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Abstract—This paper presents key ideas behind IEA-Plot, a
software framework designed to conduct test data analytics
through chat. We use wafer-based data analytics as an appli-
cation example to discuss the ideas. IEA-plot interacts with a
user through a dialog and produces plots according to user
instructions. At the core of IEA-Plot is a knowledge graph
connecting a frontend natural language parser to a backend
API. This knowledge graph captures our analytics knowledge
in the specific context. Usage examples are presented based on
test data collected from a recent production line.

1. Introduction

The emergence of large Language Models (LM)
[1][2][3][4][5] has changed our view for implementing a
domain-specific AI software tool like IEA (IEA stands for
Intelligent Engineering Assistant, see [6][7]). Among them,
ChatGPT [5] has demonstrated remarkable performance for
engaging in dialog on a wide variety of topics, including
answering questions and generating code.

Figure 2 shows an example dialog with ChatGPT regard-
ing how to correlate wafer map pattern to E-test parameter.
The first question asks a how-to question, followed by
a question asking to list the relevant statistical methods.
The third question asks for a list of steps to perform the
correlation. It can be seen from the responses that ChatGPT
presents a very good general understanding of the topic.

In contrast to a general dialog like that shown in Fig-
ure 2, our use of a LM is more specific. We assume that
user inputs are about how to perform a certain task in a test
data analytics context. More importantly, we require model
responses to be confined by a set of pre-defined actions.

Figure 1. Task grounding problem: How to confine model responses within
the scope of an embodiment with admissible actions {a1, a2, . . . , an}?

Figure 1 illustrates the task grounding problem. First
there is a given embodiment for performing the tasks. In
our application, the embodiment is based on a software
API which defines a set of admissible actions {a1, . . . , an}.
While a model response has to be a list of steps, each step
has to be realizable by a subset of the admissible actions.

1.1. The task grounding problem
Task grounding means that one desires to use a large LM

to act in a specific environment [8][9]. Given a LM learned
with rich world knowledge, the goal is to ground high-level
instructions expressed in natural language to a defined set of
actions admissible for a given embodiment. Simply put, we
desire to constrain the responses from the LM to be within
the capability of the given embodiment.

Consider the response of question 3 in Figure 2. Step
4 suggests Pearson’s correlation and Spearman’s rank cor-
relation. In our specific context, “correlation” can have a
different meaning. For example, the “correlate” in “correlate
a wafer map pattern to E-test parameter” means to find an
E-test parameter whose values can be used to indicate the
possible occurrence of the wafer map pattern during wafer
sort (i.e. this is called “failure pattern feedback” in [10]).
By grounding a LM with this domain knowledge, we desire
the LM to interpret the term “correlation” as how we would
interpret it (not how a common person would).

Steps like those listed with question 3 also need to be
specific enough to enable automatic mapping to some API
calls for their realization. By grounding a LM with a set of
admissible actions, we ensure each step in LM’s responses
to be always realizable.

1.2. Usual approaches
One popular way to constrain LM’s responses with a

specific response structure is through prompt engineering
[2][4]. Prompt engineering provides input-output examples
with a task specifier (the “prompt”) for the model to emulate
the desired response structure. However, as pointed out
in [9], prompt engineering alone is not sufficient to fully
constrain a LM to a set of admissible actions.

In addition to prompt engineering, there are two usual
approaches to constrain LM’s responses. One is to use
reinforcement learning to align the responses to the desired
outputs [8]. Another way is by treating it as a constrained
semantic parsing problem [11] and implementing a way to
adjust/select responses such that only admissible actions are
allowed [9]. It can be implemented as a postprocessing com-
ponent separated from the LM, e.g. to rank/score responses
from LM and only admit those acceptable ones.

1.3. Feasibility of the usual approaches
Prompt engineering would be effective if we can be sure

that the LM has the desired knowledge or skills in the model,
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Figure 2. Dialog with ChatGPT (03/26/2023) regarding how to correlate wafer map patterns to E-test parameters

and we just need to be more expressive in our queries so that
the model knows to respond accordingly. However, verifying
that a given LM indeed has the knowledge and skills we
desire, by itself, can be a challenging research problem.

For example, we might desire the correlation task to start
with our Minions analysis method [12]. We are not sure to
what extent a given LM “understands” the proposed method
(even though the LM may have “read” the paper).

As proven in [4] and also in [8] for task grounding, re-
inforcement learning can be an effective approach to align a
LM to respond in a specific domain. However, reinforcement
learning requires training data. In our application, if we have
a way to generate a large dataset of acceptable user queries
to the IEA, then we might consider reinforcement learning.
To get to that point we need to first define what user queries
are acceptable and build a query generator.

Our prior work [13] follows the constrained semantic
parsing approach [11]. However, comparing to the task
grounding problem in Figure 1, the formulation in [13] is
more restricted. In [13], the grounding is achieved through
a grammatical model that limits the responses to be a set of
canonical utterances. The approach enables implementation
of a constrained parser using prompt engineering with GPT-
3. However, the parser does not consider scenarios where
one query might be contextually related to the next query.
In other words, each query is treated independently.

1.4. Our approach

Figure 3. Using a knowledge graph to connect LM and admissible actions

In this work we present an innovative approach for the
task grounding problem in our IEA application. Figure 3
depicts the main idea. Our approach uses a knowledge graph
(KG) [14] to connect a LM and those admissible actions.
For each action ai, it has a set of acceptable options. Hence,

for each user query, the responses are confined within the set
of actions and their options. The KG serves three purposes:

● From the perspective of the LM, the KG is used
to constrain the LM’s responses. Each response is
represented as a subgraph of the KG.

● From the perspective of backend API, the KG cap-
tures our analytic knowledge on how to utilize API
function calls to accomplish an analytic task.

● From the perspective of IEA implementation, the KG
is a model to enable data management for keeping
track of the current tool’s state during its execution.

If we think that domain-specific machine learning
(DSML) [15][16] is about “domain knowledge + ML”,
in our approach the “domain knowledge” is explicitly ex-
pressed in the KG, and the ML is involved in the LM and
some admissible actions supported in the backend API

For the rest of the paper, section 2 discusses main
considerations behind the KG development. Section 3 ex-
plains key ideas, considering the three perspectives men-
tioned above. Section 4 focuses on the approach for pattern
analytics, including the task for correlating wafer patterns
to E-tests. Section 5 shows the IEA-Plot’s results based
on a dialog example. Section 6 discusses our constrained
semantic parsing approach. Section 7 concludes.

2. Use of Knowledge Graph

Our decision to utilize a KG to connect LM and backend
API was partly inspired by a recent trend in natural language
research where LM and KG are combined to improve natural
language inference (NLI) and question-answer (QA), e.g.
see [17][18][19][20][21]. A KG, such as ConceptNet [22],
provides structural knowledge that can be used to ground
the reasoning process through a LM [19]. A KG represents
knowledge in a symbolic space while a LM represents
knowledge in a vector semantic space. The major challenge
in their work is how to effectively fuse the two representa-
tions in a unified manner [20][21].
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Figure 4. A user query corresponds to a subgraph in the KG

In our IEA design, we mean to use KG in a different
way though. As illustrated in Figure 4, the KG provides a
target output space for the frontend semantic parser. The
parser’s job is to map a query to a subgraph of KG. This
mapping is based on two aspects of the query: its intent and
the implied steps required for the task.

The use of KG was motivated by another objective.
We desire to use KG as a central place to store domain
knowledge and as discussed in Section 1.4, this domain
knowledge has three perspectives: (1) the LM perspective
(knowledge about the steps involved in an analytic process)
(2) the API perspective (knowledge about the analytic tools
and their use), (3) the IEA tool perspective (knowledge
about the IEA implementation itself). This domain knowl-
edge is expressively represented in the KG and sharing of
the knowledge can be achieved by sharing the KG. Ideally,
we also want to design the KG such that future scaling of the
IEA tool’s capability (e.g. adding a new function or option)
can be done by adding nodes and edges to the KG.

3. Development of Knowledge Graph

As pointed out in [14], the term “knowledge graph” can
have various meanings, and the announcement of the Google
KG [23] separates its modern views from the historical
views. KG is a rich field. Terms (e.g. the term “ontology”)
used in the field can sometimes be confusing [14].

In our view, the field includes two distinct uses of
KG. One is for representing and organizing the knowledge
from vast amounts of data such as data available from
the Internet. RDF [24] (for data representation), and RDF
Schema (RDFS) and OWL [25] (the ontology languages)
are standards for this purpose. The other is for representing
and organizing people’s knowledge. ConceptNet [22] is a
popular example. ConceptNet does not use a complicated
ontology (like OWL). It includes 35 well-defined relations to
connect common sense “concepts”. ConceptNet is suitable
for representing the graph nodes with distributional vector
embeddings, making it suitable for use with a LM to perform
joint reasoning [19][20][21].

Given our multiple purposes to use KG from the three
perspectives, we need a hybrid model somewhat between
RDF/OWL and ConceptNet. On one hand, we need a KG
capable of modeling the data in our tool. On the other hand,
we need the KG simple enough to enable LM+KG joint
reasoning in the future.

3.1. The KG design
To avoid confusion, Figure 5 clarifies the formalism of

our KG design and the terminology in use. A graph is
a collection of triples (source, predicate, target). The

KG comprises two separate graphs: the domain graph and
the data graph. When we refer to the term ontology, we
mean the domain graph. The domain graph provides our
interpretation to process the data graph, and this processing
includes the three perspectives mentioned before.

Figure 5. Hierarchy in our knowledge graph design

In the domain graph, sources and targets are called
entities. Predictates are called relations, which are always
directional. In the data graph, sources and targets are nodes
and predicates are edges. A node is an instance of an entity
and an edge is an instance of a relation. These usages of
the terms are consistent with those described in [14].

A node can have a list of data items. There are two types
of data items stored with a node. The first is to store data
objects relevant to the execution of the tool. The second is to
store example phrases/sentences that represent the semantic
meaning of the node.

3.2. Our Ontology

In the field of KG, an ontology is a concrete, formal
representation of what terms means in the given domain
[14]. Figure 6 depicts our ontology as axioms in the domain
graph. A triple (Entity1,Relationa,Entity2) means that
a node of Entity1 and a node of Entity2 can have an edge
of Relationa. If a triple (Entity1,Relationb,Entity2) is
not present in this graph, then it means the two nodes cannot
have an edge of Relationb. Hence, the graph provide the
axioms that triples in the data graph have to satisfy.

Figure 6. Axioms in the domain graph, representing the ontology we use

The semantics of the domain graph can be explained as
the following. We divide nodes into four domains: Man-
ager, Action, Intent, and Resource. These four entities
are all subclasses of the parent entity Domain. Inside the
resource domain, there are two types of nodes: Concept and
Option. In addition, there is a special type of node called
Constraint which is used to capture constraints between
concept-concept and concept-option pairs, whenever needed.
In total, our ontology defines 8 entities (types of nodes).
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The ontology further defines eight types of relations. Be-
low we use the term “activate” to mean that during subgraph
extraction, a node is included in the current subgraph.

1) (source, require, target): When the source is acti-
vated, the target is required to be activated.

2) (source, default, target): When the source is acti-
vated and no option node is activated by the user
query, the target is the default and is activated.

3) (source, option, target): The target can be activated
as an option when the source is activated.

4) (source, reset, target): When the source is activated
by the user query, all previously-activated options
from the target are reset.

5) (source, disable, target): When the source is acti-
vated, the target is deactivated. This can be used to
model mutually-exclusive activations among nodes.

The sixth relation is called contextto. Its usage is spe-
cific to the form (Action,contextto,Domain). This is
used to model domain switching in a dialog. For example,
when the analytic context switches from analyzing wafer
sort data to correlating between wafer sort data and E-test
data, it involves a domain switching.

The last two relations are invoke and exclude, specific
for the use to model node-node constraints. (Concept, in-
voke, Constraint) means activation of the concept node will
invoke the constraint. (Constraint, exclude, node) means
the constraint excludes the activation of the node which can
only be a node of either Concept or Option.

3.3. Key ideas for constructing the data graph
Figure 7 uses a conceptual example to illustrate the key

ideas for constructing the data graph1.

Figure 7. A conceptual example to illustrate our graph construction

Each box in Figure 7 represents a resource domain that
contains a subgraph. There are two types of edges shown in
the figure. A solid edge is a require edge. A dash edge is
not a require edge. There are three example queries where
for each, the activated subgraph is illustrated.

Consider the first query “Show me the yield loss”. This
query activates the Show action node. It is determined (intent
determination will be discussed later) that the intent is to
inspect the data from the “yield loss” perspective. This

1. The data graph is evolving. Our current data graph contains 243 nodes
with 1147 edges, which can be accessed from our IEA project page: https:
//iea.ece.ucsb.edu/iea/project

inspection requires performing two tasks: (1) Select the data
scope to inspect. This is represented by the require edge
pointing to the DataObjectScope resource domain. (2)
Select a plot type for the display. This is represented by the
require edge pointing to the Plots resource domain.

The data selection task further requires resources from
two domains: TimeScope and YieldScope, where the
first allows selecting a time interval based on month or
week, while the second allows selecting data based on a
yield threshold (not shown in the figure). Because the query
does not specify a time scope, the default is All which is
pointed by the TimeScope through a default edge.

Similarly, Plots domain contains a list of plot types
and may include a default (e.g. Type1). Defaults and options
are modeled in the subgraph of the Plots domain.

The second query requires an additional resource,
WaferMapConstruct, used to determine how the wafer
maps are constructed (e.g. a pass/fail wafermap, a stacked
wafermap, a wafermap after some filter, etc.). The second
query also requires all resources required by the first query.
As a result, all data and options collected from the first
query is inherited by the second query as its starting point.

The third query asks to switch context from data in-
spection to do some wafermap pattern analysis. Context
switching in our design means to switch from one intent
to another. The third query requires one additional resource
PatternFilter (this resource will be discussed in Sec-
tion 4). Because the query asks to see specifically the “Arc”
pattern, this triggers the option to request the ARC resource.

3.3.1. The API perspective. From the API perspective,
Action nodes correspond to the steps in the “main” program.
Each resource domain corresponds to a portion of the API
functionality. For example, the API support various ways
to select the data. How to call those functions with what
options are organized in the knowledge subgraph within the
DataObjectScope domain. In our KG, each node in a
resource domain (Concept or Option) corresponds to an
available function in the API. Their dependency structure is
modeled in the knowledge subgraph in the domain.

3.3.2. The KG manager perspective. The KG manager is
responsible for managing the extracted subgraphs from one
query to the next. An extracted subgraph corresponds to a
configuration telling how to call the backend API.

A configuration contains a list of admissible actions with
their options as shown in Figure 3. An action can be thought
of as a function call. From the API perspective, function
calls are organized in hierarchy (e.g. calling a function
ai may involve calling other functions ai1 , ai2 , . . .). This
hierarchy is reflected in the subgraph. In other words, our
KG contains the knowledge of the API organization.

From the KG manager’s perspective, the three relations,
require, default, option, are essential for modeling the
functional dependency structure. The three relations, reset,
disable, contextto, are used for managing the change of
subgraph from one query to the next. Their semantic mean-
ings are illustrated through examples in Figure 8.
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Figure 8. Semantic meanings of the six relations for subgraph management

Example (1) in Figure 8 illustrates that a node in an
extracted subgraph in general can have two parts of child
nodes: the OR part and the AND part. Edges in the OR parts
are of option type where one of them is default. Edges in
the AND part are of require type. For example, to execute
the function represented by the parent, it requires certain
specific resources and can have the various options. In this
case, we can use default/option to model the options and
use require to model the resources.

Examples (2)-(4) then illustrate how the KG manager
handles subgraph change from one query to the next.

In example (2), the first query asks to see “wafermap”.
This corresponds to the intent of “wafermap inspection”.
Suppose node “1” models this intent. After that, there are
other queries within the scope of this intent. Then the last
query asks to see “Arc pattern”, triggering a new intent
“pattern analytics”. Suppose node “2” models this intent.

Activation of node “2” triggers a switch of intent. This
is modeled through a reset relation from node “2” to its
parent. The parent previously maintains the current config-
uration resulting from queries before the intent switching.
The activation of node “2” therefore resets the configuration
of its parent, telling it to compute a new one from scratch.

Consider the green node in example (2). It is a shared
resource between the two intents. Within the scope of the
first intent, those queries may have set the available options
under the green node (not shown). Without a reset, a subse-
quent query would inherit those options. The reset notifies
the manager to restores everything back to its default. For
the KG manager, options choices are handled cumulatively
from one query to the next, until it encounters a reset.

Example (3) shows a situation where a previously-
selected option is replaced with a newly-selected option.
The first query asks to see “Arc pattern” but does not specify
a direction. Hence, the default is to include all directions.
This default is the green node in example (3). The second
query then provides a specific direction “at 11 o’clock”.
This option replaces the previous option, and is modeled as
a disable relation. In general, the disable relation can be
used to model a set of mutually-exclusive options.

Example (4) shows an example of domain switching.
The first query is in one domain, operating on one dataset,
the wafer sort dataset. The second query involves E-test data.
In our KG, we consider the two queries belonging to two
separate domains. The second query triggers a switch from
one-dataset analytics to cross-dataset analytics.

Domain switching is modeled through a contextto rela-
tion. For example, the Action node in the wafer sort domain
is labeled as the Show action. When the correlation action

is recognized, it invokes switching to the E-test correlation
domain that contains the action node Correlate.

The contextto relation tells the manager to (1) bring
in the E-test dataset and (2) transfer the current analytic
result (e.g. pattern groups) from the wafer sort domain to the
correlation domain. As discussed in [10], our interpretation
of E-test correlation is based on a given set of pattern groups.

3.3.3. The query perspective. Figure 9 shows a sketch of
the subgraph for the first query in example (4). As discussed
in Section 3.1, example phrases can be attached to a node.
Figure 9 shows four such nodes.

Figure 9. Subgraph for “Show me the Arc pattern at 11 o’clock direction”

Given the query, the parser’s job is to determine that
these four nodes should be activated. Then, the KG manager
can extend from the activated nodes to obtain a subgraph
(by following the require edges).

In a simple way, we might think that the four nodes can
be activated by matching texts in the query to the phrases
attached with those nodes. For example, Show in the query
matches “show” in the Show node. The text at 11 o’clock
matches the “at x o’clock” in the Clock node. While text
matching can be used, it can substantially limit the scope of
the acceptable queries to our tool.

Figure 10. Intent Capture and Phrase Matching for parsing a query

Figure 10 shows that the parser’s job includes two
aspects: intent capture and phrase matching. Consider again
the first query in example (4) in Figure 9. For intent capture,
the parser needs to know to activate the Pattern node.
This might be doable by matching the word pattern to
the text “pattern” in the PatternFilter node. However,
consider the four queries shown in Figure 10. Those queries
imply to see failing patterns as well, but none of them
mentions the word “pattern” or “arc”.

Furthermore, the four queries imply looking for a pattern
along the wafer edge. If our tool is smart enough, it should
know that this includes the Arc pattern as we have defined
it in our KG. This means that we need to match “arc” with
phrases like wafer edge, boundary of the wafer, perimeter
of the wafer, etc. We call it the phrase matching problem.

Intent capture and phrase matching are the two problems
considerd in this work, where we leverage the power of LMs
[2][5][26] for tackling the problems. A LM has the ability to
“understand” the semantic meaning of a query, to the extent
that it helps decide if two queries share the same intent, and
if two phrases share the same meaning in view of our KG.
In Section 6, we will discuss such use of LMs in detail.
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3.3.4. The constraint graph. In our KG, a separate con-
straint graph is maintained using Constraint nodes and
invoke/exclude relations. Figure 11 illustrates their use.

Figure 11. A constraint graph is separately maintained in our KG

In the KG (see footnote 1 in Section 3.3), each resource
domain comprises three types of nodes. An Entry node
is an instance of the Resource entity. Inside a domain, an
Option node is a node with an incoming option edge and
without any outgoing option edge. Other nodes in a domain
are instances of the Concept entity.

Suppose resource A is shared by both B and C. This is
modeled by the two require edges from the Entry node of
B and from the Entry node of C, both to the entry node of
A. Domain A contains two concepts, A1 and A2, where A1
can have two options, Option1 and Option2. Suppose
in our backend API, B1 can be used with A1, but when that
happens, cannot have Option1. Also, C1 cannot be with
A2 (if we think C1 and A2 as two functions, they cannot
be called together due to our API design).

To model such constraints, we create constraint nodes
with constraint edges as shown in the figure. The red cir-
cles are instances of the Constraint entity. Each red edge
comprises an invoke and an exclude relation.

For example, domain A can be resources for making
plots. Domain B is for inspecting patterns on wafermaps.
Domain C is for inspecting wafermaps in general. A1 and
A2 are two plot types. While A1 can be used to display
wafermaps, Option1 is not valid when the wafermaps are
given as pattern groups. Also A2 is a plot that can only be
used when wafermaps have already had a pattern group label
assigned. To model this knowledge about the API usage
structure, we put in the two constraints.

3.3.5. Scalability. An important consideration in our KG
design is scalability. Figure 12 shows that extending the
tool’s functionality can be achieved by adding nodes (and
edges) to the KG. This extension can be considered at three
levels: Option, Concept, and Resource.

Figure 12. Extending tool functionality by adding nodes in KG

For example, suppose for a particular type of plot we
desire to add a new option. With our IEA tool design, we

can simply add the option to our API. Then, we add a node
OptionX to represent this option, and we add a list of
example phrases for activation of this option node.

Similarly, if we desire to add a new plot type, we can
add a new Concept node, say TypeY (and its available
options as Option nodes) in the Plots domain, with a list
of example phrases for activation of the concept node.

In our current design, the Pattern intent node re-
quires resources from the PatternFilter domain. For
pattern analytics, our current implementation looks for sys-
tematic patterns. Suppose we desire to include a new way
that checks for “outlier” patterns, i.e. a pattern that is
both significant and unique. We can add this functional-
ity into the API. On the KG, we can create a new re-
source domain, say PatternOutlierFilter. Then, we
can make the PatternFilter domain as default and
PatternOutlierFilter as an option.

As seen in the above three examples, extending the
functionality of our tool can be done (mostly) by working
within a focused scope of the KG. This locality feature
provides a major benefit which facilitates scaling of our tool
functionality over time.

4. Pattern Analytics
For wafer pattern analytics, our backend API is built

upon the techniques reported previously [6][10][12]. Its
core is the Minions analysis approach [12]. This section
highlights the differences from those previously reported.

Figure 13. Identifying a pattern group satisfying a pattern Concept

As shown in Figure 13, our current implementation
includes seven pattern concepts: Arc, Ring, Donut,
Center, Cluster, NearFull, and Grid. Each pattern
concept is modeled as a resource domain in our KG.

Our API supports various preprocessing steps to ob-
tain a wafermap, e.g. salient map, masking, resizing, etc.
Those options are modeled in the WaferMapConstruct
resource domain in our KG. On a wafermap, the value of
a die can also be determined in various ways. For example,
it can be based on stacking wafers from the same lot, or
based on a particular test bin. Those options are modeled in
the WaferMapsRepresentation resource domain.

Given a set of wafermaps, each is checked to see if it
satisfies a pattern concept. This check is based on hard-
coded feature-based rules. For the features in use, we ex-
perimented and selected features reported from prior works
(e.g. [27]) and implemented some of our own [10]. Suppose
we want to check if a wafermap contains an Arc pattern, in
our current approach we first apply the rule-based script for
the Arc concept. Our rules are designed to be conservative
so that if the script considers a wafermap as an Arc, the
pattern would be obvious from our visual point of view.
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After running the script, we obtain a set of Arc
wafermaps. In our backend, they correspond to some nodes
in the Minions graph. A Minions graph (see [6][10]) is a
graph where nodes are wafermaps, and an edge between two
nodes means the two wafermaps are similar. This similarity
is determined by our Minions analysis approach [12].

Figure 13 provides an example to show that after running
a script, three nodes are selected in the Minions graph. At
this point, the three nodes are separated in two groups.

Based on the Minions graph, we can extend the set
of selected nodes in different ways. First, we extend the
selection by including all nodes that belong to a clique
based on an already-selected node. The result is shown in
the second graph in Figure 13 (after the clique extension).
The selected nodes still form two groups. The first group is
a clique of size 4 and the second is a clique of size 3.

The next extension is based on including all nodes that
have a direct connection with the current selected nodes.
We call this operation the 1-hop extension. Those newly-
included nodes are marked as green. Then, repeating the
idea of 1-hop extension, we can have 2-hop extension which
includes two additional nodes marked as blue.

4.1. Pattern group
In IEA-Plot, 1-hop extension is the current default to

obtain a pattern group. For example, Figure 14 shows the
IEA-Plot result based on the query to see the Center
pattern. The display comprises three levels: after the rules,
after the clique extension, and after the 1-hop extension.

Figure 14. Results based on the Center pattern concept

When the next query “Correlate” is given, the pattern
group is transferred from the wafer sort domain to the E-test
correlation domain. This is the domain switching scenario
as discussed with example (4) in Figure 8 before. IEA-plot
generates correlation plots like the one shown in Figure 14.
The plot shows 10 Center wafers from 3 lots. The two
axes are two sites from the same E-test parameter where
the two sites are closest to the pattern. Each dot shows the
E-test values of the two sites. Red dots are those 10 wafers.

E-test correlation can result in multiple plots reported.
A bias score is assigned to each plot and plots are ranked
accordingly. For generating a correlation plot, IEA-plot
searches for the subset of wafers from the pattern group,
one lot at a time, which give the largest bias score. For
detail of this E-test correlation method, please see [10].

Figure 14 shows a scenario where the user already knows
what pattern to request. Initially, the user might want to see
what patterns are available in the data and what options
might be available for a particular pattern.

Figure 15. IEA-Plot outputs based on the two consecutive queries

In Figure 15, Q4 gives a list of available patterns. For
the Arc pattern, Q5 gives a list of available options. These
results are generated based on the rule-based scripts with
no extension. Result of Q5 shows that the Arc pattern can
point to five different directions, have three length types, and
two thickness types. The number of wafermaps satisfying
each option is shown. From here, a user can select options
to define a pattern group. If no option from a category is
selected in a query, the default is “all”.

5. Chat-Based Analytics
Figure 16 shows a dialog example. IEA-Plot’s output

screenshots for those queries are shown in Figure 17 (except
for Q4 and Q5 which are already shown in Figure 15 above).
The dialog includes an intent switching at Q4 and a domain
switching at Q12. These two types of context switching have
been discussed in detail above.

Figure 16. A dialog example and IEA-Plot’s outputs shown in Figure 17

Q2 and Q8 are two examples where the data scope is
narrowed. In IEA-Plot, the data scope is inherited into the
next query by default unless (1) the next query selects a new
scope, (2) the next query is an intent switching or a domain
switching. To restore to the previous data scope, a special
query “Go Back” is used. For example, Q9 resets the data
scope back to Q7 which has the same data scope of Q6.

Q10 asks to see a different pattern from Q6. This creates
a new data scope, i.e. the set of wafers having the Donut
pattern. Q11 then resets the data scope back to the previous
scope which is the scope of Q6. As a result, the Arc pattern
group is transferred to the E-test domain when processing
Q12, generating the correlation plot shown with Q12.

6. Frontend Semantic Parser
Our parser implementation is fundamentally different

from that reported in [13]. With the availability of ChatGPT
[28], we leverage its power by taking a generative approach.
Figure 18 illustrates the approach.
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Figure 17. IEA-Plot output screenshots for queries listed in Figure 16, screenshots for Q4 and Q5 displayed in Figure 15 previously

Figure 18. Generating acceptable queries using a GPT model [28]

By traversing the KG, we can extract a list of acceptable
configurations (Section 3.3.2). For a configuration, we can
generate a list of concatenated phrases (i.e. a sequence of
phrases separated by comma) by enumerating combinations
of phrases associated with those activated nodes (see Fig-
ure 19 for an example). For each concatenated phrase, we
ask GPT [28] to make it a full English sentence. Then, we
ask GPT to repeatedly paraphrase the sentence to obtain
semantically-equivalent sentences. At the end, for each con-
catenated phrase we obtain a list of acceptable queries.

Figure 19. An example to obtain a list of acceptable queries

6.1. Intent capture
Parsing of a query is divided into two stages: intent

capture and phrase matching (Section 3.3.3). Intent capture
determines if the given query requires a switch of context.
Our KG supports two types of context switching: intent
switching and domain switching (e.g. Figure 16). In ad-
dition, intent capture determines the current scope of the

intent, i.e. the set of allowable nodes in the KG. Under an
intent, those nodes are considered for phrase matching.

For intent capture, we use a sentence-BERT (SBERT)
model [29]. Figure 20 illustrates our approach. First, we
sample a set of acceptable queries where each option is
covered at least once. The sampling is done in two phases.
First, we sample acceptable configurations. In our experi-
ment, we started with over 250K configurations. Then, we
sample a subset of them for generating acceptable queries.

Figure 20. Intent capture by comparing pairwise SBERT embeddings

Given a query, we use SBERT to obtain an embed-
ding, a 384-dimension vector. Given a list of n acceptable
queries, we obtain a table of n embeddings (E1, . . . ,En in
Figure 20). When a query is entered to IEA-Plot, SBERT
generates an embedding E for the query. Then, this E is
compared with E1, . . . ,En using cosine similarity. The most
similar Ei is used to indicate the intent of the query.

While the approach is simple, it is important to note that
its performance can largely depend on the set of acceptable
queries stored in the table, i.e. the coverage of the set.
This coverage depends on the paraphrasing power of the
GPT model. IEA-Plot leverages such power provided by
the model to simplify the parser implementation.

SBERT was trained to decide semantic similarity be-
tween two sentences [29]. While the original SBERT model
performed reasonably well in our intent capture, we also
found fine-tuning the model could improve the result.

Figure 21 shows a 2D projection (using t-SNE) of the
embeddings based on 3623 acceptable queries we sample.
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Figure 21. Fine-tuning SBERT improves our intent capture

The purple markers are queries with no context switching.
The other three colors each represents switching to the
particular intent. As seen, fine-tuning the model makes
separation among different groups of queries more clear.

Our fine-tuning follows the retrofitting idea suggested in
[30]. Among the 3623 queries, we sample 382 to fine-tune
the SBERT (following Figure 20, this means that n = 382 in
En). Then, we test the model on the remaining 3241 queries
and find only 1 query whose intent is captured wrong.
The cause for the mistake is actually due to the fact that
paraphrasing can generate a query that looks quite different
from its original query. In Figure 20, this means that we
have to include this one query into the set of acceptable
queries on the right to cover the special case.

6.2. Phrase matching
Our approach to phrase matching also relies on checking

the cosine similarity between two embeddings. The differ-
ence is that in phrase matching, the two embeddings are
from two phrases (instead of two sentences). And instead
of using SBERT, we use the original BERT model [26].

Figure 22 illustrates the approach. Similar to Figure 20,
we first build a table of phrase embeddings q1, . . . , qm. Each
qj is labeled with the corresponding node name in the KG.
The starting point is also a set of acceptable queries.

Figure 22. Phrase matching by comparing pairwise BERT embeddings

Given a query, we need to extract phrases stated in
the query. We use the core-NLP API [31] to obtain a
constituency parsing tree. We then applied custom rules
to extract potential phrases. If the query is the original
query generated by sentence completion, the label of a
phrase can be determined easily by checking the phrases
stored with the nodes in the KG. If the query is obtained
by paraphrasing, then the label is determined by matching
its BERT embedding with the BERT embeddings of those
phrases from the original query.

In our current implementation we have grown the ta-
ble to contain over 13K embeddings categorized with 116
labels. We have verified the performance with over 5K
paraphrased queries and found no mistakes.

Given a user query, the process to obtain embeddings
e1, . . . , ei in Figure 22 is similar. First we use core-NLP API
and rules to obtain phrases p1, . . . , pi. Then, we apply BERT
to get the embeddings. After that, for each ei we search

(using cosine similarity again) the embedding table to find
the best-matched qj and then we activate the corresponding
node in the KG.

Figure 23. Examples of parsing a query into a KG configuration

Figure 23 uses two query examples with two different
intents to illustrate the parsing process. Note that these two
queries each contains several phrases to make the parsing
more difficult. In practice, most queries might be much
simpler, involving simple action with one or no option (e.g.
the dialog example in Figure 16).

6.3. Dialog representation of an analytic process

In typical ML, a given type of analysis (e.g. classifi-
cation, clustering, etc.) is applied on a dataset to obtain
a result. In contrast, we consider DSML as an iterative
knowledge exploration process from the data [6][15][16].
Under this view, in each step the user explores the data
from a specific perspective. With IEA-Plot, this perspective
corresponds to the configurations implied by the queries.

Figure 24. LM enables Domain-Specific ML (DSML) through dialog

Figure 24 depicts our DSML view. Under this view,
each exploration process is represented through a dialog.
Which analytic results (plots) are meaningful to a user is up
to the user to decide. The DSML tool’s job (IEA-Plot) is
to facilitate the exploration process. LMs bring two major
benefits: (1) enabling dialog representation of an analytic
process; (2) improving the efficiency of the exploration.

From our DSML view, the KG provides a specifi-
cation for how a particular ML tool is used within the
application scope. For example, in our KG the concept
of pattern classification is captured in the Concept node
WaferPatternFilter. It involves seven pattern con-
cepts. A rule-based script is currently associated with each
pattern concept. Others can replace the scripts with their
own. The classification relies on a Minions graph con-
structed based on a wafer-wafer similarity measure. Others
can add new implementations with their own similarity mea-
sures. Overall, our KG separates the API implementation
from its usage and provides a clear contextual definition for
how a ML tool is used in the application domain.
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7. Conclusion
IEA-Plot is designed to enable chat-based analytics.

Inputs to IEA-Plot are queries forming a dialog. Outputs
are plots. The essential idea for implementing IEA-Plot is
the development and use of a KG. The main contribution of
this work is showing how the KG can be constructed, which
captures the domain knowledge in the specific application
domain. Our KG together with the front-end parser can be
shared with others, providing a platform for customizing
their own IEA tool by adding their own backend API.

The performance of our frontend parser depends on
the paraphrasing power of a large LM. How to make a
LM better understand the terms used in our domain and
improve such power is a separate research issue. While the
current parser is implemented as a constrained parser, as
we collect more query examples over usage, it will become
feasible to consider other approaches, such as reinforcement
learning [9] or joint LM+KG reasoning [19][20]. Those can
be interesting future research directions.

Although IEA-Plot is designed for user to interact with
the tool through a dialog, it is possible to add a separate GUI
to enable using the tool’s functions through mouse clicks. In
this case, the focus might not be on enabling dialog-driven
analytics. Instead, it can be for automatic translation of a
usage session (i.e. a sequence of mouse clicks) into a natural
language description (e.g. a workflow description). In IEA-
Plot, each analytic step is represented as a subgraph of the
KG and with the generative approach, can be converted into
a natural language description. Such automatic workflow
capture can be an interesting future add-on feature spanned
from our current IEA-Plot design.
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