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We present an envelope equation-based approach to obtain analytical scaling laws for the shortest
pulse length achievable using radiofrequency (RF) based bunch compression. The derived formulas
elucidate the dependencies on the electron beam energy and beam charge and reveal how relativistic
energies are strongly desirable to obtain bunches containing 1 million electrons with single-digit fs
pulse lengths. However, the non-linearities associated with the RF curvature and the beam propa-
gation in drift spaces significantly limit the attainability of extreme compression ratios. Therefore,
an additional higher frequency RF cavity is implemented, which linearizes the bunch compression,
enabling the generation of ultrashort beams in the sub-femtosecond regime.

I. INTRODUCTION

Ultrafast electron scattering requires the generation of
very short electron bunches to capture the fastest physi-
cal processes [1, 2]. Due to the repulsive effect of space-
charge forces, one critical challenge in this field is re-
lated to packing as many electrons as possible in a short
bunch [3]. In ultrafast electron diffraction (UED), push-
ing the electron energy to relativistic levels has helped in
minimizing the space-charge effects, concurrently bring-
ing other advantages such as longer penetration depths,
reduced group velocity mismatch, and suppressed in-
elastic scattering background [4-7]. Over recent years,
UED beamlines have seen continuous improvement in
the achievable temporal resolution thanks to the intro-
duction of techniques borrowed from accelerator physics
based on the use of time-dependent radiofrequency (RF)
electric field to compress the electron bunch during its
propagation in the beamline [8]. RF compression using
3 GHz resonant cavities has been applied to both non-
relativistic and relativistic electron beamlines for UED
[9-11], yielding bunch lengths down to the single-digit fs
in the latter case.

While the discussion in this paper focuses on the elec-
tron bunch length, it is important to recognize that
there are many additional factors, other than the tem-
poral duration of the probe pulse, that contribute to
the actual temporal resolution limit in a specific UED
setup such as temporal jitter, group velocity mismatch,
laser pulse length. For example, to counteract the addi-
tional temporal jitter introduced by RF-based compres-
sion, naturally synchronized laser-generated higher fre-
quency waves have been used to impart an energy chirp
on the beam in more complex coupling structures and
drive the compression dynamics [12, 13].

In any case, though, to push the boundary of the UED
technique, it is critical to understand the limits in beam
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compression and how the various beamline parameters
such as charge, energy, cavity voltage, and frequency af-
fect the shortest bunch duration achievable. The mini-
mum bunch length at the sample results from a complex
interplay between the details of the bunching dynamics
and the longitudinal space-charge forces in the beam so
that typically UED practitioners have resolved to par-
ticle tracking simulation codes to design the beamline
and predict the beam dynamics. The agreement with
experimental results has been excellent [14]. Still, parti-
cle simulations only deal with specific beamline setups,
typically lack generality, and might not offer an immedi-
ate answer to how to improve the compression in a given
configuration.

It would be beneficial to have a unified formalism de-
scribing beam dynamics in RF-compression UED beam-
lines, covering both relativistic and non-relativistic cases
while including the space charge effects. To this end,
we employ the longitudinal envelope equation formal-
ism to highlight the interplay between longitudinal emit-
tance and space-charge forces on the pulse evolution. The
single-particle dynamics presentation builds on previous
works of Floettman and Zeitler [15, 16] that pointed out
the role of the non-linearities in the beam compression
process. The collective effects are then considered in the
approximation that the beam aspect ratio remains con-
stant along the beamline, thus decoupling the longitu-
dinal dynamics from the transverse beam size evolution.
While this is a somewhat restrictive assumption, it is ex-
perimentally relevant (the beams in UED are usually fo-
cused transversely and longitudinally at the sample) be-
cause this approach yields an upper bound estimate for
the minimum bunch length. In this case, space-charge
forces are over-estimated for the situation in which the
transverse spot size is kept large during the compression.
Using the constant aspect ratio approximation, we can
extend on the previous work and obtain analytical for-
mulas for the minimum bunch length at the longitudinal
waist that are valid in the presence of space charge. The
expressions presented can then be used to guide the sys-
tem optimization, compare parameter choices at different



facilities, and evaluate mechanisms for further improving
the bunch length.
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FIG. 1. Illustration of RF ballistic bunching scheme. A ve-
locity chirp is imparted on an electron using an RF cavity so
that the tail of the beam has higher energy than the head.
During the following drift the particles in the tail catch up
with the particles in the head resulting in strong longitudinal
compression

The simple cartoon in Fig. 1 illustrates the dynamics
under study. Essentially, a finite electron beam propa-
gates through an RF buncher cavity where electromag-
netic fields oscillate with angular frequency w = kc at
the zero-crossing phase. Ideally, the input bunch length
satisfies ko, << 1, so only a small phase window of the
wave is sampled by the beam and the chirp imparted
on the beam is predominantly linear. However, in our
discussion, we will keep the higher-order terms in the en-
ergy modulation expansion to elucidate their role in the
final bunch length. In the propagation region after the
buncher, due to the strong energy chirp, the tail of the
beam begins to catch up, while the head of the beam
slows down. Finally, at some location downstream of the
buncher, ideally arranged to be the sample plane or the
interaction point of the UED experiment, the minimum
bunch length occurs when the phase space distribution is
vertically aligned.

TABLE I. Simulation beam parameters

Parameter High Energy Low Energy
Focal length 1.88 m 1m
Beam kinetic energy 4.6 MeV 150 keV
Norm. transverse emittance 100 nm 8.3 nm
RMS transverse beam size 100 um 100um
Cavity Frequency 2.856 GHz 2.856 GHz
Relative energy spread 107° 107°

We will strive to keep all the formulas in the paper as
general as possible (for example, not assuming § = 1)
so that they could be applied to different RF compres-
sion setups (non-relativistic, MeV UED beamlines, as
well as higher frequency compression schemes) once the
parameters are scaled accordingly. For this reason, we
will use two different example cases, loosely based on the
UED beamlines at the UCLA Pegasus laboratory [10], to
benchmark the agreement between the analytical frame-
work and particle tracking simulations. The reference
parameters used for this study are reported in Table I.

The paper is structured as follows. We will first in-

troduce the envelope equation formalism to describe the
evolution of the bunch duration through the system [17].
We approximate the buncher as a thin lens, compute the
main contribution to emittance growth and analyze the
ballistic dynamics in the drift while neglecting space-
charge. Thus, essentially re-obtaining the results first
presented in Floettmann [15], then in Zeitler et al. [16].
We will then include the space-charge repulsion term in
the envelope equation for a Gaussian beam, using the
approximation of a constant aspect ratio and arrive at
an expression for the minimum achievable bunch length.
We will build on the formalism, using it to describe dif-
ferent current profiles. Finally, in the light of the findings
in this paper, we review the use of an additional higher
frequency RF cavity for compensation of non-linearities
to reach sub-fs bunch lengths as originally proposed by
Floettmann [15].

II. LONGITUDINAL ENVELOPE EQUATION
A. Envelope equation

Among many possible choices for defining bunch dura-
tion (e.g., full width half maximum FWHM, or full width
containing 50 % of the charge FW50), in our discussion,
we select the second-order moment of the longitudinal
profile, or root mean square (RMS) bunch length as the
primary quantity to follow the evolution of in the RF
compression beamline. The RMS is defined by:

0. = V(%) (1)

where z is the longitudinal particle coordinate relative to
the center of the bunch. (...) represents an expectation
value over the beam distribution function. All the other
definitions (i.e., FWHM and FW50) are simply propor-
tional to the RMS bunch length using a proper order-of-
unity pre-factor which depends on the beam distribution
shape. The RMS beam size evolves along the beamline
coordinate s according to the equation [18]:
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where the quantity eiz, is the square of the RMS longi-
tudinal trace space emittance, explicitly written in terms
of the distribution moments as:

€22 = (2)(2%) = (22)? 3)

and 2’ is the relative velocity deviation from the average
beam velocity. If the particle dynamics are linear in the
(z,2") coordinates, then the trace space emittance is a
conserved quantity [19].

Ideally, the longitudinal equation of motion does not
depend on transverse coordinates. On the other hand,
the force acting on the particles might have a transverse
dependence (i.e. 2’/ = F(z,r,s)) and in general the first



term on the right side of Eq. 2 will be proportional to
(2F(z,r,s)). Heuristically, we separate the contributions
to the longitudinal force into a term associated with the
external RF fields and a term proportional to the beam
current, which encodes the effect of the space-charge force
i.e. F = Frr + Fse. After averaging over the transverse
beam distribution, the latter will depend on the horizon-
tal and vertical RMS transverse sizes 0, = oy = 0,
effectively coupling the longitudinal and transverse enve-
lope equations.

In most practical cases, we can model the RF buncher
as a thin lens, and Fgrp(z) provides an impulse force
proportional to d(s). In this case, the only effect of the
RF buncher is to modify the initial conditions for the
envelope equation through the application of a negative
energy chirp to the phase space, which causes the beam to
begin the bunching process (i.e., 0.y < 0). If the applied
energy chirp is non-linear (which is the most common
case), particular care has to be applied in evaluating the
longitudinal emittance and the initial conditions at the
exit of the buncher.

Meanwhile, the space-charge term (zFs:)(s,0.,01)
will act over the whole time of flight in the drift following
the buncher. This term is related to the first-order Taylor
expansion of the space-charge-induced longitudinal elec-
tric field near the center of the bunch. We will discuss
this in detail later in the paper, but we can anticipate
some of the results derived below to orient this initial
discussion. Typically this term can be evaluated analyt-
ically for simple longitudinal distributions and written
as
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where K; o« gNr./3%y5 is the longitudinal perveance
proportional to the classical electron radius, r., the num-
ber of electrons in the bunch IV, and g, a geometry factor
which depends on the beam aspect ratio.

In what follows, we will assume a constant aspect ra-
tio for the beam, a transverse RMS spot size that de-
creases along the beamline proportionally to the longi-
tudinal RMS bunch length. This assumption simplifies
the s and o, dependencies in K; and solves the longi-
tudinal envelope equation independently from the trans-
verse dynamics. The approximation works well even if
the longitudinal and transverse spot sizes are not exactly
proportional to each other along the beamline, but the
aspect ratio remains within a factor of two of the ini-
tial value. Of course, this type of transverse focusing
may not occur in all setups. In those cases, the trans-
verse beam size will remain large. Thus the aspect ratio
can increase by orders of magnitude during compression,
and the approximation fails, but it does yield an overes-
timate of the waist size in the presence of space charge
effects. In addition, it is essential to note that for gen-
eral beam distributions, the non-linearities in the bunch
self-fields will cause emittance growth during the propa-
gation, violating the premises of our approach, which uses

the envelope equation to treat the problem and assumes
a constant longitudinal trace space emittance. Instead,
one must self-consistently track all particles in the field
generated by the charge distribution. Nevertheless, if one
desires ultrashort bunch lengths, this situation should be
avoided because space-charge effects should be relatively
small.

B. Solution in a drift

Let us start the discussion from the most straightfor-
ward and physically relevant case in which the propa-
gation occurs in a drift and space-charge forces can be
neglected, i.e., / = 0. The shortest bunch length along
the line can then be found by recasting Eq. 2 as:
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The waist position is a local minimum for o; thus, we
can set o, ; = 0. Right after the buncher, we can write

’
oy = % — 220 where the first term accounts for any
z

incoming correlations in the phase space, and the sec-
ond term accounts for the linear chirp imparted by the
buncher cavity. After substituting into Eq. 6, the waist
size can be written as:
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where we neglected the term 0_% which for large com-
0]

pression factors is always much smaller than %

By inspecting the factor accounting for initial corre-
lations, we can see that an initial negative chirp (i.e.,
(z02() < 0) effectively shortens the focal length and fi-
nal bunch length in the system. On the other hand, in
most cases, an RF buncher is added to the system to

achieve strong compression and ! <§°Z°> << 1,1i.e., incom-

ing correlations are small compared to the hnear corre-
lation imparted by the RF fields. In this case, the final

bunch length at the waist is given by ~ and is simply
proportional to the focal length times the energy spread,
assuming that thermal contributions dominate the lon-
gitudinal emittance. However, we will see that the non-
linear correlations imparted by the buncher significantly
distort the trace space and dominate the emittance in the
final drift. Ultimately, beams with smaller longitudinal



emittance enable reaching shorter bunch lengths. It also
follows that one can achieve proportionally shorter final
bunch durations by decreasing the focal length f of the
RF buncher.

C. Single particle dynamics and non-linear
phase-space correlations in the RF buncher

Let us now look more closely at the details of the en-
ergy chirp imparted by the RF buncher on the beam
distribution. The main assumption here will be that the
cavity fields act on the electrons by adding an energy
kick with sinusoidal dependence on the initial longitudi-
nal particle position zg as

A~ = —asin(kzp) (8)

where o = eV /mc? and eV} is the cavity voltage or max-
imum energy gain seen by an ideally phased particle, and
k = ko/Q is the RF angular wave number divided by the
normalized longitudinal velocity. The phase of the cavity
is tuned so that the center of the bunch experiences no
net energy gain and particles at the tail gain energy, while
particles at the head of the bunch lose energy. There are
two distinct sources of non linearities in the trace space
dynamics resulting from the applied energy change to
the particles. Firstly, for finite duration input bunches,
the curvature of the RF wave will cause significant non
linear effects in the trace space. In addition, the rela-
tivistic relation between normalized velocity and beam
energy 5 = 4/1 — 1/4? adds an important degree of non
linearity to the transport as pointed out in Zeitler et al.
[16]. Following the discussion therein, Taylor-expanding
the relative velocity deviation % in terms of the energy

deviation we can write
AB ,
= 2" (9)

where 7, are proportional to the mth-derivatives Cﬁy—mmﬂ
and in particular

1
m = ] (10a)
2 — 372
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2 -5y + 49"
= - — ]_
13 2,936 (10c)

where v and [ are the mean values of the normalized
energy and velocity distributions respectively. The coef-
ficients n,, scale as v~ (™*+2) so that at high relativistic
energies the higher order non linear terms in the trans-
port can be neglected. Considering the lowest order dy-

namics, we can simply replace sin(kzg) with kzg — %,
and truncate the series to obtain:

AS «
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(11)
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We verify this expression at high energy (4.6 MeV) and
low energy (150 keV) by considering a particle track-
ing simulation of the buncher configuration listed in
Table I with an initial bunch length of 195 um and
1.87 mm respectively. The buncher was modeled by a
2.856 GHz standing wave cylindrically symmetric TM010
cavity with an amplitude adjusted to reach a longitudi-
nal focus 1.88 m and 1 m downstream respectively for the
high and low energy cases. Since the RF cavity length is
0.05 m, it is reasonable to approximate it as a thin lens.
The longitudinal phase spaces from GPT at the exit of
the buncher are shown in Fig. 2(a) and 2(c) for the high
and low energy case respectively with subtracted linear
correlations. The quality of the agreement between GPT
and our analytical framework can be assessed by com-
paring the distributions with the lines corresponding to
Eq. 11 which are also shown. The parameters chosen
for these examples highlight the different possibilities for
the dominant non-linearity in the system. In the high-
energy case, the relativistic effects are responsible for the
parabolic shape seen in the simulation. While in the low
energy case, the injected bunch length is longer and the
third-order non-linearity associated with the sinusoidal
RF fields is the main effect in the beam distribution
shape.

The convenience of working in the trace space is the
linearity of the dynamics in the drift which fully preserves
the trace space area. Explicitly, in the drift after the
buncher, the longitudinal particle position can be written
as

A o0
z:z0+576:zo+52nnA'y" (12)

n=1

The initial coordinate zy is expressed in terms of the
induced energy modulation A+ by inverting Eq. 8. Then
A is Taylor expanded in terms of AB/3. Substituting
into Eq. 12, keeping only terms up to third order, we can
write:

N 1 Ap
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The longitudinal waist occurs where the linear chirp is
cancelled at distance s = mﬁ along the beamline allow-
ing us to define the buncher longitudinal focal length:

(13)

1 _ m0627362
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which indicates that very high voltage cavities are needed
to obtain short focal lengths for relativistic electrons. It
is also useful to note the k-dependence of this expres-
sion which favors the use of very high frequencies for this
application.

At the focal plane, the residual correlation is quadratic
or cubic in AS depending on the relative importance of
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FIG. 2. Left) Trace spaces of the beam at the exit of the prebuncher after the linear chirp has been subtracted from the
distribution for high energy (top) and low energy (bottom) cases, compared with the analytical predictions from Eq. 11 (green
curves). Right) Longitudinal trace spaces at the temporal waist for the high energy (top) and low energy (bottom) cases
compared with the predictions from Eq. 13 (green curves). The current profiles at the focus are also shown in black.

the non-linearity in the drift propagation concerning the
RF curvature. As discussed above, lower beam energies
and longer input bunches tend to show higher third-order
non-linearities, while relativistic energies typically have
dominant second-order contributions. The predictions
from Eq. 13 can be again verified by comparing to the
phase spaces at the temporal waist plane from the same
GPT simulation, as shown in Fig. 2(b) and (d).

D. Emittance growth mechanisms and the
relationship between different longitudinal phase
space definitions.

1. (z,2') trace space emittance

Since the drift dynamics in the trace space are entirely
linear, and the emittance growth is all accrued in the
buncher, the envelope equation formalism is a convenient
choice to follow the RMS bunch length evolution. To
evaluate the RMS emittance growth induced by the RF

compressor, we start from an initial longitudinal phase
space with RMS emittance e, .,. After the energy chirp
is applied, the single-particle velocity variation maps to
2y — 2y + AB/B, where AB/j represents the velocity
variation imparted by the buncher, which is correlated
with particle position. In the thin lens approximation,
the particles do not change position as the beam goes
through the cavity.

The moments of the new distribution can be calculated
and the relation between initial and final emittance after
the buncher written as

2
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Note that each respective expectation value needed to
calculate the emittance, with the exception of (22) = o2,
requires integrating sin™ (kz) or z sin™(kz) over the beam
distribution. Assuming an initial gaussian current pro-
file, these integrals have closed-form expressions up to



arbitrary order of m, but keeping the leading contribu-
tions to the emittance growth, we obtain

1
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6

(15)
In most cases, this expression is much larger than the
initial longitudinal emittance because the buncher is
fundamentally inducing a large velocity spread (with
correspondingly significant non-linear contributions) to
achieve strong compression. As long as the space-charge
forces are negligible in the drift, egp is also equal to the
final emittance and can be used to calculate the shortest
bunch length achievable at the waist using Eq. 7. The
emittance growth in the buncher and its preservation in
the drift is shown in Fig. 3, where the trace space RMS
emittance evolution calculated from GPT is plotted along
the beamline. The black dotted line shows Eq. 15 which
provides a good approximation for the final emittance
after a thin lens buncher cavity located at the origin.
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FIG. 3. Comparison between analytical estimates (dashed
lines) and GPT simulations (solid lines) for an initial bunch
length of 0.65 ps. The trace space emittance after the buncher
is shown in blue, and emittance growth in (z,d) phase space
in orange.

2. (z,0) phase space

It is important to note at this point that if instead, we
had utilized more common choices of defining the longi-
tudinal trace space in terms of the relative energy spread
6= % or momentum spread Ap, /p., the drift dynam-
ics would become highly non-linear especially for mildly
relativistic particles.

Initially, the trace space emittance e ./ is related to
the (z,d) emittance by the following relationship:

€z20,6 = ’7252620,26 (16)

This relationship holds because 2z’ = 71 Ay and explains
the order of magnitude difference in absolute emittance

values in Fig. 3. It is then fairly common to see in the
literature the envelope equation written in terms of the
(z,0) emittance:

2
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(17)

Nevertheless, in a drift, the particle positions evolve ac-
cording to Eq. 12 where the transport is inherently non-
linear, especially for mildly relativistic particles, causing
emittance growth and limiting the usefulness of the enve-
lope equation approach. Ultimately, for large enough ini-
tial energy spreads, the higher-order terms proportional
to 7 lead to significant (z,4) emittance growth, which
can be estimated using the same techniques as in the
previous subsection

&= &, 5, + 25250050 (18)

where €, 5, is the emittance at the beginning of the
drift. This expression predicts a nearly linear growth
with propagation distance for a small initial emittance.
This is shown in Fig. 3 where the (z,) phase space
evolution from GPT is compared with Eq. 18 with the
inclusion of the initial emittance as well.

The seemingly counterintuitive behavior of the longi-
tudinal emittance (growing linearly in the drift) is the
main reason we adopt the (z,z’) trace space emittance
in calculating the final bunch length when using the en-
velope equation formalism. Finally, for completeness, we
observe that if the un-normalized momentum (z, Ap, /p.)
was used as a trace space variable, all expressions could
be simply modified substituting 2z’ = %Apz/pz. Never-
theless, due to the relativistic non-linear relation between
momentum and velocity, even in this case, one would
have significant emittance growth in the drift propaga-
tion.

E. Bunch length limit in absence of space-charge
effects

This formalism clarifies how the minimum achievable
bunch duration depends on the main beamline param-
eters (when space charge effects can be neglected). In-
serting the trace space longitudinal emittance estimate
(Eq. 18) into the envelope-equation solution (Eq. 7), we
get an expression written as the quadrature sum of the
different contributions to the final emittance between 1)
the initial uncorrelated relative energy spread oy, ii) the
non-linearities introduced by the relativistic correction to
the transport or iii) the RF-induced emittance.

In order to facilitate comparison between beamlines of
different energies, we can rewrite the terms as a func-
tion of the buncher’s focal length, which is a practically
helpful parameter related to standard requirements on
dimensions of the sample chamber, pumping geometry,
and transverse optics. Assuming that one term in the



sum is much larger than the others, we can synthesize
this result as:

foo = ﬁziﬂ/zaé
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Note that the total quadrature sum of these three expres-
sions should be used in those cases where two or more
contributing terms have similar magnitude.

In the first case, non-linearities in the transport can be
neglected, and the final bunch length is simply propor-
tional to the initial relative velocity spread o’,. For the
same uncorrelated relative energy spread oy, a relativistic
energy system has a clear advantage to achieve ultrashort
bunch lengths due to the inverse square v dependence in
the formula. In reality, as the energy increases, the non-
linearities due to the relativistic dynamics in the drift
would likely become the dominant contribution to the
final emittance and bunch length. In this regime, after
approximating 12/n? ~ 3/2v% and using the definition
of the focal length (Eq. 14), the final bunch duration
scales as the square of the beam energy. For longer ini-
tial bunch lengths, the curvature of the RF dominates
the shape of the final phase space and sets the limit for
the shortest bunch duration achievable. This contribu-
tion is essential for both relativistic and non-relativistic
energies, and it strongly favors the use of lower RF fre-
quencies. In all THz compression experiments carried
out so far, this term has been the principal limit to the
final bunch length [12, 20].

The analytical formulas summarized in Eq. 19 were
found in excellent agreement with GPT in both the rel-
ativistic and non-relativistic regimes. The results are
shown in Fig. 4 top and bottom for the 4.6 MeV and
150 keV cases, respectively. In the low-energy case, the
cubic non-linearity from the RF curvature dominates due
to the longer initial bunch length.

In the absence of space-charge, the shortest bunch du-
rations are obtained by minimizing the emittance growth
in the temporal lens, which can be done by using shorter
input beams. At the same time, as we will see, decreas-
ing the initial bunch length also increases the initial peak
current so that the space-charge effects in the longitudi-
nal envelope equation can no longer be neglected. As
a result, space-charge effects begin to take over at a cer-
tain point and prevent further bunch compression. Thus,
there must be an optimum initial bunch length to inject,
which exactly balances space charge and RF emittance
growth.
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FIG. 4. Final bunch length as a function of the initial bunch
length for the (a) high energy, and (b) low energy cases. The
analytical curves are also shown and are found to be in very
good agreement with the simulations.

III. SPACE-CHARGE LIMITS TO
COMPRESSION

A. An example of geometry factor calculation:
Gaussian distribution case

In order to add the effect of space-charge on the bunch
length evolution into the envelope equation formalism,
we need to compute a reasonable representation for the
(2Fsc)(2,0,,01) term.

For simplicity, we will derive the self-field of an az-
imuthally symmetric 3D Gaussian beam, assuming that
the distribution function remains a Gaussian profile
throughout evolution. Admittedly, this approximation
is especially poor at the waist where the linear chirp is
removed and what remains is a non-linear distribution in
trace space with a characteristic current spike and a tem-
poral profile strongly asymmetric and far from a regular
Gaussian. In this situation, the emittance growth caused
by the higher-order terms in the electric field profile also
makes the envelope equation approach less helpful in de-
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beam-averaged generalized force term that appears in the envelope equation. The total charge in the bunch in this simulation

is Q = 10%e.
frame aspect ratio.

scribing the bunch evolution, and one would need to go
back to self-consistent particle tracking simulations.

Nonetheless, the simple expression for the force ob-
tained below can at the very least be used to estimate the
evolution of the bunch length and the point in the system
where space-charge effects become dominant in the dy-
namics. To validate all of the estimates made in what fol-
lows, we will compare the results with simulations of the
bunching process utilizing GPT’s spacecharge3Dmesh al-
gorithm for the nominal high energy beam parameters
shown in Table I and a beam charge of 16 fC (10° elec-
trons).

The charge density in the beam rest-frame can be writ-
ten as:

2 2
_ Qe (57— 7)
P= (27)3/2020,

(20)

In order to obtain the electric field components, we
Fourier transform the charge density and write the po-
tential as

(kg by, k) . &3k
@y, /// co(k2 + k? T k2) exp(ik - r) PE
(21)

where p is the Fourier transform of the charge density
which also has a gaussian shape.

We can then expand the complex exponential as a Tay-
lor series in (k- 7). After dropping the constant term,
which is immaterial for the field profile, we also note
that all the odd terms vanish by the symmetry of p. The
second-order term yields the uncorrelated linear electric
field components. They can be written as:

Q/20 Q

(2m)3/2e90? (27)3/2¢03

EW = u(A)r? + v(A)zZ (22)

(b) Geometry factors for the transverse (blue) and longitudinal (purple) field plotted as a function of the rest

where A = 0 /o, is the beam aspect ratio (in its rest
frame). The predicted field gradients are found in excel-
lent agreement with core field gradients extracted from
GPT simulation as shown in the example in Fig. 5(a).
The geometry factors (plotted for reference in Fig. 5b)
are given by:

where £(A) = V1 — A2,

The generalized force term in the envelope equation
can be calculated using 2" = +v'/v382 = eE./y33%*mc?
and then taking the average over the beam distribution
of (zE,). Before doing so, we express the longitudinal
electric field just calculated in the beam rest frame in
terms of laboratory frame quantities. This can be done
rescaling the longitudinal coordinate and RMS moments
by v, i.e, E,(z,0,,0,) — E.(yz,70.,0,1). Finally, the
space-charge term in the envelope equation is given by:

<Z-Fsc(zvazaUL)> o g(A)NTC _ ﬁ
o, - %02 o2

(25)

where g(A) =
takes into account the geometry effects, r. is the classical
electron radius and N the number of electrons in the
bunch and we have defined the longitudinal perveance
K, as anticipated in the first section. In Fig. 5(a), we
compare the result of averaging the longitudinal electric
field over the beam distribution with the on-axis linear
component, showing how averaging reduces the slope of
the z, F/, correlation by the constant term V2 /4.

ﬁv(A) is an order of unity factor which



In general, the dependence of the geometry factor g(A)
on the beam aspect ratio requires self-consistently solv-
ing the transverse and longitudinal envelope equations as
a coupled system, which typically can be done through
numerical integration.

An attractive simplification occurs if we use the ap-
proximation that the aspect ratio remains constant (or
nearly constant) throughout the beamline, which corre-
sponds to when the beam is simultaneously transversely
focusing and longitudinally compressing. In this case,
the system is decoupled, and we can then utilize g(A)
to integrate the longitudinal envelope equation analyti-
cally. This approximation turns out to be quite accept-
able as in many UED setups, it is required to have a
small transverse spot at the sample in the same plane of
the temporal waist.

In Fig. 6, we plot the evolution of the bunch length
and transverse spot along the beamline in the case where
optics are arranged so that the aspect ratio during com-
pression is kept close to unity. For this case, we also use
GPT simulations to numerically compute the exact ex-
pression for the space charge term in the envelope equa-
tion at any given location along the beamline and find
good agreement with the analytical expression in Eq. 25
with A = 1.

Importantly, when transverse focusing is not applied
(or weak) as the beam reaches its minimum bunch length,
the aspect ratio would increase to values larger than unity
along the beamline. Indeed, Fig. 5b suggests that our
approximation would lead to overestimating the space
charge force.
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FIG. 6. Evolution of longitudinal and transverse beam sizes
are shown in purple. The space charge envelope equation term
is shown in green, and its approximation is shown as a dotted
line with aspect ratio fixed, i.e., A=1.

B. Effect of the longitudinal space-charge force on
the minimum bunch length

Using these results, the longitudinal envelope equation
in presence of space-charge can be written as:

2
1 KL Ez,z’
g, =

and following the same steps that led to Eq. 7 we can
directly integrate to calculate the bunch length at the

waist, obtaining:

€ ’

(27)

Uzoéiz/ 2
fz, +KL—KL

Ozf =

where we have once again assumed that the initial bunch
length is much larger than the final one.

In the limit that K becomes negligible, Eq. 27 yields
back the zero space-charge solution discussed in the pre-
vious section. Conversely, if space-charge dominates the
bunch length evolution, one can expand the formula for
large K7, to get

which is linear in the bunch charge but most importantly
decreases as 02, driving the initial bunch length towards
larger values. Note that if by some clever scheme (for
example by pre-compensating using an X-band RF cav-
ity as discussed in the last section of the paper) the RF
emittance growth in the buncher is eliminated, a longer
initial bunch length could be used, reducing space-charge
effects and potentially allowing to reach very short bunch
lengths.

The optimal initial conditions are to compromise be-
tween the tendency to minimize the buncher’s RF emit-
tance growth and lowering the initial peak current. An
estimate for the ideal initial bunch length can be ob-
tained by equating the asymptotic dependencies of the
waist size in the space-charge dominated regime and the
emittance dominated regime, respectively.

For example in the case where the RF emittance is
dominated by the quadratic non linearity, we can set Eq.

28 equal to the second expression in Eq. 19, and the
optimum initial bunch size is given by:
2K
oty V2K (29)

m[n2la’k?

This result can be substituted into Eq. 27 yielding for
the minimum bunch duration at the temporal waist:

Ki|na|
ok

Oup 2272 (30)
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FIG. 7. (a) Final waist size plotted versus initial bunch length compared with GPT. The green and black lines show the
asymptotic behavior in the regimes where space-charge and RF emittance growth dominate the dynamics. The blue line is the
analytical expression that considers all effects discussed in this paper (b) The optimum phase space found from the scan in (a)
for an input bunch length of 72 pym. The RMS bunch length is 1 pm. Particles are color-coded as a function of their radial
coordinate (blue corresponds to on-axis). c) Evolution of the emittance along the line. The growth observed in GPT is due
to the non-linearities of the space-charge field. d) Final emittance in GPT as a function of initial bunch length. The relative
importance of the space-charge contribution to the emittance can be inferred by subtracting the expected emittance growth
due to the buncher dynamics non-linearities. The cross-over point (where space-charge becomes the dominant effect) can be
used to estimate the optimal injection condition and hence the minimum final bunch length achievable for a given setup.

In the high energy limit (yo > 1)

3gN fre.
sz ~ 7’)/8

In Fig. 7(a) we show the final waist as a function
of the injected bunch length obtained from GPT, and
overlay Eq. 27 for the case when the total charge is
Q = 10°¢ = 16 fC. The dashed red line is the esti-
mate obtained from Eq. 30, which predicts an RMS size
of 0.8um, underestimating by 20 % the GPT prediction
at 1 um. For large enough initial bunch length, space-
charge effects are negligible, and the emittance growth
in the buncher dominates the waist size. When the ini-
tial bunch length is smaller than the optimum, i.e., in
the space-charge dominated regime, the minimum bunch
length increases as predicted by Eq. 28. In Fig. 7(b),

(31)

the phase space at the waist for the optimal injection
case is shown. The quadratic correlation in phase space
is still visible, but an imprint of the space-charge field
also appears.

The slight discrepancy between the simulation and the
analytical prediction is due to the unaccounted space-
charge-induced emittance growth. As we shorten the ini-
tial bunch length, the non-linearities in the space charge
field are responsible for significant emittance growth,
thus disrupting the applicability of the analytical result,
which relies on the assumption of constant emittance in
the drift. This is elucidated in Fig. 7(c) and (d), where
we show the trace space emittance evolution for a few
different compression cases and the final emittance as
a function of input bunch length, respectively. In (c),
it can be seen that the longitudinal emittance after the
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buncher is changing in the drift due to non-linear space-
charge forces. The increase is modest when the input
size is sufficiently large and more pronounced for smaller
initial bunch lengths. In (d), the longitudinal emittances
calculated from Eq. 15 are compared with the final emit-
tances at the waist from GPT. The emittance growth
induced by space-charge is proxied by subtracting the
RF growth from the emittance at the focus position in
quadrature. Therein, it can be seen that the optimum in-
put bunch length (72 pm in this case) occurs at the onset
of the space-charge induced emittance growth. Eventu-
ally, when the initial bunch length becomes too short, the
emittance growth is dominated by space-charge, so the
GPT simulation results are not identical to the analytical
predictions.

In Fig. 8(a), the comparison of Eq. 30 with GPT sim-
ulations performed while setting the initial bunch length
to Eq. 29 as the charge is varied from 10°e — 10°¢ shows
good agreement when using a scaled longitudinal per-
veance to take into account the emittance growth from
non-linear space charge forces. In Fig. 8(b), we utilize
Eq. 30, to visualize the dependence on energy and charge
when the focal length of the bunching system is set to
1.88 m. Due to the energy dependence intrinsic in the
focal length, as we increase the beam energy, keeping the
focal length constant becomes a technological feat involv-
ing considerations of the breakdown limit in RF cavities
and available power sources at higher frequencies.

Note that the optimal initial bunch length identified
above is the RMS spot size at the entrance of the buncher.
Depending on the gun technology employed to generate
the electron beam, there might be different ways to tune
this quantity (i.e., changing the laser pulse length, oper-
ating at different phase or gradient in an RF gun, con-
trolling the transverse dynamics) which might have an
additional effect on the actual beam emittance or phase
space correlations.

To go beyond these limits, one would need to reduce

the space-charge effects (working to either minimize the
geometry factor g in the longitudinal perveance, or uti-
lize a charge distribution with more linear self-fields) or
minimize the emittance growth in the buncher, for exam-
ple, pre-compensating for the non-linearities in the input
phase space. In principle, both options are feasible and
are the subjects of the last two sections of this paper.

We should also observe that the presented solution of
the envelope equation by direct integration does not yield
the position of the longitudinal waist along the beamline,
which is an essential experimental parameter in the case
where space charge forces significantly contribute to the
dynamics. The space charge pressure will push the waist
position downstream of the zero charge case, with a shift
increasing for more significant beam charges, but that
remains relatively small for the optimal injection case.
Looking at the simulation for the case where the input
bunch length is 72 pm, the longitudinal waist is found
at 1.911 m from the buncher, 3.1 cm downstream of the
zero charge location.

IV. BUNCH COMPRESSION LIMITS FOR
DIFFERENT CHARGE DISTRIBUTIONS.

So far, we have been assuming a Gaussian temporal
profile for the input electron bunch. It is worth investi-
gating the prospect of an ideal phase space such as the
uniformly filled ellipsoid with transverse and longitudi-
nal dimensions a and z,,, respectively. The line charge
density for this distribution is:

(%)
Zm
where z,, is related to the RMS bunch length of the beam

as zm = /5o, and likewise @ = v/50 . Repeating the
calculation from section IID 1 of the RF emittance at the

_3Q

M) = = (32)



exit of the buncher with this line charge density yields:

(an1 — 6a3773)2 k6020

(33)
This expression is similar to what we previously calcu-
lated in Eq. 15, but with smaller coefficients (respectively
by 55 % and 22 %) since, for the same RMS bunch length,
the parabolic current profile extends over a smaller in-
terval of RF phases than the long-tailed gaussian dis-
tribution, thus reducing the associated RMS emittance
growth.
Reiser gives the perveance and geometry parameters
of the longitudinal field evolution [18]. The longitudinal
field is given by:

8
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Then the generalized longitudinal force derived from
this field yields the perveance:

gu(A)Nr,
= 32~5

where now, g,(A) = 3v(A)/5v5. The prefactors of the
RF emittance growth and the perveance are smaller than
those obtained for the gaussian, so this distribution yields
substantial improvements to the optimum bunch length.
To this end, we can use the perveance factor and again
use the same steps discussed in the previous section to es-
timate the optimum initial bunch length and the shortest
final duration of the beam.

We repeated for this case the benchmarking simula-
tion study by initializing in GPT a uniformly filled ellip-
soidal distribution with optimal input bunch length and
compared the results with the analytical predictions as
a function of beam charge as shown in Fig. 8 (a). The
agreement is excellent, and it is worthwhile to note that
in this case, there is no need to rescale the longitudinal
perveance as the space charge forces are more linear than
the gaussian, so there is less induced emittance growth.
Compared to the Gaussian current profile, this distribu-
tion improves the optimum bunch length by nearly two.

Ky, (35)

V. X-BAND CAVITY COMPENSATION
A. Analytical estimates

An alternative option to obtain even shorter bunch
lengths is using an additional higher frequency cavity to
compensate for the non-linearities imparted on the lon-
gitudinal trace space by the buncher RF fields. The use
of a higher frequency linearizing cavity has been pro-
posed originally in the context of RF compression by
Floettmann [15], and is also very common in FEL beam-
lines [21] to compensate for the non-linearities in mag-
netic compressors.
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In this section, we will consider a setup closely mim-
icking the current configuration of the UCLA Pegasus
beamline. The setup consists of a 1.6 cell S-band (2.856
GHz) gun, an X-band (9.6 GHz) cavity situated at 1.1 m
from the cathode plane, and an S-band (2.856 GHz) 11
cell linac. The Linac has a phase chosen to velocity bunch
the beam. The linac entrance is 1.4 m downstream of the
cathode plane. In Fig. 9, we display an illustration of
the beamline.

An analytical expression for the compensation condi-
tion can be found simply imposing the cancellation of the
second order coefficients in the dependence of the relative
velocity from the initial longitudinal position yielding:

k 2
x

where we assume the linearizing cavity to operate at 180
degrees from crest (i.e. A7y, = «a,cos(ky20)) and «,
and k, are the normalized voltage and wavenumber of
the X-band cavity respectively. In order to minimize
the amount of beam deceleration and the power require-
ments for the linearizer, it helps to maximize the ratio
between the linearizer and buncher cavity frequencies. In
addition, for a fixed focal length of the bunching system,
a, o 7, thus lowering beam energy reduces the required
voltage. By adding the phase of the linearizer as a degree
of freedom, one could simultaneously cancel second and
third-order distortions.

Assuming that the x-band cavity fully compensates the
second-order contribution to the emittance and that the
cubic RF non-linearity is retained in Eq. 27, we can
obtain analytical estimates for the minimum achievable
bunch length following the same process presented in the
previous section. In Fig. 10 we plot the optimal solutions
for beams of charge 160 fC with gaussian and uniformly
filled ellipsoidal distributions along with the analytical
prediction for the uncompensated cases (dashed). The
addition of the linearizer cavity allows achieving bunch
lengths significantly shorter (by up to a factor of 5) than
the single cavity case. The uncorrelated energy spread
sets the thermal limit on the final bunch length even when
space-charge is on. In the calculations, we set the uncor-
related energy spread, o5 ~ 107° and for convenience,
we show as a dashed line the corresponding thermal limit
(0.13 pm).

These results are validated using GPT simulations
where we start from an initially uncorrelated coasting
beam injected into a beamline with the linearizer cav-
ity and the buncher. A solenoid keeps the aspect ratio
between 0.5 and 0.8 as the beam is compressing. The
uniformly filled ellipsoidal density analytical prediction
matches the simulation results well, while the analytical
curve for the gaussian distribution again underestimates
the simulation results due to the non-linear space charge-
induced emittance growth.

In the region along these curves where the space charge
effects are more relevant (i.e. left of the minimum), the
final bunch length should increase linearly with charge
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FIG. 9.

(a) Ilustration of beamline setup for the RF emittance growth compensation. A short x-band cavity is used to

compensate for the curvature in (z,z’) space imparted by the S-band linac and gun and linearize the output trace space. (b)
GPT simulation of phase space at the exit of the S-band gun, the exit of the X-band linearizer, the exit of the buncher, and at

the longitudinal focus.
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FIG. 10. Analytical predictions for RMS bunch length at
the longitudinal waist for 160 fC charge and 4.6 MeV energy
beams plotted with respect to initial bunch length for com-
pensated (solid) and uncompensated (dashed) cases. Space
charge effects are taken into account assuming a constant as-
pect ratio equal to 0.6 for gaussian (purple) and uniformly
filled ellipsoidal (blue) distribution. These results are com-
pared with GPT simulations of the linearizer beamline in
compensation mode. The red dots show the results of start-
to-end simulation for varying laser pulse lengths following the
beam from the cathode located in an S-band RF gun.

according to the longitudinal perveance expression from
Eq. 28. We verify this by simulating an initial bunch
length of 180 pm for multiple beam charge between 16
fC to 160 fC. The results are shown in Fig. 11 and match
well with the analytical predictions. The intercept of the
line is due to the finite initial emittance due to thermal
and transverse effects [22].

B. Start-to-end simulations

So far, our discussion has assumed an initially flat and
uncorrelated longitudinal phase space. However, in a re-
alistic system, the beam out of the gun would typically
present already some correlations (often of non-linear na-
ture) between energy and time along the bunch. To an-
alyze the effects of these, we present start-to-end simu-
lations of the entire beamline, including the RF photo-
injector section with nominal parameters listed in Table
I1.

The results for minimum waist size as a function of the
laser pulse length illuminating the cathode are shown as
red squares in Fig. 10 and establish a good agreement
with the analytical predictions. However, the start-to-
end simulations depend on many parameters, such as gun
solenoid setting, initial laser spot size, cathode thermal
emittance, etc. Consequently, the transverse phase space
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TABLE II. Parameters of start-to-end simluation.

Parameter Value
Charge 10%
Laser Spot Size 10 pm
Cathode MTE 0.5 eV
Optimal laser pulse length 0.95 ps (rms)
Gun Accelerating Gradient 94.7 MV /m
Gun Phase 35.5°
Linearizer accelerating voltage 1.8 MV
Linearizer phase 173.5°
Buncher accelerating voltage 6.75 MV

Buncher phase 101°
Final kinetic energy 4.5 MeV

at the entrance of the RF bunching section was not per-
fectly matched to the idealized simulations. As a result,
the aspect ratio at the focus was 2.8 instead of 1, so
the square red dots fall slightly below the analytical es-
timates, and a minimum bunch length of 0.28 pm or 940
as can be reached.

In Fig. 9, we display the simulated phase spaces at var-
ious positions along the beamline after each cavity. Fig.
12 elucidates the dependence upon the injected bunch
length. In the optimal case (center), the initial ther-
mal emittance and the emittance growth imparted by
the space charge fields limit the final bunch length. The
third-order distortions limit the bunch length if the ini-
tial bunch length is too long (right). On the other hand,
if the initial injection becomes too short (left), then the
final phase space is diluted further by transverse depen-
dence on the longitudinal field, and the focus position
significantly moves from the waist plane of the zero space
charge case.

Finally, note that while this scheme provides a direct
path to sub-fs bunch lengths, the synchronization of the
drive signals for two different resonant frequency RF cav-
ities is a significant technological challenge. However, ad-
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dressing this challenge is the first step before achieving
high-quality compensation in a user-facility UED beam-
line. Therefore, the case is presented here mainly as an
example of the insights offered by the analytical frame-
work that we developed, which suggests that properly
shaping the drive laser and compensating the emittance
growth does provide a path towards much shorter bunch
lengths.

VI. CONCLUSION

In conclusion, in this paper, we have developed an an-
alytical framework that yields a simple estimate for the
minimum bunch length achievable in an RF compression
beamline. Besides UED, the formulas in this paper might
be helpful in the optimization of RF compression for
other ultrashort electron beam applications, including ra-
diation generation and injection into very high-frequency
THz-driven [23] and laser-driven accelerators [24].

The envelope formalism allowed us to estimate the final
bunch length accurately; our analysis showed that one
can integrate the competing non-linear effects into the
envelope evolution accurately with relative ease. Specifi-
cally, we evaluated longitudinal emittance growth caused
by RF curvature and relativistic beam transport, then
developed an excellent approximation to the space-charge
force in the envelope equation. The results indicate that
an optimum initial bunch length condition (which can
be satisfied by adjusting the laser pulse length on the
cathode, for example) compromises the RF-induced emit-
tance growth and the effects of the longitudinal self-fields.
The simplicity of the reported expressions mainly stems
from the fact that we approximated the coupling of the
transverse and longitudinal space charge dynamics with a
simple constant order-of-unity geometry factor in the lon-
gitudinal perveance. We have also limited the expansion
yielding the non-linear terms in the emittance growth to
second and third-order. Still, in principle, we could have
evaluated all the higher-order terms (and compensated
if enough independent knobs are added/available on the
beamline).

Although realistic beams produced by photoinjectors
typically present more complex phase-space distribu-
tions, the initial conditions assumed in the derivations are
an initially unchirped longitudinal phase space. Nonethe-
less, the results obtained here still provide valuable esti-
mates of the compression limits in a given configuration,
which prove helpful as a starting point for numerical op-
timizations. In addition, the scaling laws have proven
capable of guiding parameter choices in the design of
new setups. Most importantly, these results highlight the
main contributions to the final bunch length and suggest
possible paths to improve the compression further and
achieve sub-fs bunch lengths.
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FIG. 12. Final phase spaces for a beam shorter than, equal to and longer than the optimal bunch length respectively. The
phase spaces are color coded with respect to the radial coordinate.
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