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ABSTRACT. Let R be a real closed field and C the algebraic closure of
R. We give an algorithm for computing a semi-algebraic basis for the
first homology group, H1 (S, F), with coefficients in a field F, of any given
semi-algebraic set S C R* defined by a closed formula. The complexity
of the algorithm is bounded singly exponentially. More precisely, if the
given quantifier-free formula involves s polynomials whose degrees are
bounded by d, the complexity of the algorithm is bounded by (sd)*”".
This algorithm generalizes well known algorithms having singly expo-
nential complexity for computing a semi-algebraic basis of the zero-th
homology group of semi-algebraic sets, which is equivalent to the prob-
lem of computing a set of points meeting every semi-algebraically con-
nected component of the given semi-algebraic set at a unique point. It is
not known how to compute such a basis for the higher homology groups
with singly exponential complexity.

As an intermediate step in our algorithm we construct a semi-algebraic
subset I" of the given semi-algebraic set S, such that Hq(S,T') = 0 for
q = 0,1. We relate this construction to a basic theorem in complex
algebraic geometry stating that for any affine variety X of dimension n,
there exists Zariski closed subsets

A B DA DA
with dime Z® < ¢, and Hy (X, Z<i)) =0 for 0 < g < i. We conjecture
a quantitative version of this result in the semi-algebraic category, with
X and Z@ replaced by closed semi-algebraic sets. We make initial
progress on this conjecture by proving the existence of Z(®) and Z(!) with
complexity bounded singly exponentially (previously, such an algorithm
was known only for constructing Z <0>).
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1. INTRODUCTION

We fix a real closed field R, and denote by D C R a fixed ordered domain.
We will denote by C = R]i] the algebraic closure of R. For example, one can
take R=R, and D = Z.

Semi-algebraic subsets of R¥, k > 0, are subsets of R* defined by quantifier-
free first-order formulas with atoms of the form

P=0,P>0,PeR[Xy,..., X5

Algorithmic semi-algebraic geometry deals with computing geometric and
topological invariants of semi-algebraic subsets of R¥, and is a very well-
developed topic. Examples of algorithmic problems in semi-algebraic geom-
etry that have been investigated include effective quantifier-elimination, the
decision problem of the first order theory of the reals, computing topological
invariants, such as the dimension, number of semi-algebraically connected
components, the Euler-Poincaré characteristic (appropriately defined), and
more generally the Betti numbers of a given semi-algebraic set.

1.1. Background and history. The problem of computing the Betti num-
bers (i.e. the ranks of homology groups) of semi-algebraic sets has a long
history and is an active area of current research. Since algorithms hav-
ing doubly exponential complexity for computing the Betti numbers follow
from effective triangulation algorithms for semi-algebraic sets, the empha-
sis has been on obtaining algorithms with singly exponential complexity
(see Section 1.3 below). Singly exponential algorithms for computing the
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zero-th Betti number (i.e. the number of connected components) of semi-
algebraic sets via construction of roadmaps was obtained by several authors
and the complexity of the algorithms successively improved over the years
(17, 21, 22, 24, 4].

An algorithm with singly exponential complexity is known for computing
the first Betti number of semi-algebraic sets and is given in [11], and then
extended to the first ¢ (for any fixed ¢) Betti numbers in [2]. The Euler-
Poincaré characteristic, which is the alternating sum of the Betti numbers,
is easier to compute, and a singly exponential algorithm for computing it is
known [1, 5]. While many advances have been made in recent years [2, 11],
the best algorithm for computing all the Betti numbers of any given semi-
algebraic set S C R” still has doubly exponential (in k) complexity, even
in the case where the degrees of the defining polynomials are assumed to
be bounded by a constant (> 2) [30] (here we are talking about exact al-
gorithms, see Section 1.1.1 below for a different model). The existence of
algorithms with singly exponential complexity for computing all the Betti
numbers of a given semi-algebraic set is considered to be a major open ques-
tion in algorithmic semi-algebraic geometry (see the survey [8]).

Unlike the singly exponential complexity algorithms for computing the
zero-th Betti numbers, the algorithms for computing the higher Betti num-
bers do not produce a semi-algebraic basis. Obtaining such a basis efficiently
and of small complexity is of interest in geometric applications. In classical
algebraic geometry over algebraically closed fields, representing homology
classes by algebraic cycles is a well studied problem with deep connections
to Hodge theory. The existence of a semi-algebraic basis with singly expo-
nential complexity for the higher homology groups of a given semi-algebraic
set is not known (other than in the zero-th homology case discussed above).
In this paper we partially remedy this deficiency by proving the existence of
such a basis in the case of the first homology group (cf. Theorem 2).

We note here that in the category of finite simplicial complexes, obtain-
ing optimal representatives (as cycles) of homology classes is a well-studied
problem. Early work on efficient algorithms for obtaining a shortest set
of loops generating the first homology group of a two dimensional oriented
manifold (given as a simplicial complex) appears in [20] (see for example,
[19, 27] for recent work on this topic). However, these algorithms are pri-
marily combinatorial in nature and the main difficulty in the semi-algebraic
version of the problem is precisely that a triangulation of the given semi-
algebraic set is not available (at least not known to be computable within
the complexity we are aiming for).

1.1.1. Ezact vs numeric. We remark here that by the word “algorithm”
in the previous paragraphs we are referring only to algorithms that work
correctly for all inputs and whose complexity is uniformly bounded, i.e.
bounded in terms of the degrees and the number of input polynomials and
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independent of the actual coefficients of the polynomials (so in particular
they always terminate). In contrast to this exact/symbolic model which is
valid over arbitrary real closed fields, in numerical analysis it is common to
consider algorithms whose complexity do depend on the coefficients (via a
condition number). Such algorithms work only over the field of real numbers
and might not terminate on ill-conditioned inputs (i.e. if the condition
number is infinite). In this latter model, algorithms with singly exponential
complexity for computing all the Betti numbers of semi-algebraic sets have
been developed [14, 15, 16]. As noted above, these algorithms will fail to
produce any result on certain inputs. Also, they do not produce semi-
algebraic bases for the homology groups. In this paper we will be concerned
only with exact algorithms that work for all possible inputs.

1.2. Model of computation and definition of complexity. There are
several models of computation that one can consider while dealing with semi-
algebraic sets (and also several notions of what constitutes an algorithm). If
the real closed field R = R, and D = Z, one can consider these algorithmic
problems in the classical Turing model and measure the bit complexity of the
algorithms. In this paper, we will follow the book [6] and take a more general
approach valid over arbitrary real closed fields. In the particular case, when
D = Z, our method will yield bit-complexity bounds. The precise notion of
complexity that we use is defined in Definition 1 below.

1.2.1. Definition of complexity. We will use the following notion of “com-
plexity” in this paper. We follow the same definition as used in the book
[6].

Definition 1 (Complexity of algorithms). In our algorithms we will usually
take as input quantifier-free first order formulas whose terms are polynomi-
als with coeflicients belonging to an ordered domain D contained in a real
closed field R. By complezity of an algorithm we will mean the number of
arithmetic operations and comparisons in the domain D. If D = R, then the
complexity of our algorithm will agree with the Blum-Shub-Smale notion of
real number complexity [13] .

It is also useful for what follows to introduce the following mathematical
definition of “complexity” of formulas and semi-algebraic sets.

p case D = Z, it is possible to deduce the bit-complexity of our algorithms in terms
of the bit-sizes of the coefficients of the input polynomials, and this will agree with the
classical (Turing) notion of complexity. We do not state the bit complexity separately in
our algorithms, but note that it is always bounded by a polynomial in the bit-size of the
input times the complexity upper bound stated in the paper. We do not count the cost of
doing linear algebra over the field F. However, if F = Q, then the bit complexity of doing
operations over F will be bounded by the complexity upper bound stated in the paper.
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1.2.2. P-formulas, P-semi-algebraic sets, realizations.

Notation 1 (P-formulas, P-closed formulas and their realizations). For any
finite set of polynomials P C R[Xj,..., Xi], we call a quantifier-free first
order formula ® with atoms P =0,P < 0,P > 0, P € P, to be a P-formula.
Given any semi-algebraic subset Z C R¥, we call the realization of ® in Z,
namely the semi-algebraic set

R(®,Z) = {x€Z|dx)}

a P-semi-algebraic subset of Z. If Z = R*, we often denote the realization
of ® in R¥ by R(®).

We say that a quantifier-free formula @ is closed if it is a formula in
disjunctive normal form with no negations, and with atoms of the form
P >0,P <0, where P € R[X1,...,X]. If the set of polynomials appearing
in a closed formula is contained in a finite set P, we will call such a formula
a P-closed formula, and we call the realization, R(®), a P-closed semi-
algebraic set.

Definition 2 (Complexity of semi-algebraic sets). For P C D[Xy,..., Xj],
and P-formula (resp. P-closed formula) ®, we say that the complexity of
® is bounded by C, where C = card(P) - d, where d = maxpcp deg(P).
If S = R(®P), then we will say that the complexity of S is bounded by
card(P) - d.

For the rest of the paper we fix a field F.

Notation 2. For any closed semi-algebraic set X, we will denote by H;(X) =
H;(X,F) the i-th homology group of X with coefficients in F (we refer the
reader to [6, Chapter 6] for definition of homology groups of semi-algebraic
subsets of R¥, where R is an arbitrary real closed field).

Notation 3. Given x € R¥,7 > 0, we will denote by B(x,r) C R* the
(open) euclidean ball of radius r centered at x, and by S¥71(x,r) c R¥, the

sphere of radius r centered at x. Note that these are semi-algebraic subsets
of RF.

1.3. Singly vs doubly exponential. The problem of computing topolog-
ical invariants (such as the number of semi-algebraically connected com-
ponents) of semi-algebraic sets in general is a hard problem (known to be
PSPACE-hard in the Turing model).

From the point of view of upper bounds on the complexity, these problems
can be solved by combinatorial means if we have in hand a triangulation of
the given semi-algebraic set. A semi-algebraic triangulation of a closed and
bounded semi-algebraic set S C RF, consists of a finite simplicial complex
K, and a semi-algebraic homeomorphism h : |K| — S (where | - | denotes
the geometric realization functor). Moreover, the homology group H.(S) is
isomorphic to the simplicial homology groups H,(K') which can be computed
using standard linear algebra with complexity polynomial in the size of K.
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Closed and bounded semi-algebraic sets admit semi-algebraic triangula-
tions, and more pertinently such triangulations can be effectively computed.
However, the algorithms with the best complexity for computing such tri-
angulations have doubly erponential complexity (doubly exponential in k).
More precisely, if S C R is defined by a quantifier-free formula involving
s polynomials of degrees at most d, the best algorithm for computing a
semi-algebraic triangulation of S is bounded by (sd)QO(k).

It is a common belief in algorithmic semi-algebraic geometry that topolog-
ical invariants satisfying a certain bound (say singly exponential) should in
fact be computable by algorithms with complexity reflecting the mathemati-
cal bound. So invariants which are bounded singly exponential should in fact
be computable by algorithms with singly exponentially bounded complexity.
The intuition behind this belief is that the natural way to compute a topo-
logical invariant (such as the the zero-th Betti number of a semi-algebraic
set) is often by computing a semi-algebraic representative or witnessing set
(for example, a semi-algebraic basis of Hy(.S) in the case of the zero-th ho-
mology — see Problem 2 below), and the cardinality of this witnessing set is
the invariant to be computed. One expects the complexity of the algorithm
for computing the witnessing set should reflect the complexity of this set —
which includes the cardinality but also its “algebraic complexity” as well.
The Betti numbers (ranks of homology groups) of semi-algebraic sets admit
singly exponential upper bounds [28, 31, 25]. From this point of view one
expects that there should exist algorithms for computing the Betti numbers
of semi-algebraic sets with complexity bounded singly exponentially. In-
deed, algorithms for computing the zero-th Betti number (i.e. the number
of semi-algebraically connected components 2) of semi-algebraic sets have
been investigated in depth, and nearly optimal algorithms are known for
this problem.

1.4. Computing a basis for Hy(S). As mentioned above, all algorithms
for computing the zero-th Betti number (i.e. the number of semi-algebraically
connected components) of a given semi-algebraic set actually solve the fol-
lowing more general problem.

Problem 1. Given a quantifier-free formula ® defining a semi-algebraic
subset S C R¥, compute a finite subset I' C 9, such that for each connected
component C of S, card(I'NC) =1 (i.e. I' contains a unique representative
from each connected component of S).

Remark 1. Note that one needs to allow points in I' whose coordinates
are algebraic over the ring generated by the coefficients of the polynomials

2The reason behind insisting on “semi-algebraically” connected instead of just con-
nected (in the Euclidean topology) is that over an arbitrary real closed field these two
notions are distinct. On the other hand if R = R, then being semi-algebraically connected
is equivalent to being connected (see for example [6, Theorem 5.22]).
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appearing in the formula ®. At this point we ignore the question of rep-
resentation of such points (cf. Definition 4 below) other than commenting
that any algorithm for solving this problem needs to address this issue.

Problem 1 has been studied in depth and we now have very close to
optimal algorithms for solving it. The solution is in two steps.

Step 1. The first and easier step is solving a weaker problem of computing
a finite subset I' C S of “sample points” with the property that for
each connected component C of S, card(I' N C) > 1. (The above
property is equivalent to the property that the zero-th homology,
Ho(S,T"), of the pair (S,T") is trivial.) There are now very efficient
algorithms for solving this problem (see for example, [23, 3], [6, Al-
gorithm 13.3 (Sample points on a variety)]). In fact, such algorithms
form the basic building block for efficient algorithms for solving the
quantifier-elimination problem in the theory of the reals.

Step 2. The second step is more complicated and involves solving the prob-
lem of deciding whether two given points in a semi-algebraic set S
belong to the same semi-algebraically connected component of S
efficiently. This problem has a long history. The key idea is that
of a roadmap of a semi-algebraic set (cf. Definition 3 for a precise
definition).

If we have a roadmap I' of S which contains x,y € S, then
it is easy to decide whether x and y belong to the same semi-
algebraically connected component of I', which tells us if they are in
the same semi-algebraically connected component of S itself because
of the defining property of a roadmap. There exists singly exponen-
tial complexity algorithms for construction of roadmaps of semi-
algebraic sets [17, 21, 22, 24, 4], and hence for the problem of decid-
ing whether two given points belong to the same semi-algebraically
connected component of a semi-algebraic set. Once we can decide
if two points of the set of sample points I' belong to the same semi-
algebraically connected component of S, we can then select exactly
one point in every semi-algebraically connected component of S and
thus obtain a singly-exponential algorithm for solving Problem 1.

1.4.1. Interpretation in terms of a homology basis. Note that Problem 1 can
be reformulated in terms of homology as follows.

Problem 2. Given a quantifier-free formula ® defining a semi-algebraic
subset S C R*, compute a semi-algebraic basis of Ho(S). More precisely,
compute a semi-algebraic subset I' = {x1,...,xx5} C S, such that the sub-
spaces [X1], ..., [xn] C Ho(S) are linearly independent and span Hy(.S). Here
[x;] is the image of Ho({x;})(= F) in Ho(S) under the linear map induced
by the inclusion {x;} — S.

The discussion in the beginning of this subsection yields the following
theorem.
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Theorem 1. [17, 21, 22, 24, 4] There exists an algorithm that takes as input
a finite set

P C D[X1, e ,Xk],
and a P-formula ® whose complexity is bounded by C, and outputs a semi-
algebraic basis, {x1,...,xn}, of Ho(R(®)). The complexity of each x; (as
a semi-algebraic subset of R¥ defined over D), as well as the complexity of

the algorithm, are both bounded by oLt

2. NEw RESULTS
We now state the new results proved in the paper.

2.1. Generalization to the first homology group. The main goal of
this paper is to prove an analog of Theorem 1 with the zero-th homology
group replaced by the first homology group. The following theorem is the
main result of the paper.

Theorem 2. There exists an algorithm that takes as input a finite set
P C D[Xl, e ,Xk],

and a P-closed formula ® whose complezity is bounded by C, and outputs a

finite set @ C D[X1, ..., Xy], as well as a finite tuple (V) e, in which each

VU, is a Q-formula, such that the realizations I'; = R(¥;) have the following

properties:

1. For each j € J, T'j C S, where S = R(®), and I'; is semi-algebraically
homeomorphic to St (= 81(0,1));

2. the inclusion map I'; — S induces an injective map F = H; (I';) — Hy(5),
whose image we denote by [I';];

3. the tuple ([T';])jes forms a basis of Hi(S).

The complezity of each I';,j € J (as a semi-algebraic subset of R defined

over D) is bounded by Co(k2), and the complexity of this algorithm is bounded
by Cko(l).

Remark 2. Observe that each element [I';] of the basis of Hy () in Theorem 2
is represented by the one-dimensional semi-algebraic subset I'; C S. In the
algorithm that we describe later for computing such a basis (Algorithm 7),
we use another algorithm (Algorithm 6) with singly exponential complexity
for computing a simplicial complex A which is homologically 1-equivalent
to S (see Definition 9). One can compute an explicit basis of the first
homology group of A, with elements of the basis represented by 1-cycles of
A. However, note that such a basis will not produce semi-algebraic curves
in S representing a basis of Hi(S). This is because there is no natural map
between |A| and S (see Definition 9).

Remark 3. We also note that the exponent O(1) in the complexity of the
algorithm comes from the complexity of Algorithm 6 applied in the special
case of computing a simplicial replacement of a diagram of semi-algebraic
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sets and inclusion maps which is homologically 1-equivalent to the input.
In general, this algorithm computes a simplicial replacement which is ho-
mologically ¢-equivalent to the given diagram for some fixed ¢ > 0, and the
exponent in that case is O(¢) (we use it in the special case with ¢ = 1).

2.2. Connections with the “basic lemma” in complex algebraic
geometry. As mentioned previously, designing an efficient algorithm (i.e.
with singly exponential complexity) for computing semi-algebraic triangu-
lations of semi-algebraic sets is one of the most important open problems in
algorithmic semi-algebraic geometry. In the absence of such an algorithm,
several low dimensional work-arounds have been designed to compute impor-
tant topological invariants without having to compute a full triangulation.
For example, there are algorithms with singly exponential complexity for
computing the first ¢ Betti numbers (for any fixed ¢ > 0) which do not use
triangulations [2]. More recently, in [9], the authors give an algorithm with
singly exponential complexity for computing a simplicial complex which is
homologically f-equivalent (see Definition 9 below) to a given closed semi-
algebraic set (for any fixed ¢ > 0).

Over the complex numbers, algebraic varieties cannot be triangulated (in
the usual topological sense) using algebraic sets and maps. The following
result (see for example [26] where it is called the “Basic Lemma”) serves
as a substitute and can be considered a weak analog in complex algebraic
geometry of the property that real semi-algebraic sets can be triangulated
using semi-algebraic maps.

Lemma 1 (Basic Lemma - first form [26]). Let K be a subfield of C. Let W
be Zariski closed in an affine variety X defined over K. Assume dimcg W <
dimc X. Then, there is a Zariski closed Z in X so that dimc Z < dimg X
with W C Z, and

H,(X,Z) =0,
whenever q # dimg X .

Remark 4. Note also that by applying Lemma 1 repeatedly to an affine
variety X of dimension n, one obtains Zariski closed subsets of X,

Z(n—l) D) Z(z) DEEEED) Z(l) D) Z(O)

with dim Z®) < i, and Hy(X,Z®) = 0 for 0 < ¢ < i. (This follows from
applying the basic lemma with W = (), first to X to obtain Z™=1 and then

to Z("=1 to obtain Z("2) and so on, and the homology long exact sequence
of the various triples (X, 2%, z(=1)))

One could ask for a semi-algebraic version of the basic lemma, where
W, X, Z are closed semi-algebraic subsets (or even Zariski closed subsets) of
R”, where R is a real closed field. The proof of the basic lemma (actually of
a stronger version) given in [26] is valid over real closed fields. However, the
proof is not effective in the sense that no bound on the complexity of Z is
given (in terms of the complexities of X and W). However, since the proof



10 SAUGATA BASU AND SARAH PERCIVAL

depends on iterated projections, the complexity of the construction is likely
to be doubly exponential.

Notice that in the semi-algebraic case (taking W = ()), one can take
Z = ZW = h(|sk;(K)|), where h : | K| — X is a semi-algebraic triangulation
of X, and sk, (K') denotes the g-dimensional skeleton of K. The sequence
of semi-algebraic subsets Z(dmX-1) 5 ... 5 7(0) would then satisfy the
properties of Remark 4. However, it is clear that the best complexity one
can obtain in this way is doubly exponential. The existence of the sequence
Z() over algebraically closed fields (cf. Remark 4) inspires the following the
question.

Is it possible to prove in the semi-algebraic case the existence of a similar
sequence satisfying the homological property in Remark 4, but where the
the subsets Z() do not correspond to skeleta of some triangulation — and
hence could be potentially of smaller complexity ?

In fact, it makes sense to ask for the existence of the sequence Z() whose
complexity is graded in terms of i i.e. Z(© has the smallest complexity,
followed by Z(), and so on. We formulate below a quantitative conjecture
which is a version of the basic lemma in the semi-algebraic case as follows.

Conjecture 1. Let X C R* be a semi-algebraic set defined by a closed
formula of complexity bounded by C, and let dim X = n. Then there exists
closed semi-algebraic subsets of X,

zn=1) 5 . .5 z(1) 5 7(0)

with dim Z® < i, and H, (X, ZWY =0 for 0 < q <1, such that for each
i,0 <i<n—1, the complexity of Z" is bounded by COK™)
Moreover, there exists an algorithm for computing closed formulas describ-

ing ZO), ..., 720 0 < <n—1, whose complexity is bounded by cko.

Remark 5. Conjecture 1 is especially interesting because of the following
observation. The standard algorithms for triangulating semi-algebraic sets
using cylindrical algebraic decomposition (see for example [6, Chapter 5])
can be modified so that their complexities are bounded doubly exponen-
tially only in the dimension of the given semi-algebraic set rather than that
of the ambient space. Hence if Conjecture 1 is true, then it will provide an
alternative approach (compared to [2, 9]) towards the problem of computing
the first ¢ Betti numbers of any given semi-algebraic set with singly expo-
nential complexity for each fixed ¢. In this paper, we take an initial step
towards verifying the conjecture (see Theorem 3). We believe that the same
inductive approach used in the proof of Proposition 3 can be generalized to
handle the full conjecture.

We prove the following.
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Theorem 3. With the same notation as in Conjecture 1, there exists closed
semi-algebraic subsets of X,

70 ~ 7(0)
with dim Z®W <4, and H, (X, ZW) =0 for0<q<ii=0,1, such that the
complezities of Z©, Z(1) are bounded by Ok
Moreover, there exists an algorithm for computing closed formulas de-
scribing Z©, ZD) | whose compleity is bounded by CF*.

2.3. Comparison with roadmaps. One of our intermediate construc-
tions, namely the semi-algebraic subset Z(!) in Theorem 3 (also the set
I constructed in Algorithm 4) is reminiscent of roadmaps of semi-algebraic
sets (mentioned earlier), and their construction is somewhat similar to the
(classical) construction of roadmaps ®. We describe here the key difference
between our construction and the classical construction of roadmaps in Sec-
tion 4.1 where we give an outline of Algorithm 4. In this section, we recall
the defining property of roadmaps of semi-algebraic sets and indicate why a
roadmap is not sufficient for the purposes of the current paper.

The following definition is taken from [6, Chapter 15]. Let S C R* be a
semi-algebraic set. We denote by m : R¥ — R the projection to the first
coordinate and denote for z € R, S, = SN 7' (2) (cf. Notation 6 below).

Definition 3. A semi-algebraic subset I' C S is called a roadmap of S if it
satisfies the following properties:
RMgy. dimI" < 1;
RM;. for every semi-algebraically connected component C' of S, C' N T is
semi-algebraically connected;

RMs. for every x € R and for every semi-algebraically connected compo-
nent D of S, DNT # 0.

Remark 6. We note that the design of efficient algorithms for construction
of roadmaps of semi-algebraic sets has a long history [17, 21, 22, 24, 4]. The
algorithm with the best complexity can be found in [4]. The complexity of
this algorithm is bounded by sk’“do(k%, where s is the number of polynomi-
als used to define the given set, d a bound on their degrees, k the dimension
of the ambient space, and k' is the dimension of a real variety containing
the given set [4]. More recently, the dependence on k in the exponent has
been further improved using new methods [7, 12], but for the moment these
new algorithms work only for algebraic (rather than semi-algebraic) sets.

Notice that if S is a closed semi-algebraic set and I' C S is a roadmap
of S, then the homomorphism i, ; : Hi(I') — H;(S) need not be surjective.
A simple example of this phenomenon is provided by a torus 77 C R? as
depicted in Figure 1. The classical construction of roadmap (see for exam-
ple [6, Chapter 15]) produces the one dimensional semi-algebraic subset '

3More modern algorithms such as those described in [7, 12] use different techniques.



12 SAUGATA BASU AND SARAH PERCIVAL

FIGURE FIGURE FIGURE
1. figure 2. figure 3. figure
T cCR? rcrT I'cT

depicted in Figure 2. In this example, the set I" does satisfy the property
that Hy (T, T') = 0,¢ = 0, 1, though this is not ensured in general by the clas-
sical roadmap algorithm. However, notice that if we take the subset IV C T’
consisting only of the larger horizontal circle as depicted in the Figure 3,
then TV does satisfy the property of being a roadmap of T (cf. Definition 3),
but Hy(7,T) # 0 (in fact, dimH; (7, T7) = 1).

The rest of the paper is devoted to proving Theorems 2 and 3. In Sec-
tion 3, we discuss some preliminaries including definitions of representations
of real algebraic numbers, points, and curve segments that we use in our
algorithms. In Section 4, we prove Theorems 2 and 3.

3. PRELIMINARIES

In this section we introduce some notation and describe how we alge-
braically represent points and curve segments. We first introduce some
notation.

3.1. Some notation.

Notation 4 (Sign conditions). For a finite set P C R[X}, ..., X] we will
call any element of {0,1,—1}” a sign condition on P. For a semi-algebraic
subset Z C R¥, we will denote by

R(o) ={x € Z |sign(P(x)) =o(P),P € P}.

Given a sign condition ¢ € {0,1, —1}7, we will denote by & the formula
defined by

a= N\ ®=0n N\ @Pz0n A (P<0),
o(P)=0 o(P)=1 o(P)=-1
and call & the weak sign condition associated to o.

Notation 5 (Closure). For any semi-algebraic subset S C R¥, we will denote
by clos(S) the closure of S (in the euclidean topology). It is a consequence
of the fact that the first-order theory of real closed fields admits quantifier-
elimination that clos(S) is again a semi-algebraic subset of R¥.
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Notation 6 (Projections to coordinate subspaces). We will denote by ; :
RF — R, the projection on to the i-th coordinate. More generally, for a
subset J C {1,...,k}, we denote by 7; : R* — R’, the projection on the
coordinates indexed by J. In particular, [ : R*¥ — R[N will denote the
projection onto the first ¢ coordinates.

For 1 <i<k ScRF Jc{l,.. . k}, and Z C R’, we will denote by
Sy =n,42Z)NS. If Z = {z} C R/, then we will write S, instead of S{z}-

3.2. Representations of points and curves. While the algorithms that
we describe have certain geometric underpinnings, it is important to re-
member that the points and curve segments that we compute need to be
represented algebraically, and hence we need to specify the precise represen-
tations that we use.

Moreover, we often fix a set of coordinates (say (Xi,...,X;)), tot =
(t1,...,t;) and call an algorithm recursively in the fiber {t} x R¥~". This
necessitates the introduction of triangular Thom encodings (which fixes
points), and all our representations of points and curve segments are in-
troduced relative to such triangular Thom encodings.

3.2.1. Thom encoding. The following definitions are adapted from [6].

We begin with the representations of elements of R (which are algebraic
over D) as roots of polynomials in D[X] with a given Thom encoding (cf.
Definition 4 below).

Definition 4 (Thom encoding, associated element of R). For P € R[X]| we
will denote by

Der(P) = ( PP, ... p(deg(P))>

the list of derivatives of P.

We will call a pair 7 = (P, ) with o € {0,1, =1}P*(") the Thom encoding
of t € R4 if ¢(P) =0 and o(P®) = sign(P¥(z)) for 0 < i < deg(P).

We will sometimes abuse notation and sometime call o the Thom encoding
of the root = of P. We will denote = by ass(7), and call ass(7) the element
of R associated to .

We will call deg(P) to be the degree of the Thom encoding T, and denote
it by deg(r).

As remarked before we will often need to fix a block of variables (X1, ..., X;)
tot = (t1,...,t;) € R?, and perform arithmetic operations in the ring D[t].
For this purpose we introduce the notion of a triangular Thom encoding
whose associated point is an element of R’

Definition 5 (Triangular Thom encoding and associated point). A trian-
gular Thom encoding T = (F, o) of size i is a tuple (triangular system) of
polynomials,

F:(flv"'afi)

Ttisa consequence of the well-known Thom’s lemma, that the Thom encoding uniquely
characterizes a root in R of a polynomial in D[X] (see for example, [6, Proposition 2.27]).
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where f; € R[X1,...,X;],1 < j <4, and a tuple of Thom encodings o =
(o1,...,04), with o; € {0,1,—1}Derxj(fj), such that for each 7,1 < j < 1,
there exists t; € R, such that ¢; is a root of the polynomial f;(t1,...,t—1,T})
with Thom encoding o;. We call (t1,...,t;) € R’ the point associated to T
and denote ass(7) = (t1,...,t).

Given a triangular Thom encoding

TH=((f1,--, fix1), (01, ..., 0i41)),

with ass(7) = (t1,...,tiy1), we will sometimes call the pair 7 = (fi11,0:41)
a Thom encoding over the triangular Thom encoding

T=((f1,....f:) (o1,...,00)).

In this case we will denote ¢;4; by ass(7) (generalizing Definition 4).

We will call maxi<j<; deg(F}) the degree of the triangular Thom encoding
T, and denote it by deg(T).

If 7 = (fit1,0i+1) is a Thom encoding over a triangular Thom encoding

T=((f1,--, i), (1,...,00)),

we will call deng_H(le), the degree of 7, and denote it by deg(7).

Finally, given a triangular Thom encoding 7 = (F, o) of size i, we denote
by 6(T), the formula

A A (s =),

1<j<i 0<h<degx (/)

Notation 7. Given a triangular Thom encoding 7 = (F, o) of size i (fol-
lowing the same notation as in Definition 5 above), we will denote by &,
the closed formula obtained from o by replacing each sign condition on the

derivatives by the corresponding weak inequality (i.e. replacing f;h) > 0 by
AP >0and £ <0by £ <0).
It is a consequence of Thom’s lemma [6] that:
Lemma 2. Given a triangular Thom encoding T = (F, o) of size i,
ass(T) = R(,RY).

Proof. Follows from [6, Proposition 5.39] (Generalized Thom’s Lemma). O
3.2.2. Real univariate representations. We will represent points in R using
real univariate representations [6, pp. 465] defined below. As explained
previously, we need to define this notion with a block of variables fixed by a
triangular Thom encoding. In this case the first ¢ coordinates of the point are

fixed by a triangular Thom encoding, and the real univariate representation
specifies the remaining k£ — ¢ coordinates.
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Definition 6 (Real univariate representations over a triangular Thom en-
coding and associated point). Let T = (F, o) be a triangular Thom encoding
of size 1,0 < i < k.

A real univariate representation u in RF over T is a pair (F, o) where
F=(f,90,9i+1,---,9%x) € R[Xq,..., X;, T, with f(ass(T),T), go(ass(T),T)
co-prime, and o a Thom encoding of a real root of f(ass(7),T) € R[T].

We denote by ass(u) € RF the point

(3.1) (ass(T), gi+1(ass(T), ass(7)) . gr(ass(T), ass(7))> € RE,
go(ass(T),ass(T)) go(ass(T),ass(7))
where 7 = (f, o) (notice that 7 is a Thom encoding over T), and call ass(u)
the point associated to u.
We will call the pair (D, D2), denoted deg(u), the degree of u, where
Dy = deg(T) and D3 is the maximum of degp(f), degr(g0),- - -, degr(gx)-

3.2.3. Curve segments. We describe semi-algebraic curve segments by real
univariate representations parametrized by one of the coordinates. As before
the following definition assumes a triangular Thom encoding fixing the first
1 coordinates.

Definition 7 (Curve segment representation over a triangular Thom encod-
ing). Let T = (F, o) be a triangular Thom encoding of size 7,0 <i < k — 1.
A curve segment representation v above T consists of:

(a) Thom encodings, 71 = 11(7y), 72 = T2(7), over T, with ass(71) < ass(72);
(b) a pair (u,p) = (u(7), p(7)), where
u = (f7 90, 9i+2, - - - 7gk) S R[Xla o 7X’L‘+17T]k7i+17
and
p e {0,1,—1}Perr(f)
such that for every z;;1 € (ass(71),ass(m2)) there exists a real root
t(zi+1) of f(ass(T),xi+1,T) with Thom encoding p and
flass(T), zit1,T), go(ass(T), xit1,T)

co-prime.

We will call (71, 72) the Thom encoding of the interval of definition of .

The semi-algebraic function h which maps x;+1 € (ass(71),ass(72)) to the
point of R* defined by

h(@iy1) =
<ass(T) 2oy, 90287, Ti, His1) gk(aSS(T)a%H,t(fﬂiH)))
T go(ass(T), w1, twign)) T golass(T), wisa, t(ign) )

is a continuous injective semi-algebraic function, and we will denote its image
by ass(7).

We will also call limy, | ass(ry)+ P(Zit1) (resp. lmg, | sass(ry)— M(Tit1))
(if it is defined) the left end-point (resp. right end-point) of .
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We will call the pair (Dy, D), denoted deg(7), the degree of v, where
Dy = deg(T).
and Dy is the maximum of deg(7 ), deg(72), and

degXHLT (f), degXiH,T (90)» degXHLT (Git2)s-- - dengl,T (gr)-

Remark 7. Note that in Definition 7, ass(7y) is a semi-algebraic set of dimen-
sion one, and if it is bounded over R, then its left and right endpoints are
well-defined.

Also note that if i = k — 1, and 71,75 are two Thom encodings over T
with ass(71) < ass(72), then if 7 is the curve segment representation over 7
defined by,

(’7) = T1,
n(y) = T,
(
(

1

u

’7) = ((T’l)a(ovl))a

then ass(y) = {ass(T)} x (ass(71(7)),ass(m2())). Thus, an open interval
whose end points are given by Thom encodings can be represented by the
curve segment representation given above and we will later use this fact
without mention.

4. PROOFS OF THEOREMS 2 AND 3

4.1. Outline of the proofs of Theorems 2 and 3. As in the case of
the zero-th homology in Section 1.4 we solve the problem in two steps (cf.
Steps 1 and 2 in the solution of Problem 1).

Step 1. In the first step, we develop an algorithm (see Algorithm 4 below)
that takes as input a P-closed formula ®, and produces as output
a description of a semi-algebraic subset I' C S = R(®P), having
dimension < 1, and such that the homomorphism i, ; : H;(I') —
H,;(S) induced by the inclusion ¢ : I' < S is surjective, and the
homomorphism i, : Ho(I') — Ho(S) is an isomorphism. This is
equivalent to Hy(S,I') = 0 for ¢ =0, 1.
This is the analog of Step 1 in the outline for the solution of
Problem 1 above. The main idea behind the construction of I' comes
from the classical construction of a roadmap of a semi-algebraic set
S that goes as follows (see also the description in [6, Chapter 15].
Step 1(a) We first compute curves parametrized by the first coor-
dinate, such that the set of curves so constructed meets,
for every x € R, each semi-algebraically connected com-
ponent of S, .

Step 1(b) The algorithm is then called recursively on a certain finite
set of “slices”, namely on sets of the form S,,, where x € R
varies over a certain finite set of distinguished values.
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The set of distinguished values includes values at which the connec-
tivity of the set S<, changes. Algorithm 4 follows a similar para-
digm. The main new feature is that the set of distinguished values
at which the algorithm makes recursive calls satisfies a stronger
property than in the case of roadmap algorithms (cf. Proposi-
tion 2 below). This stronger property of the distinguished val-
ues allows us to prove inductively (using a little homological al-
gebra via the Five Lemma [18, Proposition 1.1]), the surjectivity
of the map i1 : Hi(I') — Hy(S). The proof of the isomorphism
ix,0 : Ho(I') = Ho(S) is the same as in the classical construction of
a roadmap of a semi-algebraic set. It follows from the exact homol-
ogy sequence of the pair (S,T"), that Hy(S,I') = 0, for 0 < ¢ < 1.
The semi-algebraic set I' is initially described as a union of points
and curve segments (cf. Definitions 6 and 7)). Converting this de-
scription into an equivalent closed formula of complexity bounded
singly exponentially (cf. Algorithm 5 (Conversion of curve segment
representations to closed formulas)) yields a proof of Theorem 3.

Step 2. In this step we use the fact that the semi-algebraic set I' is semi-
algebraically homeomorphic to the geometric realization |G| of a fi-
nite graph G having singly exponential size, and it is a relatively easy
combinatorial task to choose a basis of simple cycles, I'1, ..., 'y, for
the cycle space of G. The images [I'1],...,[I'n] (here [I';] denotes
the image of H;(|I';|) in H;(S) under the homomorphism induced
by the inclusion |I';| < S), span H;(S) but are not necessarily lin-
early independent. We need to select a minimal spanning subset
from amongst the [I'1],...,[I'y]. For this purpose we use an algo-
rithm for replacing a given semi-algebraic set and a tuple of subsets
by a simplicial complex and a tuple of corresponding subcomplexes,
which are homologically ¢-equivalent (cf. Definition 9) for any fixed
¢, and which has singly exponentially bounded complexity [9] (cf.
Algorithm 6 below). We use this algorithm in the case ¢ = 1. This
is analogous to the usage of a roadmap algorithm for overcoming
the corresponding obstacle in the case of the zero-th homology (cf.
Step 2 in the outline for the solution of Problem 1).

Remark 8. We note here that while it is true that set I' and its subsets I'; are
one-dimensional semi-algebraic sets, in order to identify a basis amongst the
[[;] of H1(S), one needs to call Algorithm 6 with input which includes the
formula defining S (i.e. the computation involves the topology of S itself and
not just the one dimensional subsets I';). The inclusion map H; (I') — H; ()
while being surjective need not be injective, and hence one cannot hope to
compute a basis of Hy(S) by just computing a basis of H;(T").

Example 1. It might be helpful to consider the following concrete examples.
In each of the two examples the semi-algebraic set S is a real algebraic surface
in R? shown in red. In the first example, S is the unit sphere in R and in
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FIGURE 4. Sphere defined by X7 + X3+ X2 —1=0

FIGURE 5. Torus defined by (X? + X3 —1)? + X2 — 0.25 =0

the second example S C R? be topologically a torus defined by the equation
(X2 4+ X2 -1)2+ X2 -0.25.

The semi-algebraic curves computed in Step la are shown in blue, and the
slices where the recursive calls are made in Step 1b shown in green. In these
examples the subset I' is the union of the blue curves with the intersections
of the green planes with S.
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In the case of the sphere H;(S) = 0, while H;(I') = F. In the case of
the torus, Hy(S) = F2, while H;(I') = F®, and the inclusion map induces a
surjection Hi(I') — H;(S) in both cases.

We now describe in detail the two steps outlined above.

4.2. Implementing Step 1: computing surjection. In this section we
describe an algorithm which will accomplish Step 1 of the two-step algo-
rithm sketched out in Section 4.1. Recall that the goal of this step is to
obtain an algorithm with singly exponential complexity that computes a
description of a semi-algebraic subset I' having dimension at most one, such
that Hy(S,T') =0,¢ =0, 1.

As mentioned previously, we will follow the same approach of constructing
a roadmap of S (see for instance [6, Chapters 15 and 16]), however with one
key additional property.

4.2.1. Morse-type partition. In the (classical) construction of the roadmap,
one makes recursive calls to the roadmap constructing algorithm at certain
special fibers where the X;-coordinate is fixed to certain values (called “dis-
tinguished values” in [6]). These distinguished values include the values
¢ of the Xj-coordinate where the connectivity of the fiber S. can change.
This is sufficient for construction of roadmaps, since the main property of the
roadmap is related to connectivity (the intersection of the roadmap with any
semi-algebraically connected component of S should be semi-algebraically
connected). Since in this paper we are mainly concerned with the first
homology group, we need our set of distinguished values to satisfy a more
stringent property. Fortunately, there exists a singly exponential complexity
algorithm for this purpose which we are going to utilize.

The following algorithm (without a triangular Thom encoding in the in-
put) appears in [10, Algorithm 3]. However, as remarked before in our
applications, it will be necessary to fix a block of ¢ variables by a triangular
Thom encoding 7, and perform the computations over the ring Dlass(7)].
Each arithmetic operation in the ring D[ass(7)] costs D@ arithmetic op-
erations in D, where D = deg(T).

Algorithm 1 (Morse partition)

Input:

)
) A triangular Thom encoding 7 of size i,0 < i < k;
(c) A finite set P = {P1,...,Ps} C D[Xq,..., Xk|;

) A P-closed formula ®.
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Output:
An ordered tuple F = (711,...,7n) of Thom encodings over T, with
associated points t; < --- < ty, with —r < t1,tny < r, and such that for
each j,1 <j <N —1, and all ¢ € [t,t;41) the inclusion maps

Stass(T)}x(~o0,t;] > Stass(T)}x(00]
(resp. Sfass(T)}x[tj1,00) — Sfass(T)}x[t,00)) induce isomorphisms
Ha(Sass(1)yx(00,51) = Ha(Sass(1)}x (00,1
(resp. Ha(Sfass(T))x[tj11,00)) — Hi(Stass(7)}x[t,00)) )» Where
S =R(®) N clos(B(0,7)).

Procedure:

1: Call [10, Algorithm 3] (up to Step 13 and doing all computations
in the ring Dl[ass(7)]) twice with inputs, (—,r,P,®, X;;1) and
(=, P, ®,—X;+1), and let Fi, Fo be the set of Thom encodings
over T output (Part (a) of the output of [10, Algorithm 3]).

2: Using Algorithm 12.21 (Triangular Comparison of Roots) in [6] order
the Thom encodings in F; U F», and merge the two sets into one
ordered tuple F = (71,...,7n) such that

ass(m) < --- < ass(Tw).
3: Output F.
Complexity: The complexity of the algorithm is bounded by
DO (5q)0F),
where s = card(P), d = maxpep deg(P), and D = deg(T).
Moreover, deg(r;) < d9%) for 1 < ¢ < N, and the size of F is
bounded by (sd)°®).

We will need the following extra property of the output of Algorithm 1.

Proposition 1. For each j,1 < j < N—1, and allt € [tj,tj11] the inclusion
maps

Sfass(Tx{t} ™ Sfass(T)}x[ty.;11]
duce isomorphisms
H (Stass(myxty) = Ha(Stass(m )=t t411)5

where

S =R(®) N clos(B(0,7)).
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Proof. Let

A1 = Slass(T)}x(—o0,]s
Az = Slass(T)}x[t,00)s
Bi = Sfass(T)}x(=oo,tjs1]’
By = Sfass(T)}xlt;,00)-
Then, Ay, C By, h =1,2 and

AiNA, = S{ass(T)}X{t}’
BiNBy = Stass(T)}xlt; tj41]

and
AiUAy = BiUBy = Sass(T)'

Moreover the properties of the output of Algorithm 1 imply that the ho-
momorphisms H,(Ap) — H.(Bp),h = 1,2 induced by inclusions are isomor-
phisms. The Mayer-Vietoris exact sequence in homology (see for example,
[6, Theorem 6.35]) then yields the following commutative diagram with exact
rows and vertical homomorphisms induced by inclusion (where Ao (resp.
Bis) denotes A N Ay (resp. B; N By), and A'? (resp. B'2?) denotes A; U Ag
(resp. By U BQ)):

Hing1(A1) ® Hpg1(A2) —— Hpg1(A?) —— Hi(A12) —— Hin (A1) @ Hiw(A2) —— Hin(A'?)

| L] | |

Hig1(B1) ® Hpg1(B2) —— Hyg1(B'?) —— Hyn(Bi2) —— Hi(B1) ® Hyn (B2) —— Hi (B'?)

It follows from the fact that the homomorphisms H,(Ay) — H.(Br),h =
1,2 induced by inclusions are isomorphisms, and the fact that A2 = B!2
that all the vertical arrows other than the middle one are isomorphisms.
Hence, by the Five Lemma (see for example [29, Proposition 2.72]) the
middle arrow is also an isomorphism, thus proving the proposition. O

We will also need the following algorithm that takes as input a quantifier-
free formula ® and outputs » € D,r > 0, such that R(®) is homologically
equivalent to R(®) N clos(B(0,7)).

We first introduce some more notation.

Notation 8. For R a real closed field we denote by R (¢) the real closed
field of algebraic Puiseux series in € with coefficients in R. As a real closed
field R(e) is uniquely ordered, and this order extends the order on R. It
is the unique order in which ¢ > 0 and ¢ < x for every z € R,z > 0. In
particular, the subring D[e] C R(e) is ordered by: Y ,~,a;e' > 0 if and only
if a, > 0 where p = min{i | a; # 0}. -
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Notation 9. If R’ is a real closed extension of a real closed field R, and S C
R” is a semi-algebraic set defined by a first-order formula with coefficients
in R, then we will denote by ext(S,R’) € R’* the semi-algebraic subset of
R’* defined by the same formula °. Tt is well-known that ext(S,R’) does not
depend on the choice of the formula defining S [6, Proposition 2.87].

Notation 10. For P = a,7? + --- + a,7%, p > ¢q € D[T], apaq # 0, we
denote

-1
a?
d(P) = ((p+ 1)-2673 .
7 q
We will use the following lemma.

Lemma 3. With the same notation as in Notation 10, if x #0,z € R is a
root of P, then |z| > ¢'(P).

Proof. See Lemma 10.7 in [6]. O

Algorithm 2 (Big enough radius)

Input:
(a) A triangular Thom encoding 7 = (F, o) of size i,0 < i < k;
(b) a finite set P C D[X7,..., Xk|;
(¢) a P-closed formula ® such that R(®) is bounded.
Output:
Elements a,b € Dlass(7T)],a,b > 0, such that the inclusion map

R((I)) Rk)ass('T) N CIOS({a‘SS(T)} X Bk‘—i(Oa T)) - R((I)7 Rk)ass(T)u
where 7 = 7, induces an isomorphism

H., ((R((I)) N clos({ass(T)} X Bk—i(O’T)))ass(T)) — H, (R(q))ass(T)) :

Procedure:
L P« Y — (X2, +- +X7).
2 Py« (3(X2,+-+XP)—-1).
3: 5(—@/\(P1=0)/\(P2§0).
1: D + D[e] where D[e] C R{e) (cf. Notation 8).
5: Call Algorithm 1 (Morse partition) treating Y as the (i+1)-st coordinate,
with computations occurring in the domain ]5, and with input 7, PU
{P1, P}, ®.
: @ € DJass(7)][e] < the set of polynomials whose signs are determined
during the call to Algorithm 1 (Morse partition) in the previous
step.

[=2]

5Not to be confused with the homological functor Ext(-, ).
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7. ¢ =2+ mingeo ¢(Q),a,b € Dlass(T)] (cf. Notation 10).
8: 1< %.
9: Output a, b.
Complexity: The complexity of the algorithm is bounded by
DO (5q)0k),
where s = card(P), d = maxpep deg(P), and D = deg(T).

Proof of Correctness of Algorithm 2. Note that the formula ® defines a semi-

algebraic subset
1

S C R{e)" x clos(By_;(0, 2D
It follows from the conic structure theorem at infinity of semi-algebraic sets
(see for example [6, Proposition 5.49]) and the Tarski-Seidenberg transfer
principle (see for example [6, Theorem 2.80]) that ext(S, R{€))ass(7) 15 semi-

algebraically homeomorphic to §ass(7—), and hence

(4'1) H. (ext(S, R<£>)ass(7’)) = H. <§ass(T)> :

It follows from the way r is computed in the algorithm in Line 7 and
Lemma 3, that ¢ = % is strictly positive, and smaller than all strictly posi-
tive roots in R of the polynomials in Q (defined in Line 6 of the algorithm).
It now follows from the ordering of the ring D[ass(7)][e] (cf. Notation 8)
that all the branchings in the algorithm, each of which depend on the de-
termination of the sign of an element in D[ass(7)|[¢], remain the same if ¢
is substituted for e.

It now follows from the correctness of Algorithm 1 (Morse partition), that

the inclusion

S{aSS(T)}X(—OO:T] = S{ass(’T)}x(—oo% = Sass(T)

(with r as computed in the algorithm) induces an isomorphism
(4.2) H, (S{ass(T)}x(—oo,r]) — H, (Sass(T)) :

Moreover, for any ' > 0, g{ass(T)}X(—oo,r’] is semi-algebraically homeo-
morphic to ext(S,R(e)) N {ass(T)} x clos(Bk—_;(0,7')), and hence
(4.3)

H. (g{ass(T)}X(—oo,r]> = H, (ext(S,R{e)) N {ass(T)} x clos(By—_;(0,7))) .
Finally, for any closed semi-algebraic set X C RF,
(4.4) H.(X) = H.(ext(X,R(e))).
The isomorphisms (4.1), (4.2), (4.3), and (4.4) imply that
H. (Sass(7)) = Ha(S N {ass(T)} x clos(By—i(0,7))).
This proves the correctness of Algorithm 2. ([
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Complexity of Algorithm 2. The stated complexity follows from the com-
plexity of Algorithm 1 (Morse partition). O

4.2.2. Constructing curve segments. Another basic building block of our al-
gorithm is an algorithm that takes as input a closed formula defining a
semi-algebraic set, and produces as output a set of Thom encodings with
associated elements t; < --- < ty, and over each open interval (¢;,;11),
a set of semi-algebraic curves parametrized by the X; coordinate, with
t; < X1 < tjy1, described by curve segment representations, and for each
J, a set of points (described by real univariate presentations) whose first
coordinate equals t;, such that the set of left and right end points of the
curves are contained in the set of points. The main properties that these
points and curve segments need to satisfy are listed in Proposition 2, stated
after we describe the algorithm. Two remarks are in order.

Remark 9. First, note that this construction of curve segments parametrized
by one of the coordinates (in our case X ), satisfying properties very similar
to those listed in Proposition 2, is a first step in the classical construction
of roadmaps of semi-algebraic sets [17, 21, 22, 24, 4]. One important extra
property that we require is that the partition of the Xj-axis satisfies the
property of the output of Algorithm 1 (Morse partition), which is a little
stronger than what is needed for such a partition in the classical roadmap
constructions. We also ensure that distinct curves that we construct do not
intersect (cf. Proposition 2, Part (d)). In the classical roadmap construction,
this extra care is unnecessary.

Remark 10. For reasons explained previously, in the description of the algo-
rithm we will assume that the first i coordinates are fixed (by a triangular
Thom encoding), and the “first coordinate” in the description given in the
beginning of this subsection should be replaced by the “(i + 1)-st coordi-
nate”. This is in fact no different from the case of classical algorithms for
computing roadmaps, which also relies on recursive calls in which a first
block of i coordinates are fixed in each nested recursive with nesting depth
i.

Finally, we note that since the main steps of the following algorithm are
quite similar to the corresponding steps in several classical algorithms for
constructing roadmaps, we omit a few details, giving pointers to algorithms
in [6] to be used for implementing them in an efficient way.

Before formally describing the algorithm we give an outline to make it
easy to follow the various steps.

Outline of Algorithm 3.

(a) Algorithm 3 will be used in Algorithm 4 repeatedly after fixing some
of the first coordinates. Because of this the input to Algorithm 3 as-
sumes that we have fixed the first ¢ coordinates using a triangular Thom
encoding T.
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(b) In Lines 1-3 we ensure boundedness of the semi-algebraic set necessary
for the correctness of the algorithms called in the following steps.

(¢) In Line 4 we use Algorithm 1 to obtain a partition of the X, ;-axis sat-
isfying the conditions of Proposition 1. The end points of the segments
of the partitions are described using Thom encodings.

(d) In Line 5 we use Algorithm 16.12 from [6] to compute curve segments
(cf. Step la) retaining only those that are parametrized by X;ii (the
second step is accomplished in Line 6).

(e) Since it is important from the point of computing the first homology
groups, we need to ensure that that two different curve segments com-
puted in the prior step can only intersect at their endpoints. We ensure
this in Line 7 possibly increasing the cardinality of the set of curve
segments in the process. This update is accomplished in Line 8.

(f) In Line 9 the partition of the X;;i-cordinates axis is further refined by
adding the X;i-coordinates of all the end points of the curve segments
computed so far.

(g) In Lines 10-11 the set of curve segments is refined by ensuring each
curve segment is defined over one of the intervals of the partition of the
X;y1-coordinate axis obtained in the previous step.

(h) In Lines 12-18 the various incidences between endpoints and the curves
are computed and the output of the algorithm is assembled.

Algorithm 3 (Curve segments)

Input:
1. A triangular Thom encoding 7 = (F, o) of size i with 0 < i < k—1;
2. a finite set P C D[X7,..., Xk|;
3. a P-closed formula ® such that R(P) is bounded.
Output:
1. A finite tuple F = (71,...,7n) of Thom encodings over T, with

ty = ass(ry) < -+ <ty =ass(7n);

2. for each j,1 < j < N — 1, an indexing set I;, and a finite tuple
Ci = (Yn)ne 1; of curve segment representations over 7, such that
for each h € I;

() = 75, 72(V8) = Tt
(We will let Cyp =Cn41 = @),

3. for each j,1 < j < N a finite set U; of real univariate repre-
sentations over 7, such that for each u € Uj, the set of points
{ass(u) | u € U;} includes the set of end-points of the curve seg-
ment representations in Cj_1 U Cj;

4. mappings Lj, Rj_1 : I; — Uj, such that ass(L;(h)) is the left end-
point of vy, and ass(R;(vp)) is the right end-point of ~p,.
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Procedure:

1. Call Algorithm 2 (Big enough radius) with input (7, P, ®) and compute
a,b € Dlass(T)].

: P PULDXE + -+ XF) —a?}.

PP PALHXE 4+ XP) —a? <0).

: Call Algorithm 1 (Morse partition) with (7, r, P, ®) as input and obtain
a finite set F of Thom encodings over T as output.

: Call Algorithm 16.12 (Bounded Roadmap) in [6] with input P, ® and
the radius r, performing all computations over the ring D[ass(7)].

6: Retain from the output of the previous step, the set C of curve segment
representations over T parametrized by X;y1, and the set U of real
univariate representations over 7.

7. For each pair v,7" € C, compute a description of ass(y) N ass(y’) using
Algorithm 14.6 (Parametrized Sign Determination) in [6], and refine
the set C to have the property that ass(y) N ass(y’) = 0, for all
7,7 €C, v#9".

8: Augment the set U to also contain the set of real univariate representa-
tions over 7 whose associated points are the end points of the curve
segments in C.

: Compute Thom encodings over T whose associated values are the X, 1-
coordinates of the asssociated points of U, and add these to F.

10: Using Algorithm 12.21 (Triangular Comparison of Roots) in [6] order

the Thom encodings in F, and let the associated values be t; =
ass(11),...,tny = ass(7n).

S I V)

[

NeJ

F <+ (T1,...,TN)-

11: Further refine C, such that for each v € C, there exists 7,1 < j < N,
such that

T1(y) = 75, 72(7) = 2.

12: Augment the set U to include the left and the right end points of each

v eC.
13: for each j,1 <j <N —-1do
14: Let I; denote a set indexing the set of curve segment representations

v € C, such that 71(vy) = 75, 72(y) = 7j4+1. For h € I;, we denote
the corresponding curve segment representation in C by vp,.

15: Cj — (’}/h)hejj.

16: Uj  {u el | mii(ass(u)) = ass(;)}.

17: Compute the maps L; : I; — U;,R; : I; — Ujy1, such that
ass(L;(h)) is the left end-point of v, and ass(R;(h)) is the right
endpoint of .

18: end for

19: Output (.7:, (Ij, Cj, Z/[j, Lj, Rj)je[l,N}) .
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Complexity: The complexity of the algorithm is bounded by
DO (sq)OUk=D*) " where s = card(P),d = maxpep deg(P),
and D = deg(T).

The degrees of the curve segment representations in the various Cj,
and the degrees of the real univariate representations in U; are both
bounded by (D, d°* =), Finally the sum of the cardinalities

N

> (card(C)) + card(U;))

j=1
is bounded by (sd)?*=7),

Proposition 2. The output of Algorithm 3 (Curve segments) satisfies the

following:

(a) For each j, 1 < j < N —1, and all t € [ass(7}),ass(Tj+1)) the inclusion
maps

Stass(T)}x (—ooass(rj)] < Oass(T)}x(—o0,t]>

S{ass(T)}X{t} — S{ass(T)}X[ass(Tj)7ass(Tj+1)a
are homological equivalences;

(b) for each h € I, ass(yp) C S = R(P);

(c) for each t € (ass(7;),ass(7j+1)) and each semi-algebraically connected
component C of Sy, where y = (ass(T),t) € R, there exists h € I;
such that ass(yg)y € C;

(d) if hi, ho € Ij with hy # ha, then ass(yp,) Nass(vh,) = 0.

Proof. Part (a) follows from the property of the output of Algorithm 1
(Morse partition) called in Line 4 (cf. Proposition 1).

Parts (b) and (c) follow from the fact that the output of Algorithm 16.26
(General Roadmap) in [6] which is called in Line 5 describes a roadmap of
the semi-algebraic set R(®).

Finally, Part (d) is ensured in Line 7. O

Complexity analysis of Algorithm 3. The stated complexity follows from the
complexity bounds of the various algorithms used in the algorithm, keeping
in mind that each arithmetic operation in the ring D[ass(7)] costs DO
arithmetic operations in the ring D. O

Remark 11. Note that in the step described in Line 5 it is sufficient to
compute curve segment representations -y over 7T, such that for each y =
(ass(T,t) € R! and each semi-algebraically connected component C' of Sy,
there is a curve segment representation v, such that ass(y)y, NC # (). Calling
Algorithm 16.12 (Bounded Roadmap) in [6] for this purpose is convenient
but an overkill. The recursive calls in constructing a full roadmap leads to
the quadratic dependence in the exponent - however, we do not need the



28 SAUGATA BASU AND SARAH PERCIVAL

parts of the roadmap in the various slices, but retain only the curve segments
parametrized by X;1.

One could alternatively achieve the same goal by other algorithms having
smaller complexity (namely, DO (sd)©* =) instead of DO (sd)O(k=)*),
For example, it is possible to modify Algorithm 14.1 (Block Elimination)
in [6] using as parameter the coordinate X;i; for this purpose. Doing so
would reduce the total complexity of the algorithm to D (sd)O*=%) in-
stead of DO (sd)O(k=)*) ag stated in the complexity bound. However,
describing the modifications needed to Algorithm 14.1 (Block Elimination)
in [6] would complicate the exposition and moreover will not change the as-
ymptotic complexity of Algorithm 4 (Computing one-dimensional subset),
which is the only place where Algorithm 3 is used. So we chose not to make
this modification.

We are now in a position to describe our algorithm which will complete
Step 1 of our proof of Theorem 2.
We first give an outline before describing the algorithm formally.

Outline of Algorithm 4.

(a) Because of the recursive structure of the algorithm where we make re-
cursive calls after fixing some of the first coordinates, the input assumes
that we have fixed the first ¢ coordinates using a triangular Thom en-
coding 7. The “first coordinate” referred to in Step la refers to the
(7 + 1)-st coordinate in Algorithm 4.

(b) The output consists of (over the same triangular Thom encoding 7)) de-
scriptions of curve segments and their end points and is self-explanatory.

(c) Lines 1 - 22 deal with the case of ambient dimension one. This is the
base case of the recursion.

(d) In Line 23 the algorithm computes the curve segments. This corresponds
to Step la in the outline given in Section 4.1.

(e) In Line 27 the algorithm makes the recursive calls. This corresponds to
Step 1b in the outline given in Section 4.1.

(f) In Lines 29-33 the various curve segments and points are collected to-
gether for the output.

Algorithm 4 (Computing one-dimensional subset)

Input:

A triangular Thom encoding 7 = (F, o) of size i;

a finite set P C D[X7,..., Xk;

a P-closed formula ® such that R(®) is bounded;

a finite set M of real univariate representations over 7, whose set
of associated points, M, is contained in R(®).

==
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Output:
1. a finite set U of real univariate representations over 7T ;
2. a finite indexing set I and a finite tuple (v;)jer where each v; a
curve segment representation over T ;
3. mappings L, R : I — U, defined by ass(L(j)) is the left endpoint of
4, and ass(R(j)) is the right endpoint of ;.
Procedure:
1: if k —i=1 then
2: for each u = {(f, g0, 9%),0} € M do

3: Let R, € R[X)] be the Sylvester resultant (see for example [6,
pp. 106]) with respect to the variable T' of the polynomials
[ Xkgo — gk

4: Use Algorithm 10.11 (Sign Determination) [6, pp. 390] to com-
pute a Thom encoding 7, = (Ry,0,) over T, such that
ass(1,) = m(ass(u)).

5: P« PU{R,}.

6: end for

7: Use Algorithm 12.21 (Triangular Comparison of Roots) in [6, pp.

496] repeatedly with inputs 7" and pairs of polynomials in P, and
order the real roots of the polynomials P(ass(7T), Xx), P € P,
and hence obtain a partition of R into points and open intervals,
and identify those points and open intervals which are contained

in R((I), Rk)ass(T) .

8: U 0.

9: I+ 0.

10: j+0.

11: for each Thom encoding (P,o) over 7 obtained in Line 4 whose
associated point is in S = R(®P) do

12: U+—UU{((P,Xg,1),0)}.

13: end for

14: for each open interval with end-points described by the Thom en-

codings 71 = ((Pl,Xk,l),O'l),TQ = ((PQ,Xk,l),O'Q) € U with
ass(1) < ass(72) such that (ass(1),ass(m2)) C mx(R(®,RF)) do

15: I+ Tu{j}.
16: j—J+1
17: vj < 7, where 7 is the curve segment representation over 7
defined by:
7—1(’7) = Ti,
T2(y) = T
u(y) = ((7,1),(0,1)).
18: L(]) “— Tl(’)/j).
19: R(j) < 72(7))-

20: end for
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21: Output U, (v;);ecr, and the mappings L, R : [ — U.

22: end if

23:  Use Algorithm 3 (Curve segments) with input (7, P, ®) to compute:

(a) A finite tuple F = (71,...,7n) of Thom encodings over 7, with
ass(71) < -+ < ass(Tn);

(b) foreach j,1 < j < N—1, afinite tuple C; of curve segment represen-
tations over 7 such that for each v € C;, 71 (y) = 75, 72(7) = Tj41);

(c) for each j,1 < j < N a finite set U; of real univariate repre-
sentations over 7, such that for each u € U;, the set of points
{ass(u) | uw € U;} is precisely the set of end-points of the curve
segments in Cj_1 UC; (with the convention that Cy = 0);

(d) mappings Lj, Rj_1 : C; = U;, such that ass(L;(v)) is the left end-
point of v, and ass(R;(7)) is the right end-point of .

24: for 7 = (f,0) € F do

25: M; —{ue MUU | mit1(ass(u)) = ass(7)}.

26: Tr <~ ((F,f),(0,0))).

27: Call Algorithm 4 (Computing one-dimensional subset) recursively
with input (7, P, ®, M) and obtain a set of U, of real univariate
representations over 7T, an indexing set I, a tuple (v;);cr. of
curve segment representations, and mappings L., R : I; — U-.
(Note that for each i € I,as5(7i) C Sass(r)-)

28: end for

29: I < U, crIr.

30: U < U erUs.

31: L + UlgjgN L;j UU,cr L. (Union of disjoint mappings means the
disjoint union of their graphs.)

32: R« UlSjSN Rj U UTE]-' R,.

33: Output U, I, (v})jer, L, R.

Complexity: Suppose that deg(7) = d°*). The complexity of the algo-
rithm is bounded by (sd)°**), where s = card(P),d = maxpep.
Moreover, card(l) = (sd)o((k_i)Q), and the degrees of the elements
of U and v;,j € I are bounded by (dOK) @O k),

Proposition 3. The output of Algorithm j (Computing one-dimensional

subset) has the following properties. Let I' = |J;; clos(ass(v;)), and S =

R((Dv Rk)ass(’r) :

(a) M CT;

(b) T CS;

(c) dim(T") < 1;

(d) the homomorphism i : Ho(I') — Ho(S) induced by the inclusion map
1: ' — S is an isomorphism;

(e) the homomorphism i, 1 : Hi(I') — Hy(S) induced by the inclusion map
1: ' — S is an epimorphism.
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Proof. The property in Part (a) is ensured in Lines 7 and 25. Part (b)
follows from the property of the output of Algorithm 3 (Curve segments)
(called in Line 23) given in Part (b) of Proposition 2.

Part (c) is clear since I" is by definition the finite union

U clos(ass(7;))

jel
and dimass(y;) = 1 for each j € I, and taking the closure does not increase
the dimension of a semi-algebraic set.

It is a standard exercise (see for example proof of Proposition 15.7 in
[6]) to prove that the semi-algebraic set I' satisfies the properties of being
roadmap for S = R(®) (see [6, Chapter 15]), which implies Part (d).

We now prove Part (e).

The proof is by induction on k — 3.

Base case: k—i = 1. In this case the claim is clear since H; (I') = Hy(S) =
0.

Suppose the claim is true for all smaller values of k — ¢. Notice that
Algorithm 4 (Computing one-dimensional subset) is called recursively in
Line 27. In these calls the triangular Thom encoding 7,7 € F in the input
is of size ¢ + 1, while the number of variables is still k. We have also have,

I'; := clos U ass(’yj) = FaSS(T)‘
jel,

Thus, using the induction hypothesis for this recursive call (since k—(i+1) <
k — i), we obtain that the restriction of the inclusion I' — S to I'; induces
a surjection

(45) H1<FT) — Hl(Sass(T))‘

Denote for 1 < j < N, t; = w1 (ass(75)).

ay = ti,

t; +1; .
aj — JTJH,lgj<N,
ay = tpn.

We prove the following claims.

Claim 1. For each 7,0 < j < N, the inclusion maps induce the following
isomorphisms.

(4.6) H*(S(foo,tj]) — H*(S(,oo’aj]),
(4.7) HL (St;) = Ha(S[a;_1,05))
(4.8) Ha (T (Coo,t;) = HaT(Zo0,a5))s
(4.9) Ho(Dy,) = Ho(T,a):
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Proof. Parts (4.6) and (4.7) are consequences of the property of the output
of Algorithm 3 (Curve segments) (which is called in Line 23) given in Part
(a) of Proposition 2.

Parts (4.8) and (4.9) follow from the fact that there is an easy to de-
fine retraction (along the X;ij-coordinate) of I'(_oq;) t0 I'(_oo ;) (resp.
Lia;_1.a,) tO I't,) making use of the fact that distinct curve segments over
the open intervals (¢;_1,t¢;) do not intersect which is ensured by Part (d) of
Proposition 2. ([l

Claim 2. Let a,b € {ag,...,an}, with a < b. The inclusion map T' < S
induces isomorphisms
Ho(F'(~00,a) = Ho(S(c0,a))>
Ho(Lla3)) — Ho(S[a,))
Proof. This follows from the fact that I'_, , (resp. T',y) satisfy the

roadmap property with respect to the set S( o) (resp. Sjg)). The proof of
this fact is standard and omitted. ([

Using the claims proved above, we are now going to prove using induction
on j, that the inclusion map I' — S induces an isomorphism,

H1(F(0,a;) = H1(S(00,a,1)-

The claim is true for j = 0 by the global induction hypothesis on i, and
hence is also true for j = 1 using using (4.6) and (4.8).

We prove it for j > 1 by induction. Suppose the claim holds until j — 1.

Hence we have isomorphism

H; (F(oo,ajfﬂ) — H (S(Oovajfl])

induced by inclusion.
Observe that for any set X C R¥,

Keoogy] = X(ooa;1)Y Xy 1,050
Xajy = X(—Oovaj 1]ﬁX[aj 17%]X%‘—1
Let
A1 = Twoa)s
Ay = Ty
Bi = S(scaj]s
By = S, 1,4

Also, let Ao (resp. Bia) denote A1 N Ay (resp. By N Bs), and A'? (resp.
B'?) denote A; U Ay (resp. By U By).

The Mayer-Vietoris exact sequence (see for example [6, Theorem 6.35])
yields the following commutative diagrams with exact rows and vertical
arrows induced by various restrictions of the inclusion I' — §.
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Hi(Aj2) —— Hi (A1) ® Hi(A2) —— H1(A12) Ho(Aq2) Ho(A1) @ Ho(A2)
J{a J{blﬂabg Jc J{d lelﬂaez
Hi(Bi2) — Hi(B1) ® Hi(B2) — Hy(B'?) Ho(B12) Ho(B1) ® Ho(B2)

By induction hypothesis on j, the map by : H; (A1) — H;i(By) is surjective.
Using (4.5), (4.7), and (4.9) we have that the map by : Hi(A2) — H;(Bs) is
surjective. Hence the map b = by @ by is surjective.

Using Proposition 2 (¢) we have that map d is surjective.

Finally, using Claim 2, we have that the maps e; and ey are both isomor-
phisms, and hence so is e. In particular, e is injective.

It follows from the above and (one-half of) the Five Lemma (see for ex-
ample [18, Proposition 1.1, Part (2)], that ¢ is a surjection. O

Complezity analysis of Algorithm /4. It follows from the complexity bounds
on the algorithms used that all the steps before the recursive call in Line 27
has complexity bounded by (sd)o((k*i)Q) in terms of the number of arithmetic
operations in Dlass(7)]. Hence, the number of arithmetic operations in D
for these steps is bounded by dO®*9)(sd)O((k=)?),

There are (sd)?*~9) recursive calls. For each of the recursive calls, the
new triangular Thom encoding is of size i+1, and its degree is bounded again
by d°®). An easy inductive argument now implies the stated complexity
bounds. O

4.3. Implementing Step 2: proofs of Theorems 2 and 3. We will now
prove Theorem 2 by describing an algorithm (cf. Algorithm 7 below) for
computing a semi-algebraic basis of Hi(R(®)), for any given closed formula
®. Theorem 2 will then follow from the proof of correctness of this algorithm
and its complexity analysis.

4.3.1. Outline of Algorithm 7. Our main tool will be Algorithm 4 (Com-
puting one-dimensional subset) that produces a one-dimensional subset I" of
S = R(®P), such that the image of Hy(I") in H;(S) under the linear map in-
duced by inclusion is surjective. The semi-algebraic set I' has an underlying
structure of a finite graph G, and I is semi-algebraically homeomorphic to
the geometric realization |G| of G. Using a combinatorial graph-theoretic
algorithm it is easy to compute a basis of the cycle space, Z(G) = H;(T'),
consisting of simple cycles (say) C1,...,Cxn. Each such simple cycle C;
is a subgraph of G, and its geometric realization |C;| C |G| = T" is semi-
algebraically homeomorphic to S*.

We will denote by [C;] a non-zero element of the image of H;i(|C;|) in
H;(S) if this image is non-zero (and let [C;] = 0 otherwise). However,
the set {[C1],...,[Cn]} need not be linearly independent but thanks to the
surjectivity of the map Hy(I') — Hi(S), they span H;(S). We identify a
minimal subset of {[C}],...,[Cn]} which spans H;(S) (i.e. form a basis of
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H;(S)). The corresponding subsets of I' then constitutes a semi-algebraic
basis of Hi(S). In order to achieve this last step effectively and with singly
exponential complexity, we use a recent result proved in [9], giving an algo-
rithm (see Algorithm 6 below for input, output and complexity) with singly
exponential complexity for replacing a tuple of given closed and bounded
semi-algebraic subsets of R¥, by a simplicial complex A which is homolog-
ically 1-equivalent to the given tuple of sets (cf. Definition 11). This sim-
plicial complex is of singly exponential bounded size, and the various |C;|’s
can be identified with subcomplexes of this complex. So to find a basis from
amongst the elements [C],...,[Cn] becomes a problem of ordinary linear
algebra which can be solved with complexity bounded by a polynomial in
the size of the simplicial complex A.

4.3.2. Conwversion of curve segment representations to closed formulas. We
will need the following algorithm. It is needed in order to address the fol-
lowing technical issue.

The output of Algorithm 4 (Computing one-dimensional subset) contains
amongst other objects, a set of curve segment representations. We will need
to convert these descriptions into closed formulas describing the closure of
the associated curves in order to use Algorithm 6 which only accepts such
descriptions in the input.

Note that the algorithmic problem of computing a closed formula describ-
ing the closure of a given semi-algebraic set described by a quantifier-free
(but not necessarily closed-) formula is far from being easy, and no algo-
rithm with singly exponential complexity is known for solving this problem
in general . (A doubly exponential algorithm is known, using the notion of
a stratifying family [6, Chapter 5]). However, fortunately for us the curve
segment representations describing the associated curve have a special struc-
ture. In particular, it is clear that given a curve segment representation -,
it is algorithmically quite simple to obtain a description of the the image,
m1,53(ass()), of the projection of ass(7), to each of the coordinate sub-
spaces spanned by (X1, X;),2 < j < k. More precisely, suppose that v is
the curve segment representation with

U(’)/) = ((f?g(b s agk)70—)7
where f,g; € D[X1,T), and o € {0,1, —=1}P'7(f). Then, ass(v) is defined by

ass(y) =
ga(w1,t(x1)) gr (71, (1))
{(ajl, @ tm) go(m’t(m))) ass(11(y)) < z1 < ass(v'g(fy))} ,

where for each z1,ass(71(y)) < z1 < ass(m(y)), and t(z1) is a root of
f(x1,T) with Thom encoding o.

6Note that without the requirement that the output formula be closed it is straight-
forward to obtain a singly exponential complexity algorithm via quantifier elimination.
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Now for each j,2 < j <k, the projection of ass(y) to the (X1, X;)-plane
is described by

m15p(ass(y) = {(ml mtm)))

" go(z1, (1))
Using an effective quantifier elimination (eliminating 7), one can ob-
tain from the above description a quantifier-free formula with free variables
X1, X whose realization is equal to 7y jy(ass(7)).
We will use the following claim.

ass(ti(7)) < z1 < ass(Tg(’y))} .

Claim 3. Suppose that 7y is a curve segment representation and ass(7y) is
bounded, then

clos(ass(y)) = ﬂ 7T{_11’j}((3108(7'r{17j}(aSS(’}’)))).

2<5<k
Proof of Claim 3. First, suppose that x € clos(ass(y)). Then we have that

x € m (a4 (ass(7)))

for all j. It is a general fact from topology that for any continuous function
f and set A, f(clos(A4)) C clos(f(A)). Hence,

Ty (T ass() € wly (clos(r gy (ass()))

for all j. Therefore x € [Ny« W{_llj}(CIOS(TF{Lj}(aSS(’}/)))).
Now, suppose that

x=(ennan) € () w (os(mpy (ass(1)
2<j<k
and let x1 ; = myy jy(x) for j =2,... k.

Since, x1; € clos(myy ;(ass(7))), using the semi-algebraic curve selec-
tion lemma (see for example [6, Theorem 3.19]) there exists t;o > 0, such
that there exists a semi-algebraic curve, v; = (v14,724) : [0,¢j0] : R?,
such that v; j,72,s are continuous semi-algebraic functions, 7v;(0) = x j,
and v((0,t50]) C 71 53(ass(y)). Moreover, clearly since my; jy(ass(y)) is a
curve parametrized by the X; coordinate, ~; ; is not a constant function,
and without loss of generality (choosing t;¢ smaller if necessary) we can

assume that 7 ; is a strictly increasing function. For j = 2,...,k, let
fj : [1'1,’)/17]'(15]”0)] — R be defined by

Fi(X1) = 72,5 (1) (X1)).

Taking 2 = mina<j<j 71,j(¢,0), we obtain a semi-algebraic curve 5 : [zq, z}] —
ass(7), defined by

Y(X1) = (X1, f2(X1), -, fr(X1)).
It is easy to check that
5(931) =X
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and
;? : (xlaxll] C ass('y),

which proves that x € clos(ass(7)). O

Using Claim 3 we reduce the problem of computing a closed description
of clos(ass(7)) to the problem of computing the closures of 7y ;1(ass(7)),
2 < j <k, and each of the latter is a 2-dimensional problems which can be
solved within our allowed complexity bound using the doubly exponential
algorithm referred to previously.

Finally, as in the case of the other algorithms in this paper we include in
the input a triangular Thom encoding 7 that fixes the first i-coordinates,
and the curve segment representations in the input is over 7. The com-
putations in the algorithm takes place in the ring D[ass(7)], and in the
description given above, the first coordinate is replaced by the (i + 1)-st
coordinate.

Algorithm 5 (Conversion of curve segment representations to closed for-
mulas)

Input:
1. A triangular Thom encoding 7 = (F, o) of size i,0 < i < k;
2. a curve segment representation vy over 7.
Output:
1. A finite set of polynomials Q C D[ass(7][Xit+1,- .., Xkl;
2. A O-closed formula ¥ such that

R(\I’, Rk)ass(T) = ClOS(aSS(’}/)).

Procedure:

1o u < U(’)/) = ((fv 90, gi+25 - - - agk)a 0)'

2: for j=i+2,...,k do

3: Using Algorithm 14.5 (Quantifier Elimination) in [6, pp. 549] with
the formula

ADF=0n A\ (sign(f?) = o(fM) A (Xjg0 — g5 = 0),
1<h<degr(f)

as input, and obtain a éj-formula quantifier-free formula q~5j, for
some Q; C Dlass(7T)][X;+1, X;] describing such that R(¢;) =
7T[1,i+1]u{j}(ass(7))-
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4: Compute a stratifying family of polynomials (see [6, Proposition 5.40]
for definition), Q; C Dass(T)][Xit1, X;] containing Q;.

5: Using Algorithm 13.1 (Computing realizable sign conditions) in [6,
pp. 511] determine the set ¥; C {0,1, —1}9 of realizable sign
conditions of Q;.

6 Determine ©; C %; such that mp ;4105 (ass(v)) = UHE@J_ R(O).

7 \I/j — \/Ge@j 0.

8: end for

9: 9« FU Ui+2§j§k Qj.

10: U0 AN jacj<r ¥j (see Notation 7 for definition of o).

11: Output Q, V.

Complexity: The complexity of the algorithm is bounded by (k —
i)Dlo(Z)Dzo(l), where Dy = deg(T), and Dy = deg(y). Moreover,
card(Q) is bounded by i + (k — i)DQO(l), and the degrees of the
polynomials in Q are bounded by max (D, D2O (1)).

Proof of Correctness of Algorithm 5. The algorithm reduces the problem to
obtaining closed formulas describing the closures of the various m;11 ;(ass(y)),
i+2 < j <k (cf. Line 2). After obtaining the descriptions of the vari-
ous ;41,5 (ass(7y)) using effective quantifier elimination algorithm (Algorithm
14.5 (Quantifier Elimination) in [6, pp. 549] called in Line 3), closed for-
mulas are obtained describing the closure by computing a stratifying family
(cf. 4) in each case. The important property of the stratifying families Q;
is that the closures, clos(m;+1 j(ass(y))) are unions of realizations of a set
of weak sign conditions on Q;. This is a consequence of the generalized
Thom’s Lemma (see [6, Proposition 5.39]). Finally, the set of weak sign
conditions on Q; whose realizations are contained in clos(m;;1,;(ass(7)))
computed using Algorithm 13.1 (Computing realizable sign conditions) in
[6, pp. 511] in Line 5. The disjunction of these weak formulas gives a
closed formula, ¥; describing clos(m;41,j(ass(7))) (cf. Line 7). Now Claim 3
together with Lemma 2 (and noting that the conjunction of a finite set of
closed formulas is also closed), imply that the conjunction, ¥, of the formulas
V;,j=1i42,...,k along with the closed formula & (Notation 7), describes
clos(ass(7y)) (cf. Line 10). This proves the correctness of the algorithm. O

Complexity analysis of Algorithm 5. As before, each arithmetic operation in
Dlass(7)] costs D?(l) arithmetic operations in D (where Dy = deg(T)).
There are (k — i) two dimensional projections (cf. Line 2). The complexity
of each of these two-dimensional sub-problems (measured in terms of number

of operations in D[ass(7)]) is bounded by DQO(U, where Dy = deg(v), and
this follows from the complexity bounds on the various algorithms used in
the different steps (namely, Algorithm 14.5 (Quantifier Elimination) in [6,
pp. 549] in Line 3, algorithm for computing stratifying families in 4, and
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Algorithm 13.1 (Computing realizable sign conditions) in [6, pp. 511] in
Line 5). Note that these algorithms are used with the number of variables
equal to 2, and hence the complexity of each call (measured in terms of
arithmetic operations in D[ass(7)]) are polynomially bounded in D;. This
completes the complexity analysis of Algorithm 3. U

4.3.3. Efficient algorithm for computing a simplicial replacement. As ex-
plained in the outline above, in order to obtain a semi-algebraic basis we
will use an algorithm described in [9]. We reproduce below for the reader’s
benefit the input, output and complexity of this algorithm. But before stat-
ing these we need some preliminary definitions.

Definition 8 (Homological ¢-equivalence). We say that a map f: X — Y
between two topological spaces is a homological £-equivalence if the induced
homomorphisms between the homology groups f. : H;(X) — H;(Y) are
isomorphisms for 0 < i < /.

The relation of homological ¢-equivalence as defined above is not an equiv-
alence relation since it is not symmetric. In order to make it symmetric one
needs to “formally invert” f-equivalences.

Definition 9 (Homologically f-equivalent). We will say that X is homo-
logically (-equivalent to Y (denoted X ~, Y), if and only if there exists
spaces, X = Xg, X1,...,X, =Y and homological f-equivalences f1,..., fn
as shown below:

X, X3 .. . X, 1
YN N N
Xo X5 e e X,

It is clear that ~ is an equivalence relation.

Definition 10 (Diagrams of topological spaces). A diagram of topological
spaces is a functor, X : J — Top, from a small category J to Top.

We extend Definition 8 to diagrams of topological spaces. We denote by
Top the category of topological spaces.

Definition 11 (Homological ¢-equivalence between diagrams of topological
spaces). Let J be a small category, and X,Y : J — Top be two functors.

We will say that a diagram X : J — Top is homologically ¢-equivalent to
the diagram Y : J — Top (denoted as before by X ~; Y), if and only if
there exists diagrams X = Xy, X1,...,X, =Y : J — Top and homological
f-equivalences f1,..., f, as shown below:

X X5 X, 1
NN TN
X, X X,
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It is clear that ~y is an equivalence relation.

Notation 11 (Diagram of various unions of a finite number of subspaces).
Let J be a finite set, A a topological space, and A = (4;);jes a tuple of
subspaces of A indexed by J.

For any subset J' C J, we denote

U
AJ - U A]’/.
jleJl

We consider 27 as a category whose objects are elements of 27, and whose
only morphisms are given by:

2 (I, I = BifJ ¢ J",
27T = {upm}itJ CcJ.
We denote by Simp”(A) : 2/ — Top the functor (or the diagram) defined
b
' Simp” (A)(J') = A7, J € 27,
and Simp”(A)(zyr ) is the inclusion map A7 — A7".
Fo?atié)n 12. For N € Z we denote by [n] = {0,...,N}. In particular,
-1 =10.

Armed with the definition of homological equivalence of diagrams as de-
fined above we are finally in a position to state the specifications of the
simplicial replacement algorithm described in [9)].

Algorithm 6 (Simplicial replacement)

Input:
1. A finite set of polynomials P C D[ X7, ..., Xg];
2. an integer N > 0, and for each i € [N], a P-closed formula ¢;;
3. £,0< < k.
Output:
A simplicial complex A and for each I C [N] a subcomplex A; C A
such that there is a diagrammatic homological /-equivalence

(I = Aq)rcin 2, Simp™N (R(®)),
where ®(i) = ¢;,i € [N].

Complexity: The complexity of the algorithm is bounded by (sd)
where s = card(P) and d = maxpecp deg(P).

kO0)
9

Notation 13. A finite (directed) graph G is a tuple (V(G), E(G), head, tail),
where V(G), E(G) are finite sets and head, tail : E(G) — V(G) are maps.
To every finite graph G there is an one-dimensional regular cell complex
associated naturally to it. We will denote this cell complex by |G|.
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4.3.4. Algorithm for computing basis of Hi(S). We are now in a position
to describe the algorithm that will accomplish Step 2 of our algorithm for
computing a semi-algebraic basis of the first homology of a given closed
semi-algebraic set.

We first give an outline of the algorithm followed by a formal description.

Outline of Algorithm 7.

(a) We first replace the given closed semi-algebraic set by one that is closed
and bounded and which is homologically equivalent to the given set.
This is accomplished in Lines 1-3 using Algorithm 2 (Big enough radius).

(b) We then use Algorithm 4 (Computing one-dimensional subset) to com-
pute a one-dimensional subset I' (described in terms of curve-segment
representations and real univariate representations) having the property
that Hy(S,I') = 0 for ¢ = 0,1, where S is the given semi-algebraic set.
This is accomplished in Line 4.

(¢) We then use Algorithm 5 (Conversion of curve segment representations
to closed formulas) in Line 5 to convert the description of I' obtained in
the last step into a formula.

(d) In Line 8, we extract the underlying structure of a combinatorial graph
G from I' and compute a set of simple cycles which spans the cycle space
of G.

(e) Finally in Lines 12-13, we use Algorithm 6 (Simplicial replacement) and
Gauss-Jordan elimination to compute a minimal subset of the simple
cycles computed in the previous step which span H;(.S), and these form
a semi-algebraic basis of H;(S5).

Algorithm 7 (Computing homology basis)

Input:
1. a finite set P C D[X1,..., Xk|;
2. a P-closed formula ®.
Output:
1. a finite set Q@ C D[X1,..., X;
2. a finite tuple (¥;);es, in which each ¥; is a Q-formula, such that
the realizations I'; = R(¥;, R¥) have the following properties:
(a) For each j € J, T'; C S and T'; is semi-algebraically homeo-
morphic to S
(b) the inclusion map I'; — S induces an injective map F =
H;(T'j) — Hq(S), whose image we denote by [I';];
(c) the tuple ([I';])jes forms a basis of Hi(.S).
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Procedure:

1: Use Algorithm 2 (Big enough radius) with input (P, ®) and let r = ¢ >
0,a,b € D be the output.

2 P+ PU{P(X?+ -+ X}E) —a*}.

3@+ OADH(XE+--+XP)—a® <0).

4: Call Algorithm 4 (Computing one-dimensional subset) with input (P, ®)
to obtain

(a) a finite set U of real univariate representations over 7;

(b) a finite indexing set I and a finite tuple (v;)jer where each v; a
curve segment representation over 7T ;

(c) mappings L, R : I — U, defined by ass(L(j)) is the left endpoint of
74, and ass(R(j)) is the right endpoint of ;.

5. Using Algorithm 5 (Conversion of curve segment representations to
closed formulas) compute for each j € I a set of polynomials Q;
and a Qj-closed formula ©; such that R(0;) = clos(ass(7;)).

6: Q < Ujel Qj.

7. G+ (E=1,V =U,head = L, tail = R).

8: Using a graph traversal algorithm compute a tuple (C1,...,Cx) where
each Cp, = (ip0,-..,%h,q,—1) € [% and

(a) tail(ijn) = head(ijnt1 mod g;)sh=0,...,q; — L.

(b) C1,...,Cn are simple cycles of G.

(¢) The cycles C,...,Cy form a basis of the cycle space of G (which
is isomorphic to Hi(|G|)).

9: for 1 <h < N do

10: v, +— © V.---VO

h,0 Th,qp—1"
11: end for
12: Call Algorithm 6 (Simplicial replacement) with input:
1. Q,
2. the tuple of O-closed formulas ® = (¢g,...,0n) =
(Uq,..., Uy, D),
3. 0=1

to obtain a simplicial complex A;(®) such that
(J = [AL(®L)]) s

is homologically 1-equivalent (cf. Definition 9) to Simp!V/(R(®))
(cf. Notation 11).

13:  Using Gauss-Jordan elimination identify a minimal subset
J < {1,...,N} such that the span({Im(Hi(A1(®[))) —
HL(A1(®))) | h € J}) = Hy(Ar(@)).

14: Output (\I/h)heJ.

Complexity: The complexity of each ¥y, h € J is bounded by (sd)o(kQ),
and the complexity of the algorithm is bounded by (sd)ko(l), where
s = card(P) and d = maxpep deg(P).
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Proof of correctness of Algorithm 7. The correctness of Algorithm 7 follows
from the correctness of Algorithms 2, 4, 5, and 6. O

Complexity analysis of Algorithm 7. The complexity upper bound is a con-
sequence of the complexity analysis of the Algorithms 2, 4, 5, and 6. ([

Proof of Theorem 2. Theorem 2 follows from the correctness and complexity
analysis of Algorithm 7. O

Proof of Theorem 3. Theorem 3 follows from the correctness and complexity
analysis of Algorithms 4 (Computing one-dimensional subset) and 5 (Con-
version of curve segment representations to closed formulas). (]

5. CONCLUSION AND OPEN PROBLEMS

In this paper we have proved the existence of an algorithm with singly
exponential complexity for obtaining a semi-algebraic basis of the first ho-
mology group of of a given closed semi-algebraic set (generalizing existing
algorithm in the case of the zero-th dimensional homology). One obvious
open problem is to generalize this result to the higher homology groups. As
an intermediate problem we can ask for the solution to Conjecture 1. The
techniques developed in the current paper may possibly generalize to prove
Conjecture 1, but there are formidable technical problems to overcome and
we leave this to future work.
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