint =
I(X,S;Y,D). From (23), we have IJoint = ISequential +
I(S; (X,Y )|D), where I(S; (X,Y )|D) ≥ 0. Consequently,
we conclude that

IJoint ≥ ISequential. (26)

Equality is achieved at D = S when the vision sensor provides
the perfect channel state S. The intuitive explanation is that
when S is available, the reduction in uncertainty only stems
from the communication channel, which is the same for both
of these approaches.

IV. NUMERICAL ILLUSTRATIONS

This section provides visual representations of our main
results and conclusions about the vision-aided ISAC system
with a binary symmetric setting. First, we show mutual infor-

Fig. 8. The mutual information of perfect, imperfect and blind case for b = 1,
p = 0.1, 0.15 and 0.2, and q = 0.9 .

mation as a function of the probability of transmission a for
three cases. The Fig. 8 shows the mutual information values
for three cases are the same, given the state parameter b = 1.
The mutual information decreases as the probability of bit
flip p increases. For the concavity, mutual information is the
summation of two log functions of a, given fixed b, p and
q. Therefore, it is concave. Then, we compare the mutual
information of three cases with different state parameters b



Fig. 9. The mutual information of perfect, imperfect and blind case for b =
0.95, 0.85 and 0.75, p = 0.1 and q = 0.9 .

Fig. 10. The mutual information of perfect, imperfect and blind case for
a = 0.9 and q = 0, 0.15, 0.3, 0.5 and 1 .

in Fig. 9, given the probability of bit flip p = 0.1 and the
probability of state error q = 0.9. The results and observations
are consistent with our conclusion in (4). Additionally, we
show the mutual information as a function of the probability
of bit flip p in Fig. 10, given different probabilities of state
error q. The mutual information of the imperfect case is the
same as that of the perfect case when q = 0 or 1, while q = 1

2 ,
the imperfect case has the same mutual information as the
blind case since the state uncertainty is maximized under this
scenario. The mutual information increases as the probability
of state error decreases.

V. CONCLUSION

A vision-aided ISAC system utilizes vision sensors to pro-
vide valuable channel state knowledge to the communications
receiver. In this paper, we have investigated this vision-aided
ISAC setup, shedding light on the degree of assistance that
vision provides to communication from an information theory
perspective. We have considered three scenarios with different
amounts of channel state knowledge available at the receiver
and showed that more accurate state knowledge received

from the vision sensor increases the mutual information at
the receiver. The performance improvement is analytically
quantified by mutual information I(X;S|Y ). We have also
proposed sequential and joint approaches for the receiver to
process communication and vision data and demonstrated that
the joint approach is better for a vision-aided ISAC system.
In this analysis, we have implemented the sensing rate to
quantify the state uncertainty reduction provided by a vision
sensor and show that the performance limit of the vision-aided
ISAC system is characterized by I(X,S;Y,D). This work has
numerous extensions possible. As the immediate next step, we
are relaxing the i.i.d. channel assumption for a possible journal
extension of this work.
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