


2

for real-time SDV applications. However, this speed comes at

the cost of reduced accuracy, especially in complex scenes

involving small or overlapping objects. For example, YOLO,

a type of one-stage network, may struggle to achieve the

precision required for safety-critical systems. Hence, the trade-

off between accuracy and latency is a key challenge in SDV

perception systems.

Challenges in Real-World SDVs. In addition to the trade-off

between accuracy and latency [17], real-world applications of

deep learning-based perception system models also face sig-

nificant challenges in throughput [18] and GPU/memory us-

age [19], which are key factors for the safety and effectiveness

of SDV applications, due to the increasing size and complexity

of the involved models.While larger models often require

substantial processing power and memory, such resources

may not be readily available in the constrained environments

of SDVs. These limited computational capabilities can lead

to bottlenecks in processing. For example, the growing size

of models like YOLOv5 increases computational demands

and results in higher GPU memory consumption, presenting

an additional obstacle for resource-constrained SDV systems.

Hence, optimization is necessary not only to maintain the

safety and reliability of the vehicles but also to ensure that

the advanced capabilities of these models can be effectively

utilized in real-world scenarios.

Insights of Optimization Techniques. To overcome the afore-

mentioned challenges in SDVs [20] , a range of optimization

strategies have been developed. One of the most significant

advancements is the use of NVIDIA GPUs, which enable par-

allel processing [21] to accelerate execution, further enhanced

by CUDA optimizations [22]. In addition, there are various

hardware acceleration techniques [23] like ONNX [24], Ten-

sorRT [1], [25], and ONNX Runtime EPI (Execution Provider

Interface) [26], which have been introduced to enhance model

performance. Another key set of techniques includes model

quantization [27], hyper-parameter optimization [28], [29], and

model pruning [30]. Model quantization reduces the preci-

sion of the model’s weights and activations, which decreases

the model’s size and computational requirements without

significantly compromising accuracy. It works by reducing

the precision of weights and activations from floating-point

formats (e.g., FP32) [31] to lower-precision formats such

as FP16 or INT8. On the other hand, model pruning [30],

[32] reduces the model’s size by removing redundant or

less important parameters. By systematically removing these

parameters, the model becomes more efficient, leading to faster

inference times and reduced memory usage without heavily

impacting the model’s performance. Both of these techniques

are essential in optimizing deep learning models for real-time,

resource-constrained applications in SDVs.

Contributions of This Work. In this paper, we designed

approaches that combine both pruning and quantization tech-

niques, specialized to our designed workflows for various

precision modes presented in Fig. 1. These workflows were

developed to address the need for precision calibration across

different computational environments. By integrating pruning,

which systematically reduces model complexity by eliminating

less important parameters, with quantization, which lowers

the precision of model weights and activations, we aimed

to achieve a balanced optimization of model performance.

This approach not only maximizes the inference performance

but also reduces the computational load of the models. The

combination of these (pruning and quantization) techniques

was applied across different precision modes, including FP32,

FP16, and INT8, allowing us to thoroughly explore the impact

of precision calibration on the overall efficiency and effective-

ness of the models in real-world scenarios.

To be concrete, the specific contributions of this work are

illustrated as follows:

• Our work presents the effectiveness of enhancing the

inference performance of real-time SDV perception algo-

rithms without compromising significantly in accuracy.

To achieve this, we utilize video streams captured by

the vehicle’s cameras to perform a comparative analysis.

This involves generating three pruning techniques (e.g.,

layer pruning, soft pruning, and group pruning) and also

determining the optimal pruning method.

• We design and implement three distinct quantization

workflows (e.g., Torch-TensorRT, ONNX Runtime Quan-

tization, Torch-ONNX-TensorRT) each supporting three

precision modes: FP32, FP16, and INT8. Each pruned

models are quantized using these workflows resulting

in nine optimized workflows in total that are evaluated

across all precision levels.

• We conduct a comprehensive evaluation using four

key metrics: inference throughput, inference latency,

GPU/memory usage, and accuracy. The optimized work-

flow can achieve up to 18× faster inference speed, 16.5×

higher throughput, and reduce the GPU/memory usage

by up to 30% without a noticeable drop in accuracy.

These metrics were assessed both after pruning (prior

quantization) and post-quantization, providing a thorough

analysis of the impact of our optimization techniques on

model performance.

• Upon our evaluation metrics, we recommend the Torch-

ONNX-TensorRT workflow quantized with FP16 preci-

sion and group pruning as the ideal solution for achieving

maximum inference efficiency (e.g., throughput, latency,

and GPU/memory usage) balancing with accuracy in

resource-constrained SDVs.

Organization. We organize our research throughout the pa-

per as follows. Sec. II provides the background of frameworks,

techniques, and methods which is denoted further in our paper.

Sec. III presents the experimental design of our paper and a

high-level overview of pruning and quantization workflows.

In Sec. IV we describe each pruning technique, fine-tuning,

and knowledge distillation in detail. Then, We elaborately

describe each of our workflows with each precision mode

in Sec. V. The Dataset description, System Configuration,

evaluation metrics, and experimental results of our research

are shown in Sec. VI and Conclusion in Sec. VII.

II. BACKGROUND AND RELATED WORK

In this section, we present a comprehensive overview of

the frameworks employed in our research, emphasizing the

key components such as pruning, knowledge distillation, and

quantization. We also provide an insightful review of prior

research advancements in time-critical real-world applications.



3

A. PyTorch

PyTorch [33] is an open-source deep learning framework

developed by Facebook’s AI Research Lab, known for its flex-

ibility and ease of use. It provides efficient GPU-accelerated

tensor operations and an Autograd library for automatic gra-

dient computation.

B. ONNX

ONNX [34] (Open Neural Network Exchange) is an open

standard that enables the transfer of machine learning models

between different frameworks, such as PyTorch and Tensor-

Flow, by defining a common model format.

C. TensorRT

TensorRT [35] is a high-performance deep learning infer-

ence optimizer and runtime library developed by NVIDIA.

TensorRT optimizes deep learning models using several key

techniques. Layer fusion combines multiple layers into a

single operation to reduce computation. Precision calibration

supports mixed-precision inference (FP16 and INT8), reducing

resource use while maintaining accuracy. Kernel auto-tuning

selects the best kernels for target hardware, enhancing exe-

cution efficiency. Dynamic tensor memory manages memory

allocation efficiently, minimizing footprint. FP32, FP16, and

INT8 refer to different numerical precision levels used in

TensorRT to optimize inference performance.

FP32, or 32-bit floating point, provides the highest level of

precision and is typically used during the training phase of

deep learning models to ensure accurate gradient calculations.

FP16, or 16-bit floating point, offers a middle ground by

reducing the data size and computational demands while

still maintaining a high level of precision. This reduction

in precision allows for faster processing speeds and lower

memory usage. INT8, or 8-bit integer, represents an even lower

precision level, which drastically reduces both memory and

computational requirements. INT8 calibration involves quan-

tizing the model’s weights and activations to 8-bit integers,

which can lead to significant performance gains.

D. Pruning

Pruning [36] is a technique that reduces the complexity of

neural networks by removing less important or redundant pa-

rameters. This process makes models lighter, faster, and more

efficient, while ideally maintaining or improving accuracy. By

eliminating redundant parameters, pruning [37] significantly

reduces model size, making it more suitable for deployment

on resource-constrained devices. With fewer parameters, the

model requires less memory for storage and execution, which

is essential for edge devices with limited memory capacity.

Below are key terms associated with pruning:

• Parameters: Learnable weights in a neural network. Prun-

ing reduces the total number of parameters by removing

those considered unnecessary.

• Weights: Weights with minimal contribution to the

model’s predictions (such as those with small magni-

tudes) are pruned to create a sparser network.

• Sparsity: The ratio of zero-valued weights or pruned

connections in a model after pruning. Higher sparsity in-

dicates fewer active weights, resulting in a more compact

model.

• Pruning Ratio: The proportion of parameters removed

from the model during the pruning process.

• Weight Regularization: Techniques such as L1 or L2

regularization, applied during training, encourage smaller

weights, which can be more easily pruned later.

E. Quantization

Quantization [38] in deep learning refers to the process of

reducing the precision of the numbers used to represent a

model’s weights and activations. There are two primary meth-

ods for model quantization: post-training quantization (PTQ)

and quantization-aware training (QAT).

In PTQ [39], a model is first trained using standard, high-

precision techniques to achieve the desired accuracy. After

training, the model’s weights and biases initially represented as

32-bit floating-point numbers, are converted to lower-precision

numbers, such as 8-bit integers. PTQ is quicker to implement

as it does not require retraining, but may result in a slight

accuracy drop. A fine-tuning step is often applied afterward

to adjust the quantized weights and biases, aiming to recover

any lost accuracy due to the quantization process. QAT [40],

On the other hand, integrates quantization into the training

phase, allowing the model to adapt to low-precision arithmetic.

By simulating quantization effects on weights and activations

during training, QAT produces models that are more robust

to the precision constraints of deployment hardware. QAT

typically yields better performance as it accounts for precision

constraints throughout the entire training process.

F. Knowledge Distillation

Knowledge distillation [41] is a machine learning technique

where a smaller model, the ”Child,” is trained to replicate

the performance of a larger model, the ”Mother.” The goal

is to transfer the knowledge from the mother model to the

child model using the mother’s outputs, typically probability

distributions over classes (soft targets) [42]. This technique

is especially valuable for smaller or pruned models, which

often struggle to achieve high accuracy due to their reduced

capacity. In perception systems, traditional models are trained

using hard targets, such as labeled bounding boxes and object

classes. However, knowledge distillation [43] enhances this

process by using soft targets from a larger Mother model,

which includes probability distributions [44] over object

classes and detailed bounding box predictions. These soft tar-

gets capture the Mother model’s confidence and insights into

object relationships, such as assigning probabilities to similar

classes like ”car” and ”truck.” This richer information allows

the Child model to learn not only the object classifications but

also the spatial nuances in object localization more effectively.

Through distillation, the smaller Child model approximates the

Mother model’s performance, improving both class predictions

and bounding box accuracy, even with reduced capacity.

G. Fine-Tuning

Fine-tuning [45] in deep learning is the process of adjusting a

model to suit a specific task or dataset better. This technique

leverages the knowledge gained from the initial training on a

large dataset, making the model more effective with minimal

additional training. It is particularly important for smaller

or pruned models, as it helps them regain performance that

might be lost due to their reduced size or complexity. To

fine-tune a pruned model, a set of hyperparameters such as

learning rate, batch size, and number of epochs must be

optimized to balance maintaining the model’s efficiency and

recovering lost accuracy. One common approach is to use a





5

• PL: Layer pruning (selectively prune a layer)

• PS : Soft pruning (certain weights or channels set to zero)

• PG: Group pruning (remove entire groups of connected

parameters)

• PL.pt: Layer pruned model

• PS .pt: Soft pruned model

• PG.pt: Group pruned model

• (PL,PS ,PG).pt: the layer pruned model (PL.pt) or the soft

pruned model (PS .pt) or the group pruned model (PG.pt)

• Wdefault: PyTorch default workflow

• W0: Torch - TensorRT (the workflow with a collaborative

effort combining PyTorch with NVIDIA’s TensorRT)

• W1: ONNX Runtime Quantization (the workflow with

a high-performance inference engine developed by Mi-

crosoft)

• W2: Torch - ONNX - TensorRT (the workflow that com-

bines the flexibility of PyTorch, the interoperability of

ONNX, and the high-performance inference capabilities

of TensorRT).

Wdefault: PyTorch Default: By default, in the PyTorch frame-

work, we load our Yolov5s model trained with the COCO

dataset and ensure that its inference runs on the GPU.

PL: Layer Pruning: Layer pruning in deep learning models,

such as YOLOv5, involves selectively removing certain layers

or channels to reduce the computational load during inference

while preserving essential layers, such as the detection layer.

PS : Soft Pruning: Soft pruning reduces the influence of certain

weights or channels without removing them, preserving the

model’s structure for easier fine-tuning. It targets less im-

portant channels by setting their weights and biases to zero,

allowing for recovery of performance after pruning.

PG: Group Pruning: Group pruning is a technique used in neu-

ral networks to remove entire groups of connected parameters,

such as channels in convolutional layers, in a coordinated

way. By considering layer interconnections, it maintains the

network’s structural integrity and results in more hardware-

efficient sparsity patterns. This method involves using a de-

pendency graph to guide systematic pruning across layers.

(PL,PS ,PG).pt - W0: Pruning - (Torch - TensorRT): In this

workflow, we improved pruned model performance using

Torch-TensorRT quantization, consisting of three phases: 1

simplifying the TorchScript module, 2 transforming it for

optimized execution, and 3 executing the optimized graph

for efficient inference performance.

(PL,PS ,PG).pt - W1: Pruning - (ONNX Runtime Quantization):

In this workflow, the ONNX Runtime Execution Provider

optimizes pruned model execution by leveraging hardware

acceleration libraries, enabling deployment across various

environments. The process involves 1 loading pruned models,

converting them from PyTorch to ONNX, and verifying the

conversion, and 2 quantizing the models into FP32, FP16,

and INT8 precision modes, optimizing them for deployment

across diverse hardware setups.

(PL,PS ,PG).pt - W2: Pruning - (Torch - ONNX - TensorRT):

In this workflow, we accelerate pruned model performance

using quantization with our Torch-ONNX-TensorRT pipeline,

organized into three stages: 1 exporting the PyTorch model

to the ONNX format for interoperability, 2 building the

TensorRT engine for optimized execution on NVIDIA GPUs,

and 3 deploying the model to enhance inference performance

for efficient real-world operation.

Notation Description Organization

PL, PS and Pg
Layer Pruning, Soft Pruning and
Group Pruning

Section IV

PL.pt, PS .pt and PG.pt
Saved pruned models after ap-
plying each pruning techniques
PL, PS and Pg

Section IV

Fine-tuning
Applied to maintain the accuracy
of pruned models

Section IV

Knowledge Distillation
Applied to maintain the accuracy
once again

Section IV

PL,PS ,PG).pt - W0

Quantization of all pruned
models(PL,PS ,PG).pt) through
W0-(Torch-TensorRT)

Section V

PL,PS ,PG).pt - W1

Quantization of all pruned
models(PL,PS ,PG).pt) through
W1-(ONNX Runtime EP)

Section V

PL,PS ,PG).pt - W2

Quantization of all pruned
models(PL,PS ,PG).pt) through
W2-(Torch-ONNX-TensorRT)

Section V

TABLE I: The summary of the key processes, including prun-

ing methods (layer, soft, group), fine-tuning and knowledge

distillation for accuracy recovery, and quantization using vari-

ous workflows (W0, W1, W2), along with their corresponding

sections for further details.

The overview of our methodology Fig. 2, we note that first,

the original model goes through 1 three different pruning

types PL, PS and PG. After Pruning performance, we save

each of the pruned models (PL.pt,PS .pt and PG.pt), 2 we

then fine-tune the pruned models and 3 distill knowledge

from the large YOLO model to keep up the accuracy with

accelerated performance. At this point, our pruned model is

lighter than the original model without significant compromise

in accuracy.From Fig. 2 4 , Then we utilize our designed

workflow W0, W1 and W2 (elaborately described in Fig. 4)

for FP32, FP16 and INT8 precision mode with PTQ and

QTA and calibration dataset for INT8. Table I provides a

concise summary of the key elements from Fig. 2, including an

overview of pruning and quantization techniques, along with

references to the sections where these processes are described

in detail.

IV. PRUNING OVERVIEW AND DESCRIPTION

In this section, we present a detailed explanation of the pruning

methods we developed, along with the subsequent fine-tuning

and knowledge-distillation processes. Following the Torch-

Pruning framework (provided by PyTorch) [73], we extended

and created three customized pruning methods for our specific

criteria and objectives. The three pruning methods are summa-

rized in Table II, and we provide a comprehensive description

of Fig. 3 for each pruning methods description following fine-

tuning and knowledge distillation in the following subsections.

Notation Description
PL Pruning technique to eliminate specific layer.

PS
Pruning technique to zeros out redundant parameters and
weights.

PS
Pruning technique to remove groups of connected param-
eters that are redundant.

TABLE II: The summary of three pruning techniques which

includes PL (layer pruning), PS (soft pruning) and PG (group

pruning).





7

Building dependency graph: From Fig. 3 we constructed a

dependency graph using Torch-Pruning’s DependencyGraph to

understand the dependencies between layers and ensure that

pruning actions maintain the structural sparsity of the network.

Pruning initial layers: For the initial layers of the model,

specifically the first two layers, we identified sublayers with

convolutional operations (conv). We pruned 20% of the chan-

nels in these layers by selecting indices for pruning and

obtaining a pruning group using the dependency graph. The

group was checked for consistency before applying the pruning

operation.

Pruning mid-layers: For mid-layers (indices 2, 4, 6, and

8), we applied the same strategy to sublayers (cv1, cv2, cv3)

containing convolutional operations. We pruned 20% of the

channels, ensuring the pruning actions were consistent with

the dependency graph.

Pruning additional layers: For other layers (indices 3, 5,

and 7) and the detection layers (indices 9 to 25), we continued

the same pruning strategy. For each layer with convolutional

operations, we selected 20% of the channels for pruning and

validated the pruning group before application.

Performance evaluation after pruning: Finally, the pruned

model PG.pt (group pruned model) was saved to a file and

ready to calculate the evaluation metrics.

D. Fine Tuning Procedures

After applying the three pruning techniques described earlier,

we obtained three distinct pruned models PL.pt(layer pruned

model), PS .pt(soft pruned model), and PG.pt(group pruned

model). To evaluate the effectiveness of each pruning method,

we executed the detect.py script on each pruned model. This

script allowed us to assess the mean Average Precision (mAP)

as well as the inference performance. However, the initial

results revealed that the mAP of the pruned models was

significantly lower than desired. From Fig. 3, the fine-tuning

was performed on the pruned models PL.pt (layer pruned),

PS .pt (soft pruned), and PG.pt (group pruned) using the COCO

dataset.

Execution of build.sh Script and key parameters. We

started the fine-tuning process for each pruned model by

running the build.sh script -that utilizes a training command

specifying essential parameters such as image resolution, batch

size, number of epochs, and the optimization method. Then,

we created a custom script and custom script invoke it using

a command specifying the input image size (–img 640), batch

size (–batch 128), and the number of training epochs (–epochs

300).

Optimization method: As an optimizer we used the AdamW

optimizer, which adapts the learning rate and applies weight

decay to prevent overfitting. This optimizer is particularly

effective for fine-tuning as it provides better convergence

properties for pruned models.

Configuration and hyperparameters: We then employed a

configuration file (hyp.finetune.yaml) to adjust hyperparame-

ters, including learning rate, momentum, and weight decay.

Dataset: Finally, we performed the fine-tuning on the COCO

dataset, which provides a diverse range of object categories.

This allowed the pruned models to generalize well and recover

lost accuracy across a variety of object detection tasks.

By fine-tuning the pruned models, we were able to signif-

icantly improve their mAP, recovering much of the accuracy

lost during pruning.

E. Knowledge Distilation Procedures

In addition to fine-tuning, we further distilled knowledge

to the pruned models to mitigate the accuracy drop caused

by pruning further. The distillation, as illustrated in Fig. 3

significantly enhanced the performance of the pruned models,

allowing them to retain high accuracy despite their streamlined

structure. To improve the accuracy of the pruned models,

further, we applied a knowledge distillation technique, where

the knowledge from a larger model was used as the teacher

model for our pruned models. This distillation process trans-

ferred the knowledge from the YOLOv5l large model into

the pruned models, helping them recover lost accuracy while

maintaining their reduced size and faster inference speed.

We incorporated Kullback-Leibler (KL) divergence as the

distillation loss, in addition to the traditional classification

loss, to guide the student models in mimicking the output

distribution of the teacher. By balancing the task loss and

distillation loss during training, the pruned models were able to

absorb valuable information from the larger YOLOv5l model,

helping them recover lost accuracy while maintaining their

reduced size and faster inference speed. Teacher Model: The

YOLOv5l large model acted as the teacher model, while the

pruned models (which had been fine-tuned earlier) served

as the student models. Distillation process: The distillation

transferred knowledge from the YOLOv5l model into the

pruned models by minimizing the Kullback-Leibler (KL)

divergence between the teacher’s softened output logits and the

student’s output, alongside the traditional classification loss.

Key parameters: We set batch size and initialized teacher

model weight (YOLOv5l) and student model (pruned models)

weight for the distillation process in the script as - (–batch-

size 64), (–teacher weight yolov5l.pt). The remaining process

involves training the pruned model (student) with the help of

the YOLOv5l teacher model.

V. QUANTIZATION WORKFLOW DESCRIPTION

In this section, we present a brief summary of the selected

quantization workflows in Table III. Detailed descriptions of

each workflow are provided in subsection V-A, subsection V-B

and subsection V-C.

Notation Description

W0

Torch-TensorRT is a collaboration between Meta AI and
NVIDIA that combines PyTorch and TensorRT to optimize
DL models supporting quantization for FP32, FP16, and INT8
precision modes.

W1

ONNX Runtime EP enables efficient model execution by
leveraging hardware acceleration libraries across different en-
vironments, supporting quantization for FP32, FP16, and INT8
precision modes.

W2

Torch-ONNX-TensorRT improves inference by converting a
PyTorch model to ONNX, then optimizing it into a TensorRT
engine for FP32, FP16, and INT8 precision modes.

TABLE III: The summary of three quantization workflows.

W0 represent The (Torch - TensorRT) quantization workflow,

W1 represent (ONNX Runtime Execution Provider), and W2

represent (Torch - ONNX - TensorRT) quantization respec-

tively.





9

teraction between ONNX Runtime and the execution providers

is managed through an API that assigns specific nodes or sub-

graphs for execution by the EP library on supported hardware.

The process of quantization using W1 is outlined below:

1) Loading pruned models and dataset selection: In this

workflow, we begin by loading the saved pruned models:

PL.pt(layer pruned model) , PS .pt(soft pruned model) and

PG.pt(group pruned model) and specified dataset just like

the previous workflow W0.

2) Pruned models to .onnx conversion: We export the

pruned models from PyTorch to the ONNX format. This

involves converting each of the three pruned models—soft

pruned, layer pruned, and group pruned—into ONNX

models. To export the model into onnx file format we

used torch.onnx.export() function. Following the con-

version, we verified the file format’s correctness using

the ONNX checker tool which is done by invoking

onnx.checker.check˙model.

3) FP32 (single-precision floating point): For FP32, we

use the default settings, as this precision mode does not

require any specific flag or additional configuration for

quantization. The ONNX model remains in its original

floating-point representation.

4) FP16 (half-precision floating point): To enable

FP16 quantization, we configure the ONNX Runtime

to use the ORT Execution Provider with FP16 settings.

This involves specifying the (QuantType.QInt16, Quant-

Type.QUInt16) in the ORT settings. FP16 provides a

balance between performance and accuracy.

5) INT8 (8-bit integer): First, we configure the ONNX

Runtime settings to enable INT8 precision using the

Execution Provider Interface (EPI). This process involves

setting the quantization parameters within ONNX Run-

time, enabling both activation and weight quantization to

INT8 precision. We implement a calibration process by

defining a custom CalibrationDataReader() class, which

reads and processes a representative calibration dataset.

This dataset is then used to compute the appropriate quan-

tization parameters through ONNX Runtime’s calibration

methods. Next, the quantize static function is used to

apply these quantization parameters to the model. Specif-

ically, we provide the function with the original full-

precision ONNX model, and the calibration data reader,

and specify the desired quantization settings. In this case,

the activations are quantized using unsigned 8-bit integers

(QUInt8), while the weights are quantized using signed

8-bit integers (QInt8). The per channel parameter is set

to True, enabling per-channel quantization for weights,

which improves accuracy. Additionally, the reduce˙range

parameter is enabled to further enhance precision by

reducing the quantization range. The calibration method

selected is MinMax, which calculates the quantization

parameters based on the minimum and maximum values

observed in the calibration data.

Finally, along with the original full-precision model, FP16 and

INT8 are then used by the ONNX Runtime Execution Provider

to optimize and produce quantized models ready for efficient

inference performance.

C. (PL,PS ,PG).pt - W2: Pruned models Quantization with

Torch - ONNX - TensorRT

In this workflow, we enhance the inference performance of the

object detection model by converting the PyTorch model to the

ONNX format and then the TensorRT engine. After saving

the model in ONNX, we further optimize it by converting

the ONNX model into a TensorRT engine for three precision

modes: FP32, FP16, and INT8. The process is described as

follows:

1) Loading pruned models and dataset selection: Like

previous workflows W0 and W1, we start this workflow

W2, after loading our pruned models saved in the disk:

PL.pt(layer pruned model), PS .pt(soft pruned model) and

PG.pt(group pruned model). And, the dataset is also fixed

at 640×640 pixels ensuring the image size.

2) Pruned models to .onnx conversion: After load-

ing the pruned models from disk, we convert each

model to ONNX format using the torch.onnx.export

function, which preserves the model’s architecture.

The converted model is then verified using the

onnx.checker.check model tool. Once verified, the final

yolo.onnx model is saved, making it ready for deployment

in ONNX-supported environments.

3) TensorRT engine building: To create the TRT engine

for a specific precision mode (e.g., FP32, FP16, or

INT8), we start the process by importing the necessary

libraries and setting up the TensorRT logger. The engine-

building procedure is outlined below and divided into two

sections: (i) the general engine-building process and (ii)

the distinct steps we took to build the engine for each

specific precision mode.

Generic engine building. The generic TensorRT engine

building consists of a series of strategic steps: (i) We

initialize the TensorRT builder and configure its settings.

(ii) We then optimize resource allocation by setting

the maximum workspace size. (iii) Next, we define the

network using the explicit batch flag to enhance batch

processing. (iv) We parse the ONNX model, identify

and mark the key output layer, and build a serialized

network by integrating the TensorRT builder, network,

and configuration, resulting in an optimized model ready

for deployment. (v) Finally, we create a function to

serialize and save the engine, defining paths for the

ONNX model and engine, and deserializing the engine

for future use.

Precision modes for engine building. FP32 (De-

fault Precision): The FP32 precision mode is the de-

fault setting, and no specific precision flag needs to be

set. FP16 (Half Precision): To enable FP16 precision,

we activate the FP16 flag in the builder configuration

by using builder config.set flag(trt.BuilderFlag.FP16).

This mode strikes a balance between performance

and accuracy. INT8 (Integer Precision): Enabling

INT8 precision requires setting the INT8 flag with

builder config.set flag(trt.BuilderFlag.INT8). Addition-

ally, to maintain accuracy, an extra calibration step is

performed using a dataset. This involves the ImageBatch-

Stream and Calibrator classes. INT8 offers the highest

performance in terms of throughput and latency, but

careful calibration is essential to preserve model accuracy.

4) Deployment of the inference performance: We calcu-







12

pruning methods. This can be attributed to its structure,

which remains intact while zeroing out weights, allowing

for smoother computation flow. The group-pruned model also

shows a notable reduction in latency, making it the second-best

option in this regard, while the layer-pruned model, though still

an improvement over the original YOLOv5s, has a slightly

higher latency compared to the other pruned models.

When evaluating throughput, the soft-pruned model once

again stands out, delivering the highest frames per second

(FPS) across the COCO, KITTI, and BDD100K datasets.

This highlights the method’s ability to maintain computational

speed while reducing unnecessary operations. The group-

pruned model follows closely behind, offering incremental

gains in throughput compared to the original model. And,

the layer-pruned model shows moderate improvements in

throughput.

Although, the soft pruning proves to be the most speed-up

pruned model in terms of latency and throughput, the group-

pruned model strikes the balance between speeding up (e.g.,

latency and throughput) and maintaining accuracy.

E. Performance Analysis on Pruned Models to (Torch-

TensoRT) Quantization: (PL,PS ,PG).pt - W0

Figure 7 illustrates the inference latency and throughput of the

Torch-TensorRT workflow W0 on three pruned models: PL.pt,

PS .pt, and PG.pt across the COCO, KITTI, and BDD100K

datasets.

Inference latency. For quantization of the layer-pruned model

PL.pt, using Torch-TensorRT W0 from Fig. 7(i) on the COCO

dataset, significantly reduces latency across all precision

modes. The most notable improvement is seen with INT8

precision, where the latency is reduced by nearly 5× compared

to the Pruned model, and 6× faster than the original model

highlighting the effectiveness of quantization in improving

performance for real-time applications. Similar improvements

are observed with FP16 and FP32 precision modes, where the

layer-pruned model experiences 3-4× faster latency than the

original. From KITTI and BDD100K Dataset we also observe

up to 6.2× faster speed after quantizing with INT8 precision.

For the soft-pruned model PS .pt - W0, the results show

that INT8 precision quantization achieves the most significant

latency reduction. For the COCO dataset, The INT8 precision

mode reduces latency by nearly 5× compared to the soft-

pruned model and almost 9× faster than the original model.

Meanwhile, FP16 and FP32 also result in considerable latency

reductions. Similar trends are observed in the KITTI dataset

and BDD100K Dataset. Once again, INT8 precision mode

outperforms others, offering the highest speedup. FP16 mode

also performs efficiently, making it a strong alternative when

a balance between accuracy and speed is required.

For the group-pruned model PG.pt - W0, quantization using

Torch-TensorRT also results in noticeable latency reductions

across all precision modes. On the COCO dataset, INT8

precision reduces latency by 5× compared to the unquan-

tized group-pruned model and more than 8× faster than the

original model. FP16 and FP32 also show significant latency

improvements. Similar results are observed on the KITTI

dataset and in the BDD100K dataset, where INT8 precision

continues to offer the greatest speedup, delivering nearly 5×

faster latency than the unquantized group-pruned model, while

FP16 provides a good alternative with approximately 3× faster

performance.

Inference throughput. The inference throughput of the Torch-

TensorRT workflow W0 on three pruned models: PL.pt, PS .pt,

and PG.pt across the COCO, KITTI, and BDD100K datasets.

The quantization of soft pruned model PS .pt - W0 archives

the best performance in terms of FPS among all three precision

modes. In the COCO dataset, INT8 precision achieves a 5×

improvement in throughput compared to the pruned model,

and nearly 10× faster than the original model. FP16 continues

to offer solid performance gains (7.5× faster). the layer-pruned

model PL.pt, quantization using Torch-TensorRT significantly

boosts throughput. INT8 precision increases throughput by

nearly 5× compared to the pruned model and more than

6× faster than the original model. FP16 also shows strong

improvements, delivering over 3× higher throughput than

the pruned model. In the group-pruned model PG.pt, INT8

precision provides the most substantial throughput increase,

with more than 5× higher throughput compared to the pruned

model and over 7.6× faster than the original. FP16 also offers

considerable improvements, making it a reliable alternative for

efficient inference. Similar trends were observed in KITTI and

BDD100K datasets.

Observation 1

• W0 - Torch-TensorRT (PyTorch integration with Ten-

sorRT), on (PL,PS ,PG).pt (layer, soft, and group pruned

models) produces 2× faster performance in FP32, 3.5×

faster in FP16, and 5× faster in INT8 compared to the

pruned models. Besides, it delivers up to 4× faster

performance in FP32, 6× faster in FP16, and 10×

faster in INT8 compared to the original model.

Accuracy. Table VI (i), presents the mAP results across

three datasets: COCO, KITTI, and BDD100K. The column

PL.pt - W0 shows the mAP achieved by the quantized Torch-

TensorRT workflow at FP32, FP16, and INT8 precision on

the layer-pruned model PL.pt. Similarly, PS .pt - W0 and PG.pt

- W0 present the mAP for the quantized Torch-TensorRT

workflow at these three precision modes on the soft-pruned and

group-pruned models, respectively. The mAP results across the

COCO, KITTI, and BDD100K datasets show that FP32 and

FP16 precision modes maintain accuracy close to the original

pruned models after quantization. However, INT8 precision

generally leads to a more noticeable drop in accuracy. For

example, in the COCO dataset, the layer-pruned model sees

minimal changes with FP32 and FP16, while INT8 shows a

more significant reduction in mAP. Similar trends are observed

in the KITTI dataset, where the soft-pruned model retains

accuracy with FP32 and FP16 but experiences a drop with

INT8.

Overall, INT8 quantization offers strong inference perfor-

mance but typically results in a modest reduction in accuracy

compared to FP32 and FP16 across all datasets and models.

GPU/Memory Usage. Table VI (ii), presents the

GPU/memory usage after quantization of workflow W0 across

three precision modes on three pruned models. The data

shows that GPU/memory usage decreases most significantly

for INT8 precision mode. For instance, in the COCO dataset,

the layer-pruned model uses 1008 MB of GPU memory.

After quantization with PL.pt - W0 in INT8 precision mode,

the memory usage reduces to 860 MB. This indicates that









16

W2 and PG.pt - W2 present the mAP performance for the

quantized workflow applied to soft-pruned and group-pruned

models, respectively, across the same precision modes.

The mAP results from the workflow W2 indicate that

quantization at FP32 and FP16 precision levels maintains

performance closely aligned with the original pruned models

across the COCO, KITTI, and BDD100K datasets. For the

layer-pruned model (PL.pt) on the COCO dataset, the mAP

remains unchanged after quantization with FP32, with only a

slight reduction observed at FP16. However, a more noticeable

drop in mAP is seen when transitioning to INT8 precision. A

similar pattern is observed in the KITTI dataset. The group-

pruned model (PG.pt) on the BDD100K dataset follows the

same trend, with FP32 and FP16 maintaining the original

accuracy, but INT8 precision leading to a more substantial re-

duction. Overall, while FP32 and FP16 quantization preserves

accuracy, INT8 precision tends to result in a measurable drop

in mAP across all models and datasets.

Observation 3

• W2 - Torch-ONNX-TensorRT (PyTorch to ONNX ex-

port with TensorRT), on (PL,PS ,PG).pt (layer, soft,

and group pruned models) produces 3.5× faster in

FP32, 7× faster in FP16, and up to 10× faster in

INT8 compared to the pruned models. Additionally,

it delivers up to 7× faster performance in FP32, 14×

faster performance in FP16, and 18× faster in INT8

compared to the original model.

GPU/Memory usage. Table VIII (ii) shows the GPU/memory

usage after quantizing workflow W2 across three precision

modes (FP32, FP16, and INT8) on three pruned models. The

results indicate a significant reduction in memory consump-

tion, especially for the FP16 and INT8 precision modes. For

instance, in the BDD100K dataset, the group-pruned model

initially uses 956 MB of GPU memory. After quantization

with PG.pt - W2, the memory usage decreases to 926 MB in

FP16 mode and further reduces to 818 MB in INT8 mode.

This is 82% usage of GPU/memory (reduces 20%) compared

to the original memory usage demonstrating the substantial

efficiency gains achieved through INT8 quantization.

VII. CONCLUSION AND FUTURE PLAN

This paper provides a comprehensive analysis of object de-

tection model inference performance using PyTorch frame-

works, with a focus on acceleration through pruning and

quantization within various workflows designed for resource-

constrained SDVs. Our evaluation covered key performance

metrics, including latency, throughput, GPU/memory usage,

and accuracy, following both pruning and subsequent quanti-

zation (using our designed workflows) of the models.

Our study offers an in-depth examination of the performance

of different pruned models, highlighting the strengths and

weaknesses of each workflow across three precision modes:

FP32, FP16, and INT8. This analysis provides valuable in-

sights for selecting the most suitable pruning method and

workflow for time-critical systems. Among the pruned models,

the group-pruned model strikes the best balance between in-

ference performance (throughput, latency) and accuracy, while

the soft-pruned model, though fastest in inference, exhibits a

notable drop in accuracy. Additionally, our results demonstrate

that the Torch-ONNX-TensorRT workflow yields the most

effective acceleration of model inference performance.

After evaluating the three precision modes, we conclude

that FP16 offers the optimal trade-off between inference per-

formance (throughput, latency, and GPU/memory usage) and

accuracy (mAP). This balance is crucial for real-world, time-

critical SDVs. Therefore, we recommend the Torch-ONNX-

TensorRT workflow quantized with FP16 precision and

group pruning as the optimal solution for applications

requiring maximum inference performance in resource-

limited SDVs. It can achieve up to 18× faster inference speed

and 16.5× higher throughput while reducing GPU/memory

usage by up to 30%, all with minimal impact on accuracy.

In the future, we will include the evaluation of real-time

performance metrics such as jitter (the variability in response

time), deadline miss rate, real-time inference accuracy (RTIA),

and memory bandwidth utilization, which will provide a more

comprehensive evaluation of the model’s performance in real-

time and resource-constrained systems like SDVs.

REFERENCES

[1] R. Jafarpourmarzouni, S. Lu, Z. Dong et al., “Enhancing real-time
inference performance for time-critical software-defined vehicles,” in
2024 IEEE International Conference on Mobility, Operations, Services
and Technologies (MOST). IEEE, 2024, pp. 101–113.

[2] Y. Luo, D. Xu, G. Zhou, Y. Sun, and S. Lu, “Impact of rain-
drops on camera-based detection in software-defined vehicles,” in 2024
IEEE International Conference on Mobility, Operations, Services and
Technologies (MOST). IEEE, 2024, pp. 193–205.

[3] S. Lu and W. Shi, “Vehicle as a mobile computing platform: Opportu-
nities and challenges,” IEEE Network, 2023.

[4] J. Chen and S. Lu, “An advanced driving agent with the mul-
timodal large language model for autonomous vehicles,” in 2024
IEEE International Conference on Mobility, Operations, Services and
Technologies (MOST). IEEE, 2024, pp. 1–11.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1137–1149,
2016.

[6] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection for
autonomous driving,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7644–7652.

[7] P. Purkait, C. Zhao, and C. Zach, “Spp-net: Deep absolute pose regres-
sion with synthetic views,” arXiv preprint arXiv:1712.03452, 2017.

[8] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part I 14. Springer, 2016, pp. 21–37.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm
developments,” Procedia computer science, vol. 199, pp. 1066–1073,
2022.

[13] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[14] J. Redmon, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[15] “YOLOv5,” https://pytorch.org/hub/ultralytics˙yolov5/, 2017.
[16] S. Liang, H. Wu, L. Zhen, Q. Hua, S. Garg, G. Kaddoum, M. M.

Hassan, and K. Yu, “Edge yolo: Real-time intelligent object detection
system based on edge-cloud cooperation in autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp.
25 345–25 360, 2022.

[17] S. Jiang, Z. Lin, Y. Li, Y. Shu, and Y. Liu, “Flexible high-resolution
object detection on edge devices with tunable latency,” in Proceedings



17

of the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 559–572.

[18] A. Anupreetham, M. Ibrahim, M. Hall, A. Boutros, A. Kuzhively,
A. Mohanty, E. Nurvitadhi, V. Betz, Y. Cao, and J.-S. Seo, “High
throughput fpga-based object detection via algorithm-hardware co-
design,” ACM Transactions on Reconfigurable Technology and Systems,
vol. 17, no. 1, pp. 1–20, 2024.

[19] K. Jeziorek, A. Pinna, and T. Kryjak, “Memory-efficient graph
convolutional networks for object classification and detection with
event cameras,” in 2023 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA). IEEE, 2023, pp. 160–165.

[20] L. Zhen, Y. Zhang, K. Yu, N. Kumar, A. Barnawi, and Y. Xie, “Early
collision detection for massive random access in satellite-based internet
of things,” IEEE Transactions on Vehicular Technology, vol. 70, no. 5,
pp. 5184–5189, 2021.

[21] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[22] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded gpu using cuda,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, 2008, pp. 73–82.

[23] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[24] W.-F. Lin, D.-Y. Tsai, L. Tang, C.-T. Hsieh, C.-Y. Chou, P.-H. Chang,
and L. Hsu, “ONNC: A compilation framework connecting ONNX
to proprietary deep learning accelerators,” in 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2019, pp. 214–218.

[25] S. Arabi, A. Haghighat, and A. Sharma, “A deep-learning-
based computer vision solution for construction vehicle detection,”
Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 7,
pp. 753–767, 2020.

[26] F. Plesinger, A. Ivora, E. Vargova, R. Smisek, J. Pavlus, Z. Koscova,
P. Nejedly, V. Bulkova, R. Kozubik, J. Halamek et al., “Scalable,
multiplatform, and autonomous ecg processor supported by ai for
telemedicine center,” in 2022 Computing in Cardiology (CinC), vol.
498. IEEE, 2022, pp. 1–4.

[27] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[28] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[29] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, 2011.

[30] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[31] E. Michaud, Z. Liu, U. Girit, and M. Tegmark, “The quantization model
of neural scaling,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[32] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[34] “ONNX (Open Neural Network Exchange) ,” https://onnx.ai/, 2017.
[35] “NVIDIA TensorRT,” https://developer.nvidia.com/tensorrt, 2017.
[36] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on Neural

Networks, vol. 4, no. 5, pp. 740–747, 1993.
[37] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the

state of neural network pruning?” Proceedings of machine learning and
systems, vol. 2, pp. 129–146, 2020.

[38] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and
X.-s. Hua, “Quantization networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 7308–
7316.

[39] “Post Training Quantization (PTQ),”
https://pytorch.org/TensorRT/tutorials/ptq.html, 2017.

[40] “Quantization Aware Training(QTA),”
https://pytorch.org/docs/stable/quantization.html, 2017.

[41] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[42] Z. Li, H. Liang, H. Wang, M. Zhao, J. Wang, and X. Zheng, “MKD-
Cooper: Cooperative 3d object detection for autonomous driving via

multi-teacher knowledge distillation,” IEEE Transactions on Intelligent
Vehicles, 2023.

[43] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient
object detection models with knowledge distillation,” Advances in neural
information processing systems, vol. 30, 2017.

[44] P. De Rijk, L. Schneider, M. Cordts, and D. Gavrila, “Structural knowl-
edge distillation for object detection,” Advances in Neural Information
Processing Systems, vol. 35, pp. 3858–3870, 2022.

[45] C. Käding, E. Rodner, A. Freytag, and J. Denzler, “Fine-tuning
deep neural networks in continuous learning scenarios,” in Computer
Vision–ACCV 2016 Workshops: ACCV 2016 International Workshops,
Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part
III 13. Springer, 2017, pp. 588–605.

[46] F. C. Akyon, S. O. Altinuc, and A. Temizel, “Slicing aided hyper
inference and fine-tuning for small object detection,” in 2022 IEEE
International Conference on Image Processing (ICIP). IEEE, 2022,
pp. 966–970.

[47] Y. Wang, Z. Huang, Q. Liu, Y. Zheng, J. Hong, J. Chen, L. Xiong,
B. Gao, and H. Chen, “Drive as veteran: Fine-tuning of an onboard
large language model for highway autonomous driving,” in 2024 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2024, pp. 502–508.

[48] X. Hu, S. Li, T. Huang, B. Tang, R. Huai, and L. Chen, “How simulation
helps autonomous driving: A survey of sim2real, digital twins, and
parallel intelligence,” IEEE Transactions on Intelligent Vehicles, 2023.

[49] S. Lu, Y. Yao, and W. Shi, “Clone: Collaborative learning on the edges,”
IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10 222–10 236, 2020.

[50] G. Tatar, S. Bayar et al., “Real-time multi-learning deep neural network
on an mpsoc-fpga for intelligent vehicles: Harnessing hardware accel-
eration with pipeline,” IEEE Transactions on Intelligent Vehicles, 2024.

[51] H. Liu, Y. He, F. R. Yu, and J. James, “Flexi-compression: a flexible
model compression method for autonomous driving,” in Proceedings
of the 11th ACM Symposium on Design and Analysis of Intelligent
Vehicular Networks and Applications, 2021, pp. 19–26.

[52] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[53] J. Seo and S. Park, “Optimizing model parameters of artificial neural
networks to predict vehicle emissions,” Atmospheric Environment, vol.
294, p. 119508, 2023.

[54] U. K. Das, K. S. Tey, M. Seyedmahmoudian, S. Mekhilef, M. Y. I.
Idris, W. Van Deventer, B. Horan, and A. Stojcevski, “Forecasting
of photovoltaic power generation and model optimization: A review,”
Renewable and Sustainable Energy Reviews, vol. 81, pp. 912–928, 2018.

[55] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale pre-
emption for concurrent {GPU-accelerated}{DNN} inferences,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 539–558.

[56] W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible
layer-by-layer cpu/gpu scheduling for real-time dnn tasks,” in 2021 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2021, pp. 329–341.

[57] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-
M. Frahm, “Re-thinking cnn frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge,” in 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2019, pp. 305–317.

[58] E. Jeong, J. Kim, and S. Ha, “Tensorrt-based framework and optimiza-
tion methodology for deep learning inference on jetson boards,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 21, no. 5,
pp. 1–26, 2022.

[59] H. Xu, M. Guo, N. Nedjah, J. Zhang, and P. Li, “Vehicle and pedestrian
detection algorithm based on lightweight yolov3-promote and semi-
precision acceleration,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 10, pp. 19 760–19 771, 2022.

[60] Z. Yao, Q. Liu, Q. Xie, and Q. Li, “Tl-detector: Lightweight based
real-time traffic light detection model for intelligent vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 9, pp.
9736–9750, 2023.

[61] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “An improved deep
computation model based on canonical polyadic decomposition,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 48,
no. 10, pp. 1657–1666, 2017.

[62] D. Liu, L. T. Yang, R. Zhao, J. Wang, and X. Xie, “Lightweight tensor
deep computation model with its application in intelligent transportation
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 3, pp. 2678–2687, 2022.

[63] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
“Pconv: The missing but desirable sparsity in dnn weight pruning for
real-time execution on mobile devices,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 5117–
5124.



18

[64] I. Jung, K. You, H. Noh, M. Cho, and B. Han, “Real-time object
tracking via meta-learning: Efficient model adaptation and one-shot
channel pruning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, 2020, pp. 11 205–11 212.

[65] O. Andersson, F. Heintz, and P. Doherty, “Model-based reinforce-
ment learning in continuous environments using real-time constrained
optimization,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, no. 1, 2015.

[66] R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen, “Dna:
Dynamic resource allocation for soft real-time multicore systems,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 196–209.

[67] Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time in-
ference for deep learning,” in 2022 IEEE 24th Int Conf on High
Performance Computing & Communications; 8th Int Conf on Data
Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 2022, pp. 2011–2018.

[68] R. Wang, H. Liu, J. Qiu, M. Xu, R. Guérin, and C. Lu, “Progressive neu-
ral compression for adaptive image offloading under timing constraints,”
in 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023,
pp. 118–130.

[69] Y. Yang, N. Zhang, D. Yan, X. Wei, J. Zhou, H. Liu, and M. Chen,
“Brief industry paper: Towards efficient task scheduling for autosar using
parallel pruning,” in 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2023, pp. 484–488.

[70] Y. Wang, B. Feng, Z. Wang, T. Geng, K. Barker, A. Li, and
Y. Ding, “{MGG}: Accelerating graph neural networks with {Fine-
Grained}{Intra-Kernel}{Communication-Computation} pipelining on
{Multi-GPU} platforms,” in 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), 2023, pp. 779–795.

[71] M. Ji, S. Yi, C. Koo, S. Ahn, D. Seo, N. Dutt, and J.-C. Kim, “Demand
layering for real-time dnn inference with minimized memory usage,” in
2022 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2022, pp.
291–304.

[72] “ONNX Runtime GPU,” https://onnxruntime.ai/, 2017.
[73] G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang, “Depgraph: Towards

any structural pruning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 16 091–16 101.

[74] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?” Advances in neural information
processing systems, vol. 31, 2018.

[75] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in 2012 IEEE conference
on computer vision and pattern recognition. IEEE, 2012, pp. 3354–
3361.

[76] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2636–2645.

[77] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

Sumaiya received her B.Sc in Engineering De-
gree from Khulna University of Engineering and
Technology(KUET), Bangladesh in 2020. Currently,
she is a PhD candidate working towards a degree
in Computer science at Wayne State University,
Detroit, USA, under the supervision of Dr. Zheng
Dong. Her research interests include Autonomous
Driving, Real-time systems, Deep Learning, Edge
assisted Machine Learning and vision systems, im-
age processing, etc.

Reza Jafarpourmarzouni received his B.Sc in Me-
chanical Engineering from Babol Noshirvani Uni-
versity of Technology (BNUT), Iran, in 2021. He is
currently working toward a Ph.D degree in Computer
Science at Wayne State University, Detroit, USA.
His academic advisor at Wayne State University is
Prof. Zheng Dong. His research interests include
real-time system, edge computing, cyber-physical
systems and autonomous driving system.

Yichen Luo received her B.E. degree from Shanghai
Dianji University, Shanghai, China, in 2023. She
is currently pursuing a Ph.D. in Computer Science
at William & Mary, Virginia, USA, under the su-
pervision of Prof. Sidi Lu. Her academic research
interests include the Internet of Things, autonomous
driving, sensor systems, edge intelligence, and vehi-
cle computing.

Sidi Lu is the assistant professor in the Department
of Computer Science at William & Mary, Virginia,
USA. She received her Ph.D. degree at Wayne State
University, Detroit, USA in 2023. Her research in-
terests broadly encompass edge computing, vehicle
computing, emerging mobility, and applied AI and
data science, aimed at enhancing the reliability,
scalability, security, and efficiency of networked, dis-
tributed, and autonomous systems. More information
can be found at http://sidilu.org.

Zheng Dong received a BS degree from Wuhan
University, China, in 2007, the MS degree from the
University of Science and Technology of China, in
2011, and the PhD degree from the University of
Texas at Dallas, USA, in 2019. He is an assistant
professor with the Department of Computer Science,
Wayne State University, Detroit, Michigan. His re-
search interests are in real-time embedded computer
systems and connected autonomous driving systems.
His current research focus is on multiprocessor
scheduling theory and hardware-software co-design

for real-time applications. He received the Outstanding Paper Award at the
38th IEEE RTSS. He is a member of the IEEE Computer Society.


