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undertake migration independently. Van
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with other species during migratory

flights, connections that may be

maintained by vocal signals and flight

behavior. Social information could play a

larger role in nocturnal birdmigration than

currently understood.
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SUMMARY
An emerging frontier in ecology explores howorganisms integrate social information intomovement behavior
and the extent to which information exchange occurs across species boundaries.1–3 Most migratory land-
birds are thought to undertake nocturnal migratory flights independently, guided by endogenous programs
and individual experience.4,5 Little research has addressed the potential for social information exchange aloft
during nocturnal migration, but social influences that aid navigation, orientation, or survival could be valuable
during high-riskmigration periods.1,2,6–8We captured audio of >18,000 h of nocturnal birdmigration and used
deep learning to extract >175,000 in-flight vocalizations of 27 species of North American landbirds.9–12 We
used vocalizations to test whether migrating birds distribute non-randomly relative to other species in flight,
accounting for migration phenology, geography, and other non-social factors. We found that migrants
engaged in distinct associations with an average of 2.7 ± 1.9 SD other species. Social associations were
stronger among species with similar wing morphologies and vocalizations. These results suggest that vocal
signals maintain in-flight associations that are structured by flight speed and behavior.11,13,14 For small-
bodied and short-lived bird species, transient social associations could play an important role in migratory
decision-making by supplementing endogenous or experiential information sources.15–17 This research
provides the first quantitative evidence of interspecific social associations during nocturnal bird migration,
supporting recent calls to rethink songbird migration with a social lens.2 Substantial recent declines in
bird populations18,19 may diminish the frequency and strength of social associations during migration,
with currently unknown consequences for populations.
RESULTS

The migratory journeys of diverse taxa frequently overlap in

space and time.17 Bird migration is a prime example, with hun-

dreds of millions of individuals of dozens of species often in

the air on a given night.17,20 Though existing research on naviga-

tion and decision-making during songbird migration has often

emphasized the role of endogenous timing and navigation pro-

grams, opportunities for social information exchange occur

frequently during stopover15,21–23 and migratory flight, when

many taxa actively vocalize.10,11,24 In-flight vocalizations may

be important for communicating social information en

route,11,13,14,25–27 and social information could aid in naviga-

tional decision-making, finding appropriate stopover habitat, or

identifying other individuals with which to form mixed-species

foraging flocks during stopover. In other contexts, social infor-

mation use among heterospecifics has been demonstrated
Cu
All rights are reserved, including those
empirically (e.g., nest site choice,28 terrestrial migration stop-

over,15 and foraging29,30). However, it is unknown what informa-

tion might be exchanged or used during nocturnal migratory

flights.17

Here, we investigate whether nocturnally migrating bird spe-

cies form consistent social associations during migratory flights.

We use recordings of in-flight vocalizations to characterize pat-

terns of species’ spatial and temporal proximity and test whether

species’ distributions aloft differ from a null expectation based

on non-social factors, including shared phenology and geo-

graphy. Significant differences from the null hypothesis would

suggest an active behavior driving social association among

species. We investigate the factors that explain any species as-

sociations, hypothesizing that species with similar migration

routes, stopover habitats, morphologies, vocalizations, and

evolutionary histories will be more likely to socially associate.

Finally, we consider how social information exchange could be
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E Figure 1. Example time series of detections

during nocturnal migration and tests of so-

cial association strength

Photos from the Macaulay Library at the Cornell

Lab of Ornithology.

(A) American Redstart (amered; ML112702211)

and Black-and-white Warbler (bawwar; ML6830

1071).

(B) Gray-cheeked Thrush (gycthr; ML263074761)

and Rose-breasted Grosbeak (robgro; ML3564

38721).

(C) Black-throated Blue Warbler (btbwar; ML260

441631) and Ovenbird (ovenbi1; ML68440361).

(D) SavannahSparrow (savspa;ML500164831) and

White-throated Sparrow (whtspa; ML194675571).

(E) Tests of total association strength (weighted

degree centrality) for social association network

(30-s windows). Violin plots show null distribution,

points show observed node strength, and statisti-

cal significance indicates that a species has a

stronger or weaker observed node strength than

expected under the null hypothesis. Green points

indicate that the observed node strength is signifi-

cantly greater than expected and that hetero-

specific attraction can be inferred. See Table S4 for

explanation of species abbreviations.
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an important contributor to the movement ecology of nocturnally

migrating birds.

Songbirds associate with other species during
migratory flights
We collected acoustic recordings of 18,308.08 h of autumn

nocturnal bird migration (August to December) from 26 sites in

eastern North America (Figure S1). We extracted vocalizations

of migrating birds (hereafter ‘‘flight calls’’11,31) from audio data

using a deep learningmodel that we designed for this purpose,12

and we manually reviewed species detections for accuracy to

ensure data quality. We focused on 27 well-sampled species:

25 songbird species (order Passeriformes), plus two heron spe-

cies (order Pelecaniformes), which we included to examine the

potential for associations between songbirds and other orders.

We constructed a network that captures the degree to which de-

tections of different species occurred synchronously in the data

stream conditional on species co-occurrence (hereafter ‘‘social

association network’’). Using custom network permutation tests,

we evaluated whether the observed social association network

differed from a null expectation that incorporated shared timing,

geography, and other non-social factors that may contribute to

network structure (Figure S2). The observed social association

network was significantly non-random (network coefficient of

variation P30s = 0) (Figure S2). We quantified the overall tendency

of each species to associate with other species during migratory

flights, finding that 17 out of 27 species in the social association

network showed significantly elevated total association

strengths after accounting for non-social factors (Figure 1). For

this study, we considered detections to occur synchronously if

they occurred in the same 30-s time window, but we also tested

networks constructed using 15-s and 60-s time windows and

confirmed that the results were robust to the choice of window

size (15-s social association: 17 of 27 significant; 60-s social as-

sociation: 20 of 27 significant).
2 Current Biology 35, 1–7, February 24, 2025
We assessed the statistical significance of social associa-

tion for every species pair in the network using custom permu-

tation tests that accounted for non-social factors that may

contribute to network structure. Of 213 species pairs with

>100 association opportunities assessed using 30-s time win-

dows, 36 were statistically significant (Figure 2; Table S1). This

result was consistent when using other window sizes (15 s: 35/

215 pairs significant; 60 s: 35/210 pairs significant). For 30-s

windows, species had a mean of 2.7 ± 1.9 SD significant as-

sociation partners, and 23 of 36 significant associations

were between two species of the same family (most

commonly within the Parulidae). Although significant interfa-

milial associations were less frequent, those that did occur

were of similar strength to intrafamilial associations (t test:

t = 0.4, df = 21.5, p = 0.69).

Wing morphology and vocalization similarity explain
social associations among species
We tested whether in-flight associations among species could

be explained by phylogeny, spatiotemporal distribution, habitat

preferences, social relationships during stopover, morphology,

or vocalizations. We used nonparametric Mantel tests and again

evaluated statistical significance using custom network permu-

tations that accounted for non-social factors. The similarity of

species’ wing lengths and their vocalizations were statistically

significant predictors of social association (Figure 3; Table 1).

These relationships were robust to choice of window size and

present using parametric and nonparametric matrix correlations

(Table S2). These relationships were also present when

excluding two large-bodied heron species and including only

species in the order Passeriformes (Figures S3A and S3B; Table

S2). Species relationships at stopover, phylogenetic related-

ness, spatiotemporal overlap in species’ migration routes, non-

breeding range overlap, and migration-period habitat relation-

ships were not consistently associated with social association
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Figure 2. Significant social associations

Network diagram and heatmap show only statis-

tically significant edges (30-s time windows).

Heatmap values show association strength for

each species pair. See Table S4 for explanation of

species abbreviations.

See Figure S2 and Table S1.
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(Figures S3C–S3G; Table 1), although stopover affiliation index,

migration overlap, and non-breeding range overlap showed

some support at other window sizes (Table S2).

DISCUSSION

Little is presently known about how organisms integrate inter-

specific information into behavioral decision-making, a topic

at the cutting edge of ecology.1,2,17,32 Songbirds migrate pri-

marily at night and are typically thought to do so independently,

without information contributions from other birds.5 However,

our results demonstrate that songbirds engage in interspecific

social associations during nocturnal migratory flights. The ma-

jority of bird species studied showed significantly higher asso-

ciation strengths than expected under null models accounting

for species co-occurrence and non-social factors, indicating

that it is more likely for these species to occur with heterospe-

cifics than expected by chance. Social associations were most

frequent among species of the same family, particularly wood

warblers in the family Parulidae, but significant interfamilial

associations were also frequent and no less strong when

present. In contrast, we did not find strong evidence of social

associations across orders (e.g., between Passeriformes and

Pelecaniformes).
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Stronger social associations tended to

occur between bird species with more

similar wing lengths, but not closer phy-

logenetic relatedness, suggesting that

flight speed may be important in struc-

turing in-flight associations.33 Over the

course of hours-long migratory flights, in-

dividuals with similar flight speeds and al-

titudes may more easily maintain close
proximity and sustain an association, whereas individuals with

different flight behaviors are more likely to grow gradually apart,

making any such associations ephemeral. Associations were

also stronger among species with more similar vocalizations, a

finding consistent with the hypothesis that flight calls are used

to maintain multi-species associations during migratory

flights.9,14 These findings suggest the possibility that shared

migratory behavior may be driving convergent evolution in

acoustic signals across species.13

In contrast, we found no consistent evidence that fine-scale

in-flight associations were linked to habitat preferences,

geographic ranges, or species affiliations during diurnal stop-

overs. This result is surprising given evidence for heterospecific

attraction in Palearctic birds, where playback of heterospecific

vocalizations can cause migrating birds to land and initiate stop-

over.34 Our results suggest that the interspecific relationships

among migrants in the Americas reshuffle as they alternate

between nocturnal aerial and diurnal terrestrial habitats, with var-

iables related to flight behavior shaping in-flight relationships

and variables related to foraging behavior shaping stopover rela-

tionships.23 Previous work has connected vocalization similarity

to migration range overlap,13 but the lack of an association

between geographic range and social association in our data

suggests that spatial overlap may not be the primary driver of
Figure 3. Scatterplots of statistically signif-

icant pairwise species relationships

Each point represents a species pair. y axis rep-

resents association strength for each species pair,

and the x axes show pairwise phenotype dis-

tances. Best linear fit drawn to aid interpretation—

refer to matrix correlations for coefficient esti-

mates and statistical significance. Plots shown

from data generated with 30-s time windows.

See Figure S3 and Table S2.

nt Biology 35, 1–7, February 24, 2025 3



Table 1. Nonparametric matrix correlations for the response

variable of social association, based on 30-s time windows

Predictor Correlation p value No. taxa

Stopover affiliation index 0.067 0.308 22

Phylogenetic similarity 0.090 0.899 27

Migration overlap 0.187 0.251 27

Non-breeding range overlap 0.131 0.251 27

Wing length distance –0.252 0.000 27

Migration habitat similarity 0.081 0.162 27

Acoustic distance –0.266 0.000 27

Each row corresponds to a single-predictor model. See Table S2.
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associations aloft. Although we did not detect a strong spatial

signal in our data, we advocate for exploring how social associ-

ations may vary across space and how an individual’s social

behavior is influenced by its spatial-social context.35

The importance of social information during migration
Our study provides important context for a growing body of

evidence that the social information available to an individual

may be an important and underappreciated contributor tomigra-

tory behavior.2,3 The associations and vocalizations we detect

during nocturnal bird migration may provide a conduit for infor-

mation exchange. The use of social information during migration

is well documented in some bird species, such as large-bodied

cranes (Gruidae) and storks (Ciconiidae),36–38 as well as

other species that commonly form groups or flocks, such as

terns (Laridae) and shorebirds (Charadriiformes).6,7 In these spe-

cies, conspecific social information is thought to be of particular

importance for younger birds undertaking their first migrations.

Our results provide evidence that social information could also

be transmitted during migration among small-bodied and short-

lived bird species that are generally thought to undertake

nocturnal migration independently.5 Since these species do

not learn their migration routes from their parents, social informa-

tion could play an important role in supplementing information

from the innate migratory program, especially for inexperienced

birds. Such information could aid navigation, as has been

demonstrated in large-bodied diurnal migrants, or be associated

with habitat selection, stopover, or other factors. Flight calls may

encode information about an individual, such as age and sex, as

well as individual identity, which may allow birds to infer

the flight direction of other individuals and facilitate the mainte-

nance of group cohesion among both conspecifics and

heterospecifics.9,16,25,26

Social behavior and information use exchange could take

several forms, and our results provide a foundation for testing hy-

potheses about social influences on migratory behavior. We

highlight several questions for future research, adapting those

identified by Aikens et al.2: (1) What information might flight calls

encode, and what can listening individuals learn from these sig-

nals? (2) Do individuals respond differently to flight calls over

their lifetimes, as the balance shifts between individual experi-

ence and social information? (3) How do different migration char-

acteristics, such as distance or complexity, affect how migrants

use vocal information? (4) Do species that vocalize during migra-

tion show different patterns of migratory evolution? (5) How can
4 Current Biology 35, 1–7, February 24, 2025
vocalization data directly inform conservation and management,

for example, to lessen the risk of fatal building collisions?27

Acoustics as a movement ecology tool
Bioacoustics is increasingly important for studying movement

ecology. A study of this scope was made possible only through

recent advances in machine learning that automate an other-

wise laborious detection and identification process. Further

work with acoustics promises to reveal more about associa-

tions among and within species, as well as the decision-making

and conservation status of migratory birds. Our inferences

drawn from acoustic monitoring will likely be influenced by fac-

tors that impact the vocalization rate of species and individuals,

such as environmental conditions, social context, and individ-

ual traits.11 Currently, it is not possible to distinguish individuals

by call with a standard recording setup, which prevented us

from investigating associations among conspecifics. However,

recent evidence indicates that flight calls may encode individ-

ual identity information in at least some species,25,26 which

suggests that this may be possible as acoustic analysis

methods improve. Distinguishing individuals is currently only

possible using microphone arrays that allow calling birds’ loca-

tions to be triangulated, but this technique requires significant

logistical challenges to implement at scale.39 Given our results,

we would hypothesize that intraspecific social associations

also occur during nocturnal migratory flights.14 Finally, it is

important to recognize that not all migratory species vocalize

during migration.10,11 Future work that integrates acoustic

data with thermal imagery or small-scale radar data could pro-

vide a more holistic understanding of in-flight behavior during

nocturnal migration.

Implications
The vocalizations given by birds during migratory flights pro-

vide a valuable resource for monitoring the movements and

populations of migratory birds, studying their ecologies,11

and even understanding anthropogenic hazards like light

pollution.27 Here, we demonstrate that flight calls provide a

window onto a hidden network of interspecific associations.

This study highlights the need for further investigation

into the social context of animal migration. Recent work sup-

ports the important role of transient interspecific relationships

during stopover,23 and we propose that social relationships

are also important during migratory flights. Given substantial

declines in migratory bird populations,18 it is likely that

social associations during migration are diminishing, with un-

known consequences. Any such density-dependent effects

may be complex; a lack of social information might, for

example, impede navigational decision-making, impact the

duration and energy expenditure of migration, and increase

mortality risk.2,17 An understanding of these dynamics is

essential to assessing and mitigating negative impacts on

populations.
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Lead contact

Requests for further information and resources should be directed to and will
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Materials availability

This study did not generate new, unique reagents.

Data and code availability
d Data have been deposited at Mendeley Data and are publicly available

at (Mendeley Data: https://doi.org/10.17632/dxx5khdzjs.1) as of the
date of publication.

d All original code has been deposited at Mendeley Data and is publicly
available at (Mendeley Data: https://doi.org/10.17632/dxx5khdzjs.1)
as of the date of publication.

d Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data and code This paper Mendeley Data: https://doi.org/10.17632/dxx5khdzjs.1

Software and algorithms

R https://www.r-project.org/ N/A

Nighthawk https://github.com/bmvandoren/Nighthawk N/A
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Acoustic data collection
Wecollected acoustic recordings of autumn nocturnal birdmigration (1 August to 7 December) from 26 sites in eastern North America

(Figure S1), encompassing 18308.08 hours of monitoring across 379 nights, with an average of 57.3 ± 34.6 SD nights of monitoring

per recording station. The recording data come from threemonitoring efforts: (Dataset 1) multi-stationmonitoring in central New York

State during fall 2015 (BirdVox-Full-Season40–42); (Dataset 2) multi-station monitoring in southern New York State during fall 2010-

2011;43 and (Dataset 3) a 2000-km recording transect across the Appalachian mountain region in eastern North America during

fall 2022. Recording locations are shown in Figure S1, and recording data and hardware are summarized in Table S3. Although

the hardware differed bymonitoring effort, all units were designed and deployed specifically to recordmigrating birds’ nocturnal flight

calls. The likely maximum sampling range of the sensors was 300-600 m above ground level, depending on species call character-

istics and ambient conditions.31,44,45

METHOD DETAILS

Acoustic data processing
To extract nocturnal flight calls from audio data, we used Nighthawk, a machine learning tool designed for detecting and classifying

nocturnal flight calls.12 The Nighthawk core model12 is freely available,46 and it has been validated on diverse test data, including on

the BirdVox-Full-Season dataset (Dataset 1, above).46 Performance on target datasets can be improved by conducting additional

model training with the dataset in question, termed ‘‘fine-tuning’’12. We therefore fine-tunedmodels on Datasets 2 and 3 to maximize

model accuracy on those datasets. We manually screening a representative sample of audio data for flight calls and using this data-

set to fine-tune Nighthawk.12 For Dataset 2, we used existing annotations.43 For Dataset 3, which had not been previously analyzed,

we randomly sampled 310 segments of audio each 10 minutes in duration (total 51.7 h; 0.8% of Dataset 3) and screened these for

nocturnal flight calls. We then set aside one half of screened data for model fine-tuning and the other half for model validation.12 Van

Doren et al.12 evaluated multiple fine-tuning approaches; we used the custom batch construction strategy described in that paper

since it requires only one epoch of additional training while producing a model that performs very well on target data and original

test data.

After fine-tuning, we ran Nighthawk on all data using the freely available Python utility.46 For Dataset 1, we used the core model

provided in the public package. For Datasets 2 and 3, we substituted in the corresponding fine-tuned model. We used the following

important parameters when running the model:

d –no-calibration: do not apply default calibration parameters.

d –threshold 50: export all detections with a probability score of 0.50 or greater.

d –ap-mask 0: do not filter out taxa based on performance on the core Nighthawk test dataset.

d –tax-output: export outputs for each taxonomic level independently.

We performed data processing on Amazon Web Services to parallelize inference across thousands of CPU cores. We mapped

each detection to time relative to nautical twilight, when the center of the sun is 12 degrees or more below the horizon. We retained

detections occurring during the nocturnal period after nautical dusk or before nautical dawn, when any detected flight calls can confi-

dently be attributed to individuals in active nocturnal migratory flight.

Nighthawk returns classifications at multiple taxonomic levels, including order, family, and species. Because we were focused on

testing relationships among well-represented species, we only included detections at the species level for species with >250 detec-

tions across the dataset. Although our focus is on Passeriformes, we also included two nocturnal migrant species in the order

Pelecaniformes to examine the potential for associations between passerines and other orders.
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Because our analysis relies on high quality detection data, we used amulti-step review process to ensure detection accuracy. First,

we randomly sampled up to 200 detections per species per dataset and manually screened these detections for accuracy. We used

the results to set confidence thresholds for each species in each dataset to target a precision of approximately 0.95 on all classes.

After retaining detections with confidence scores above the corresponding thresholds, authors BMVD and AF manually reviewed all

acoustic detections from the subset of 30-s time windows that included multiple taxa. In other words, we manually reviewed all data

that contributed to any potential associations among species pairs. In total, we reviewed 64909 detections. We conservatively

removed all detections with any ambiguity in species identity, primarily recordings with a low signal-to-noise ratio. In total, we

removed 6538 detections (10.1% of those reviewed). After all filtering steps, our acoustic dataset comprised 177962 detections

of flight calls from 27 species (Table S4; Figure 1).

Network generation: Fine co-occurrence networks
We used acoustic detections to construct networks of observed species co-occurrence in the acoustic temporal data stream. In

these networks, stronger connections among species indicate that those species were recorded together more frequently during

migratory flights. To construct networks, we split our acoustic data streams into independent, nonoverlapping 30-s windows and

grouped species detected in the same 30-s window into ‘‘events.’’ Although this choice was somewhat arbitrary, an interval of

30 s corresponds to a maximum linear distance of 450 m, assuming a bird’s groundspeed of 15 ms�1; we reasoned that migrating

birds recorded in the same 30-s window would likely be close enough to hear one another and potentially exchange information. We

quantified network connections from these 30-s events using the default Simple Ratio Index formula implemented in the get_network

function in the R package asnipe.47 For a given pair of species, the Simple Ratio Index is calculated by dividing the number of events

(i.e. 30-s windows) in which both species occur by the number of events in which either one or both species occur. We also

constructed networks using 15-s and 60-s windows to assess whether the results were sensitive to the choice of window length.

Networks generated from different window sizes were very tightly correlated using Mantel correlations (30-s vs. 60-s: r = 0.99;

30-s vs. 15-s: r = 0.99). We refer to these networks as fine co-occurrence networks because they capture the degree to which vo-

calizations of each species pair occur close together in our data stream.

Network generation: Coarse co-occurrence network
The network connection strength among species in fine co-occurrence networks is partly a function of species’ similarity in migration

timing, geographic distributions, and other factors unrelated to social associations. We accounted for this by constructing an acous-

tic network as described above, but with events defined using longer 15-minute time windows. Rather than considering fine-scale

social associations, this coarse co-occurrence network captures broader species co-occurrence in the dataset driven by shared

seasonal timing, geography, and consistent behavioral patterns over the nocturnal period. See Figure S2.

Network generation: Social association networks
Because connections among species in fine co-occurrence networksmay arise from factors that are unrelated to species’ propensity

to actively associate, we used the coarse co-occurrence network to control for these factors. The goal was to generate networks that

explicitly captured the degree to which species’ vocalizations occurred synchronously, independent of shared timing, geography, or

other non-social factors.We calculated social association networks as follows: for each species pair, we subset the data to only the

15-minute time periods in which both species were detected. Then, we calculated the Simple Ratio Index on this subset using 30-s

windows as described above. To ensure that our measures were reliable, we did not calculate social association for species pairs for

which there were less than 100 15-minute windows in which the two species occurred (i.e. <100 association opportunities). After

performing these calculations for all pairs of species, the resulting social association network captured the degree to which vocal-

izations of each species pair occur close together, conditioned on the time periods during which both species are detected (Fig-

ure S2). Because this metric is conditioned on species co-occurrence, these networks do not depend on seasonal migration timing

or nocturnal vocalization patterns; they only quantify the degree of acoustic synchronicity among species pairs independent of

broader temporal or geographic patterns. As above, we also generated social association networks for 15-s and 60-s window du-

rations to assess whether our results were sensitive to the choice of window length. Networks generated from different window sizes

were very tightly correlated using Mantel correlations (30-s vs. 60-s: r = 0.93; 30-s vs. 15-s: r = 0.94).

Generating network covariates
To test hypotheses about the drivers of species associations during migration, we generated seven covariates that summarize the

similarity of each species pair in phylogeny, spatiotemporal distribution, habitat preferences, social relationships during stopover,

morphology, and vocalization structure.

Phylogenetic relationships

We obtained a phylogenetic tree of the species included in our study using the R package clootl.48 We used the extractTree function

in that package to output a tree and used the cophenetic.phylo function in the R package ape49 to convert the tree topology to pair-

wise phylogenetic distances for all species pairs. We used the inverse of these distance values as measures of phylogenetic

similarity.
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Species geographic ranges

For each species pair, we calculated pairwise range overlap scores for their non-breeding ranges. We used species ranges modeled

by eBird Status & Trends50 to calculate pairwise overlap for each species pair. We used the eBird Status & Trends models accessible

in the R package ebirdst (v. 2.2021.3).51We downloaded Status & Trends data for each species and used the load_ranges function to

extract the modeled ranges. We then calculated the range overlap for each species pair by dividing the area of the intersection of the

two ranges by the area of the union of the two ranges.

Migration overlap

We estimated the overall migration similarity for each species pair using a spatiotemporal measure of overlap in the species’

geographic distribution during migration season. We extracted weekly 27x27 km relative abundance rasters for each species using

the ebirdst package and subset these to the migration period for that species as defined by eBird in the package. For each species

pair, we found the total number of cells where modeled relative abundance was greater than zero for both species, and we divided

this by the total number of raster cells where relative abundance was greater than zero for either species. This resulted in a proportion

of overlapping cells for each week. Finally, we took the mean weekly overlap proportion across all weeks of the migration periods.

This resulted in a single proportion value for each species pair that captured the spatiotemporal overlap in their geographic distribu-

tions during the migration period.

Stopover habitat

To calculate the degree of similarity in the habitat preferences of each species pair during the migration season, we extracted weekly

habitat associations from eBird Status & Trends data.50 We filtered habitat association data to the migration period for each species

using the migration period dates provided in the ebirdst package. Using all available habitat association characters, we used the dist

function in R to calculate a pairwise distance matrix that captured the overall pairwise similarity in habitat associations for all species

pairs.

Social affiliations during stopover

To assess migratory species’ social networks at stopover sites, we used over half a million records of banded migratory birds

collected during spring and fall migration seasons by Braddock Bay Bird Observatory (43.324, -77.717), Long Point Bird Observa-

tory’s banding stations at Old Cut (42.584, -80.398) and Breakwater (42.561, -80.284), Powdermill Avian Research Center (40.164,

-79.268), andMichigan State Bird Observatory’s Burke Lake banding station (42.812, -84.383). More details about these datasets are

reported in DeSimone et al.23

Following that study,23 we calculated species associations from the banding data using the Simple Ratio Index. Next, we calcu-

lated generalized affiliation indices by regressing the species associations againstmeasures of temporal overlap, spatial overlap, and

relative abundance. The standardized residuals of the regression are the generalized affiliation indices for each species pair. The

affiliation indices quantify the degree to which two species associate after accounting for structural features of the data, including

temporal overlap, spatial overlap, and relative abundance. We calculated fall affiliation indices separately for each site and averaged

affiliation values across sites. We included only species with >100 fall captures.

Wing-length measurements

Because body morphology impacts flight behavior and could contribute to in-flight dynamics, we extracted wing-length measure-

ments from the AVONET dataset52 for each species. Wing length is associated with flight speed and flight style and may influence

species’ in-flight associations. For each species pair, we calculated the Euclidean distance between the base-10 logarithms of their

wing lengths as a measure of the difference in wing length (hereafter ‘‘wing length distance’’).

Acoustic distance

It is possible that bird species with more acoustically similar flight calls may be more likely to interact during migration.14 To evaluate

this hypothesis, we calculated the acoustic distance of the vocalizations given by species in our dataset. We randomly sampled 200

vocalizations for each species from the expert-verified set of recordings used in12 and selected recordings with sufficiently clean

spectrograms for further analysis. We retained a mean of 61.1 ± 16.8 SD (range 13–89) vocalizations per species. We used Raven

Pro 1.653 to manually draw bounding boxes around each call and used the spectro_analysis function in the R package warbleR54

to extract a series of 26 spectrographic measurements. See warbleR documentation for a description of measurements. We sum-

marized these measurements using a Principal Component Analysis (PCA function in R package FactoMineR55) and extracted the

first 5 components, comprising 89.7% of total variance. We used the centroids of each species in multidimensional PCA space to

generate a distance matrix (dist function in the base R package stats56) that describes acoustic distance among species. Smaller

values indicate more similar vocalizations. An ordination plot of these species in PCA space for the first two principal components

is show in Figure S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Generating null network distributions with permutations
To test the statistical significance of network parameters, including the strength of species connections in co-occurrence and social

association networks, we generated null distributions of network parameters using custom permutations of the original data stream.

See Table S4 for the sample size of detections for each of 27 species in the data stream. The permutation procedure was as follows:

first, we divided acoustic detection data into 15-minute periods for each site and date. Then, for each species in each 15-minute

period, we shifted the timing of all detections by a random time interval between 0–15 minutes. Each species present in the
e3 Current Biology 35, 1–7.e1–e4, February 24, 2025
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15-minute period was shifted by a different random interval, and all calls of that species in that period were shifted by the same

amount. If the procedure shifted any detections further than the bounds of the 15-minute period, those detections were ‘‘wrapped

around’’ to the beginning of the period. In this way, each permuted time period maintained the same quantity and the same temporal

structure of vocalizations of each species as the original dataset. This procedure randomly changed the degree to which different

species’ vocalizations occurred relative to other species, allowing us to test a null hypothesis of no association among species in

vocalization patterns. After applying this permutation procedure independently to every 15-minute period in the dataset, we calcu-

lated co-occurrence and social association networks from the permuted data using the procedures described above. We repeated

this procedure 1000 times, yielding 1000 null networks for 15-, 30-, and 60-s window sizes.

Testing for network randomness
We evaluated whether networks of co-occurrence and social association differed significantly from random. We calculated the

network coefficient of variation by taking the standard deviation of the adjacency matrix and dividing it by the mean of the adjacency

matrix. We performed this calculation for observed networks and for all permuted networks. If the observed coefficient of variation

was greater than the 0.95 quantile of the corresponding null (permutation) distribution, we considered the network non-random at the

P<0.05 level. Networks contained n = 27 species.

Testing for social associations among species
We evaluated the statistical significance of each species’ (n = 27) connections with other species in networks using null distributions

derived from the permuted networks. For each species, we quantified its overall tendency to occur with other species during migra-

tory flights by summing the strength of all network connections between the focal species and other species, also known as the

weighted degree centrality. Larger degree values indicate that a species shows stronger and/or more numerous connections to other

species in the network. We compared total association strength values calculated from observed co-occurrence and social associ-

ation networks to those calculated from the corresponding permuted networks. We considered a species to show statistically sig-

nificant associationswith other species if the observed total association strength for that species was greater than the 0.95 quantile of

the corresponding null distribution derived from the permuted networks.

We assessed statistical significance for every species pair in co-occurrence and social association networks using the same pro-

cedure: we compared the connection strength for a given species pair with the null distribution of values derived from the corre-

sponding null networks. We again assessed significance by comparing observed values to the corresponding null distribution.

We corrected p-values for multiple testing using a false discovery rate correction with a false discovery rate of 0.05.

Explaining migrant associations
Finally, we tested whether in-flight associations among species could be explained by phylogeny, spatiotemporal distribution,

habitat preferences, social relationships during stopover, morphology, or vocalization structure. We constructed single-predictor

statistical models in which the response variable was social association. As described above, social association does not depend

on seasonal migration timing or nocturnal vocalization patterns; it quantifies the degree of social association among species pairs

independent of broader temporal or geographic patterns.

We evaluated statistical significance using a modification of the Mantel test procedure (mantel function in R package vegan57): for

each predictor, we calculated the Mantel matrix correlation between that predictor and the social association matrix; then, we

compared this observed statistic to the null distribution of test statistics obtained from our custom set of permuted social association

networks. For each test, the p-value was the proportion of permuted networks that achieved a Mantel correlation equal to or more

extreme than the observed statistic. To eliminate any bias from skewed data distributions, where outliers could exert a strong influ-

ence on the correlation value, we calculated Mantel statistics using the nonparametric Spearman rank correlation. For comparison,

we also obtained results using the standard Pearson correlation. For the single-predictor case, the Pearson-based tests of statistical

significance were equivalent to those obtained usingMultiple Regression Quadratic Assignment Procedure (MRQAP) to regress pre-

dictor matrices on the response matrix, as recommended for networks,58 using the mrqap.custom.null function in the R package

asnipe.47 The number of taxa in each model ranged between 22–27 and is reported for each model in Table 1; Table S2.

We elected to use a series of single-predictor models instead of multiple matrix regression for the following reasons: first, we did

not have stopover affiliation data for all species, and this imbalance would have required removing those species from a multiple

regression model and/or running multiple sets of models; second, we wanted to avoid collinearity among predictor variables from

biasing coefficient estimates; third, we found matrix correlation statistics, which vary between -1 to 1, to be more easily interpretable

than multiple regression coefficients, which are unbounded; and fourth, this allowed us to test our hypotheses using more robust

nonparametric rank correlations.
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Figure S1: Recording locations, Related to STAR Methods. Red box in inset shows bounds of focal region.
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Figure S2: Observed networks, Related to Figure 2 and STAR Methods. (Upper) Observed coarse co-occurrence
network. Species are ordered by hierarchical clustering on co-occurrence data. (Lower) Observed social association network
based on 30-s time windows. Vertices are colored by family, and labels are species codes assigned by the eBird database. Edge
weights and heatmaps show connection strength.
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Figure S3: Scatterplots of pairwise species relationships, Related to Figure 3. (A,B) Statistically significant relation-
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Species 1 Species 2 Family 1 Family 2 Social
association

P-value

Swainson’s
Thrush

Rose-breasted
Grosbeak

Turdidae Cardinalidae 0.116 0.000

Black-and-white
Warbler

American
Redstart

Parulidae Parulidae 0.102 0.000

Veery Swainson’s
Thrush

Turdidae Turdidae 0.102 0.000

Swainson’s
Thrush

Gray-cheeked
Thrush

Turdidae Turdidae 0.100 0.000

Rose-breasted
Grosbeak

Gray-cheeked
Thrush

Cardinalidae Turdidae 0.093 0.000

Veery Rose-breasted
Grosbeak

Turdidae Cardinalidae 0.081 0.000

Rose-breasted
Grosbeak

Wood Thrush Cardinalidae Turdidae 0.077 0.000

Veery Gray-cheeked
Thrush

Turdidae Turdidae 0.074 0.000

Northern Parula American
Redstart

Parulidae Parulidae 0.069 0.027

Wood Thrush Gray-cheeked
Thrush

Turdidae Turdidae 0.068 0.000

Savannah
Sparrow

White-throated
Sparrow

Passerellidae Passerellidae 0.067 0.000

Yellow-rumped
Warbler

Chipping Sparrow Parulidae Passerellidae 0.066 0.000

Ovenbird American
Redstart

Parulidae Parulidae 0.065 0.000

Ovenbird Cape May
Warbler

Parulidae Parulidae 0.065 0.000

Ovenbird Mourning
Warbler

Parulidae Parulidae 0.063 0.000

Ovenbird Black-throated
Blue Warbler

Parulidae Parulidae 0.062 0.000

Swainson’s
Thrush

Wood Thrush Turdidae Turdidae 0.062 0.000

American Tree
Sparrow

Chipping Sparrow Passerellidae Passerellidae 0.061 0.000

Savannah
Sparrow

Common
Yellowthroat

Passerellidae Parulidae 0.061 0.000

Swainson’s
Thrush

Hermit Thrush Turdidae Turdidae 0.059 0.000

Veery Green Heron Turdidae Ardeidae 0.059 0.048
Swainson’s
Thrush

Green Heron Turdidae Ardeidae 0.057 0.021

Common
Yellowthroat

White-throated
Sparrow

Parulidae Passerellidae 0.055 0.008

Ovenbird Common
Yellowthroat

Parulidae Parulidae 0.054 0.000



Canada Warbler Common
Yellowthroat

Parulidae Parulidae 0.054 0.000

Black-throated
Blue Warbler

Common
Yellowthroat

Parulidae Parulidae 0.052 0.000

Rose-breasted
Grosbeak

Bobolink Cardinalidae Icteridae 0.051 0.008

White-throated
Sparrow

White-crowned
Sparrow

Passerellidae Passerellidae 0.050 0.008

White-throated
Sparrow

Palm Warbler Passerellidae Parulidae 0.048 0.000

Savannah
Sparrow

White-crowned
Sparrow

Passerellidae Passerellidae 0.048 0.016

Savannah
Sparrow

Gray-cheeked
Thrush

Passerellidae Turdidae 0.047 0.021

Black-throated
Blue Warbler

Canada Warbler Parulidae Parulidae 0.044 0.048

Ovenbird Canada Warbler Parulidae Parulidae 0.044 0.027
Mourning
Warbler

Chestnut-sided
Warbler

Parulidae Parulidae 0.043 0.039

Savannah
Sparrow

Northern Parula Passerellidae Parulidae 0.043 0.021

Ovenbird Yellow-rumped
Warbler

Parulidae Parulidae 0.042 0.048

Table S1: Statistically significant pairwise species associations assessed using 30-second time windows, Related
to Figure 2. P-values have been adjusted using a false discovery rate correction.



Win. Taxa Type Predictor Correlation P-value
15 s 22 Nonparametric Stopover affiliation index 0.127 0.031
15 s 27 Nonparametric Phylogenetic similarity 0.056 0.963
15 s 27 Nonparametric Migration overlap 0.211 0.091
15 s 27 Nonparametric Non-breeding range overlap 0.163 0.082
15 s 27 Nonparametric Wing length distance -0.252 0.000
15 s 27 Nonparametric Migration habitat similarity 0.048 0.383
15 s 27 Nonparametric Acoustic distance -0.252 0.000
60 s 22 Nonparametric Stopover affiliation index 0.036 0.652
60 s 27 Nonparametric Phylogenetic similarity 0.013 1.000
60 s 27 Nonparametric Migration overlap 0.241 0.045
60 s 27 Nonparametric Non-breeding range overlap 0.175 0.043
60 s 27 Nonparametric Wing length distance -0.208 0.000
60 s 27 Nonparametric Migration habitat similarity 0.081 0.273
60 s 27 Nonparametric Acoustic distance -0.206 0.000
30 s 22 Parametric (Pearson) Stopover affiliation index 0.085 0.182
30 s 27 Parametric (Pearson) Phylogenetic similarity 0.084 0.873
30 s 27 Parametric (Pearson) Migration overlap 0.161 0.343
30 s 27 Parametric (Pearson) Non-breeding range overlap 0.133 0.472
30 s 27 Parametric (Pearson) Wing length distance -0.261 0.000
30 s 27 Parametric (Pearson) Migration habitat similarity 0.097 0.056
30 s 27 Parametric (Pearson) Acoustic distance -0.334 0.000
30 s 22 Nonparametric (Pass. only) Stopover affiliation index 0.067 0.308
30 s 25 Nonparametric (Pass. only) Phylogenetic similarity 0.089 0.941
30 s 25 Nonparametric (Pass. only) Migration overlap 0.251 0.044
30 s 25 Nonparametric (Pass. only) Non-breeding range overlap 0.188 0.044
30 s 25 Nonparametric (Pass. only) Wing length distance -0.273 0.000
30 s 25 Nonparametric (Pass. only) Migration habitat similarity 0.058 0.375
30 s 25 Nonparametric (Pass. only) Acoustic distance -0.245 0.000

Table S2: Matrix correlations for the response variable of social association for different model specifications,
Related to Figure 3. Each row corresponds to a single-predictor model. ‘Win.’ column refers to audio window length. ‘Pass.
only’ refers to model with only Order Passeriformes.



Dataset Description Hardware Total Hours Reference
1 Multi-station

monitoring in central
New York State
during fall 2015.

Cornell ROBIN
recording units

6663 [S1]

2 Multi-station
monitoring in southern
New York State
during fall 2010-2011.

Wildlife Acoustics
Song Meter 2 with
plate microphone

4884 [S2]

3 Transect across
Appalachian
mountains during fall
2022.

OldBird 21c
microphones with
custom Cornell
SWIFT recorder.

6760 This paper

Table S3: Summary of model datasets, Related to STAR Methods.



Common Name Species
Code

Order Dataset
1

Dataset
2

Dataset
3

American Tree Sparrow amtspa Passeriformes 2755 0 9
Black-and-white Warbler bawwar Passeriformes 352 22 128
Bobolink boboli Passeriformes 290 210 117
Black-throated Blue Warbler btbwar Passeriformes 3850 133 355
Cape May Warbler camwar Passeriformes 1314 0 2926
Canada Warbler canwar Passeriformes 507 115 47
Chipping Sparrow chispa Passeriformes 2580 5262 2129
Chestnut-sided Warbler chswar Passeriformes 2280 651 793
Common Yellowthroat comyel Passeriformes 2779 1221 271
Dark-eyed Junco daejun Passeriformes 314 508 291
Great Blue Heron grbher3 Pelecaniformes 88 192 0
Green Heron grnher Pelecaniformes 312 162 37
Gray-cheeked Thrush gycthr Passeriformes 2848 132 1712
Hermit Thrush herthr Passeriformes 202 0 145
Mourning Warbler mouwar Passeriformes 410 12 0
Northern Parula norpar Passeriformes 686 577 133
Ovenbird ovenbi1 Passeriformes 5418 0 1436
Palm Warbler palwar Passeriformes 307 292 228
Rose-breasted Grosbeak robgro Passeriformes 5663 1040 2633
Savannah Sparrow savspa Passeriformes 6980 7486 252
Swainson’s Thrush swathr Passeriformes 36908 7775 39104
Veery veery Passeriformes 4812 1660 988
White-crowned Sparrow whcspa Passeriformes 369 16 22
White-throated Sparrow whtspa Passeriformes 6502 1824 1841
Wood Thrush woothr Passeriformes 419 66 882
Yellow-rumped Warbler yerwar Passeriformes 975 752 127
American Redstart amered Passeriformes 0 0 1328

Table S4: Summary of model detections by species and dataset included in the analysis after dataset-specific
filtering steps, Related to STAR Methods. All recordings are from autumn. Dataset 1 is from central New York State
(2015); dataset 2 is from southern New York State (2010-2011); and dataset 3 is from a transect across Appalachia (2022).
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