
Improving Receiver Detection Performance Through
NLOS/LOS Vision
Samuel B. Brown and Harpreet S. Dhillon

Abstract—This paper explores the benefits of sensor-based line-
of-sight/non-line-of-sight (LOS/NLOS) information on the detec-
tion performance of an on-off keying (OOK) communication link.
Bayes risk and composite likelihood ratio test (LRT) methods
are used to derive the optimal decision rule for minimizing
probability of error in a dynamic LOS/NLOS channel. By
exploring three varying degrees of knowledge, it is shown that one
can achieve improved constant-false-alarm-rate (CFAR) detection
performance in an ensemble of trials over the uniformly-most-
powerful (UMP) test when labeled information about LOS is
provided at the receiver. It is also shown that, in the presence of
prior knowledge of signal presence, one can benefit from LOS
statistics when minimizing probability of error.

Index Terms—Signal Detection, LOS/NLOS, GLRT, Dynamic
Channel, Out-of-Band Knowledge

I. INTRODUCTION

In modern communications systems there are often numer-
ous opportunities to obtain external knowledge about the chan-
nel beyond that which is provided by the receiver itself, such
as knowledge obtained through optical and radio frequency
(RF) sensors operating outside of the main system frequency
band; e.g., radar systems aided by optical sensors or cellular
base stations aided by LOS infra-red sensors. Sensors of all
varieties are abundant in the mobile devices we use and crucial
to the functionality of wireless IoT devices, smart vehicles,
and satellites. In this paper we explore the benefits that can
be garnered from this external knowledge or “vision” through
the lens of detection theory and hypothesis testing and apply
these tools to a dynamic communications channel.

Arguably the simplest of classical signal detection problems
is that of the constant DC value in additive white Gaussian
noise (AWGN). The problem explored in this work generalizes
this to arbitrary pulse shapes and introduces a stochastic
element into the channel behavior while accounting for varying
levels of information provided by the vision sensor. As with
numerous other practical detection scenarios without fully-
known distributions for each hypothesis, there are unknown
parameters that must be accounted for when obtaining the opti-
mal decision rule. Two approaches which address the unknown
parameter detection problem from different angles are outlined
in the literature; namely, the m-ary hypothesis approach and
the composite hypothesis approach [1]. The latter is further
broken down into the generalized likelihood ratio test (GRLT),
Rao, and Wald tests which are asymptotically optimal for MLE
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Fig. 1: Recieved signal amplitude over time.

estimates of the unknown parameter(s) with independent and
identically-distributed (IID) data [2]–[4]. The GRLT, Rao, and
Wald tests, however, do not take into account prior knowledge
of the distribution of the parameter itself whereas the Bayesian
composite hypothesis testing method does [5]–[7]. As this
prior distribution is known in the problem at hand, it should
logically be factored into the detection scheme.

Here we present an analysis of one such detection problem
involving an unknown parameter whose state can be optionally
obtained through a label. The parameter in question represents
a Bernoulli channel state of either line-of-sight (LOS) or
non-line-of-sight (NLOS), much like the characterization used
in [8]. [9] provides another application in which a mixed
NLOS/LOS environment is considered. The legitimacy of the
uniformly-most-powerful (UMP) test is challenged for cases
where the test statistic does not depend on the unknown
parameter [10]. In the scenario presented, even though a
UMP test does exist in a constant-false-alarm-rate (CFAR)
detection paradigm, it is shown that, by adopting a dynamic
detection scheme, one can achieve a higher probability of
detection over an ensemble of trials for a given false alarm
rate than that achieved through the UMP test. Further, given
prior probabilities for the hypotheses, one can achieve a
lower probability of error given knowledge of the parameter
distribution than without.

II. SYSTEM MODEL

We construct a simple detection scenario in which a
receiver must determine the presence of a signal with known
pulse shape in an AWGN channel. The amplitude of the
received signal, however, is random and depends upon the
channel state which can either be LOS or NLOS. Specifically,
the channel state Ψ can take on one of two possible values:
Ψ(t) ∈ {NLOS,LOS}. This provides a simple model for a
dynamic wireless link which toggles intermittently between
NLOS and LOS such that the state Ψ is a correlated Bernoulli
random variable as in [8]. For the sake of the problem
at hand, we will assume Ψ(t) is governed by a Markov
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switching random process, also known as a continuous time
Markov chain (CTMC).

Ψ(t)| {t = t0} ∼ Bernoulli(q)

P (Ψ(t)| {t = t0}) =
{

1− q, Ψ = 0 (NLOS)
q, Ψ = 1 (LOS)

}
(1)

The marginal distribution of Ψ(t) is shown in (1). Our model
establishes α1 and α2 as the amplitudes the received signal
will assume in the NLOS and LOS states, respectively, with
with condition α2 > α1. Additionally, the signal is assumed
to be present at times and absent at other times as in an
on-off-keying (OOK) scenario for communications or a tar-
get in range/Doppler space for radar. This means that the
received signal amplitude can take on three distinct values
As(t) ∈ {0, α1, α2} representing the no-signal, NLOS, and
LOS cases. Figure 1 illustrates the behavior of the received
signal amplitude As(t) as a function of time in the midst of the
intermittent channel state Ψ(t) (shown in orange) and the OOK
behavior at the transmitter (shown in yellow). One can notice
how the channel state and signal state appear independent
of one another, and indeed we assume that As(t) and Ψ(t)
follow two independent random processes. The received signal
has shape P (t), and we assume that this shape is known at
the receiver and that time alignment has been achieved; i.e.
coherent reception is possible. The form of the received signal
without noise is therefore s(t) = As(t)P (t). The true received
signal is corrupted in the channel by a white noise process n(t)
which is added to the received signal s(t). The observation
made by the receiver is then a vector of N samples, r⃗(k),
and we assume that the channel state Ψ(t) does not change
over the duration of the observation; i.e. the amplitude value
As(t) remains constant for the entire vector r⃗(k), taking on a
single value which we denote As. The decision regarding the
presence of the signal is then made based upon the information
obtained in r⃗(k). The marginal probability distributions for
a single noise sample nk and a single signal sample sk are
shown in (2) for which σ2

n is the noise variance, Pk is a sample
from the known signal shape, π0 is the prior probability of
the no-signal (only noise) state (1−Pr[As = 0]), and q is the
probability of LOS (Pr[Ψ(t) = 1| {t = tk}]).

r⃗(k) = n⃗(k) + s⃗(k) = n⃗(k) +AsP⃗ (k),

where

nk ∼ N (0, σ2
n),

and sk ∼ fsk (s) =

 π0, s = 0
(1− π0)(1− q), s = α1Pk

(1− π0)q, s = α2Pk


(2)

The central question being explored is whether performance
gains can be achieved when the receiver obtains knowledge of
the channel state Ψ from an external sensor which we shall
call “vision”. The specifics of the sensor are not relevant to
the problem at hand; the importance instead lies in the fact
that knowledge is obtained about the wireless channel beyond
that which the transmitter and receiver can perceive in their
default RF domain.

RX TX
LOS

NLOS

LOS Sensor

Fig. 2: Channel model.

A. Cases Involving Varying Levels of Knowledge

Figure 2 depicts the simple scenario laid out here where
the receiver obtains knowledge of the LOS state by some
external means. To provide a comprehensive analysis of the
effects of this vision on detection performance, we establish 3
distinct cases representing varying degrees of knowledge about
the channel state, ordered by decreasing quality: (1) labeled
knowledge (Vision), (2) statistical knowledge, (3) blind. In
the labeled case the receiver obtains, at any point in time, an
exact label of LOS or NLOS corresponding to the channel
state Ψ such that the observed state, denoted Ψ̂, matches the
true state at all times, Ψ̂(t) = Ψ(t) ∀ t. This case is termed the
“vision” case because it represents the use of external sensor-
based information. In the statistical case the receiver no longer
has access to labels for the channel state; rather, it merely has
knowledge of the statistics of the channel model. (2) provides
the marginal probability mass function for the channel state Ψ
which follows a Bernoulli distribution parameterized by q, the
probability of LOS. Finally, the blind case represents a lack
of any information regarding the channel state at the receiver
beyond the a priori knowledge of the two possible amplitude
values α1 and α2, the signal shape P (t), and the noise variance
σ2
n. In the blind case the receiver has no notion of how often

the channel is LOS vs NLOS, much less what the state is at
any point in time.
One important characteristic distinguishing these cases is
whether the information they provide is time-dependent. The
vision case falls into this category as the labels provide an
estimate of the channel state at any time t. The other two,
however, give only model-specific information independent of
time. This distinction is key to determining the achievable
gains under different detection paradigms.

III. DETECTION FRAMEWORK

To determine the presence of a signal with maximum
reliability, one must construct a detector for which an in-
put of N samples represented by the vector r⃗(k) yields a
decision upon whether the signal is present. Knowing this,
there are two primary angles from which one can approach
this detection problem. These two perspectives concern the
number of hypotheses that are considered by the receiver,
and in turn the methodology used to derive the optimal
detection scheme. In one point of view, one can establish
three hypotheses representing the no-signal, NLOS-signal, and
LOS-signal states:

H0 : As = 0 [No-Signal]
H1 : Ψ = 0 ∧As = α1 [NLOS Signal]
H2 : Ψ = 1 ∧As = α2 [LOS Signal]

(3)
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In a second point of view, only two hypotheses are considered,
one for the no-signal state and one for the signal-present state
regardless of LOS:

H0 : As = 0 [No-Signal]
H1 : As ̸= 0 [Signal-Present]

(4)

Although these two models require different methodologies
to arrive at the optimal detector, the ultimate decision rule
that results must decide between the same two outcomes:
signal-absent or signal-present. Intriguingly, it is shown in the
following sections that these two models and approaches lead
to the same optimal detection rule.

A. M-ary Detection using Bayes Risk

The 3-hypothesis model shown in (3) is an M-ary hypothesis
testing problem, and it can be shown that having more than two
hypotheses requires some a priori knowledge of the probabil-
ities of these hypotheses occurring. If one takes the Neyman-
Pearsonian approach, for example, comparing the likelihoods
for each hypothesis requires more than one threshold; i.e.
only two can be compared in a ratio test at one time. This
leads us to formulate the Bayes Risk which considers the
cost associated with every possible observation conditioned
on the truth. Bayes Risk is defined in the most general case
as follows:

R =

M−1∑
i=0

M−1∑
j=0

CijP (Hi|Hj)P (Hj). (5)

where P (Hi|Hj) is the probability of choosing Hi given that
Hj matches reality. The coefficients Cij can be seen as weights
which determine the contribution to the overall risk when
making a decision Hi conditioned on the truth, Hj .
Minimization of the Bayes Risk encompasses any possible
metric one might have for optimality as it allows for arbitary
weight to be placed on Type-I and Type-II errors, otherwise
known as missed-detections and false-alarms as they will
henceforth be referred to. The interest in the problem at hand is
in finding a detection rule which minimizes the probability of
error or minHi

(Pe) where false-alarms and missed-detections
are considered equally detrimental to the risk.
It has been shown that Bayes Risk is minimized if one decides
Hi for which ci(X) =

∑N−1
j=0 Cijπ(Hj |X) is minimal where

π(Hj |X) is the posterior probability of Hj given an observa-
tion X . The optimal decision rule follows, upon definition of
the weights Cij . Adopting the minHi

(Pe) metric, the scenario
at hand defines an error as mistaking the presence of a signal
(H1 or H2) for the absence of a signal (H0) or equivalently
in reverse. We can construct the Cij matrix based off of this
rule as follows:

Cij =

0 1 1
1 0 0
1 0 0

 (6)

where i indicates the decision index and j indicates the truth
index. The symmetry of this matrix reflects the equal treatment
of missed-detections and false-alarms, and the lack of risk

associated with mistaking a LOS signal with an NLOS signal
is represented with C12 = C21 = 0. Using this definition to
minimize (5) leads to the following:

argmin︸ ︷︷ ︸
i

[ci(X)] =

{ ∑2
j=0 π(Hj |X)− π(H0|X) i = 0∑2
j=0 π(Hj |X)− π(H1|X)− π(H2|X) 1 or 2

} (7)

The decision rule which minimizes R then follows:

Choose Hi where

i =

{
0 π(H0|X) > π(H1|X) + π(H2|X)
1 or 2 otherwise

}
(8)

This result resembles the classical maximum a posteriori
(MAP) formulation for binary hypothesis testing with the
key distinction being the union of H1 and H2. It is now
straightforward to obtain the decision rule in terms of the
system parameters by substituting the likelihoods and priors
associated with the three hypotheses.

Choose H1 or H2︸ ︷︷ ︸
Signal Present

if

L(X|H1)π1 + L(X|H2)π2 > L(X|H0)π0

(9)

From (9) one can see the importance of knowledge of the
prior probabilities {π0, π1, π2} in determining signal presence.
Fortunately, although knowing the probability of the signal
presence a priori might be impossible as in the case of radar,
we have the privilege of knowing the probability of LOS,
q, in the vision and statistical cases, though not the blind.
Considering that π1 = (1 − q)(1 − π0) and π2 = q(1 − π0),
the ratio π2

π1
= q

1−q is known for these cases. This allows us
to construct a decision rule where π0 is the only unknown.

Choose H1 or H2︸ ︷︷ ︸
Signal Present

if

e
− 1

2σ2
n

∑N−1
k=0 (r⃗[k]−α1P⃗ [k])2

(1− q) + e
− 1

2σ2
n

∑N−1
k=0 (r⃗[k]−α2P⃗ [k])2

q

> e
− 1

2σ2
n

∑N−1
k=0

r⃗[k]2 π0

1− π0

exp

[
− 1

2σ2
n

(
α2
1

N−1∑
k=0

P⃗ [k]2 − 2α1

N−1∑
k=0

r⃗[k]P⃗ [k]

)]
(1− q) + ...

exp

[
− 1

2σ2
n

(
α2
2

N−1∑
k=0

P⃗ [k]2 − 2α2

N−1∑
k=0

r⃗[k]P⃗ [k]

)]
q >

π0

1− π0︸ ︷︷ ︸
η

(10)
Now it can be seen that the sufficient statistic is a replica corre-
lator, equivalent to a matched filter: T (r⃗) =

∑N−1
k=0 r⃗[k]P⃗ [k].

The detection rule, however, cannot be isolated from the
weight parameter q, indicating that knowledge of the prob-
ability of LOS is required for optimal detection performance.

B. Binary Composite Hypothesis Testing

As an alternative approach, one can consider only the two
hypotheses shown in (4). A binary hypothesis testing scenario
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lends itself quite well to the Neyman-Pearsonian likelihood
ratio test (LRT). Unlike the 3-ary Bayes risk approach, the
binary approach requires treatment of the amplitude As as an
unknown parameter and therefore falls into the category of
detection of deterministic signals with unknown parameters.
The LRT is optimal in that it maximizes the probability of
detection (PD) for a given probability of false alarm (PFA)
over all values of As > 0. It is therefore termed the UMP
test. We can obtain the UMP detector by forming an LRT
conditioned on As:

Choose H1 if LRT (r⃗) =
L(r⃗;As, H1)

L(r⃗;H0)
> γ,

which implies
exp

(
− 1

2σ2
n

∑N−1
k=0

(
r⃗[k]−AsP⃗ [k]

)2
)

exp
(
− 1

2σ2
n

∑N−1
k=0 r⃗[k]2

) > γ,

→
N−1∑
k=0

r⃗[k]P⃗ [k] >
As

2

N−1∑
k=0

P⃗ [k]2 − σ2
n

As
log(γ)︸ ︷︷ ︸

η

(11)
The decision statistic obtained from the LRT is a replica corre-
lator which notably does not depend on As. Further, although
the threshold η does depend on As, this test is sufficient for a
CFAR detection scheme even without knowledge of Ψ(t) as
the null (no-signal) hypothesis is independent of As.

If we return to the original interest in achieving minHi
(Pe)

given knowledge of π0, the LRT is not sufficient without
knowledge of As due to the power of the test (PD) being
dependent upon As. Instead the Bayesian approach to com-
posite hypothesis testing comes into play, taking into account
prior knowledge of the distribution of As which we possess
in all knowledge cases except the blind case.
The Bayes Factor for the scenario at hand has the following
form:

Choose H1 if

π(r⃗;H1)

π(r⃗;H0)
=

∫
ΩAs

L(r⃗|As;H1)p(As;H1)dAs∫
ΩAs

L(r⃗|As;H0)p(As;H0)dAs
>

π0

1− π0︸ ︷︷ ︸
η

,

where p(As;H1) = (1− q)δ(As − α1) + qδ(As − α2),

p(As;H0) = δ(As),

δ(·) is the Dirac Delta Function.
(12)

The Bernoulli form for the prior distribution on the amplitude
As derives from the signal model shown in (2). The prior
distribution for H0 is a point mass at zero representing the
no-signal state. Applying these known priors yields a decision
rule identical to that found in (10).

C. Performance Analysis

To evaluate the performance of this detection scheme we
must derive expressions for probability of detection (PD) and
false-alarm (PFA). One can either characterize the perfor-
mance for a single observation or for an ensemble of ob-

Fig. 3: Piecewise-linear approximation vs exact detector.

servations, a distinction which emerges when time-dependent
information about the channel is available as in the vision
case. Here we desire to optimize ensemble performance and
utilize the detection scheme which minimizes the average Pe.
An exact form for PD and PFA given an arbitrary q value,
however, is not tractable due to the exponential mixture form
of the decision statistic in (10). An approximation is therefore
employed which utilizes a piecewise-linear function in place
of the weighted sum of complex exponentials:

T (r⃗) = c1 exp (Φ1ζ(r⃗)) + c2 exp (Φ2ζ(r⃗)) , where

c1 = (1− q) exp

(
−α2

1ϵ(P )

2σ2
n

)
, c2 = q exp

(
−α2

2ϵ(P )

2σ2
n

)
,

Φ1 =
α1

σ2
n

, Φ2 =
α2

σ2
n

, ϵ(P ) =

N−1∑
k=0

P⃗ [k]2, ζ(r⃗) =
N−1∑
k=0

r⃗[k]P⃗ [k]

(13)
We can then form the following piecewise-linear approxima-
tion for the logarithm of T (r⃗) with boundary B:

ln(T (r⃗)) ≈
{

log(c1) + Φ1ζ(r⃗) x ≤ B
log(c2) + Φ2ζ(r⃗) x > B

}
c1e

Φ1B = c2e
Φ2B → B =

ln( c2c1 )

Φ1 − Φ2

(14)

This yields an approximate decision rule as follows:

Choose H1 if {ζ(r⃗) > η1} ∩ {ζ(r⃗) ≤ B}
or
{ζ(r⃗) > η2} ∩ {ζ(r⃗) > B}


where

η1 =
σ2
n

α1
log

(
π0

(1− π0)(1− q)

)
+

α1ϵ(P )

2

η2 =
σ2
n

α2
log

(
π0

(1− π0)q

)
+

α2ϵ(P )

2

B = log

(
q

1− q

)
σ2
n

α1 − α2
+

ϵ(P )

2

(
α2
1 − α2

2

α1 − α2

)

(15)

The approximation forms two decision rules with correspond-
ing optimal thresholds, each assuming dominance of one
channel state or the other. In approximation, expressions for
PD and PFA are realizable, and using the fact that the
decision statistic ζ(r⃗) is a random variable with the following
distribution: ζ(r⃗) ∼ N

(
Asϵ(P ), A2

sσ
2
nϵ(P )

)
, one can obtain
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the ensemble PD and PFA expressions dependent on the two
thresholds η1 and η2 and the boundary B as follows:

PD =Pr [ Choose signal-present |H1]

PD =1 {η1 ≤ B} (Pr [ζ(r⃗) > η1|As = α1] (1− q) + ...
Pr [ζ(r⃗) > η1|As = α2] q) + ...
1 {η1 > B} (Pr [ζ(r⃗) > η2|As = α1] (1− q) + ...
Pr [ζ(r⃗) > η2|As = α2] q)

→ PD =

1 {η1 ≤ B}

[
Q

(
η1 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η1 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]

+1 {η1 > B}

[
Q

(
η2 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η2 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]
PFA =Pr [ Choose signal-present |H0]

→ PFA =

1 {η1 ≤ B}Q

(
η1

σn

√
ϵ(P )

)
+ 1 {η1 > B}Q

(
η2

σn

√
ϵ(P )

)
(16)

The piecewise-approximate detector has piecewise expressions
for PD and PFA where the boundary condition is a comparison
between one of the thresholds (η1 or η2) and B, all of
which depend on the estimate for probability of LOS, q̂, the
prior probability of signal presence, π0, and otherwise known
parameters.

IV. CASE-BASED ANALYSIS

The generalized detection scheme shown in (15) assumes
some knowledge of q at the receiver, denoted q̂, and it is this
knowledge which differs among the three cases presented. The
weights for the terms in the PD and PFA expressions depend
on the true value of q while the thresholds η1 and η2 as well
as the boundary B depend on the known value at the receiver,
q̂. Each knowledge case modifies its definition of q̂, thereby
altering the chosen thresholds.

A. Labeled Knowledge (Vision)

In the case where external knowledge of the LOS state Ψ
is available, the knowledge at the receiver is binary in nature,
meaning that q̂ is either equal to 1 when the label is LOS or
0 when the label is NLOS. The expressions for PD and PFA

for the vision case are then as follows:

PD−V = Q

(
η1 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η2 − α2ϵ(P )

σn

√
ϵ(P )

)
q

PFA−V = Q

(
η1

σn

√
ϵ(P )

)
(1− q) +Q

(
η2

σn

√
ϵ(P )

)
q

(17)
PD and PFA for the vision case are exact results and do not
rely on the piecewise-linear approximation because only one
term in the weighted sum of exponentials need be considered
at a time.

B. Statistical Knowledge

In the case where the receiver no longer has access to the
labeled LOS state, q̂ is simply equal to the true probability

of LOS for the channel. This yields the following expressions
for PD and PFA:

PD−S =

1 {η1 ≤ B}

[
Q

(
η1 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η1 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]
+

1 {η1 > B}

[
Q

(
η2 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η2 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]
PFA−S =

1 {η1 ≤ B}Q

(
η1

σn

√
ϵ(P )

)
+ 1 {η1 > B}Q

(
η2

σn

√
ϵ(P )

)
(18)

For the statistical case this result is an approximation as the
entire distribution with both LOS and NLOS terms must be
considered.

C. Blind

In the absence of even statistical knowledge of the channel,
the receiver’s knowledge of LOS is entirely non-existent.
The best strategy is therefore to establish an uninformative
prior distribution on the parameter q̂. Considering that the
distribution for q is known to be Bernoulli even in the blind
case, a good choice for the prior on q̂ is the Beta

(
1
2 ,

1
2

)
distribution. The ensemble performance can then be found by
marginalizing the original Bayes Factor from (12) over the
entire space of q̂ such that its dependence is removed:

Choose H1 if

π(r⃗;H1)

π(r⃗;H0)
=

∫ 1

q̂=0

∫
ΩAs

L(r⃗|As;H1)p(As|q̂;H1)dAsdq̂∫ 1

q̂=0

∫
ΩAs

L(r⃗|As;H0)p(As|q̂;H0)dAsdq̂
>

π0

1− π0︸ ︷︷ ︸
η

,

where p(As|q̂;H1) = (1− q̂)δ(As − α1) + q̂δ(As − α2),

p(As|q̂;H0) = δ(As),

δ(·) is the Dirac Delta Function.
(19)

This yields an identical decision rule to (15) but with q = 0.5.
Therefore, in the absence of statistical knowledge, the receiver
should assume equal weighting between LOS and NLOS
channel states. The expressions for PD and PFA for the blind
case are then as follows:

PD−B =

1 {η1 ≤ B}

[
Q

(
η1 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η1 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]

+1 {η1 > B}

[
Q

(
η2 − α1ϵ(P )

σn

√
ϵ(P )

)
(1− q) +Q

(
η2 − α2ϵ(P )

σn

√
ϵ(P )

)
q

]
PFA−B =

1 {η1 ≤ B}Q

(
η1

σn

√
ϵ(P )

)
+ 1 {η1 > B}Q

(
η2

σn

√
ϵ(P )

)
With q̂ =

1

2
.

(20)
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Fig. 4: ROC curve (CFAR) performance: vision vs UMP test.

V. NUMERICAL RESULTS AND DISCUSSION

Here these performance results are tested under both CFAR
and minHi(Pe) detection paradigms in a Monte Carlo simu-
lation. Beginning with the CFAR detection simulation, T =
1000 trials are performed in which N = 100 samples are
collected from a received signal with arbitrary known shape.
For each trial, a signal-present scenario and a signal-absent
scenario are tested, and the exact decision rule shown in (10)
is used to determine the receiver’s hypothesis of choice. This
process is performed over a range of prior π0 values producing
the receiver operating characteristic (ROC) shown in Figure 4.
Note that the statistical and blind cases produce performance
identical to the UMP test from a ROC perspective, and thus
only a comparison between vision and UMP is necessary.

The probability of error simulation is performed in a similar
fashion, but the trials are performed while sweeping over SNR
values and a fixed value of π0 = 0.5.

One can see from the ROC curves that the vision case
always provides a higher PD for a given PFA than the UMP
test, and the gain achieved depends upon the probability
of LOS, q. This sets the vision case apart from the other
knowledge cases. The benefit provided by the statistical case
over the blind case is demonstrated in the prob. of error curves
wherein prior knowledge of signal presence is available.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that information provided through sensors
which is supplementary to that obtained by the receiver itself
can, under the right circumstances, improve the detection
performance for the receiver when a dynamic detection scheme
is used. Moreover, out of three knowledge cases presented,
vision, statistical, and blind, the vision case leads to better
ensemble performance compared to the UMP test while the
others do not. By dynamically changing the detection threshold
used depending on the known channel state, one can allow
higher false alarm rates in NLOS conditions while lowering

Fig. 5: Prob. of error performance: vision vs statistical vs blind

false alarm rates in LOS conditions to achieve the desired
average false alarm rate. Possession of statistical knowledge
at the receiver, although not helpful in a CFAR paradigm,
dominates the blind case when prior information about signal
presence is provided.

The results obtained point to the broader advantage provided
by sensor-based information for both CFAR and minHi

(Pe)
detectors. Therefore, future work should examine the impact
of imperfect sensor-based information, a scenario more repre-
sentative of real systems. There is also ample room to explore
the impact of vision for more sophisticated channels such as
those with Rayleigh and Ricean fading.
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