
Data Sharing-Aware Online Algorithms for Task

Allocation in Edge Computing Systems

Sanaz Rabinia

Dept. Computer Science

Wayne State University

Detroit, USA

srabin@wayne.edu

Daniel Grosu

Dept. Computer Science

Wayne State University

Detroit, USA

dgrosu@wayne.edu

Abstract—Many of the tasks offloaded to edge devices perform
computation to analyze sensing data. Transferring this data from
end-user devices to edge servers leads to increased latency and
congestion in the edge network. Since many of the offloaded tasks
may require processing the same data items, the task allocation
algorithms can exploit this to reduce the traffic in the networks
and the number of edge servers needed to execute the tasks.
Therefore, in this paper we design online algorithms for task
allocation in edge computing systems that take into account the
sharing of data among the tasks offloaded to the same server.
We perform an extensive performance analysis by comparing
our proposed algorithms with several sharing-oblivious baseline
algorithms. The results show that our algorithms are able to
reduce the amount of data transferred in the network by 30.2%
to 92.8% and the number of utilized servers by 1% to 82.8%
compared to the sharing-oblivious baseline algorithms.

Index Terms—Edge computing, task allocation, online algo-
rithms, data sharing.

I. INTRODUCTION

Edge computing is a new computing paradigm offering

real-time processing and analysis of data closer to the data

sources, such as IoT devices, sensors, or end-user devices.

This results in reducing latency, bandwidth usage, and faster

response times leading to improved overall system efficiency.

However, as the adoption of edge computing systems is

growing, dealing with increasing amounts of data transferred

in the edge network is a significant challenge. One of the

main factors that edge providers need to consider to obtain

an efficient deployment on edge servers, is exploiting the

sharing of data among tasks that can be offloaded to the same

server. For example, the same camera frame can be used by

a task for face recognition and by another task for object

detection [1]. A single audio recording might be analyzed

by one task for voice recognition purposes and by another

for detecting background noise levels [2]. An individual’s

GPS location data could be used by one task to provide

real-time navigation and by another to offer location-based

advertisements [3]. A video stream from a public place could

be utilized by one task for monitoring the traffic flow and

by another for assessing the crowd density [2]. Environmental

sensor data, like air quality readings, might be used by one

task to trigger pollution alerts and by another for long-term

climate research [4]. Designing efficient algorithms for task

allocation that consider data sharing among tasks is essential

to improving the performance of the edge systems, which

generally have limited computational and memory capacities.

In this paper, we take into account the sharing of data

among tasks that can be offloaded on the same edge server

and formulate the problem of Online Data Sharing-Aware

Task Allocation (ODSTA). Managing the sharing of data items

among many offloaded tasks on servers, is expected to reduce

the total amount of data that needs to be stored at each

server, and the traffic in the edge network that is associated

with data transfers. We design three online algorithms for

solving the ODSTA problem in edge computing systems.

We consider an edge computing system composed of a set

of heterogeneous servers, where the servers have different

capacities for their computational resources (i.e., CPU and

memory). Although our online algorithms are inspired by

classical sharing-oblivious bin packing algorithms such as

first-fit, best-fit and worst-fit, they differ from those in that

when making allocation decisions they take into account the

sharing among the data items stored in the main memory of

edge servers.

This paper makes the following contributions:

• To the best of our knowledge, our work is the first to con-

sider the design of online algorithms for task allocation in

edge computing systems that take into account the sharing

of data among tasks offloaded to the same server. Taking

into account the sharing of data among tasks reduces the

traffic in the edge network, the memory usage at the edge

servers, and the number of servers needed to execute the

tasks, thus, leading to an improved overall performance

of the edge system.

• We develop a novel analytical model for capturing the

sharing among online tasks and use it in the design of

our algorithms.

• We design three online data sharing-aware algorithms

(DSA) for task allocation in edge computing systems:

DSA First-Fit (DSA-FF), DSA Best-Fit (DSA-BF), and

DSA Worst-Fit (DSA-WF).

• We define an efficiency metric for DSA-BF and DSA-

WF that characterizes the scarcity of resources at each

server and it is used to make the allocation decisions.

• We perform an extensive performance analysis by com-

paring our proposed algorithms with several sharing-

oblivious baseline online algorithms. The baseline algo-

rithms are the best existing online algorithms for task

allocation that have as the objective minimizing the

number of servers used to execute the tasks. The results

show that our algorithms are able to reduce the amount

of data transferred in the network by 30.2% to 92.8% and

the number of utilized servers by 1% to 82.8% compared

to the sharing-oblivious baseline algorithms.

Related work. In recent years, task allocation in edge com-

puting has been the focus of extensive research [5]–[7]. Due

to space limitations we will discuss only the research on

task/resource allocation that take into account the sharing of

data. Luo et al. [5] proposed a software-defined cooperative

data sharing architecture and designed a cooperative data

sharing scheduling algorithm to enable efficient cooperation

between 5G and VANETs, and cooperation between commu-

nication and computing resources. Yang et al. [8] proposed

energy consumption models of different types of equipment

in Mobile Edge Computing and studied the placement of

cloudlets on the edge nodes. Chu et al. [7] investigated adap-

tive data sharing techniques based on data flow analysis and

bidirectional transformations and designed a hybrid offloading

mechanism for allocating computations among agents and the

cloud. Siew et al. [9] introduced a sharing economy-inspired

business model to facilitate the sharing of excess resource

quota among users, which led to a more efficient usage of

resources. None of these works considered the task allocation

with the objective of minimizing the number of utilized servers

and the traffic in the network by taking into account the sharing

of data among tasks.

The problem investigated in this paper is a variant of vector

bin-packing [10] in which the items can have overlaps (have

shared portions). This deviates from traditional formulations of

bin-packing by considering the scenario where combining two

or more items results in a reduced overall volume compared

to the sum of their individual sizes. The online variant of

the problem was introduced by Rampersaud and Grosu [11],

[12] in the context of virtual machine (VM) packing in cloud

computing systems. In their formulation, VM instances co-

located on the same server can share some of their memory.

They designed a family of sharing-aware online algorithms for

solving the VM packing problem that take into account the

sharing of memory among collocated VMs. Their algorithms

lead to a reduction in the consumption of cloud resources,

thereby enhancing efficiency in meeting users’ demands. The

problem considered in [11], [12] is different from the problem

we consider in this paper. In this paper, we consider an edge

computing system instead of a cloud computing system, tasks

instead of VMs, and data items instead of pages in memory.

Here, the goal is to minimize the number of servers in the

edge system and the traffic in the network, while in the cloud

setting the goal is to minimize the number of servers and the

amount of memory allocated to the user’s requested VMs.

In our previous work [13], we designed an offline data-

sharing aware task allocation greedy algorithm for edge com-

puting systems that maximizes the profit obtained from execut-

TABLE I: Notation
Expression Description

S Set of available servers.

T Set of tasks.

N Number of tasks; |T | = N .

M Number of servers in edge system; |S| = M .

A Task-data matrix.

D Set of all data items associated with the tasks.

Dl Data item l.

dl Size of data item l.

Tj Task j.

ruj CPU request by Tj (in MIPS).

taj Arrival time of task Tj .

tej Duration of task Tj .

Sk Server k.

Sk Set of tasks allocated to server Sk .

Cu
k

CPU capacity of server Sk (in MIPS).

Cm
k

Memory capacity of server Sk .

∆k Data allocation vector of server Sk

δkj Amount of shared data among Tj and tasks

currently hosted by Sk .

ing the tasks, while minimizing the traffic in the edge network.

The problem considered in our previous work is an offline

problem and did not consider that the tasks arrive online.

Furthermore the objective is different, that is, minimizing the

number of servers used instead of maximizing the profit.

Organization. The rest of the paper is organized as follows.

Section II formulates the online data sharing-aware task al-

location problem. Section III describes the proposed online

algorithms. Section IV presents the experimental results. Sec-

tion V concludes the paper and describes our future work.

II. ONLINE DATA SHARING-AWARE TASK ALLOCATION

PROBLEM

In this section, we introduce the Online Data Sharing-aware

Task Allocation (ODSTA) problem. We consider that the edge

computing system consists of a set S = {S1, S2, . . . , SM}
of M distributed edge servers, where each server Sk ∈ S
is characterized by a tuple [Cm

k , Cu
k], where Cm

k is its mem-

ory capacity, and Cu
k is its CPU capacity in GIPS (billion

instructions per second). These edge servers host user’s tasks

from a set T = {T1, T2, . . . , TN} of N tasks, where T has

an associated set of D data items, D = {D1, D2, . . . , DD},

that are needed to execute the tasks. We denote the size of

data item Dl by dl (in GB), where l = 1, 2, . . . , D. Each

task Tj is characterized by a tuple (ruj , t
a
j , t

e
j , [A]j,∗), where ruj

is Tj’s CPU request in GIPS, taj is Tj’s arrival time, tej is Tj’s

duration, and [A]j,∗ is the j-th row of the task-data matrix, A,

corresponding to Tj . The task-data matrix A is a N×D matrix

specifying for each task the data items needed by the task and

their sizes, that is, ajl = dl, if task Tj requires data item Dl,

and 0, otherwise.

The objective of the ODSTA problem is to find an allocation

of users’ tasks to servers such that the traffic in the edge

network induced by the transfer of data to servers, and the

number of servers used to execute the tasks are minimized.

This is achieved by considering the data shared by the tasks

when making the allocation decisions. For example, if three

2

tasks use the same data items and they are allocated (offloaded)

to the same sever, the needed data items have to be transferred

from users to this server only once. This is in contrast with the

case in which the tasks are allocated to three different servers

and the data items have to be transferred to three servers. This

will increase the traffic in the network, thus increasing the

latency of the tasks. Therefore, considering the data shared

by the tasks when making the allocation decisions, we can

reduce the total size of data that needs to be transferred in

the network, and consequently, reduce the memory used at

the servers. Minimizing the number of servers used is also

important, leading to energy savings. The assignment of tasks

to servers is online and there is no prior knowledge about the

upcoming tasks.

To characterize the sharing of data for the upcoming task Tj

hosted on server Sk, we define δkj as the amount of data

(memory) shared among the upcoming task Tj and all the

tasks already assigned to server Sk, that is,

δkj =

D
∑

l=1

ajl · Jajl = ∆k
l K (1)

where JCK is the Iverson’s bracket and ∆k
l is entry l of

data allocation vector ∆k specifying the data items currently

allocated to server Sk. The Iverson bracket JCK evaluates to 1

if the condition C is true, and 0, otherwise. The data allocation

vector ∆k has size D and is defined recursively as follows.

If no task is allocated to Sk then ∆k = [0]D. Let ∆k be the

vector before task Tj is allocated to server Sk and ∆̃k the

vector after Tj is allocated to Sk. Then, ∆̃k = ∆k
⊞ [A]j,∗,

where ⊞ is defined as follows,

∆k
⊞ [A]j,∗ =

{

∆k
l if ajl = 0

ajl if ajl ̸= 0
(2)

Let ∆k be the vector before task Tj is deallocated from

server Sk and ∆̂k the vector after Tj is deallocated from Sk.

Then, ∆̂k = ∆k
⊟ [A]j,∗, where ⊟ is defined as follows,

∆k
⊟[A]j,∗ =







∆k
l if (∆k

i = ajl) ∧ (∃Ti ∈ Sk, i ̸= j, ail ̸= 0)
0 if (∆k

i = ajl) ∧ (∀Ti ∈ Sk, i ̸= j, ail = 0)
∆k

l if ajl = 0
(3)

and Sk is the set of tasks allocated to server Sk.

A task Tj can be assigned to a server Sk if the following

constraints are satisfied:

C̃m
k −

D
∑

l=1

ajl + δkj ≥ 0, ∀Tj ∈ T , ∀Sk ∈ S (4)

C̃u
k − ruj ≥ 0, ∀Tj ∈ T , ∀Sk ∈ S (5)

where C̃m
k and C̃u

k are the available memory and CPU

capacities at server Sk. If there is no task assigned to server Sk,

C̃m
k = Cm

k and C̃u
k = Cu

k . Equation (4) is the memory ca-

pacity constraint for server Sk, guaranteeing that the available

amount of memory of server Sk is not exceeded by allocating

the memory needed for task Tj . Equation (5) is the CPU

capacity constraint, guaranteeing that the CPU capacity of

server Sk is not exceeded by allocating task Tj .

Example of ODSTA instance. In the following, we give

an example of an ODSTA instance consisting of a set of

six servers S = {Sk|k = 1, . . . , 6} and a set of six

tasks T = {Tj |j = 1, . . . , 6} that need data items from a

set D = {Dl|l = 1, . . . , 6}. The amount of CPU request ruj ,

the arrival time taj , the duration tej for each task, and the CPU

and memory capacities (Cu
k and Cm

k) of the servers are given

in Table II.

TABLE II: Example of ODSTA instance

Task T1 T2 T3 T4 T5 T6

ruj (GIPS) 6 6 5 8 10 5

taj (sec) 10 11 12 13 14 15

tej (sec) 100 80 70 30 50 20

Server S1 S2 S3 S4 S5 S6

Cm
k

(GB) 25 21 18 32 35 34

Cu
k

(GIPS) 20 10 12 14 16 13

The task-data matrix A that characterizes the sharing of data

items among the tasks is:

D1 D2 D3 D4 D5 D6





























T1 2 4 0 5 0 1
T2 2 0 6 5 0 0
T3 2 4 0 0 0 1
T4 2 4 6 5 4 0
T5 2 4 6 5 4 1
T6 0 0 0 5 4 1

(6)

To illustrate how the above modeling of data sharing (Equa-

tions (1) to (4)) works, suppose that three tasks T1, T2, T3

arrive one after another at the given arrival times, and are allo-

cated to server S1. T1 is the first task to arrive and requires the

data items D1, D2, D4, and D6 (i.e., [A]1,∗ = [2, 4, 0, 5, 0, 1]).
Initially, ∆1 = [0]6 and since there is no task assigned to

server S1 yet, we have δ1
1
= 0. Thus, the total amount of data

on server S1 is a11 + a12 + a14 + a16 = 12 GB, and C̃m
1

=
25 − 12 = 13 GB. After the assignment of task T1 on S1,

∆1 = [0, 0, 0, 0, 0, 0] ⊞ [2, 4, 0, 5, 0, 1] = [2, 4, 0, 5, 0, 1]. The

next incoming task is T2 with [A]2,∗ = [2, 0, 6, 5, 0, 0]. Both

T1 and T2 require D1 and D4, and according to Equation (1),

δ1
2
= 2+5 = 7 GB for task T2. Thus, the total amount of data

on server S1 is (2+4+5+1)+(2+6+5)−(2+5) = 18 GB and

∆1 = [2, 4, 0, 5, 0, 1]⊞ [2, 0, 6, 5, 0, 0] = [2, 4, 6, 5, 0, 1]. Next,

T3 is allocated to S1 which has [A]3,∗ = [2, 4, 0, 0, 0, 1]. For δ1
3

we determine the amount of shared data among T3, T1, and T2.

Thus, according to Equation (1), δ1
3
= 2 + 4 + 1 = 7 GB.

After the assignment of T3 to S1, ∆1 = [2, 4, 6, 5, 0, 1] ⊞
[2, 4, 0, 0, 0, 1] = [2, 4, 6, 5, 0, 1], and the total amount of data

for {T1, T2, T3} on server S1 is (2 + 4 + 6 + 5 + 1) + (2 +
4 + 1) − (2 + 4 + 1) = 18 GB. If we consider a sharing-

oblivious scenario, the total amount of data on S1 would be

(2+4+5+1)+ (2+6+5)+ (2+4+1) = 32 GB, which is

larger than in the case of considering the data sharing at S1.

3

each new item into the bin with the maximum load (smallest

available space) in which it fits. Thus, if such a bin is found,

the new item is placed inside it. To find the maximum load in

the case of our edge system, where each server is characterized

by two main parameters, CPU capacity and memory size, we

define the efficiency metric Ek
j as follows,

Ek
j =















[

α(C̃u
k
− rj) + β(C̃m

k
− (

∑N
l=1

ajl − δkj))
]

−
1

2

if (C̃u
k
− rj ≥ 0) and (C̃m

k
− (

∑N
l=1

ajl − δkj) ≥ 0)

0 otherwise
(7)

where α and β are the weight parameters for CPU capacity

and memory size. The weights are used to tune the algorithm

and can be adjusted to prioritize one aspect over the other

when allocating resources on a server, for example giving

more importance to CPU or memory when making the alloca-

tion decisions. If α is greater than β, then the CPU capacity

will play a more significant role in the efficiency metric.

Increasing α would mean that servers with more spare CPU

capacity will be considered more efficient, and have better

chance to be allocated. If β is greater than α, then the memory

size will be more influential in the allocation decision. Thus,

servers with more memory available will be deemed more

efficient. The efficiency is only calculated when the remaining

CPU and memory capacity (after accounting for demands) are

both positive. If either is negative, meaning that the server

cannot accommodate the new demands, the efficiency is set to

zero, indicating that the server should not be considered for

receiving additional load.

In practice, α and β are likely to be determined through

a combination of business requirements, performance metrics,

and cost considerations. Different types of edge applications

and services have varying resource needs. For example, im-

age processing and virtual reality applications may require

more CPU cycles to perform calculations efficiently, whereas

applications like databases or caching services may demand

more memory to store and quickly access large amounts of

data. By adjusting α and β, the algorithm can be tailored to

favor servers that offer the required resources more abundantly.

Sometimes, in an edge computing system, one type of resource

may be more scarce or expensive than the other. If CPU is a

more scarce resource, a higher α would ensure that tasks are

directed to servers with sufficient CPU availability. Conversely,

if memory is scarce, β would be increased to safeguard

memory resources. Moreover, different resources also come

with different costs. If CPU capacity is more expensive than

memory, a higher α value could be used to optimize for cost

by ensuring that CPU resources are utilized as efficiently as

possible, potentially saving money for the edge provider. For

some services, performance may be critically dependent on

one resource over the other. If a server’s performance is more

sensitive to CPU than memory, one would increase α to reduce

latency or increase throughput by allocating tasks to servers

where they are less likely to be CPU-constrained. Parameters α

and β can be adjusted to achieve a balanced load across a

system with multiple servers. For instance, if servers tend to

Algorithm 2 Data Sharing-Aware Best Fit (DSA-BF)

1: at task Tj arrival do
2: for k = 1, . . . , |S| do

3: δkj ←
∑D

l=1
ajl · Jajl = ∆k

l K
4: if ([C̃m

k , C̃u
k]− [

∑N

l=1
ajl − δkj , r

u
j] ≥ [0, 0]) then

5: Ek
j ←

[

α(C̃u
k − rj) + β(C̃m

k − (
∑N

l=1
ajl − δkj))

]

−
1

2

6: else
7: Ek

j ← 0

8: k̃ ← argmaxk{E
k
j }

9: ∆k̃ ← ∆k̃
⊞ [A]j,∗

10: Sk̃ ← Sk̃ ∪ {Tj}

11: [C̃m

k̃
, C̃u

k̃
]← ([C̃m

k̃
, C̃u

k̃
]− [

∑N

l=1
ajl − δk̃j , r

u
j])

12: at task Tj completion on server Sk do
13: Sk ← Sk\{Tj}
14: ∆k ← ∆k

⊟ [A]j,∗
15: δkj ←

∑D

l=1
ajl · Jajl = ∆k

l K
16: [C̃m

k , C̃u

k̃
]← ([C̃m

k̃
, C̃u

k] + [
∑N

l=1
ajl − δkj , r

u
j])

run out of memory before running out of CPU, increasing β

would help balance the usage of memory across the servers,

potentially leading to a more uniform usage of both types of

resources.

Finding the server with the maximum load is equivalent

to finding the server with the minimum of available resource

capacity. Thus, in Ek
j we consider the available capacity for

CPU and memory i.e., C̃u
k − rj and C̃m

k − (
∑N

l=1
ajl − δkj),

respectively. Since the square root of the sum of these values is

in the denominator of the efficiency metric, we will consider

the maximum of Ek
j among the servers. It is important to

mention that the efficiency metric Ek
j takes into account the

sharing of memory among tasks that are offloaded to the same

server Sk.

DSA-BF, given in Algorithm 2, is executed when a task

arrives (lines 1-11), or a task completes its execution on the

allocated server (lines 12-16). Upon arrival of task Tj , for each

server Sk in the system, it determines δkj (line 3), and if there

is enough CPU and memory capacity at Sk then it calculates

the efficiency metric using Equation (7), otherwise it sets Ek
j

to 0 (lines 4-7). In line 8, DSA-BF picks the server Sk̃ that has

the maximum efficiency metric. In lines 9-11, it updates the

data allocation vector ∆k̃ for the selected server Sk̃ according

to Equation (2), allocates Tj on server Sk̃, and updates its

CPU and memory capacities. Upon completion of task Tj on

server Sk, DSA-BF removes Tj from set Sk of tasks allocated

to Sk (line 13) and updates the data allocation vector (line 14).

It also updates the amount of shared data among currently

allocated tasks on Sk (line 15), and releases Tj’s allocated

resources (line 16).

DSA-BF: Illustrative example. To illustrate how DSA-

BF works, we consider the example of ODSTA instance

described in Section II. Figure 2, shows the allocation of

the tasks to servers at the arrival of each of the six tasks.

At T1’s arrival (ta
1

= 10), DSA-BF calculates δkj for all

servers and since all servers have enough capacity it calcu-

5

BF. As the CPU demand increases, the amount of data that

needs to be transferred also increases.

The effect of efficiency metric weights (α, β) on DSA-BF’s

performance. We investigate how the choice of the weights

(α, β) used in the efficiency function influences the amount of

data transferred in the edge network by DSA-BF. We consider

three case: (i) α > β, where α = 0.9998, and β = 0.0002; (ii)

α < β, where α = 0.0002, and β = 0.9998; and (iii) α = β,

where α = 0.5, and β = 0.5. Figure 5, shows the average ratio

of the maximum amount of data transferred by DSA-BF with

respect to BF for these three cases. In all nine sharing and

demand scenarios DSA-BF with α = 0.9998, β = 0.0002
(i.e., case (i)) has the largest ratio among the three cases,

that is, the amount of transferred data relative to BF is the

largest. This is due to the fact, that the contribution of memory

capacity term to the denominator of the efficiency metric is

much smaller compared to that of the CPU capacity term, and

thus, the CPU capacity term influences more the decisions. In

case (ii) and (iii) the contribution of memory capacity term to

the denominator of the efficiency metric is increased and thus,

influences more the decisions, selecting servers with better fit

for the memory requests. Therefore, DSA-BF is able to fit

more items in the memory of the servers, leading to a reduction

in the amount of data transferred in the edge network.

V. CONCLUSION AND FUTURE WORK

We designed three online algorithms (DSA-FF, DSA-BF,

and DSA-WF) for task allocation in edge computing systems

that take into account the sharing of data among tasks of-

floaded to the same server. Taking into account the sharing of

data among tasks reduces the traffic in the edge network, the

memory usage at the edge servers, and the number of servers

needed to execute the tasks, thus, leading to an improved

overall performance of the edge system. We performed an

extensive performance analysis by comparing our proposed

algorithms with several online sharing-oblivious baseline al-

gorithms. The results show that our algorithms are able to

reduce the amount of data transferred in the network by 30.2%

to 92.8% and the number of utilized servers by 1% to 82.8%

compared to the sharing-oblivious baseline algorithms. In our

future work, we plan to explore further optimizations of these

algorithms to improve their performance and also determine

their theoretical performance guarantees. We also plan to

deploy our algorithms on an experimental edge computing

testbed and investigate their performance.

ACKNOWLEDGMENT

This research was supported in part by the US National

Science Foundation under Grants CCF-2118202 and CNS-

2231523.

REFERENCES

[1] H. Lee, G. Hong, and D. Shin, “Shareable camera framework for
multiple computer vision applications,” in Proc. 20th Int. Conf. on

Advanced Communication Technology. IEEE, 2018, pp. 669–674.

[2] G. Dermler, T. Gutekunst, E. Ostrowski, and F. Ruge, “Sharing au-
dio/video applications among heterogeneous platforms,” in Proc. 5th

IEEE COMSOC Int. Workshop on Multimedia Communications. IEEE,
1994, pp. 1–5.

[3] C. Li, Y. Fu, F. R. Yu, T. H. Luan, and Y. Zhang, “Vehicle position
correction: A vehicular blockchain networks-based gps error sharing
framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 2, pp. 898–912, 2021.

[4] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions.” in Proc. USENIX Symposium on Networked Systems

Design and Implementation, vol. 4. San Francisco, California, USA,
2004, pp. 3–3.

[5] G. Luo, H. Zhou, N. Cheng, Q. Yuan, J. Li, F. Yang, and X. Shen,
“Software-defined cooperative data sharing in edge computing assisted
5g-vanet,” IEEE Trans. on Mobile Computing, vol. 20, no. 3, pp. 1212–
1229, 2019.

[6] E. F. Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-aware
computation offloading in edge computing using machine learning,”
IEEE Trans. on Mobile Computing, vol. 22, no. 1, pp. 328–340, 2023.

[7] W. Chu, H. Zhao, Z. Jin, and Z. Hu, “Adaptive data sharing and com-
putation offloading in cloud-edge computing with resource constraints,”
in IEEE Int. Conf. Syst., Man, and Cybernetics, 2020, pp. 2842–2849.

[8] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet
placement and task allocation in mobile edge computing,” IEEE Internet

of Things Journal, vol. 6, no. 3, pp. 5853–5863, 2019.
[9] M. Siew, D. Cai, L. Li, and T. Q. Quek, “Dynamic pricing for resource-

quota sharing in multi-access edge computing,” IEEE Transactions on

Network Science and Engineering, vol. 7, no. 4, pp. 2901–2912, 2020.
[10] A. Grange, I. Kacem, and S. Martin, “Algorithms for the bin packing

problem with overlapping items,” Computers & Industrial Engineering,
vol. 115, pp. 331–341, 2018.

[11] S. Rampersaud and D. Grosu, “Sharing-aware online algorithms for
virtual machine packing in cloud environments,” in Proc. 8th IEEE Int.

Conf. on Cloud Computing, 2015, pp. 718–725.
[12] ——, “Sharing-aware online virtual machine packing in heterogeneous

resource clouds,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 28, no. 7, pp. 2046–2059, 2016.
[13] S. Rabinia, H. Mehryar, M. Brocanelli, and D. Grosu, “Data sharing-

aware task allocation in edge computing systems,” in Proc. IEEE Int.

Conf. on Edge Computing, 2021, pp. 60–67.
[14] K. Katsalis, T. G. Papaioannou, N. Nikaein, and L. Tassiulas, “Sla-

driven vm scheduling in mobile edge computing,” in 2016 IEEE 9th

International Conference on Cloud Computing, 2016, pp. 750–757.
[15] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware ap-

plication module management for fog computing environments,” ACM

Trans. Internet Technol., vol. 19, no. 1, nov 2018.
[16] Z. Wang, S. Zheng, Q. Ge, and K. Li, “Online offloading scheduling and

resource allocation algorithms for vehicular edge computing system,”
IEEE Access, vol. 8, pp. 52 428–52 442, 2020.

[17] S. F. Abedin, M. G. R. Alam, S. M. A. Kazmi, N. H. Tran, D. Niyato,
and C. S. Hong, “Resource allocation for ultra-reliable and enhanced
mobile broadband iot applications in fog network,” IEEE Transactions

on Communications, vol. 67, no. 1, pp. 489–502, 2019.
[18] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Mathemat-

icae Debrecen, vol. 6, p. 290, 1959.

10

