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Abstract—Many of the tasks offloaded to edge devices perform
computation to analyze sensing data. Transferring this data from
end-user devices to edge servers leads to increased latency and
congestion in the edge network. Since many of the offloaded tasks
may require processing the same data items, the task allocation
algorithms can exploit this to reduce the traffic in the networks
and the number of edge servers needed to execute the tasks.
Therefore, in this paper we design online algorithms for task
allocation in edge computing systems that take into account the
sharing of data among the tasks offloaded to the same server.
We perform an extensive performance analysis by comparing
our proposed algorithms with several sharing-oblivious baseline
algorithms. The results show that our algorithms are able to
reduce the amount of data transferred in the network by 30.2%
to 92.8% and the number of utilized servers by 1% to 82.8%
compared to the sharing-oblivious baseline algorithms.

Index Terms—Edge computing, task allocation, online algo-
rithms, data sharing.

I. INTRODUCTION

Edge computing is a new computing paradigm offering
real-time processing and analysis of data closer to the data
sources, such as IoT devices, sensors, or end-user devices.
This results in reducing latency, bandwidth usage, and faster
response times leading to improved overall system efficiency.
However, as the adoption of edge computing systems is
growing, dealing with increasing amounts of data transferred
in the edge network is a significant challenge. One of the
main factors that edge providers need to consider to obtain
an efficient deployment on edge servers, is exploiting the
sharing of data among tasks that can be offloaded to the same
server. For example, the same camera frame can be used by
a task for face recognition and by another task for object
detection [1]. A single audio recording might be analyzed
by one task for voice recognition purposes and by another
for detecting background noise levels [2]. An individual’s
GPS location data could be used by one task to provide
real-time navigation and by another to offer location-based
advertisements [3]. A video stream from a public place could
be utilized by one task for monitoring the traffic flow and
by another for assessing the crowd density [2]. Environmental
sensor data, like air quality readings, might be used by one
task to trigger pollution alerts and by another for long-term
climate research [4]. Designing efficient algorithms for task
allocation that consider data sharing among tasks is essential
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to improving the performance of the edge systems, which
generally have limited computational and memory capacities.

In this paper, we take into account the sharing of data

among tasks that can be offloaded on the same edge server
and formulate the problem of Online Data Sharing-Aware
Task Allocation (ODSTA). Managing the sharing of data items
among many offloaded tasks on servers, is expected to reduce
the total amount of data that needs to be stored at each
server, and the traffic in the edge network that is associated
with data transfers. We design three online algorithms for
solving the ODSTA problem in edge computing systems.
We consider an edge computing system composed of a set
of heterogeneous servers, where the servers have different
capacities for their computational resources (i.e., CPU and
memory). Although our online algorithms are inspired by
classical sharing-oblivious bin packing algorithms such as
first-fit, best-fit and worst-fit, they differ from those in that
when making allocation decisions they take into account the
sharing among the data items stored in the main memory of
edge servers.

This paper makes the following contributions:

o To the best of our knowledge, our work is the first to con-
sider the design of online algorithms for task allocation in
edge computing systems that take into account the sharing
of data among tasks offloaded to the same server. Taking
into account the sharing of data among tasks reduces the
traffic in the edge network, the memory usage at the edge
servers, and the number of servers needed to execute the
tasks, thus, leading to an improved overall performance
of the edge system.

o We develop a novel analytical model for capturing the
sharing among online tasks and use it in the design of
our algorithms.

o« We design three online data sharing-aware algorithms
(DSA) for task allocation in edge computing systems:
DSA First-Fit (DSA-FF), DSA Best-Fit (DSA-BF), and
DSA Worst-Fit (DSA-WF).

e We define an efficiency metric for DSA-BF and DSA-
WEF that characterizes the scarcity of resources at each
server and it is used to make the allocation decisions.

o We perform an extensive performance analysis by com-
paring our proposed algorithms with several sharing-
oblivious baseline online algorithms. The baseline algo-



rithms are the best existing online algorithms for task
allocation that have as the objective minimizing the
number of servers used to execute the tasks. The results
show that our algorithms are able to reduce the amount
of data transferred in the network by 30.2% to 92.8% and
the number of utilized servers by 1% to 82.8% compared
to the sharing-oblivious baseline algorithms.

Related work. In recent years, task allocation in edge com-
puting has been the focus of extensive research [5]-[7]. Due
to space limitations we will discuss only the research on
task/resource allocation that take into account the sharing of
data. Luo et al. [5] proposed a software-defined cooperative
data sharing architecture and designed a cooperative data
sharing scheduling algorithm to enable efficient cooperation
between 5G and VANETS, and cooperation between commu-
nication and computing resources. Yang et al. [8] proposed
energy consumption models of different types of equipment
in Mobile Edge Computing and studied the placement of
cloudlets on the edge nodes. Chu et al. [7] investigated adap-
tive data sharing techniques based on data flow analysis and
bidirectional transformations and designed a hybrid offloading
mechanism for allocating computations among agents and the
cloud. Siew et al. [9] introduced a sharing economy-inspired
business model to facilitate the sharing of excess resource
quota among users, which led to a more efficient usage of
resources. None of these works considered the task allocation
with the objective of minimizing the number of utilized servers
and the traffic in the network by taking into account the sharing
of data among tasks.

The problem investigated in this paper is a variant of vector
bin-packing [10] in which the items can have overlaps (have
shared portions). This deviates from traditional formulations of
bin-packing by considering the scenario where combining two
or more items results in a reduced overall volume compared
to the sum of their individual sizes. The online variant of
the problem was introduced by Rampersaud and Grosu [11],
[12] in the context of virtual machine (VM) packing in cloud
computing systems. In their formulation, VM instances co-
located on the same server can share some of their memory.
They designed a family of sharing-aware online algorithms for
solving the VM packing problem that take into account the
sharing of memory among collocated VMs. Their algorithms
lead to a reduction in the consumption of cloud resources,
thereby enhancing efficiency in meeting users’ demands. The
problem considered in [11], [12] is different from the problem
we consider in this paper. In this paper, we consider an edge
computing system instead of a cloud computing system, tasks
instead of VMs, and data items instead of pages in memory.
Here, the goal is to minimize the number of servers in the
edge system and the traffic in the network, while in the cloud
setting the goal is to minimize the number of servers and the
amount of memory allocated to the user’s requested VMs.

In our previous work [13], we designed an offline data-
sharing aware task allocation greedy algorithm for edge com-
puting systems that maximizes the profit obtained from execut-

TABLE I: Notation

Expression  Description

S Set of available servers.

T Set of tasks.

N Number of tasks; |7] = N.

M Number of servers in edge system; |S| = M.
A Task-data matrix.

D Set of all data items associated with the tasks.
Dy Data item [.

d; Size of data item .

T; Task j.

r;.‘ CPU request by T} (in MIPS).

t? Arrival time of task 7).

; Duration of task 7T7;.

Sk Server k.

Sk Set of tasks allocated to server Sy.

cy CPU capacity of server Sy, (in MIPS).

o Memory capacity of server Sy.

AF Data allocation vector of server S,

5;? Amount of shared data among T); and tasks

currently hosted by Sk.

ing the tasks, while minimizing the traffic in the edge network.
The problem considered in our previous work is an offline
problem and did not consider that the tasks arrive online.
Furthermore the objective is different, that is, minimizing the
number of servers used instead of maximizing the profit.

Organization. The rest of the paper is organized as follows.
Section II formulates the online data sharing-aware task al-
location problem. Section III describes the proposed online
algorithms. Section IV presents the experimental results. Sec-
tion V concludes the paper and describes our future work.

II. ONLINE DATA SHARING-AWARE TASK ALLOCATION
PROBLEM

In this section, we introduce the Online Data Sharing-aware
Task Allocation (ODSTA) problem. We consider that the edge
computing system consists of a set S = {S1,S5%,...,5u}
of M distributed edge servers, where each server S, € S
is characterized by a tuple [C}", C}], where C}* is its mem-
ory capacity, and C} is its CPU capacity in GIPS (billion
instructions per second). These edge servers host user’s tasks
from a set 7 = {T1,T5,...,Tn} of N tasks, where T has
an associated set of D data items, D = {Dy,Ds,...,Dp},
that are needed to execute the tasks. We denote the size of
data item D; by d; (in GB), where | = 1,2,...,D. Each
task 7} is characterized by a tuple (1,14, 1, [A]; .), where 1/
is T;’s CPU request in GIPS, t7 is T;’s arrival time, ¢5 is T;’s
duration, and [A]; . is the j-th row of the task-data matrix, A,
corresponding to 1. The task-data matrix A is a N x D matrix
specifying for each task the data items needed by the task and
their sizes, that is, a;; = d;, if task T} requires data item D,
and 0, otherwise.

The objective of the ODSTA problem is to find an allocation
of users’ tasks to servers such that the traffic in the edge
network induced by the transfer of data to servers, and the
number of servers used to execute the tasks are minimized.
This is achieved by considering the data shared by the tasks
when making the allocation decisions. For example, if three



tasks use the same data items and they are allocated (offloaded)
to the same sever, the needed data items have to be transferred
from users to this server only once. This is in contrast with the
case in which the tasks are allocated to three different servers
and the data items have to be transferred to three servers. This
will increase the traffic in the network, thus increasing the
latency of the tasks. Therefore, considering the data shared
by the tasks when making the allocation decisions, we can
reduce the total size of data that needs to be transferred in
the network, and consequently, reduce the memory used at
the servers. Minimizing the number of servers used is also
important, leading to energy savings. The assignment of tasks
to servers is online and there is no prior knowledge about the
upcoming tasks.

To characterize the sharing of data for the upcoming task T
hosted on server Sy, we define 6;? as the amount of data
(memory) shared among the upcoming task 7} and all the
tasks already assigned to server Sy, that is,

D
5 = "aj - [aj = Af] (1)
=1

where [C] is the Iverson’s bracket and AF is entry [ of
data allocation vector A* specifying the data items currently
allocated to server Si. The Iverson bracket [C] evaluates to 1
if the condition C is true, and 0, otherwise. The data allocation
vector A* has size D and is defined recursively as follows.
If no task is allocated to Sy then A* = [0]p. Let A* be the
vector before task 7} is allocated to server Sy and AF the
vector after Tj is allocated to Sy. Then, A* = A* B [4];.,
where H is defined as follows,

AF ifa; =0

AF @A}, = { it 0y 70 @

; aji
Let AF be the vector before task 7} is deallocated from

server Sj, and AF the vector after T} is deallocated from Sy.
Then, A* = A B [A] ;. where B is defined as follows,

AFif (AF = aj) A 3T € Sk,i # j,aq #0)
AkE[A]j,* = { 0 if (Af = ajl) N (VTZ € Sk, i F# j,ai = 0)
AF ifa; =0
3)
and Sy, is the set of tasks allocated to server Sj.
A task T} can be assigned to a server S}, if the following
constraints are satisfied:

D
Ci'=> ay+68>0, VI,€TVSi €S (4
=1

Cr—rt >0, VI; €T,V €S (5)
where Cf* and Cj* are the available memory and CPU
capacities at server S. If there is no task assigned to server Sy,
C',T = C} and C’g = C}. Equation (4) is the memory ca-
pacity constraint for server Sy, guaranteeing that the available
amount of memory of server Sy is not exceeded by allocating
the memory needed for task 7;. Equation (5) is the CPU

capacity constraint, guaranteeing that the CPU capacity of
server S, is not exceeded by allocating task T7;.

Example of ODSTA instance. In the following, we give
an example of an ODSTA instance consisting of a set of
six servers S = {Silk = 1,...,6} and a set of six
tasks 7 = {Tj|j = 1,...,6} that need data items from a
set D = {Dy|l = 1,...,6}. The amount of CPU request %,
the arrival time t;-l, the duration t;? for each task, and the CPU
and memory capacities (C}' and C}*) of the servers are given
in Table II.

TABLE II: Example of ODSTA instance

Task T T T3 Ty T5 T

r; (GIPS) 6 6 5 8 10 5
t? (sec) 10 11 12 13 14 15
15 (sec) 100 8 70 30 50 20

Server S1 So Ss3 Sa Ss Sé
C7' (GB) 25 21 18 32 35 34
Cy (GIPS) | 20 10 12 14 16 13

The task-data matrix A that characterizes the sharing of data
items among the tasks is:

D1 Do D3 Dy D5 DG
T 4 0 5 0 1
15
T3
T
Ts
Ts

(6)

O NN NN
O = = = O
OO O™
Tt Ot Ot O Ut
=~ s s O O

0
1
0
1
1

To illustrate how the above modeling of data sharing (Equa-
tions (1) to (4)) works, suppose that three tasks 77,75,7T5
arrive one after another at the given arrival times, and are allo-
cated to server Sy. T is the first task to arrive and requires the
data items D1, Do, Dy, and Dg (i.e., [A]1. = [2,4,0,5,0,1]).
Initially, A' = [0]¢ and since there is no task assigned to
server S7 yet, we have (5% = 0. Thus, the total amount of data
on server S is ai1 + a1z + a14 + a1 = 12 GB, and CN'{” =
25 — 12 = 13 GB. After the assignment of task 77 on S7,
Al =10,0,0,0,0,0] B [2,4,0,5,0,1] = [2,4,0,5,0,1]. The
next incoming task is Ty with [A]2 . = [2,0,6,5,0,0]. Both
Ty and T5 require D, and Dy, and according to Equation (1),
(55 = 2+5 = 7 GB for task 75. Thus, the total amount of data
on server S is (24+445+1)+(2+6+5)—(2+5) = 18 GB and
Al =12,4,0,5,0,1]8#[2,0,6,5,0,0] = [2,4,6,5,0,1]. Next,
Ty is allocated to S; which has [4]3 . = [2,4,0,0,0, 1]. For 63
we determine the amount of shared data among 75, 77, and 75.
Thus, according to Equation (1), 6§ =2+4+1="7GB.
After the assignment of T3 to S7, Al = [2,4,6,5,0,1] B
[2,4,0,0,0,1] = [2,4,6,5,0,1], and the total amount of data
for {T1,T>,T53} on server S;is (24+4+6+5+1)+ (2 +
4+4+1)—-(2+4+4+1) = 18 GB. If we consider a sharing-
oblivious scenario, the total amount of data on S; would be
(2+4+5+1)+(2+6+5)+ (2+4+1) = 32 GB, which is
larger than in the case of considering the data sharing at S;.



I1I. ONLINE ALGORITHMS FOR ODSTA

In this section, we design online data sharing-aware task
allocation algorithms that solve the ODSTA problem. The
main objective of the algorithms for ODSTA is allocating
online tasks to the servers while considering their data sharing
(memory sharing), minimizing the number of servers used and
the total amount of data transferred in the network. The design
of our online algorithms is inspired by the classical online bin
packing algorithms, First-Fit, Best-Fit, and Worst-Fit.

A. Data Sharing-Aware First Fit (DSA-FF) Algorithm

DSA-FF, given in Algorithm 1, is executed when a task
arrives (lines 1-11), or a task completes its execution on the
allocated server (lines 12-16). At the arrival of a task T,
DSA-FF starts from the first server (i.e., k = 1, in line 2)
and tries to find a server that has enough CPU and memory
capacity to host 7}. In line 4, it calculates the amount of
shared data between T} and the currently allocated tasks on
server Sy according to Equation (1). Then, it checks if the
current server Sy, has enough CPU and memory capacity to
host the incoming task (line 5). If there are enough resources
on the current server, it updates the data allocation vector AF
(line 6) according to Equation (2), allocates task T to the
current server S, (line 7), and updates the CPU and memory
capacities of server Sy (line 8). Then, it exits the while loop
(line 9). Otherwise, it increments k (line 11), which means
that if the current server Si does not have enough resources
to host T}, then it checks the next available server. After the
completion of task T); on server S, DSA-FF removes 7); from
set Sy of tasks allocated to Sy (line 13) and updates the data
allocation vector according to Equation (3) (line 14). It also
updates 6}“ considering the updated data allocation vector A*
(line 15), and finally frees up server Si’s resources (line 16).

DSA-FF: Ilustrative example. To illustrate how DSA-FF
works, we consider the example of ODSTA instance described
in Section II. Figure 1, shows the allocation of the tasks
to servers at the arrival of each of the six tasks. At 77’s
arrival (t¢ = 10), DSA-FF checks if the first server, Sy, can

Algorithm 1 Data Sharing-Aware First Fit (DSA-FF)

. at task T} arrival do

1

2 k<1

3 while (k < E‘SD) do

4 85 O [[ajl—A H

5: lf ([C,C ,Ck] — [El 1 a5 — ,'r’}‘] > 10,0]) then
6: AF — AFB[A]; .

7 Sk — Sk @] {T }

8: [Ci, C) + (ICF, Ck] = 21, agu — 65, 74))
9: break

10: else

11: k< k+1

12: at task T); completion on server Sj, do

13: Sk +— Sk\{T }

14: AF AP E[A);.

15: 87 Zz 1ag: fag = A

16: [Ck L O ([CF G + [0 age — 85, 73)

Fig. 1: DSA-FF execution example (the vertical dimension
corresponds to the memory, while the depth dimension corre-
sponds to the CPU; the numbers in parentheses are the size
of CPU requests and the size of data items).

host T;. Since there is no task allocated to Sy, and S; has
enough CPU and memory, 7} is allocated to it. 75 arrives at
t4 = 11, and since [C]", C¥] — [(ag1 + ag3 + agq) — 03, 7%] =
[13,14] = [(2+6+5) — (2+5),6] = [7,8] > [0,0], Sy can
host 15 as well. For the allocation of 75 on server S; we
consider the data sharing between 75 and previously allocated
task 77 on server Sy. Since T and 15 have D, and D, in
common, 5% = 245 = 7 GB. Due to space limitations we
do not describe in detail how the allocation of T3, Ty, T5
and T§ is decided, but in Figure 1 we show the state of the
allocation of these tasks to servers. The tasks will complete
their execution according to the order given by the sum of
their arrival time and duration (i.e., T4, Ty, 15, T3, T, T1) and
DSA-FF will release the allocated resources. The total number
of active servers utilized by DSA-FF for the ODSTA instance
considered here is 4, and the total amount of data transferred in
the edge network is (24+4+6+5+1)+(2+4+6+5+4)+(5+
44+1)+(24+444+6+5+4+1) =71 GB. If we consider the
sharing-oblivious case (standard first-fit algorithm), the total
amount of data transferred in the network is 85 GB and the
number of utilized servers is 4.

Time complexity. The worst case time complexity of DSA-
FF at a task arrival is O(M D). This is because in the worst
case it has to check the capacity of M servers and for each
server it has to go over D entries of the data allocation vector
to determine the shared items. The worst case time complexity
at the completion of a task is O(D), and is due to the update
of the data allocation vector.

B. Data Sharing-Aware Best Fit (DSA-BF) Algorithm

To design DSA-BF, we define an efficiency metric that
characterizes the scarcity of resources at each server. The
classical best fit bin packing algorithm attempts to place



each new item into the bin with the maximum load (smallest
available space) in which it fits. Thus, if such a bin is found,
the new item is placed inside it. To find the maximum load in
the case of our edge system, where each server is characterized
by two main parameters, CPU capacity and memory size, we
define the efficiency metric EJ’g as follows,

1

) @G - (e - o]
i = if (Cp —r; > 0)and (CF — (XL aji —
0 otherwise

8%) > 0)

O]
where o and ( are the weight parameters for CPU capacity
and memory size. The weights are used to tune the algorithm
and can be adjusted to prioritize one aspect over the other
when allocating resources on a server, for example giving
more importance to CPU or memory when making the alloca-
tion decisions. If « is greater than 3, then the CPU capacity
will play a more significant role in the efficiency metric.
Increasing o would mean that servers with more spare CPU
capacity will be considered more efficient, and have better
chance to be allocated. If S is greater than «, then the memory
size will be more influential in the allocation decision. Thus,
servers with more memory available will be deemed more
efficient. The efficiency is only calculated when the remaining
CPU and memory capacity (after accounting for demands) are
both positive. If either is negative, meaning that the server
cannot accommodate the new demands, the efficiency is set to
zero, indicating that the server should not be considered for
receiving additional load.
In practice, o and (8 are likely to be determined through
a combination of business requirements, performance metrics,
and cost considerations. Different types of edge applications
and services have varying resource needs. For example, im-
age processing and virtual reality applications may require
more CPU cycles to perform calculations efficiently, whereas
applications like databases or caching services may demand
more memory to store and quickly access large amounts of
data. By adjusting « and [, the algorithm can be tailored to
favor servers that offer the required resources more abundantly.
Sometimes, in an edge computing system, one type of resource
may be more scarce or expensive than the other. If CPU is a
more scarce resource, a higher o would ensure that tasks are
directed to servers with sufficient CPU availability. Conversely,
if memory is scarce, S would be increased to safeguard
memory resources. Moreover, different resources also come
with different costs. If CPU capacity is more expensive than
memory, a higher o value could be used to optimize for cost
by ensuring that CPU resources are utilized as efficiently as
possible, potentially saving money for the edge provider. For
some services, performance may be critically dependent on
one resource over the other. If a server’s performance is more
sensitive to CPU than memory, one would increase « to reduce
latency or increase throughput by allocating tasks to servers
where they are less likely to be CPU-constrained. Parameters «
and (8 can be adjusted to achieve a balanced load across a
system with multiple servers. For instance, if servers tend to

Algorithm 2 Data Sharing-Aware Best Fit (DSA-BF)
1: at task 7 arrival do

2 for k=1,...,|S| do

3: 5k <_Zl 1 @5t [[ajl —A ]]

4 if ([CF, C] = [0, ag — 65,71 > [0,0]) then

5 Ef « [a(Ci = 15) + BCE = (S aq - 01)]
6 else

7 Ef +0

8: k argmaxk{Ek}

9 AF — AP (A}

10 Si + S U{T;}

1 [CF, G+ (07, Gl = [0, ajt — 65, 75])

at task 7; completion on server Sy do

13: Sk +— Sk\{TJ}

AR AF3[A];.

15: (5k — Zl 1 Qi - [[a]l = Al]]

[Ck :C“} ([Cm Cil+ [Zz 1450 — J’ )

run out of memory before running out of CPU, increasing 3
would help balance the usage of memory across the servers,
potentially leading to a more uniform usage of both types of
resources.

Finding the server with the maximum load is equivalent
to finding the server with the minimum of available resource
capacity. Thus, in E’c we consider the available capa(:1ty for
CPU and memory ie., C{* —r; and CJ* — (Zl L aji — %),
respectively. Since the square root of the sum of these Values is
in the denominator of the efficiency metric, we will consider
the maximum of E]k among the servers. It is important to
mention that the efficiency metric E;‘ takes into account the
sharing of memory among tasks that are offloaded to the same
server Sj.

DSA-BF, given in Algorithm 2, is executed when a task
arrives (lines 1-11), or a task completes its execution on the
allocated server (lines 12-16). Upon arrival of task 7}, for each
server S in the system, it determines 5;? (line 3), and if there
is enough CPU and memory capacity at Sy then it calculates
the efficiency metric using Equation (7), otherwise it sets EJk
to 0 (lines 4-7). In line 8, DSA-BF picks the server S;, that has
the maximum efficiency metric. In lines 9-11, it updates the
data allocation vector A¥ for the selected server S according
to Equation (2), allocates T; on server S;, and updates its
CPU and memory capacities. Upon completion of task 7); on
server Sy, DSA-BF removes T; from set Sy, of tasks allocated
to Sj, (line 13) and updates the data allocation vector (line 14).
It also updates the amount of shared data among currently
allocated tasks on Sy (line 15), and releases 7’s allocated
resources (line 16).

DSA-BF: Illustrative example. To illustrate how DSA-
BF works, we consider the example of ODSTA instance
described in Section II. Figure 2, shows the allocation of
the tasks to servers at the arrival of each of the six tasks.
At Ty’s arrival (t§ 10), DSA-BF calculates (5? for all
servers and since all servers have enough capacity it calcu-

(SIS
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Fig. 2: DSA-BF execution example (the vertical dimension
corresponds to the memory while the depth dimension corre-
sponds to the CPU; the numbers in parentheses are the size
of CPU requests and the size of data items).

lates their efficiency metric (with « = S = 0.5) (line 5).
Thus, B} = [0.5(12 —6) 4+ 0.5(18 — 12)]7'/2 = 0.408 is
the maximum value of efficiency metric among all servers.
Therefore, DSA-BF selects server S3, which is the server
with minimum available capacity, to host 77. It then updates
[CF, O3]~ [(a11 +ar2 +ara+aie) =07, r{] = [18,12] —[(2+
4+5+1)—0,6] = [6,6] > [0,0]. At Ty’s arrival (t§ = 11), S
is determined to have the maximum value of efficiency metric,
thus, T% is allocated to S as well and [C4", C¥]—[(ag1 +az3+
asq) — 03,14 = [6,6] — [(24+ 6 + 5) — (2+5),6] = [0,0].
The next task to arrive is T3 (t§ = 12). Since S3 does not
have enough capacity to host T3, E3 = 0. S is the server
with the maximum value of the efficiency metric and it can
host T3, and we have [C5", C¥] —[(a31 +asa +ase) — 03, 74] =
[21,10] — [(2+4 4+ 1) — 0,5] = [14,5] > [0,0]. The next
task to arrive is Ty (t% 13). Since both S3 and S5 do
not have enough capacity to host Ty, DSA-BF sets their
efficiency metric to 0. S; is the server with the maximum
V2~11ue Qf the efficiency metric and it can host Ty, and we have
[CI”, Ci‘] — [(a41 +agotasstagstags) —5i7 TZ] = [257 20] —
[(2+4+6+5+4)—0,8] = [4,12] > [0,0]. 75 is allocated to .S
and [C]", Ct] —[(as1 +as2 +ass +asa+ass +ase) —0s, 78] =
[4,12] - [(24+4+645+4+1)— (24+4+6+5+4),10] = [3,2].
The last task to arrive is Ty (t§ = 15) which is allocated
to So ~because Eg is the maximum efficiency metric. Thus,
[C3", C3] — [(ass + ags + ags) — 05, 18] = [14,5] — [(5 +
4+1)—1,5] = [5,0] > [0,0]. The tasks will complete

their execution according to the order given by the sum of
their arrival time and duration and DSA-BF will release the
allocated resources. The total number of active servers utilized
by DSA-BF for the ODSTA instance considered here is 3,
and the total amount of data transferred in the edge network
is (24+4-+6+5+4+1)+(2+4+5+4+1)+(2+4+6+5+1) =
56 GB. If we consider the sharing-oblivious case (standard
best-fit algorithm), the total amount of data transferred in the
network is 85 GB and the number of utilized servers is 5.

Time complexity. The worst case time complexity of DSA-
BF at a task arrival is O(M D). This is because in the worst
case it has to check the capacity and efficiency metric for M
servers, and for each server it has to go over D entries of the
data allocation vector to determine the shared items. The worst
case time complexity at the completion of a task is O(D), and
is due to the update of the data allocation vector.

C. Data Sharing-Aware Worst Fit (DSA-WF) Algorithm

To design DSA-WF we use the same efficiency metric
as in the case of DSA-BF (Equation (7)) to characterize
the scarcity of servers’ resources. The classical worst fit bin
packing algorithm attempts to place each new item into the
bin with the minimum load (largest available space) in which
it fits. Thus, if such a bin is found, the new item is placed
inside it. Thus, to find the worst fit server DSA-WF uses
the efficiency metric. DSA-WF, given in Algorithm 3, has
the same structure as DSA-BF, the difference is that DSA-
WF determines the server that gives the minimum efficiency
metric instead of the one that gives the maximum (line 8 of
both algorithms).

DSA-WF: Illustrative example. To illustrate how DSA-
WF works, we consider the example of ODSTA instance
described in Section II. Figure 3, shows the allocation of
the tasks to servers at the arrival of each of the six tasks.
At Ty’s arrival (t¢ = 10), DSA-WF calculates 5;-“ for all
servers and since all servers have enough capacity it calcu-
lates their efficiency metric (with « = S = 0.5) (line 5).

Algorithm 3 Data Sharing-Aware Worst Fit (DSA-WF)

1: at task T arrival do

2 for k=1,...,|S| do

3 OF = o2 ag - [ag = Af]
4 if ([C,Cr]— [0, aj — 65,74 > [0,0]) then

2

5 Bf « [a(Cyt =)+ BCE — (S an — o))
6 else

7 EF <0

8: k - argrpink{EJ’?}

9 AR AP B [A];.

0 S« SpU{T;}

b ORGH e (OF G = (Sl an — 5,7])
12: at task T; completion on server Sy do

13: Sk + Se\{T;}

AR — AFBA] .

15: (52 — ,ZlDzl asi - [[CLjLI Aﬂ]

16 (O, CY] < (IC7, G+ [, aq — 6], 77))

[N



Fig. 3: DSA-WF execution example (the vertical dimension
corresponds to the memory while the depth dimension corre-
sponds to the CPU; the numbers in parentheses are the size
of CPU requests and the size of data items).

Thus, B} = [0.5(12 —6) +0.5(18 — 12)]"/2 = 0.24 is
the minimum value of efficiency metric among all servers.
Therefore, DSA-WF selects server Ss, which is the server
with maximum available capacity, to host 77. It then updates
[C3", C8]~[(a11 +aiz+ara+aie) =07, ri] = [35,16] - [(2+
44+5+1)—0,6] = [23,10] > [0,0]. At T3’s arrival (¢t = 11),
Se is determined to have the minimum value of efficiency
metric, thus, 75 is allocated to Sg and [C%*, C¥] — [(ag1 +
a3 + agy) — 05,7%] = [34,13] — [(2 + 6 + 5),6] = [21,7].
The next task to arrive is T3 (1§ = 12). Since S; has the
minimum value of efficiency metric, thus, 73 is allocated
to Sy, and we have [C}*, C¥] — [(as1 + asy + ase) — 04, 74] =
[32,14] — [(2+4 4+ 1) — 0,5] = [25,9] > [0,0]. The next
task to arrive is Ty (t§ = 13) and S; has the minimum
value gf efﬁciency metric, thus, S; can host Ty, and we
have [C7", CY] — [(a41 + a4 + @43 + agq + ags) — 63,74 =
[25,20] = [(24+4+6+5+4)—0,8 = [4,12] > [0,0]. T5 is
allocated to S due to its efficiency’s metric minimum value
and [CF", C¥] —[(as1 +as2 +ass +asa+ass +ase) — 02, 78] =
[23,10] = [(2+4+64+5+4+1)—(2+4+5+1),10] = [13,0].
The last task to arrive is T (t§ = 15) which is allocated
to Sy ‘because Eé is the minimum efficiency metric. Thus,
[C, Cf] — [(ass + ags + age) — 05, 18] = [25,9] — [(5 +
4+ 1) —1,5] = [16,4] > [0,0]. The tasks will complete
their execution according to the order given by the sum of

TABLE III: Distributions and parameters used for evaluation
(N and U denote the normal distribution and the uniform
distributions, respectively)

Distribution/Value

120 heterogeneous servers

CPU Capacities N (p = 280, 0 = 100), range [200, 500] GIPS
Memory Capacities N(p = 16,0 = 1.5), range [15,20] GB
Number of Tasks 500

Tow: N (p = 15,0 = 5), range [1,65] GIPS
medium: N'(p = 35,0 = 5), range [1, 65] GIPS
high: N (1 = 55,0 = 5), range [1,65] GIPS
Task’s Arrival Time U[5,50] seconds

Task’s Duration U([5, 50] seconds

Data Items 100

Data Size N(p = 25,0 = 4), range [1,50] GB

Parameter
Number of Servers

Task’s CPU requests size

their arrival time and duration and DSA-WF will release the
allocated resources.

The total number of active servers utilized by DSA-WF for
the ODSTA instance considered here is 4, and the total amount
of data transferred in the edge network is (2+4+6+5+4)+
(24+4+5+4+1)+(2+4+5+6+4+1)+(2+6+5) =
72 GB. If we consider the sharing-oblivious case (standard
best-fit algorithm), the total amount of data transferred in the
network is 85 GB and the number of utilized servers is 4.

Time complexity. The worst case time complexity of DSA-
WF at a task arrival is O(M D). The worst case time complex-
ity at the completion of a task is O(D). The same reasoning
as in the case of DSA-BF applies here.

IV. EXPERIMENTAL ANALYSIS

In this section, we investigate the performance of the
proposed online data sharing-aware algorithms, and compare
them with baseline sharing-oblivious online algorithms. Such
sharing-oblivious algorithms (e.g. First-Fit, Best-Fit) have
been employed as task allocation and as baseline benchmark
algorithms in edge computing [14]—[17], and thus, we consider
them as baselines in our performance analysis. We implement
the algorithms in Java and run the simulation experiments on
a system with 8 cores Intel i7-11700 at 2.50GHz, 16GB of
memory, and 512 GB SSD. First, we describe the experimental
setup and then analyze the results.

A. Experimental Setup

Servers’ CPU and memory capacities. We consider an edge
computing system composed of M = 120 heterogeneous
servers and draw their CPU capacities from the normal distri-
bution with mean p = 280 GIPS, standard deviation o = 100,
and range [200,500] GIPS. We draw the servers’ memory
capacities from the normal distribution with mean ¢ = 16 GB,
standard deviation o = 1.5, and range [15, 20] GB. The ranges
of CPU and memory capacities were selected to match those
of common systems (e.g., Intel i7 with 16GB of memory).
Table III provides a summary of the simulation parameters
and their distributions used in our experiments.
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Fig. 4: Performance of the proposed data sharing-aware algorithms for the nine sharing and demand scenarios (here DSA-BF

uses o = 8 = 0.5).

Tasks’ CPU requests. To characterize the relationship be-
tween server’s total capacity (in GIPS) and the total amount of
computational request, we define a demand ratio, p as follows:
Zil\; i
p==ELt 0<p< )
Zj]\/il Cj
Based on Equation (8), we consider three different cases for
computational requests by tasks:

(i) Low Demand (LD) (p < 1), when the total requested
capacity is much smaller than the total available capacity
on the edge servers;

(il) Medium Demand (MD) (p = 1/2), when the total re-
quested capacity is about half the total available capacity
of the edge servers; and

(iii) High Demand (HD) (p ~ 1) when the total requested
capacity is approximately equal to the total capacity
available on the edge servers.

We consider N = 500 tasks. The tasks’ CPU requests sizes
are drawn from the normal distribution with standard deviation
= 5 GIPS, range [1,65] GIPS, and mean pu = 15,35,
and 55 GIPS for low, medium, and high demand, respectively.
The tasks’ arrival time and duration are drawn from the
uniform distribution within the range [5,50] seconds.

Task-data matrix and data sharing. The data item’s sizes
are drawn from the normal distribution with mean p = 25,

standard deviation ¢ = 4, and a range of [1,50] MB. We
utilize the Erdos-Rényi random graph model [18] to create the
bipartite graph that represents the data sharing pattern of the
generated taskset. The adjacency matrix of this graph is used as
the task-data matrix A. In the Erdos-Rényi model, for a graph
with n vertices and m edges the grobability of generating
each edge is given by: p™ ™. The parameter p €
[0, 1], called the sharing degree here, characterizes the sharing
among tasks. Larger values of p correspond to a higher number
of edges in the graph, i.e., a larger number of tasks share data
items with each other. We implement the Erdos-Rényi model
using the igraph R package. We generate instances for three
different cases:

(1) Low Sharing (LS) (0 < p < 0.3), where only a few

tasks share data items;

(i) Medium Sharing (MS) (0.3 < p < 0.6); and

(iii) High Sharing (HS) (0.6 < p < 1), where a large number
of tasks share data items.

For our experimental results we consider task-matrix
Asoox100, Trepresenting a bipartite graph with 500 tasks
and 100 data items.

B. Experimental Results

To analyze the performance of the proposed online data
sharing-aware algorithms, we consider nine different cases



according to the three levels of sharing and demand, i.e.,
{LS, MS, HS} x {LD, MD, HD}. Each task is character-
ized by a certain size of its computational request and the
data items needed, and each server has a certain CPU and
memory capacities, as described in the previous section. We
compare the performance of the proposed online data sharing-
aware algorithms with that of the sharing-oblivious baseline
algorithms, First-Fit (FF), Best-Fit (BF), and Worst-Fit (WF),
in terms of the maximum number of utilized servers and the
maximum amount of data transferred in the edge network. The
results were obtained by executing the algorithms three times
and computing the average values of the metrics described
above and computing the standard deviation. The sharing-
oblivious algorithms considered here are: First-Fit (FF), Best-
Fit (BF), and Worst-Fit (WF).

Maximum number of utilized servers. For each of the
online algorithms we recorded the number of utilized servers at
each task arrival and termination and determine the maximum
among those values. Then, we determine the ratio of the
maximum number of utilized servers in the case of the data
sharing-aware algorithms and that of the sharing-oblivious
algorithms.

Figure 4a, shows this ratio for all nine types of instances
with different levels of sharing and demand. The ratio de-
creases as the sharing of data items among the tasks increases.
For example, in the case of LSLD, DSA-FF utilizes the same
maximum number of servers as FF, corresponding to a ratio
of 1, while in the case of HSLD the DSA-FF utilizes 59% less
servers than FF (corresponding to a ratio of 0.41). DSA-BF
obtains almost the same reduction in the maximum number
of servers as that obtained by DSA-FF for those cases. The
largest decrease in the maximum number of servers, of 82.8%,
is obtained by DSA-WF in the case of HSLD. The decrease
in the maximum number of utilized servers observed for
instances with high amount of data sharing among tasks is
due to the fact that the total memory required for the tasks
allocated to the same server is reduced allowing the server to
host more tasks, and thus reduce the number of servers needed
to host the tasks. As the demand for CPU increases for the
same level of sharing, we observe that the ratio increases, that
is the reduction in the number of utilized servers decreases.
This is due to the fact that the demand for CPU is high and
sharing of data does not help much in allocating more tasks to
servers. In other words, if tasks have a high CPU demand, the
advantage of shared data is diminished. The servers quickly
reach their CPU capacity, limiting the number of tasks they
can handle, and thus, more servers are still needed despite
the memory savings. This results in a smaller reduction in the
number of servers used compared to scenarios where CPU
demand is lower.

Figure 4b, shows the average of maximum number of
utilized servers by the proposed data sharing-aware algorithms.
We observe that DSA-FF obtains the best performance for all
sharing and demand scenarios, followed very closely by DSA-
BF. As the CPU demand increases, the number of utilized
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Fig. 5: The effect of efficiency metric weights («,3) on
DSA-BF’s performance: Relative maximum amount of data
transferred in the network.

servers increases. This is due to the fact that more tasks need
to be executed, which leads to the utilization of more servers.
In addition, at higher CPU demands, the currently utilized
servers may not have enough capacity to handle all the tasks
if they are operating near their maximum capacities.

Maximum amount of data transferred in the edge network.
For each of the online algorithms we recorded the amount
of data transferred in the edge network at each task arrival
and termination and determine the maximum among those
values. Then, we determine the ratio of the maximum amount
of data transferred in the case of the proposed data sharing-
aware algorithms and that of the sharing-oblivious algorithms.
Figure 4c, shows this ratio for all nine types of instances with
different levels of sharing and demand. The ratio decreases
as the sharing of data items among the tasks increases. For
example, in the case of LSLD, DSA-FF leads to 74% less data
transferred in the network than FF (corresponding to a ratio
of 0.26), while in the case of HSLD, DSA-FF leads to 92.8%
less data transferred than FF. A similar behavior is exhibited
by DSA-BF which obtains a little bit smaller reduction in
the data transferred for those cases (about 70% for LSLD
and 92% for HSLD). The decrease in the maximum amount
of data transferred in the network observed for instances with
high amount of data sharing among tasks is due to the fact
that tasks share many items and if they are co-located on the
same server those shared data items are transferred only once,
thus, the more shared data items the less data transfers. As the
demand for CPU increases for the same level of sharing, we
observe that the ratio increases, that is, the reduction in the
maximum amount of transferred data increases. This is due to
the fact that the demand for CPU is high and tasks that share
data items cannot be collocated on the same server.

Figure 4d shows the average amount of data transferred in
the network by the proposed data sharing-aware algorithms.
We observe that DSA-FF obtains the best performance for all
sharing and demand scenarios, followed very closely by DSA-



BF. As the CPU demand increases, the amount of data that
needs to be transferred also increases.

The effect of efficiency metric weights («, 3) on DSA-BF’s
performance. We investigate how the choice of the weights
(a, B) used in the efficiency function influences the amount of
data transferred in the edge network by DSA-BF. We consider
three case: (i) a > (3, where o = 0.9998, and 5 = 0.0002; (ii)
a < 8, where a = 0.0002, and 8 = 0.9998; and (iii) o = 3,
where av = 0.5, and 8 = 0.5. Figure 5, shows the average ratio
of the maximum amount of data transferred by DSA-BF with
respect to BF for these three cases. In all nine sharing and
demand scenarios DSA-BF with « 0.9998,5 = 0.0002
(i.e., case (i)) has the largest ratio among the three cases,
that is, the amount of transferred data relative to BF is the
largest. This is due to the fact, that the contribution of memory
capacity term to the denominator of the efficiency metric is
much smaller compared to that of the CPU capacity term, and
thus, the CPU capacity term influences more the decisions. In
case (ii) and (iii) the contribution of memory capacity term to
the denominator of the efficiency metric is increased and thus,
influences more the decisions, selecting servers with better fit
for the memory requests. Therefore, DSA-BF is able to fit
more items in the memory of the servers, leading to a reduction
in the amount of data transferred in the edge network.

V. CONCLUSION AND FUTURE WORK

We designed three online algorithms (DSA-FF, DSA-BF,
and DSA-WF) for task allocation in edge computing systems
that take into account the sharing of data among tasks of-
floaded to the same server. Taking into account the sharing of
data among tasks reduces the traffic in the edge network, the
memory usage at the edge servers, and the number of servers
needed to execute the tasks, thus, leading to an improved
overall performance of the edge system. We performed an
extensive performance analysis by comparing our proposed
algorithms with several online sharing-oblivious baseline al-
gorithms. The results show that our algorithms are able to
reduce the amount of data transferred in the network by 30.2%
to 92.8% and the number of utilized servers by 1% to 82.8%
compared to the sharing-oblivious baseline algorithms. In our
future work, we plan to explore further optimizations of these
algorithms to improve their performance and also determine
their theoretical performance guarantees. We also plan to
deploy our algorithms on an experimental edge computing
testbed and investigate their performance.
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