
Data Sharing-Aware Algorithms for Task Allocation

in Edge Computing Systems

Sanaz Rabinia

Dept. Computer Science

Wayne State University

Detroit, USA

srabin@wayne.edu

Daniel Grosu§

Dept. Computer Science

Wayne State University

Detroit, USA

dgrosu@wayne.edu

Abstract—Edge computing allows end-user devices to offload
heavy computation to nearby edge servers for reduced latency,
maximized profit, and/or minimized energy consumption. Data
dependent tasks that analyze locally acquired sensing data are
one of the most common candidates for task offloading in edge
computing. Thus, the total latency and network load are affected
by the total amount of data transferred from end-user devices
to the selected edge servers. Most existing solutions for task
allocation in edge computing do not consider that some user tasks
may operate on the same data items. Making the task allocation
algorithm aware of the existing data sharing characteristics of
tasks can help reduce network load at a negligible profit loss by
allocating more tasks sharing data on the same server.

In this PhD thesis, we formulate the data sharing-aware task
allocation problem that makes decisions on task allocation for
maximized profit and minimized network load by considering
the data-sharing characteristics of tasks. In addition, because
the problem is NP-hard, we design and implement an offline
algorithm, which finds a good feasible solution to the problem in
polynomial time. We also design and implement online algorithms
for task allocation in edge computing that take into account the
sharing of data among the tasks offloaded to the same server.
We analyze the performance of our offline algorithm against
a state-of-the-art baseline that only maximizes profit. We also
perform an extensive performance analysis by comparing our
online algorithms with their sharing-oblivious counterparts.

Index Terms—Edge computing, task allocation, online algo-
rithms, offline algorithms, data sharing.

I. INTRODUCTION

Edge computing is a new computing paradigm offering

real-time processing and analysis of data closer to the data

sources, such as IoT devices, sensors, or end-user devices.

This results in reducing latency, bandwidth usage, and faster

response times leading to improved overall system efficiency.

However, as the adoption of edge computing systems is

growing, dealing with increasing amounts of data transferred

in the edge network is a significant challenge. One of the

main factors that edge providers need to consider to obtain

an efficient deployment on edge servers, is exploiting the

sharing of data among tasks that can be offloaded to the same

server. Designing efficient algorithms for task allocation that

consider data sharing among tasks is essential to improving

the performance of the edge systems, which generally have

limited computational and memory capacities.

§PhD advisor

Edge computing facilitates the operations of nearby

resource-limited mobile devices such as smartphones, tablets,

autonomous mobile robots, drones, and connected vehicles at

lower transmission latency compared to the cloud. In fact,

many data-driven applications running on mobile devices need

computational support to analyze locally-acquired sensor data

(e.g., a video or an image from camera, an audio trace from

microphone). Typical tasks include face recognition, image

classification, and object tracking. To offload a task, each

device must transmit all the data items to be analyzed (e.g.,

camera frames) to one of the nearby available edge servers.

On the other hand, given the possibly large number of end-

user devices in the edge system and the even larger number

of requests, it is important to ensure the scalability of edge

resources with respect to the number of tasks and data being

offloaded.

The objective of this PhD dissertation is to design, study,

and implement offline and online data sharing-aware algo-

rithms for task allocation in edge computing systems. The

central hypothesis is that taking into account the sharing of

data among tasks that can be offloaded on the same server, can

minimize the total amount of data offloaded on edge systems

and the traffic in the edge network that is associated with data

transfers.

II. SIGNIFICANCE OF OUR RESEARCH

In this PhD thesis, we formulate the data sharing-aware task

allocation problem as a bi-objective mixed-integer multilinear

program that maximizes the profit derived from executing

tasks and minimizes the network load by taking into account

the data sharing characteristics of tasks. Because this problem

is NP-hard, we design a greedy algorithm, called DSTA (Data

Sharing-Aware Task Allocation), that finds a feasible solution

in polynomial time. Specifically, DSTA considers the task

data sharing characteristics expressed as a task-data matrix to

decide which tasks to allocate on the edge servers by iteratively

selecting a subset of tasks that share the highest amounts of

data with the already allocated tasks. In each iteration, DSTA

maximizes the profit by prioritizing high-profit/light-workload

tasks for allocation to the most suitable edge server.

We also take into account the sharing of data among

tasks that can be offloaded on the same edge server and

formulate the problem of Online Data Sharing-Aware Task



Allocation (ODSTA). Managing the sharing of data items

among many offloaded tasks on servers, is expected to reduce

the total amount of data that needs to be stored at each

server, and the traffic in the edge network that is associated

with data transfers. We design three online algorithms for

solving the ODSTA problem in edge computing systems.

We consider an edge computing system composed of a set

of heterogeneous servers, where the servers have different

capacities for their computational resources (i.e., CPU and

memory). Although our online algorithms are inspired by

classical sharing-oblivious bin packing algorithms such as

first-fit, best-fit and worst-fit, they differ from those in that

when making allocation decisions they take into account the

sharing among the data items stored in the main memory of

edge servers.

In summary, this thesis makes the following contributions:

• To the best of our knowledge, our work is the first system-

atic work to exploit the key intuition that, in edge systems,

multiple data-driven tasks from each user device may

share some data items. Taking into account the sharing of

data among tasks reduces the traffic in the edge network,

the memory usage at the edge servers, and the number

of servers needed to execute the tasks, thus, leading to

an improved overall performance of the edge system.

• We formulate the data sharing-aware problem as a bi-

objective mixed-integer multilinear program that jointly

maximizes the task allocation profit and minimizes the

network load. We develop a novel analytical model for

capturing the sharing among tasks and use it to derive

the objective functions.

• The formulated data sharing-aware problem is NP-hard.

Thus, in order to provide a feasible solution in polynomial

time, we design a greedy algorithm, called DSTA, that

considers the tasks’ data-sharing characteristics and

iteratively allocates them on edge servers to maximize

the profit and minimize the network load.

• We design three online data sharing-aware algorithms

(DSA) for task allocation in edge computing systems:

DSA First-Fit (DSA-FF), DSA Best-Fit (DSA-BF), and

DSA Worst-Fit (DSA-WF).

• We compare our proposed DSTA algorithm with a state-

of-the-art baseline that only maximizes task execution

profit (i.e., P-Greedy). Our results show that DSTA can

reduce network data load by about 8x on average at a

negligible profit loss compared to P-Greedy.

• We perform an extensive performance analysis by

comparing our proposed online algorithms with their

sharing-oblivious counterparts. The results show that

our algorithms are able to reduce the amount of data

transferred in the network by 30.2% to 92.8% and the

number of utilized servers by 1% to 82.8% compared to

the sharing-oblivious baseline algorithms.

III. RELATED WORK

Task allocation in edge computing has been intensively stud-

ied during recent years. Due to the limited computing/energy

availability of end-user devices, a significant proportion of

related work has focused on offloading task execution to

edge servers for lowering end-user energy consumption at

a maximum latency requirement [1]–[4]. Other studies have

focused on maximizing the quality of service for end-users

via task offloading within edge resource constraints [5], [6].

In some cases, edge servers or nearby users may receive some

form of profit to provide edge resources for task offloading.

Thus, some studies have focused on the topic of finding the

best task allocation strategy that maximizes a defined profit

in edge systems [7]–[9]. Most of the above studies simply

consider the transmission time of data items associated with

each offloaded task on the total offloading latency estimation.

Some studies provided a more accurate consideration of net-

work packet scheduling for allocating cooperative tasks on

edge servers [10]–[12]. However, to the best of our knowledge,

none of the above solutions have considered the fact that

multiple tasks from the same user may have to analyze the

same data item. For example, the same camera frame can

be used by a task for face recognition and by another task

for object detection. Thus, allocating those tasks to different

servers without considering that they share data items may lead

to the necessity to send the same data item to both servers.

On the other hand, allocating those tasks to the same server

can help reduce the network load since only one copy of that

shared data item needs to be transmitted.

IV. RESEARCH ACCOMPLISHMENTS

Problem Formulation. In our paper [13], we consid-

ered an edge computing system composed of a set S =
{S1, S2, . . . , SM} of M distributed servers, where each

server Sj has a limited capacity Cj of computational resources

(i.e., CPU cycles). These edge servers serve a set T =
{T1, T2, . . . , TN} of N tasks originating from end-user de-

vices. The set of tasks T has an associated set of data

items, D = {D1, D2, . . . , DD}, that are needed to execute

the tasks. We denote the size of data item Dk by dk,

with k = 1, 2, . . . , D. Each task Ti is characterized by a

tuple (ri, pi, [A]i,∗), where ri is the amount of computational

resources required by Ti, pi is the profit for executing Ti,

and [A]i,∗ is the i-th row of the task-data matrix, A. The task-

data matrix A is a N ×D matrix, where aik = dk, if task Ti

requires data item Dk, and 0, otherwise. The tasks need to be

allocated to the servers such that the total profit obtained from

executing the tasks is maximized and the total amount of data

transferred in the network is minimized. Thus, we formulated

the data sharing-aware task allocation problem (DSTAP) as

a bi-objective mixed-integer multi-linear program:

maximize:

M
∑

j=1

N
∑

i=1

pixij (1)

minimize:
∑

I∈P(T )

(−1)(|I|+1)σI

M
∑

j=1

∏

i∈I

xij (2)

2



subject to:

N
∑

i=1

rixij ≤ Cj , ∀j ∈ {1, . . . ,M} (3)

M
∑

j=1

xij ≤ 1, ∀i ∈ {1, . . . , N} (4)

xij ∈ {0, 1}, ∀i, ∀j (5)

The first objective (Equation (1)) is to maximize the total

profit. The decision variable xij is 1, if task Ti is allocated

to server Sj , and 0, otherwise. The second objective (Equa-

tion (2)) is to minimize the total amount of data offloaded from

user devices to the servers, which depends on the decision

variables xij and on the data sharing among tasks. Here,

P(T ), is the power set of the set of indices of the tasks in T ,

and I is an element of the power set. We define the sharing

parameter, σI , as the total amount of data shared among

the tasks whose indices are in set I. In our paper [13], we

give more details on how the sharing parameter is computed

and explain how the cost function (2) captures the sharing

of data and gives the total amount of data in the network.

Constraint (3) ensures that the total allocated computational

requests to a server does not exceed the capacity of the server.

Constraint (4) ensures that each task is allocated to only one

server, while Constraint (5) guarantees the integrality of the

decision variables.

DSTA Algorithm. We design an offline greedy algorithm,

called DSTA that takes into account the sharing characteristics

of the tasks when deciding which tasks to allocate on the edge

servers. That is, it iteratively selects a subset of tasks that share

the highest amounts of data with the tasks that are already

allocated. In each iteration, it establishes a greedy order among

these tasks, that is induced by a function that prioritizes high-

profit and light-workload tasks for allocation to the most

suitable edge server. In our proposed offline algorithm, we

defined an efficiency function which is used to establish the

greedy order among the tasks. The tasks will be considered

for allocation in the order provided by this greedy order.

The efficiency function is defined by Ei =
pi

√

ri
∑M

j=1
Cj

. The

efficiency function for a given task can be viewed as a density

measure, computed as the profit obtained from executing the

task divided by the square root of the relative size of the

request. Here, the relative size of the request is with respect to

the total capacity of the servers in the system. This efficiency

function allows the algorithm to allocate the tasks in the order

of their highest profit density and therefore obtain high values

for the total profit gained from executing the tasks.

Online Algorithms. In our recent work [14], we designed

three online algorithms (DSA-FF, DSA-BF, and DSA-WF)

for task allocation in edge computing systems that take into

account the sharing of data among tasks offloaded to the same

server. To characterize the sharing of data for the upcoming

task Tj hosted on server Sk for the online task allocation

problem, we define δkj as the amount of data (memory) shared

among the upcoming task Tj and all the tasks already assigned

to server Sk, that is, δkj =
∑D

l=1 ajl · [ajl = ∆k
l ], where [C] is

the Iverson’s bracket and ∆k
l is entry l of data allocation

vector ∆k specifying the data items currently allocated to

server Sk. The Iverson bracket [C] evaluates to 1 if the

condition C is true, and 0, otherwise. The data allocation

vector ∆k has size D and is defined recursively as follows.

If no task is allocated to Sk then ∆k = [0]D. Let ∆k be the

vector before task Tj is allocated to server Sk and ∆̃k the

vector after Tj is allocated to Sk. Then, ∆̃k = ∆k
⊞ [A]j,∗,

where ⊞ is defined as follows,

∆k
⊞ [A]j,∗ =

{

∆k
l if ajl = 0

ajl if ajl ̸= 0
(6)

Let ∆k be the vector before task Tj is deallocated from

server Sk and ∆̂k the vector after Tj is deallocated from Sk.

Then, ∆̂k = ∆k
⊟ [A]j,∗, where ⊟ is defined as follows,

∆k
⊟[A]j,∗ =







∆k
l if (∆k

i = ajl) ∧ (∃Ti ∈ Sk, i ̸= j, ail ̸= 0)
0 if (∆k

i = ajl) ∧ (∀Ti ∈ Sk, i ̸= j, ail = 0)
∆k

l if ajl = 0
(7)

and Sk is the set of tasks allocated to server Sk.

A task Tj can be assigned to a server Sk if the following

constraints are satisfied:

C̃m
k −

D
∑

l=1

ajl + δkj ≥ 0, ∀Tj ∈ T , ∀Sk ∈ S (8)

C̃u
k − ruj ≥ 0, ∀Tj ∈ T , ∀Sk ∈ S (9)

where C̃m
k and C̃u

k are the available memory and CPU

capacities at server Sk. If there is no task assigned to server Sk,

C̃m
k = Cm

k and C̃u
k = Cu

k . Equation (8) is the memory ca-

pacity constraint for server Sk, guaranteeing that the available

amount of memory of server Sk is not exceeded by allocating

the memory needed for task Tj . Equation (9) is the CPU

capacity constraint, guaranteeing that the CPU capacity of

server Sk is not exceeded by allocating task Tj .

To design DSA-BF, we define an efficiency metric that

characterizes the scarcity of resources at each server. The

classical best fit bin packing algorithm attempts to place

each new item into the bin with the maximum load (smallest

available space) in which it fits. Thus, if such a bin is found,

the new item is placed inside it. To find the maximum load in

the case of our edge system, where each server is characterized

by two main parameters, CPU capacity and memory size, we

define the efficiency metric Ek
j as follows,

E
k
j =















1
√

α[C̃u
k

−rj ]+β[C̃m
k

−(
∑N

l=1
ajl−δk

j
)]

if (C̃u
k − rj ≥ 0)

∧ (C̃m
k − (

∑N
l=1 ajl − δkj ) ≥ 0)

0 otherwise

(10)

where α and β are the weight parameters for CPU capacity

and memory size. The weights are used to tune the algorithm,

for example giving more importance to CPU or memory when

making the allocation decisions. Finding the server with the

maximum load is equivalent to finding the server with the min-

imum of available resource capacity. Thus, in Ek
j we consider

3





REFERENCES

[1] X. Chen and G. Liu, “Joint optimization of task offloading and resource
allocation via deep reinforcement learning for augmented reality in
mobile edge network,” in Proc. IEEE Int. Conf. on Edge Computing

(EDGE), 2020, pp. 76–82.
[2] X. Huang, L. He, and W. Zhang, “Vehicle speed aware computing task

offloading and resource allocation based on multi-agent reinforcement
learning in a vehicular edge computing network,” in Proc. IEEE Int.

Conf. on Edge Computing (EDGE), 2020, pp. 1–8.
[3] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile

edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[4] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Toffee:
Task offloading and frequency scaling for energy efficiency of mobile
devices in mobile edge computing,” IEEE Trans. on Cloud Computing,
pp. 1–1, 2019.

[5] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Decentralized resource
auctioning for latency-sensitive edge computing,” in Proc. IEEE Int.

Conf. on Edge Computing (EDGE), 2019, pp. 72–76.
[6] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Risk-aware applica-

tion placement in mobile edge computing systems: A learning-based
optimization approach,” in Proc. IEEE Int. Conf. on Edge Computing

(EDGE), 2020, pp. 83–90.
[7] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,

“Cooperative-competitive task allocation in edge computing for delay-
sensitive social sensing,” in Proc. IEEE/ACM Symp. on Edge Computing

(SEC), 2018, pp. 243–259.
[8] D. Y. Zhang and D. Wang, “An integrated top-down and bottom-up task

allocation approach in social sensing based edge computing systems,”
in Proc. IEEE Conf. Comp. Comm. (INFOCOM), 2019, pp. 766–774.

[9] A. Kiani and N. Ansari, “Toward hierarchical mobile edge computing:
An auction-based profit maximization approach,” IEEE Internet of

Things Journal, vol. 4, no. 6, pp. 2082–2091, 2017.
[10] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task

allocation for multi-task transfer learning on the edge,” in Proc. 39th

IEEE Int. Conf. Distrib. Comp. Syst. (ICDCS), 2019, pp. 1040–1050.
[11] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving

low latency in collaborative edge computing,” IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 3512–3524, 2019.
[12] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and

wireless resource allocation for cooperative mobile-edge computing,” in
Proc. IEEE Int. Conf. on Communications (ICC), 2018, pp. 1–6.

[13] S. Rabinia, H. Mehryar, M. Brocanelli, and D. Grosu, “Data sharing-
aware task allocation in edge computing systems,” in Proc. IEEE Int.

Conf. on Edge Computing, 2021, pp. 60–67.
[14] S. Rabinia and D. Grosu, “Data sharing-aware online algorithms for task

allocation in edge computing systems,” in to be submitted to IEEE Int.

Conf. on Edge Computing, 2024.
[15] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Mathemat-

icae Debrecen, vol. 6, p. 290, 1959.

5


