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Abstract—Many modern navigation scenarios involve au-
tonomous agents navigating in an environment with a priori
information of landmarks and obstacles. In such applications,
agents make important navigation related decisions for avoiding
obstacles. The agents often self-localize using Time-Of-Flight
(TOF) measurements from known anchors by continuous sensor-
polling. This polling uses system resources such as wireless spec-
trum and energy and a more opportunistic polling strategy would
conserve these resources. For a previously obtained measure-
ment, as the time elapses, the associated position information with
this measurement ages. This is because the agent is continuously
moving. Clearly, the nature of change of position information
depends on the nature of the agent’s motion. In this work,
we investigate the time dependence of position information as
previously obtained measurements age. We discuss two general
motion models - linear and circular, associated with the agent’s
motion. Using the Cramer-Rao lower bound (CRLB), we analyze
the effect of motion models and their influence on information
content of aged sensor measurements. In particular for map
based navigation systems, viewing an agent’s trajectory as a
combination of linear and circular motion between waypoints,
we analyze the variation of position error bound (PEB) with
age. Finally, we present our insights about opportunistic sensor
polling to a mab based navigation scenario.

Index Terms—FIM, CRLB, PEB, Aol, Map based navigation

I. INTRODUCTION

Localization on a map is a fundamental challenge in
navigation systems, crucial for ensuring accurate positioning,
dynamic map updates and navigation. This process involves
determining an agent’s precise location within a given map.
Due to the advancements in spectrum sharing and multi-
antenna diversity, radio based localization techniques have
been garnering significant research interest of the commu-
nity [1]-[3]. These techniques employ anchors with known
positions to transmit reference signals to the agent which is
to be localized. Based on wireless signal measurements like
time of flight, angle of arrival/departure, signal strength, etc,
there exists a number of techniques for estimating the agent’s
position [4].

For localization in an adversarial environment, communi-
cation channels can often be jammed [5] or experience long
propagation delays [6], [7] before the information can be pro-
cessed to obtain location estimates. Further non-cooperative
agents try to minimize their transmissions in order to avoid
getting detected [8]. In such scenarios, there is a need to in-
vestigate the information content about the current location in
aged measurements combined with a motion model. Insights
about the decay of information with time can be used to
prevent unnecessary transmissions thereby preserving secrecy.
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The motion model captures the time evolution of the agent’s
position and we study the impact two general motion models
have on the information decay. The past location is derived
from measurements which are obtained by polling different
Sensors.

With each poll there is an associated uncertainty in the
position estimate which propagates with time according to the
motion model. The motion models we consider are defined by
a point with a known position, termed as a waypoint, and a
function that describes the agent’s movement.

Waypoints are commonly used in map based navigation sys-
tems. For example, in [9], the authors identified waypoints as
a means to produce a map which can be used to aid the robot
in navigating the environment. In [10], the authors developed
optimization framework for path planning navigation system
by solving a multi-objective shortest path problem which gives
optimum routes using information about stored waypoints in
a database. In [11], a simultaneous localization and mapping
(SLAM) algorithm based on K-means clustering utilizing self-
detected waypoints is introduced to localize a robot in its
environment. In [12], the authors modelled turning movement
of vehicles on roads as circular arcs with known origin.

Note, Kalman filters have been widely used to study naviga-
tion problems because of their ability to combine polled sensor
data with motion model predictions [13], [14]. While Kalman
filters require polling of new measurements to merge them
with the location estimate from the previous state, there arises
a very interesting question here. Do the old measurements
along with the motion model alone suffice to yield meaningful
position accuracy? Answering this question rigorously could
provide important insights into optimal resource allocation and
the value of stale information in positioning and navigation
problems.

Age of information (Aol) has been studied as an important
performance metric to quantify the freshness of information
by the time it reaches the processing nodes for various
cyber-physical applications. These applications require status
updates to be as fresh as possible but this comes with a
tradeoff with system resources and processing capabilities or
in adversarial scenarios may not even be possible. In [15],
the authors described the latest design and optimization ap-
proaches for cyber-physical systems from an Aol perspective.
In [16], the authors presented a joint stochastic geometry
based analysis of throughput and Aol performance metrics in
a cellular IoT network and characterised the spatial variation
in Aol performance of status update links. In [17], the authors
derived closed form expressions to characterise coverage in a
cyber-physical system monitoring an environmental variable
modeled as a spatio-temporal process.



To the best of our knowledge the value and role of age in
range measurements of a localization system has not been
studied before. Informed by this major gap, we make the
following contributions in this paper.

o Age of information in Positioning: We explore the
role of Aol in localization problems by developing a
mathematical framework that captures the staleness in
positioning measurements using a time dependent CRLB
formulation.

« Role of motion models: We show that motion models
play a significant role in determining the utility of aged
range measurements. Our work analyzes two general
motion models applicable to various scenarios and in
particular to map based navigation systems.

o System design insights: We perform numerical simu-
lations for a map based localization system and offer
insights on optimal frequency of polling and waypoint
placement.

II. SYSTEM MODEL AND PRELIMINARIES

We analyze two types of motion models, namely, linear
(guided) and circular. These two motion models have been
rigorously employed and studied in literature for a multitude
of research problems involving mobile agents [9], [10], [12].
Using our framework we can analyze more general trajectories
by discretizing them piecewise into guided linear motions and
circular turns.

We want to study the importance of initial range measure-
ments for the estimation of future positions (x,,, y,) which are
a function of initial position (z,,y,) and age () according to
a deterministic motion model, in general described as:

In = gl(xoa Yo, 5)
Yn = 92(x07 Yo, 5)
where ¢g1(.), g2(.) are functions modeling the true trajectory
of the agent. Therefore any uncertainty in the estimation of
(20,Yo) contributes to an uncertainty in estimation future

positions (using the same set of measurements) as implied
by the above equation.
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A. Linear motion model

This model captures an agent’s motion towards a known
waypoint as illustrated in Fig. 1. The agent moves in a straight
line directed towards the respective waypoint(z,y;) with a
constant speed v. Initially the agent has no information about
its position and direction of motion, which it estimates through
range measurements. The current position (z,,y,) is related
to its orientation () with respect to the waypoint as follows:

tan(f) = I Yo 2)
Tt — To
Thus the future position (Ppew = (Tn, yn)) after a time J can
be written as:
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Fig. 1. Illustration of the linear motion model.

B. Circular motion model

(xer Ye)

Fig. 2. Illustration of the circular motion model.

This model is used for capturing the turning motion of an
agent as illustrated in Fig.2. The agent moves in a circular
trajectory around a known waypoint (x.,y.) with a fixed
radius R, = /(7o — 2c)2 + (Yo — yc)? as determined by its
initial position, having a constant linear velocity v in anti-
clockwise (without loss of generality) direction. The agent
has no information about its position, turning radius or initial
1 Yo — Ye

To — Te

The relation between current position and position after a

time J is given as:
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orientation | 6, = tan™ with respect to x-axis.
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C. CRLB analysis

CRLB provides a lower bound on the variance of any
unbiased estimator (©(y)) of a parameter @ = (01,...,0,)
from a sample of observations of a random variable y with
pdf given by f(¥; ©). Mathematically it is defined as:

CRLB(®) = Ee {(é - @) (é - @)T} SIg (5)



where
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is called the Fisher information matrix (FIM). It quantifies the
amount of information contained in observations of a random
variable about a parameter which influences the probability
distribution of this random variable. For matrices A and B,
A > B implies that A — B is a positive semi-definite matrix.

When © is a position parameter, i.e ® = (z,y, z), then
the position error bound (PEB) for the estimation of © is
calculated as:

00

PEB = /Trace (CRLB(@)). (7

When estimating a function of the parameter ® defined as
a=g(®)=(g1(01),...,9m(0,)), the CRLB is transformed

as [18]:
CRLB(a) = Joalg' J6 a- ®)

where Jg_. is the Jacobian matrix defined as [18]:
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III. MAP BASED NAVIGATION

In this section we will apply the framework introduced
in Section II to a map-based navigation scenario where an
agent has to navigate in an environment following a trajectory
defined in terms of waypoints and turn around respective
obstacle corners as illustrated in Fig. 3. The map has perfect
knowledge of the waypoint locations and the obstacle corners.
In such applications the agents commonly use camera cues for
identifying waypoints [19], [20]. We assume that the agent
is able to align itself with negligible error in the direction
of waypoint relative to its frame. Once it has aligned itself,
it starts to move towards the waypoint at a constant speed.
We define polling as the agent obtaining range measurements
and the environment’s visuals. The turning movements can
be approximated as circular arcs around respective obstacle
corners. Our objective is to determine the agent’s position
during the course of following this trajectory, minimizing the
frequency of polling.

For numerical simulation we used time of flight (TOF)
based localization, however our analysis can be easily ex-
tended to other methods like AOA, TDOA, etc as well.

For obtaining the TOF measurements we use a total of
B anchors whose positions {(z;,v;), H;}2 , are perfectly
known.

The received signal at the agent from the j-th anchor is
given as:

yi(t) =a4s(t—1;)+v; Vje{l,...,B}. (10)
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Fig. 3. Illustration of the map-based navigation scenario.

where s(t) is the known reference signal waveform transmitted
by the anchors, 7; is the time of arrival or the propagation
delay between the j-th anchor and the agent, «y; is the gain
for the channel between j-th anchor and the agent, and
v; is additive white Gaussian noise (AWGN). These TOF
measurements can be used for estimating the position of
agents using a number of techniques [4].

We will now derive the CRLB for the estimation of current
agent location (x,,y,) based on aged range measurements.

A. FIM derivation

The FIM for estimating propagation delay from each anchor
in a TOF system is given as [18]: I, = 27!, where,

w0 ... 0
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where 1 = ,/% is the normalized bandwidth,

S(f) denotes the Fourier transform of the reference transmit
signal s(t) and SNR; is the signal to noise ratio between i-th
anchor and the agent.

Let ©®, = {0, Yo, A1, ..., Ap} denote the position param-
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eter. Here, A; i)so l?he NLOS bias parameter between the i-th
anchor and the agent which captures the signal distortion due
to obstacles blocking the direct path between the transmitter
and the receiver, a common occurrence in agent navigation
problems. The following inverse transformation is used for
modeling the Jacobian J,_ e,

V(o — )2 + (o

—yi)? + HZ + A;

T =

¢
or (o — ;)
0o /(w0 —i)? + (Yo — yi)? + H}
oT; - (yo - yz) (12)
Yo \/(xo — )%+ (Yo — vi)? + H}




The Jacobian for transformation is given as:
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Accordingly FIM for ®,, can be calculated as:

—J‘r—>® I JTA)Q (14)

Prior information about the parameters can be incorporated to
get the resultant generalized FIM [1] as:

L, =1e, +1p,, 5)

where Ip_ is the prior information about ©, which can be
calculated using the prior probability density functions as
follows:

B
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° ° 00, 00,
We have assumed the position and bias parameters to be
independent. The NLOS bias A; is assumed to be Gamma

distributed with shape parameter k, and variance O'QA [3].
Using these we can obtain Ip_ as:

0 0
IPO _ [ 2x2 ] 21><B ] . (17)
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To obtain the CRLB we need to invert the generalized FIM
which is a high dimension matrix. Since we are only inter-
ested in a subset of parameters pojq, we can formulate an
effective FIM (EFIM) [1] denoted as I, ,, = A —DC~'D”.
The CRLB can be obtained as Ipold_l. Where A, C,D are
obtained from the structure of the generalized FIM in (15)
given as:

(18)
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B. Transformation Jacobians

1) Linear motion model: The entries of Jacobian matrix
for transforming old positions to new positions are given as:

Ro = \/(yt - 90)2 + (:Et - I0)2
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2) Circular motion model: The entries of Jacobian matrix
for transforming old positions to new positions are given as:
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Using (8) we can write:
—1 T
CRLB(pHEW) = JPold—’PnewIPoldJPold%Pnew' (21)

We now establish the following theorem to investigate the
effect on PEB produced by a Jacobian matrix transformation.

Theorem 1 (Owstrowski): Let A € R™ ™ be a symmetric
matrix and let X € R™*". Denote \;(M) as the i-th eigen
value of M in increasing order, 1 < ¢ < n. Then [21]:

N(XTAX) = BiMi(A), i=1:n, (22)

where A\ (XTX) < B; < M\ (XTX).
Corollary 1: The PEB for estimation of new position from
aged measurements is bounded with respect to initial PEB as:

0iPEB(old) < PEB(new) < 02PEB(old),  (23)

where oy and o, are the smallest and largest singular value
of the transformation Jacobian Jp_,p... respectively.

This can be shown by noting that trace of a matrix is the sum
of its eigen values.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present numerical results from CRLB
analysis and discuss key insights.

For simulation we chose 4 anchors which were placed at
the vertex of a square of length 100m centered at the origin
and at a height of 10m. We ensured that the agent’s trajectory
lies sufficiently inside the square to avoid anchor geometry
effects [4]. We assumed constant SNR level of 10dB for the
link between anchors and the agent. Bandwidth was taken as
20 & 30 MHz. The shape parameter for NLOS bias was taken
as k, = 4 and the mean was taken as 2m.

In Fig.4, we compare the PEB of the future positions
based on aged range measurements versus the PEB achieved
by taking new measurements at that instant for the linear
motion model. Contrary to the expectation that age always
decays information content, we observe that using aged range
measurement gives us better performance then taking a fresh
measurements at that instant. This can be intuitively explained



because we are combining additional information that the
agent moves towards a specific location (the waypoint) with
the already available position information.

Let §, = —2 denote the time required by the agent to reach
v

0
the waypoint. Define x = —. Upon simplifying Jp_ ., —puew

for the Jacobian in (19), we iget:
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The singular values obtained are: 07 = 1 and 05 = 1 +
k(k —2).

We observe that the max(o?,03) =1 for 0 < k < 2, i.e,
0 < § < 20,. Using Cor. 1 we can conclude that it is desirable
to use old ranging measurements until the time elapsed since
passing the waypoint is same as the time required to reach it
initially, the PEB will be strictly lower by using the former
set of measurements. Therefore the further the agent is from
the waypoint, longer the aged measurements will be relevant.

6.5

—3— From new measurements taken at t= §, BW= 20 MHz
6 —e— Using old measurement taken at t= 0, BW= 20 MHz
From new measurements taken at t= §, BW= 30 MHz
55 —e— Using old measurement taken at t= 0, BW= 30 MHz

Fig. 4. PEB for estimating new position from aged measurements versus
fresh measurements under a linear motion model. Parameters: v = 3ms™,
(xtvyt) = (4m7 8111), (xov yo) = (Omv 10m)‘

In Fig.5, we compare the PEB of the future positions based
on aged range measurements versus the PEB achieved by
taking new measurements at that instant for the circular motion
model. We observe that PEB decays with age, and it is always
better to use fresh measurements. This is intuitively explained
because initial uncertainty in location estimate contributes
to additional uncertainty in turning radius and thus angular
velocity calculation making our estimate go worse with time.

In Fig.6, we compare the decay rate of PEB calculated

PEB[t2] —PEB[t1] . . ) i
as —— - ———— against different values of turning radius.
We observe that as the turning radius gets smaller, the PEB
decays faster with age.

—— From new measurements taken at t= §, BW= 20 MHz

—e— Using old measurement taken at t= 0, BW= 20 MHz
From new measurements taken at t= 6, BW= 30 MHz

12 —e— Using old measurement taken at t= 0, BW= 30 MHz
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Fig. 5. PEB for estimating future positions from past measurements under
circular trajectory model. Parameters: v = 3ms™, R = 3m, (z¢,yc) =
(10m, 15m), 6, = 30°.

—=— Using aged measurement taken at t= 0, BW= 20 MHz
¢ —E— Using aged measurement taken at t= 0, BW= 30 MHz
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Fig. 6. Rate of change of PEB under circular trajectory model for different
radius. Parameters: v = 3ms ™, (z¢, yc) = (10m, 15m), 6, = 30°, t; = 1s
and to = 5 s.

These observations yield key insights. Polling is required
exactly once in traveling towards waypoints. As an extension
of this, one can conclude that in traveling between multiple
waypoints without involving turns, only one initial set of range
measurements will be sufficient, and our estimate will get
better with time. In between making a turn it is better to poll
as frequently as possible. Further, we should place waypoints
as far as possible from the obstacle corner so that the agent
takes wider turns and the utility of aged data stays relevant
for longer. Smaller turns make the location estimate go stale
very quickly.

In Fig.7, we plot the Aol curve showing the variation of
PEB with time for the displayed trajectory in Fig.3. Since
polling operation involves getting visual cues as well, we



B T
Using last obtained measurement
= = = Using fresh measurements at current time
5 ¢ Polling instants- Waypoinls, start/end of lurns

(.'1? €2

0 . ; bi s
0 @1 ~ 10’ 220 30 40 50 60 70
2 g time (sec) dy dy

Fig. 7. PEB for the displayed trajectory in Fig. 3. a1 — a2, b1 — ba,
c1 — c2 and d1 — da correspond to the time spent in turns. Parameters:
v =5ms—, BW = 30 MHz.

assume that new measurements are polled every time the agent
is at a waypoint or is entering or leaving from a turn. However,
from a perspective of solely position estimation, polling in
between successive waypoints can also be skipped. In between
the circular turns, we see that the PEB value rises well above
the PEB achievable by taking a fresh measurement at that
instant, the extent of jumps differ due to different turning radii.

In summary, the agent needs to poll when starting its
motion, at the waypoints, and during the course of its circular
turns.

V. CONCLUSION AND FUTURE WORK

Our analysis yields insights about the best performance an
unbiased estimator can achieve for estimating future positions
given old range measurements. Through a CRLB analysis
we studied the effect an agent’s motion has on the infor-
mation content of aged range measurements. We were able
to demonstrate that only one poll is sufficient to estimate
future positions when an agent is following a rectilinear
path guided towards a waypoint, further providing a better
PEB than a fresh poll. For making turns modeled as circular
arcs, we showed that it is better to poll as frequently as
possible. We applied our analysis to a map-based navigation
scenario and provided insights about the optimal frequency
of polling and waypoint placement from the perspective of
keeping aged measurements relevant for longer. Our results
provide valuable insights toward selecting sensor polling in-
stances for better battery utilization and spectrum usage in
adversarial environments where frequent communication is
limited or may not be established. Using our framework, it
is possible to determine how often transmissions must occur
in order to locate an uncooperative agent to within a certain

accuracy. While CRLB analysis provide insights into the
best performance an unbiased estimator can provide using a
given set of observations, the design of such estimators is a
different problem which is left as a future work. Integration
of optimization techniques with our framework for resource
allocation is an interesting extension to explore.
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