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Abstract—Edge computing allows end-user devices to offload
heavy computation to nearby edge servers for reduced latency,
maximized profit, and/or minimized energy consumption. Data
dependent tasks that analyze locally acquired sensing data are
one of the most common candidates for task offloading in edge
computing. Thus, the total latency and network load are affected
by the total amount of data transferred from end-user devices
to the selected edge servers. Most existing solutions for task
allocation in edge computing do not consider that some user tasks
may operate on the same data items. Making the task allocation
algorithm aware of the existing data sharing characteristics of
tasks can help reduce network load at a negligible profit loss by
allocating more tasks sharing data on the same server.

In this PhD thesis, we formulate the data sharing-aware task
allocation problem that makes decisions on task allocation for
maximized profit and minimized network load by considering
the data-sharing characteristics of tasks. In addition, because
the problem is NP-hard, we design and implement an offline
algorithm, which finds a good feasible solution to the problem in
polynomial time. We also design and implement online algorithms
for task allocation in edge computing that take into account the
sharing of data among the tasks offloaded to the same server.
We analyze the performance of our offline algorithm against
a state-of-the-art baseline that only maximizes profit. We also
perform an extensive performance analysis by comparing our
online algorithms with their sharing-oblivious counterparts.

Index Terms—Edge computing, task allocation, online algo-
rithms, offline algorithms, data sharing.

I. INTRODUCTION

Edge computing is a new computing paradigm offering
real-time processing and analysis of data closer to the data
sources, such as IoT devices, sensors, or end-user devices.
This results in reducing latency, bandwidth usage, and faster
response times leading to improved overall system efficiency.
However, as the adoption of edge computing systems is
growing, dealing with increasing amounts of data transferred
in the edge network is a significant challenge. One of the
main factors that edge providers need to consider to obtain
an efficient deployment on edge servers, is exploiting the
sharing of data among tasks that can be offloaded to the same
server. Designing efficient algorithms for task allocation that
consider data sharing among tasks is essential to improving
the performance of the edge systems, which generally have
limited computational and memory capacities.
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Edge computing facilitates the operations of nearby
resource-limited mobile devices such as smartphones, tablets,
autonomous mobile robots, drones, and connected vehicles at
lower transmission latency compared to the cloud. In fact,
many data-driven applications running on mobile devices need
computational support to analyze locally-acquired sensor data
(e.g., a video or an image from camera, an audio trace from
microphone). Typical tasks include face recognition, image
classification, and object tracking. To offload a task, each
device must transmit all the data items to be analyzed (e.g.,
camera frames) to one of the nearby available edge servers.
On the other hand, given the possibly large number of end-
user devices in the edge system and the even larger number
of requests, it is important to ensure the scalability of edge
resources with respect to the number of tasks and data being
offloaded.

The objective of this PhD dissertation is to design, study,
and implement offline and online data sharing-aware algo-
rithms for task allocation in edge computing systems. The
central hypothesis is that taking into account the sharing of
data among tasks that can be offloaded on the same server, can
minimize the total amount of data offloaded on edge systems
and the traffic in the edge network that is associated with data
transfers.

II. SIGNIFICANCE OF OUR RESEARCH

In this PhD thesis, we formulate the data sharing-aware task
allocation problem as a bi-objective mixed-integer multilinear
program that maximizes the profit derived from executing
tasks and minimizes the network load by taking into account
the data sharing characteristics of tasks. Because this problem
is NP-hard, we design a greedy algorithm, called DSTA (Data
Sharing-Aware Task Allocation), that finds a feasible solution
in polynomial time. Specifically, DSTA considers the task
data sharing characteristics expressed as a task-data matrix to
decide which tasks to allocate on the edge servers by iteratively
selecting a subset of tasks that share the highest amounts of
data with the already allocated tasks. In each iteration, DSTA
maximizes the profit by prioritizing high-profit/light-workload
tasks for allocation to the most suitable edge server.

We also take into account the sharing of data among
tasks that can be offloaded on the same edge server and
formulate the problem of Online Data Sharing-Aware Task



Allocation (ODSTA). Managing the sharing of data items
among many offloaded tasks on servers, is expected to reduce
the total amount of data that needs to be stored at each
server, and the traffic in the edge network that is associated
with data transfers. We design three online algorithms for
solving the ODSTA problem in edge computing systems.
We consider an edge computing system composed of a set
of heterogeneous servers, where the servers have different
capacities for their computational resources (i.e., CPU and
memory). Although our online algorithms are inspired by
classical sharing-oblivious bin packing algorithms such as
first-fit, best-fit and worst-fit, they differ from those in that
when making allocation decisions they take into account the
sharing among the data items stored in the main memory of
edge servers.

In summary, this thesis makes the following contributions:

o To the best of our knowledge, our work is the first system-
atic work to exploit the key intuition that, in edge systems,
multiple data-driven tasks from each user device may
share some data items. Taking into account the sharing of
data among tasks reduces the traffic in the edge network,
the memory usage at the edge servers, and the number
of servers needed to execute the tasks, thus, leading to
an improved overall performance of the edge system.

o We formulate the data sharing-aware problem as a bi-
objective mixed-integer multilinear program that jointly
maximizes the task allocation profit and minimizes the
network load. We develop a novel analytical model for
capturing the sharing among tasks and use it to derive
the objective functions.

o The formulated data sharing-aware problem is NP-hard.
Thus, in order to provide a feasible solution in polynomial
time, we design a greedy algorithm, called DSTA, that
considers the tasks’ data-sharing characteristics and
iteratively allocates them on edge servers to maximize
the profit and minimize the network load.

o We design three online data sharing-aware algorithms
(DSA) for task allocation in edge computing systems:
DSA First-Fit (DSA-FF), DSA Best-Fit (DSA-BF), and
DSA Worst-Fit (DSA-WF).

o We compare our proposed DSTA algorithm with a state-
of-the-art baseline that only maximizes task execution
profit (i.e., P-Greedy). Our results show that DSTA can
reduce network data load by about 8x on average at a
negligible profit loss compared to P-Greedy.

e We perform an extensive performance analysis by
comparing our proposed online algorithms with their
sharing-oblivious counterparts. The results show that
our algorithms are able to reduce the amount of data
transferred in the network by 30.2% to 92.8% and the
number of utilized servers by 1% to 82.8% compared to
the sharing-oblivious baseline algorithms.

III. RELATED WORK

Task allocation in edge computing has been intensively stud-
ied during recent years. Due to the limited computing/energy

availability of end-user devices, a significant proportion of
related work has focused on offloading task execution to
edge servers for lowering end-user energy consumption at
a maximum latency requirement [1]-[4]. Other studies have
focused on maximizing the quality of service for end-users
via task offloading within edge resource constraints [5], [6].
In some cases, edge servers or nearby users may receive some
form of profit to provide edge resources for task offloading.
Thus, some studies have focused on the topic of finding the
best task allocation strategy that maximizes a defined profit
in edge systems [7]-[9]. Most of the above studies simply
consider the transmission time of data items associated with
each offloaded task on the total offloading latency estimation.
Some studies provided a more accurate consideration of net-
work packet scheduling for allocating cooperative tasks on
edge servers [10]-[12]. However, to the best of our knowledge,
none of the above solutions have considered the fact that
multiple tasks from the same user may have to analyze the
same data item. For example, the same camera frame can
be used by a task for face recognition and by another task
for object detection. Thus, allocating those tasks to different
servers without considering that they share data items may lead
to the necessity to send the same data item to both servers.
On the other hand, allocating those tasks to the same server
can help reduce the network load since only one copy of that
shared data item needs to be transmitted.

IV. RESEARCH ACCOMPLISHMENTS

Problem Formulation. In our paper [13], we consid-
ered an edge computing system composed of a set S =
{S1,82,...,8u} of M distributed servers, where each
server S; has a limited capacity C; of computational resources
(i.e., CPU cycles). These edge servers serve a set 7 =
{T1,T5,..., Ty} of N tasks originating from end-user de-
vices. The set of tasks 7 has an associated set of data
items, D = {Dy,Ds,...,Dp}, that are needed to execute
the tasks. We denote the size of data item Dy by di,
with £ = 1,2,...,D. Each task T; is characterized by a
tuple (7, p;, [A]i«), where r; is the amount of computational
resources required by T;, p; is the profit for executing T;,
and [A]; . is the i-th row of the task-data matrix, A. The task-
data matrix A is a N x D matrix, where a;;, = dj, if task T}
requires data item Dy, and 0, otherwise. The tasks need to be
allocated to the servers such that the total profit obtained from
executing the tasks is maximized and the total amount of data
transferred in the network is minimized. Thus, we formulated
the data sharing-aware task allocation problem (DSTAP) as
a bi-objective mixed-integer multi-linear program:
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The first objective (Equation (1)) is to maximize the total
profit. The decision variable x;; is 1, if task T} is allocated
to server S, and 0, otherwise. The second objective (Equa-
tion (2)) is to minimize the total amount of data offloaded from
user devices to the servers, which depends on the decision
variables z;; and on the data sharing among tasks. Here,
P(T), is the power set of the set of indices of the tasks in T,
and 7 is an element of the power set. We define the sharing
parameter, oz, as the total amount of data shared among
the tasks whose indices are in set Z. In our paper [13], we
give more details on how the sharing parameter is computed
and explain how the cost function (2) captures the sharing
of data and gives the total amount of data in the network.
Constraint (3) ensures that the total allocated computational
requests to a server does not exceed the capacity of the server.
Constraint (4) ensures that each task is allocated to only one
server, while Constraint (5) guarantees the integrality of the
decision variables.

DSTA Algorithm. We design an offline greedy algorithm,
called DSTA that takes into account the sharing characteristics
of the tasks when deciding which tasks to allocate on the edge
servers. That is, it iteratively selects a subset of tasks that share
the highest amounts of data with the tasks that are already
allocated. In each iteration, it establishes a greedy order among
these tasks, that is induced by a function that prioritizes high-
profit and light-workload tasks for allocation to the most
suitable edge server. In our proposed offline algorithm, we
defined an efficiency function which is used to establish the
greedy order among the tasks. The tasks will be considered
for allocation in the order provided by this greedy order.
The efficiency function is defined by F; = —2-—. The

Z']yi1 Cj
efficiency function for a given task can be viewed as a density
measure, computed as the profit obtained from executing the
task divided by the square root of the relative size of the
request. Here, the relative size of the request is with respect to
the total capacity of the servers in the system. This efficiency
function allows the algorithm to allocate the tasks in the order
of their highest profit density and therefore obtain high values

for the total profit gained from executing the tasks.

Online Algorithms. In our recent work [14], we designed
three online algorithms (DSA-FF, DSA-BF, and DSA-WF)
for task allocation in edge computing systems that take into
account the sharing of data among tasks offloaded to the same
server. To characterize the sharing of data for the upcoming
task 7 hosted on server Sj for the online task allocation
problem, we define § j’“ as the amount of data (memory) shared

among the upcoming task 77 and all the tasks already assigned
to server Sy, that is, 6% = 57 aji - [aj = AJ], where [C] is
the Iverson’s bracket and Af is entry [ of data allocation
vector AF specifying the data items currently allocated to
server Si. The Iverson bracket [C] evaluates to 1 if the
condition C' is true, and 0, otherwise. The data allocation
vector A* has size D and is defined recursively as follows.
If no task is allocated to Sy then A* = [0]p. Let A* be the
vector before task 7T} is allocated to server .S; and AF the
vector after T is allocated to Sj. Then, AR = AR H [A];
where H is defined as follows,

w az0 O
il 1L aj; #0

Let A* be the vector before task T} is deallocated from
server Sj, and AF the vector after T} is deallocated from Sy.
Then, A* = A* B[A]; ., where B is defined as follows,
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and Sy, is the set of tasks allocated to server Sf.
A task T} can be assigned to a server Sy, if the following
constraints are satisfied:

D
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where C’,T and C’}; are the available memory and CPU
capacities at server Sy. If there is no task assigned to server S,
O = O and O = C}. Equation (8) is the memory ca-
pacity constraint for server Sy, guaranteeing that the available
amount of memory of server Sy, is not exceeded by allocating
the memory needed for task 7j. Equation (9) is the CPU
capacity constraint, guaranteeing that the CPU capacity of
server Sy is not exceeded by allocating task 7.

To design DSA-BF, we define an efficiency metric that
characterizes the scarcity of resources at each server. The
classical best fit bin packing algorithm attempts to place
each new item into the bin with the maximum load (smallest
available space) in which it fits. Thus, if such a bin is found,
the new item is placed inside it. To find the maximum load in
the case of our edge system, where each server is characterized
by two main parameters, CPU capacity and memory size, we
define the efficiency metric EJ’“ as follows,

1 B AU .
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I AT = (L, aj — 8F) > 0)

0 otherwise

where « and [ are the weight parameters for CPU capacity
and memory size. The weights are used to tune the algorithm,
for example giving more importance to CPU or memory when
making the allocation decisions. Finding the server with the
maximum load is equivalent to finding the server with the min-
imum of available resource capacity. Thus, in E]k we consider
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Fig. 1: DSTA vs. P-Greedy: Total amount of data on the network (a-c) for various combinations of workload demand and
data sharing characteristics (exponential distribution) across offloaded tasks.
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Fig. 2: Online algorithms: Relative maximum amount of data
transferred.

the available capacity for CPU and memory i.e., C{* — r; and
cr— (21]\;1 aji — %), respectively. It is important to mention
that the efficiency metric Ef takes into account the sharing of
memory among tasks that are offloaded to the same server S.

V. EXPERIMENTAL ANALYSIS

Experimental Setup. To characterize the relationship between
server’s total capacity (in GIPS) and the total amount of
computallvtional request, we define a demand ratio, p as follows:
p= 22351:11 gf’
three different cases for computational requests by tasks: (i)
low demand (LD) (p < 1); (ii) medium demand (MD)
(p = 1/2); and (iii) high demand (HD) (p ~ 1).

We utilize the Erdos-Rényi random graph model [15] to cre-
ate the bipartite graph that represents the data sharing pattern
of the generated taskset. The adjacency matrix of this graph is
used as the task-data matrix A. In the Erdos-Rényi model, for a
graph with n vertices and m edges, the probability of generat-
ing each edge is given by: p™(1—p) (3)=™ The parameter p €
[0, 1], called the sharing degree here, characterizes the sharing
among tasks. We generate instances for three different cases:
(@) low sharing (LS) (0 < p < 0.3); (if) medium sharing (MS)
(0.3 < p <£0.6); and (iii) high sharing (HS) (0.6 <p < 1).
DSTA: Network Data Load Analysis. Figures la-1c, show
the total data size in the network corresponding to the alloca-
tion obtained by DSTA and P-Greedy (a state of the art algo-
rithm that maximizes the total profit only). In all three demand
cases, the total size of data corresponding to the allocation
obtained by DSTA is much smaller than that corresponding to

0 < p < 1. Based on this ratio, we consider

P-Greedy. In Figure la, for low demand case, the data size
corresponding to P-Greedy is 4.59, 9.82, 13.32 times greater
than that of DSTA for low sharing, average sharing, and
high sharing scenarios, respectively. In Figure 1b, for average
demand case, the data size corresponding to P-Greedy is
3.73, 9.16, and 14 times greater than that of DSTA for low
sharing, average sharing, and high sharing cases, respectively.

Online algorithms: Maximum amount of data transferred
in the edge network. For each of the online algorithms
we recorded the amount of data transferred in the edge
network at each task arrival and termination and determine
the maximum among those values. Then, we determine the
ratio of the maximum amount of data transferred in the case
of the proposed data sharing-aware algorithms and that of the
sharing-oblivious algorithms. Figure 2, shows this ratio for
all nine types of instances with different levels of sharing
and demand. The ratio decreases as the sharing of data items
among the tasks increases. For example, in the case of LSLD,
DSA-FF leads to 74% less data transferred in the network
than FF (corresponding to a ratio of 0.26), while in the case
of HSLD, DSA-FF leads to 92.8% less data transferred than
FF. A similar behavior is exhibited by DSA-BF which obtains
a little bit smaller reduction in the data transferred for those
cases (about 70% for LSLD and 92% for HSLD).

VI. CONCLUSION AND FUTURE WORK

In this thesis, we designed several online and offline al-
gorithms for task allocation in edge computing systems that
take into account the sharing of data among tasks offloaded
to the same server. Taking into account the sharing of data
among tasks reduces the traffic in the edge network, the
memory usage at the edge servers, and the number of servers
needed to execute the tasks, thus, leading to an improved
overall performance of the edge system. In our future work,
we plan to explore further optimizations of these algorithms to
improve their performance and also determine their theoretical
performance guarantees.
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