
WM-Graph: Graph-Based Approach for Wafermap Analytics

Min Jian Yang, Yueling (Jenny) Zeng, Li-C. Wang
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract—This paper introduces WM-Graph, a novel approach
designed for flexible analytics of wafermaps. The key concept
behind WM-Graph is the construction of a wafermap graph,
where individual wafermaps are connected if they exhibit semi-
equivalence. This graph-based structure allows a wide range
of analytics to be performed using established graph algo-
rithms. Unlike traditional multi-class classification methods,
WM-Graph enables more versatile analyses, making it possible
to answer complex, practical questions that would otherwise be
difficult to address. We explain the technical innovations that
underpin the WM-Graph approach and demonstrate how to
perform certain analytical tasks with simple graph operations.
The effectiveness of the WM-Graph approach is validated
through experiments using the public WM-811K dataset and
a proprietary dataset from a recent production line.

1. Introduction
A wafermap is an image showing passing and failing

dies on a wafer. Wafermap analytics has been an important
area of study in the semiconductor industry for decades. In
the last decade, one specific problem, known as Wafermap
Pattern Recognition (WMPR), became a focus of study
after the publication of the TMSC WM-811K dataset [1]
in 2015. This dataset includes 811,457 wafermaps among
which 172,950 are labeled and the rest are not labeled. The
work [1] introduced two ML-related approaches, one for
classifying wafermaps and the other for searching similar
wafermaps based on a given wafermap. The approaches
were based on engineering a set of discriminative features to
build a model for pattern recognition and similarity ranking.

Figure 1. 8 patterns and “None” class defined in the WM-811K dataset

The work in [1] exemplifies treating wafermap analytics
as solving a multi-class classification problem, a supervised
learning problem in view of the general machine learning.
The WM-811K dataset pre-defines nine classes. Figure 1
illustrates eight pattern classes where the purple color marks

the area of a wafer, and the yellow pixels indicate the
locations of failing dies on the wafer. In addition, a “None”
class is used to classify wafermaps with “no pattern”. The
dataset includes different wafer sizes. One common size of
wafermap image is 27 × 25 (with 518 dies).

1.1. Issues with pre-defined pattern classes

In our view, a multi-class wafermap classifier is not
sufficient to support the practical needs of wafermap an-
alytics. To illustrate this observation, Figure 2 shows two
commonly-asked analytic questions to point out a gap be-
tween the questions and a wafermap classifier (as the tool).

Figure 2. Gap between analytic questions and a classifier tool

Suppose the classifier is trained based on the WM-811K
labeled dataset and let us put aside the accuracy issue with
the classifier. The capability of the classifier is to label each
wafermap with one of the nine classes. To answer the two
questions shown in the figure, we need to first define the
meaning of the terms “systematic trend” and “problematic
wafer lot” based on the nine-class labeling capability.

Suppose we define systematic trend as the following:
Frequent occurrence of a pattern
within a given short time period

And accordingly we can define problematic lot as:
A lot with a systematic trend.

These definitions might sound reasonable at first. How-
ever, whether or not they make sense largely depends on
the definition of the term “pattern” to begin with. And with
WM-811K, patterns are limited in terms of the eight pattern
classes shown in Figure 1.

To illustrate the issue of this limitation, Figure 3 below
shows that wafermaps with the same class label might not
be seen as having a “systematic trend”. The figure shows
two WM-811K pattern classes: “Edge-Local” and “Local”.
For each class, seven wafermaps are shown. In each class,

Regular Paper111

2024 IEEE International Test Conference (ITC)

2378-2250/24/$31.00 ©2024 IEEE
DOI 10.1109/ITC51657.2024.00030

Figure 3. Within-class pattern variations seen in WM-811K dataset

whether or not those seven wafermaps can be considered as
having a systematic trend is questionable.

When the term “systematic trend” is used in an analytic
question, it is likely that one is actually interested in observ-
ing a “systematic issue”. Then, the underlying question for
whether or not to treat the seven wafermaps in Figure 3 as
a systematic trend depends on one’s belief if they are due
to the same manufacturing issue.

Figure 4. Patterns vary within a single lot in WM-811K dataset

To further illustrate the issue, Figure 4 shows six consec-
utive wafermaps from one single lot in the WM-811K unla-
beled dataset. These six wafers visually show a systematic
trend. However, according to WM-811K’s class definition,
the 1st, 3rd, and 5th wafers (from the left) are “Local”.
The 2nd and the 4th are “Donut”. The rightmost one can
be classified as a “Center” or “Local” (because of label
ambiguity [2]). From the WM-811K pattern class definition,
these wafermaps are separated into three classes and hence,
they are considered as different. Nevertheless, by the fact
that they are consecutive wafers within the same lot, calling
them a systematic trend is very much justifiable.

1.2. Three postulates for the work

When a wafermap analytic tool is a classifier, this
classifier is built upon a dataset like the WM-811K [1]
with a fixed definition of pattern classes in advance. This
pattern class definition might not be sufficient in view of
a future application context. With a fixed class definition,
it is assumed that in an application, there is no need to
differentiate wafermaps beyond those defined classes. This
might not be true, as pointed out in the discussion above.

In fact, the term “systematic trend” can depend on the
data itself and given an analytic context, the term might
have a dynamic meaning. For example, in early stage of
a production when yield is low, the emphasis might be on
the persistence of a trend to impact the yield. In later stage
when yield is high, the emphasis might be on capturing an
excursion of the yield, e.g. see the work in [3].

In different analytic contexts, the most suitable pattern
class definitions can be different. The WM-811K provides
one particular pattern class definition, which can be rather
limited in view of a particular analytic context. In general, a
multi-class classifier fixed upon one particular pattern class
definition for one analytic context can be too limited to be
applied in another context.

Providing a pattern class definition in advance and ex-
pect that the definition will make sense universally to all
analytic contexts in the future, can be a rather unrealistic
assumption. Consequently, we desire an analytic tool that
can enable flexible pattern class definition which depends on
both the data and the context. We use three postulates below
to highlight this thinking, which is fundamentally different
from the multi-class classification approach:

1) Pattern class definition should be flexible enough
to support answering various analytic questions.

2) Pattern class definition can depend on the dataset
associated with the analytic question.

3) A user can assert a pattern class, e.g. by giving at
minimal one wafermap as an example.

In this work, we will present a wafermap analytic tool
that can provide capabilities in view of the three postulates.
The tool is built upon the approach called WM-Graph
(WaferMap Graph) incorporating two essential ideas: (1)
Build a wafermap recognition graph where semi-equivalent
wafermaps are connected and (2) Enable all required ana-
lytic capabilities through graph-based operations. Note that
the term “semi-equivalent” will become clear when we
discuss the method to construct a recognition graph.

The rest of the paper is organized as the following. Sec-
tion 2 reviews other works done on the WM-811K dataset.
Section 3 explains our question-dataset pair view and how
to use concepts to phrase an analytic question. Section 4
lists a number of graph-based concepts for interpreting the
various analytic questions presented in Section 3. Section 5
explains the MINIONs approach first proposed in [2] and
how it can be the foundation to realize the proposed WM-
Graph approach. Section 6 then presents detail of our cur-
rent MINIONs implementation. Section 7 uses experiment
results to demonstrate how analytic questions mentioned in
Section 5 can be answered in practice. Section 8 concludes.

2. Literature review

A number of works has been published using the WM-
811K dataset. These works can be roughly divided into two
categories: (1) those following a traditional machine learning
(ML) approach, where a set of features are developed and
used to convert each wafermap image into a feature vector,
followed by applying a model building method that operates
on the set of feature vectors to learn a model; (2) those
following a deep learning (DL) approach, where the feature
extraction step is automated by, for example, layers of a
Convolution Neural Network (CNN), followed by one or
more Fully-Connected (FC) layers for classification decision
(corresponding to the model building step in the traditional

Regular Paper112

ML). Figure 5 summarizes these two common approaches
for training a wafermap classifier.

Figure 5. Two common ML approaches for training a classifier

Early works from 2015 to 2017 followed the tradi-
tional ML approach. The original work [1] belongs to this
category. Then, the work [4] adopted a slightly different
feature set and aimed to improve the multi-pattern detection
accuracy, i.e. capturing a wafermap with two or more pre-
defined pattern classess. The work [5] advocated using
more discriminant features based on Linear Discriminant
Analysis (LDA) to simplify the model building step. Using
Radon transform features, the work [6] proposed a special
Decision Tree based ensemble learning method to improve
interpretability of the model.

From 2018, applications of DL on the WM-811K dataset
began to emerge, e.g. using a CNN architecture for train-
ing the classifier. The author in [7] proposed a 2-stage
classification: first between pattern and no pattern (i.e. to
filter out the “None” class) and then, for those containing
a pattern, classify which class it belongs to. WM-811K
is an extremely imbalanced dataset where some classes
have many more samples than others [1]. The work in [8]
therefore proposed a data augmentation method based on
Generative Adversarial Network (GAN) [9]. Instead of using
GAN, the authors in [10] used Auto Encoder (AE) [11] for
data augmentation. In contrast, the authors in [12] used pre-
determined rules to augment the dataset.

The authors in [13] approached the problem from a
different angle, by addressing the concern that a wafermap
to be predicted might contain a new pattern or a multi-
pattern not defined with the dataset. Therefore, the work
proposed using selective learning to determine applicability
of a model, where the model included the choice to abstain
from making a prediction, i.e. the model could reject some
samples and only make prediction on others.

Recently, the work in [14] proposed a semi-supervised
learning approach, attempting to reduce the number of la-
beled samples required for the training. Similar to previous
works, a set of transformations was identified for data
augmentation and used to adjust the imbalanced data. Their
result showed a tradeoff between the prediction accuracy
and the amount of training samples in use.

For all the works reviewed above, it suffices to say that
they start with a multi-class classification problem defined
with the WM-811K dataset. Our work takes a fundamentally
different path and does not start with a defined classifica-
tion problem. In our problem formulation, defining pattern
classes is part of the problem.

3. Question-Dataset pair view

Figure 6. Question-Dataset pair view with the WM-Graph approach

Figure 6 illustrates the high-level problem formulation
seen by WM-Graph. Input to the tool is a pair of analytic
question and dataset. We can assume the dataset is a set of
wafermaps without class label. Output is given as a plot,
based on the selected subset of wafermaps. The question
consists of two parts: concept and constraint. Essentially, we
can think of WM-Graph as a filtering-in process that selects
wafermaps based on the concept and constraint specified
in the question. Depending on the question, labels can be
associated with the selected wafermaps as part of the output.

3.1. Analytic question

In this work, we consider analytic question stated with
a concept C and a constraint S. Later we will explain C
and S in detail. For now, we can simply think of C and S
as two types of wafermap filters used to select wafermaps.
Note that S can be null, i.e. there is no constraint. With C
and S, we consider two types of questions:
Existence type The general form of this type can be like:
“Is there C under the constraint S?” The following provides
a few examples where the concept name is capitalized and
constraint is in italic.

Is there a PATTERN with yield loss effect ≥ 0.5%?
Is there a SYSTEMATIC PATTERN?
Is there a PROBLEMATIC LOT?
Is there a SYSTEMATIC TREND last month?

Search type The general form of this type can be like:
“Given C, does C appear in the dataset constrained by S?”
The C is provided through an example. For example, the C
can be specified with one particular wafermap (or multiple
wafermaps) or with one particular wafer lot. The following
provides two example questions of this type.

Given wafermap wp, are there other wafermaps
similar to wp?
Given wafer lot L, are there other similar lots?

Note that the answer for a search type of question depends
on how WM-Graph interprets the word “similar”.

3.2. Concept

As shown above, a concept has a name, e.g. a word or
a phrase. Regardless how a concept is called, the important
aspect is that a concept must be associated with a decision
procedure that decides its existence in a given dataset.
Specifically, we define concept as the following.

A concept is something whose existence in a
dataset is decidable by a software script.

Regular Paper113

In our implementation, a software script is a Python
script. In the context of wafermap analytics, the decision
procedure can be seen as a filter to select wafermaps from
a given set of wafermaps.

3.3. Constraint

We can consider four types of constraints: yield con-
straint, time constraint, test constraint, and lot constraint. A
constraint is used to limit the scope of the data to be applied
with the concept. For example, “yield loss ≥ 0.5” is a yield
constraint. “January to April” is a time constraint. “Test bin
X” is a test constraint. A wafer lot constraint can be given
by explicitly specifying the names for a set of lots.

4. Graph-based concepts

To process an analytic question, the most important step
is to decide on the meaning of the concept mentioned in the
question. Constraints are more specific and their interpreta-
tion is usually without ambiguity. In this section, we will
present a list of concepts built upon a so-called MINIONs
graph of wafermaps [2]. More detail about MINIONs graph
will be discussed in Section 5. In this section, we focus on
the properties of a MINIONs graph.

4.1. The semi-equivalence relation ≊

A MINIONs graph MG is constructed based on a given
set of n wafermaps wp1, wp2, . . . ,wpn. Each wafermap wpi
corresponds to a node in MG. Two wafermaps wpi, wpj
connected with a bidirectional edge in MG iff the relation
wpi ≊ wpj holds.

The binary relation “≊” is called semi-equivalent. This
relation “≊” is the foundation for building a MINIONs graph
and consequently, all the concepts defined with WM-Graph
are based upon it. Implementation detail for “≊” will be
provided in Sections 5 and 6.

4.2. Other relations built upon ≊

Once we have the semi-equivalence relation ≊ estab-
lished, it can be used to define other relations.

Equivalent denoted as “≡”: Given a group of wafermaps
E = {wp1, . . . ,wpk}, for k ≥ 3, we say that they are
equivalent if ∀i, j, 1 ≤ i, j ≤ k, we have wpi ≊ wpj . In
this case, we say that wpi ≡ wpj ∀wpi, wpj in the group.

Intuitively, this definition is to say that on the MINIONs
graph, the group E of wafermaps forms a clique of size at
least 3. If a group of wafermaps form a clique of size ≥ 3,
then we consider them all equivalent.

i-similar denoted as “⋍i”: We say that two wafermaps
wpa, wpb are i-similar, denoted as wpa ⋍i wpb if the fol-
lowing holds: There exists no wafermaps in between (let ⋍0
be the same as ≊), or a sequence of wafermaps w1, . . . ,wi,
i > 0 such that wa ≊ w1 ≊ w2 ≊ ⋯ ≊ wi ≊ wb.

Distance The smallest i where wpa ⋍i wpb is called the
distance between wpa and wpb.

With the wafer-to-wafer distance defined above, we
can also define the wafer-to-group distance such that for
a wafermap wp and a group of wafermaps, the distance
from wp to the group is the smallest of the wafer-to-wafer
distances to all individual wafermaps in the group.

4.3. Support concepts

With the relations defined above, we can then define a
number of support concepts. These concepts are supporting
in nature as they can be referred directly in a given analytic
question, or they can be used to construct other higher-level
concepts referred in a given analytic question.

First, we define four types of pattern concepts.

Anchor Pattern: Given a set of wafermaps, an anchor
pattern is represented by a maximal clique in the MIN-
IONs graph, i.e. a maximal group of mutually equivalent
wafermaps A = {wp1, . . . ,wpk} such that there exists no
wp /∈ A that wp and wpi are semi-equivalent ∀wpi ∈ A.

Primitive Pattern: A primitive pattern is represented by
a group of anchor patterns A1, . . . ,Al for l ≥ 1 such that
for any pair Ai,Aj , there exists a waferamp wp such that
wp ∈ Ai and wp ∈ Aj . Intuitively, on the MINIONs graph
the two maximal cliques Ai,Aj share one or more nodes. In
this case, Ai,Aj are considered the same primitive pattern.

i-Hop Pattern: An i-hop pattern is based on a primitive pat-
tern and includes all wafermaps that has a distance i to any
wafermap in the primitive pattern wafermap set. Intuitively,
a primitive pattern on a MINIONs graph is represented by
a set of nodes. An i-hop pattern is an expansion from this
set to include all nodes reachable within distance i.

Lot-Pattern: A lot-pattern is a collection of primitive pat-
terns appearing in the same lot, i.e. they are considered as a
single pattern and may be given with a unique pattern name.

With the four pattern concepts defined above, other
pattern concepts can be defined based on them, depending
on the need to interpret an analytic question. Below we
will show a few examples. It can be seen that with the
support concepts, one can conveniently define more complex
concepts to support answering various analytic questions.

4.4. Systematic Trend

A systematic trend can be defined with a window of
consecutive wafer lots S = {L1, . . . , Lm}. We say that S
contains a systematic trend iff for any lot in S, it contains a
pattern that also exists in at least one other lot. The definition
of this “pattern” can be chosen as the anchor pattern, the
primitive pattern, the i-hop pattern, or a more complex
pattern defined based on the supporting pattern concepts.

To give an example, let us say P1, P2, P3, P4 are four
pattern concepts. Let us say L1 ⊇ {P1, P2}, i.e. L1 contains
the patterns P1, P2, L2 ⊇ {P2, P3} and L3 ⊇ {P3, P4}. Then,

Regular Paper114

a window containing {L1, L2, L3} has a systematic trend
because L1, L2 share the pattern P2 and L2, L3 share the
pattern P3. Notice that a systematic trend can contain a
morphism of the pattern across a sequence of wafer lots.

As seen, with our WM-Graph approach the concept of
“systematic trend” can be flexibly defined. This flexibility is
a benefit provided by our approach, which is hard to accom-
plish with the traditional multi-class classification approach.

4.5. Problematic lot

With our WM-Graph approach, we can also provide
flexibility to define what constitute a problematic lot. The
term “problematic” is defined in terms of two aspects: yield
loss and systematic strength. The yield loss for a given lot
can be calculated directly. Hence, our focus is on how to
define the term “systematic strength”.

Systematic Strength: Given a group of wafermaps
wp1, . . . ,wpn, we measure a systematic strength for the
group based on the pairwise distances between wafermaps,
where the distance is defined in Section 4.2 above. Given
two wafermaps wpi, wpj , their distance is denoted as
dist(wpi, wpj). The systematic strength for the group is
calculated with the following formula:

1

n
Σ∀i,j

1

(dist(wpi, wpj) + 1)2
(1)

Note that according to our distance definition above,
if wpi, wpj are directly connected with an edge in the
MINIONs graph, then dist(wpi, wpj) = 0.

Intuitively the systematic strength tries to measure an
average similarity across all wafermaps in the group. The
higher this average similarity value is, the more likely the
group has a problem. This is to contrast to the situation that
if the group does not have a problem, then those wafermaps
should appear to be random.

Systematic Strength w.r.t wp: The systematic strength for
a group of wafermaps can also be measured with respect to
(w.r.t) a given wafermap wp. This can become handy when
answering a search type of question (see Section 7 for its
use). To define this measure, we modify formula (1) above
into the following (wpi is from the group):

Σ∀i
1

(dist(wp,wpi) + 1)2
(2)

Problematic Lot: With systematic strength defined, we can
then say that a problematic lot is a lot with a high yield loss
and with a large systematic strength. Therefore, to inspect
a large number of lots we can use a two dimensional plot
to find those problematic lots (see Section 7 for detail).

5. The MINIONs approach

The previous section discusses the various ideas in our
WM-Graph approach for supporting wafermap analytics. As

seen, the foundation to accomplish all those ideas starts with
a MINIONs graph built upon a given set of wafermaps. The
essential capability to enable this graph construction is to
implement the semi-equivalence relation ≊. To be clear, the
following states the requirement fundamental to our WM-
Graph approach:

A decision procedure that given two wafermaps
decides if they can be treated as the same or not.

5.1. Concept recognizer for one wafermap

In the earlier works [15][2], this decision procedure is
called a concept recognizer. Given a wafermap wp, wp is
treated as representing a (mini) concept on its own and a
recognizer is built to decide the existence of this concept.
Training a concept recognizer based on just one wafermap
[15], is called MINIONs which stands for MINiture Interac-
tive Offset Networks [2]. The MINIONs approach explained
in this section is based on a training scheme (discussed in
Section 6) improved from that in the previous work [2].

Figure 7. High-level idea of the MINIONs approach

Figure 7 illustrates the high-level idea of the MIN-
IONs approach. A neural network (NN) model is indepen-
dently learned for each wafermap. This NN model, called
a MINION, serves as the concept recognizer specific for
the wafermap. With one MINION for every wafermap, we
can then perform mutual recognition on pairs of wafermaps,
which will result in a recognition graph. In this graph, every
node is a wafermap. Two nodes have an edge connecting
them if they are mutually recognized. With MINIONs, the
mutual recognition relation is therefore treated as the semi-
equivalence relation ≊ defined earlier.

5.2. MINIONs’ one-shot learning

A MINION is trained with one sample. Training with
one sample is generally referred to as one-shot learning
[16][17]. In machine learning, three general approaches
had been proposed to tackle one-shot learning: data aug-
mentation, transfer learning, and meta learning (see their
discussion in view of training a MINION model in [18]).
For training a MINION, the earlier studies [2][18] did not
find these approaches effective. A fourth approach called
manifestation learning was adopted [18].

Figure 8 explains the idea of manifestation learning
presented in [15] and further improved in this work with a
more effective training scheme. The training has two phases.
In the preparation phase, popular hand-writing digit classi-
fication dataset MNIST [19] is used. The MNIST dataset

Regular Paper115

Figure 8. The idea of manifestation learning presented in [15]

contains 5000 images for each digit, 0 to 9. In manifestation
learning, this dataset is used first to train a Variational
Auto-Encoder (VAE) model [20]. A VAE model comprises
a CNN encoder and a CNN decoder. The CNN encoder
maps each MNIST image onto a distribution of embedding
vectors in the latent space. Then, the CNN decoder maps
an embedding vector back to an image. In [15], this training
is based on InfoVAE [21].

Figure 9. Visualization of latent space learned with MNIST samples

In our implementation, the encoder transforms an input
image into a 16-dimensional embedding vector in the latent
space. Figure 9 illustrates how this latent space looks like
by projecting 16-dimensional vectors onto 2-dimensional
vectors using TSNE [22]. This illustration uses only 100
samples for each digit.

After the InfoVAE training to obtain the latent space
with embedding vectors, on its latent space we build an
SVM one-class model [23] to capture a so-called concept
region for a selected class. The selected class used in [2]
was digit “1”. The SVM model is built in such a way that
it tries to capture as many embedded vectors of digit “1” as
possible and as few vectors from any other digits as possible,
i.e. it is a conservative model.

Refer to Figure 8. In the one-shot learning phase, the
training takes place in the wafermap domain to train an en-
coder without the decoder. The latent space with embedded
vectors from the MNIST training is transferred to serve as
the target for the wafermap encoder. The same SVM model
is reused for training a recognizer for every wafermap. The
idea in this training is to map the wafermap to the center of
the concept region defined by the SVM model.

After the training, the CNN encoder is our recognizer
(MINION) for the given wafermap. Then, for a wafermap

given as input to the recognizer, it will be mapped to an
embedded vector. If this vector falls inside the concept
region as determined by the SVM model, it is recognized.
Otherwise, it is unrecognized.

6. Detail for training a MINION

While the early works described some of the MINION’s
training details [15][2], our current implementation has been
enhanced over time with the development of IEA-PLOT
reported in [24]. Here, we consolidate the most updated
training setup of the MINION models as follows.

Figure 10. Detail of training a MINION model

As mentioned above, the learned latent space along with
the SVM concept region model are transferred to be used
in the MINION’s one-shot training. Figure 10 shows the
training data used in the MINION training, including the
original wafermap and some augmented images.

A MINION is trained by mapping the anchor image
onto the latent vector with the highest SVM score among
all the “1” samples inside the concept region. Denote this
latent vector as t1. This anchor image is a transformation of
the original wafermap, by extracting the largest connected
component (LCC) from the original wafermap. A connected
component (CC) is defined based on the 8-neighbor die
connectivity, i.e. if one failing die (pixel with value 1) is
the neighbor in any of the eight directions of another failing
die, the two dies are considered “connected”. A CC is a set
of failing dies that are connected. The LCC is the largest
CC in terms of the number of failing dies connected.

In addition to the anchor, the in-class set contains the
original image. There are also out-of-class training samples
used in the training. The out-of-class set includes an “all-
pass” wafermap, an “all-fail” wafermap, a special wafermap
by complementing the anchor image, denoted as “¬LCC”,
and wafermaps randomly generated with the count of failing
dies comparable to that of the original wafermap.

All training data are resized to 64× 64 images. Figure 11
shows the neural network layers used in the MINION model.
The input image is encoded by two CNN layers along
with a Max Pooling layer, and then transformed into a
16-dimensional embedding vector v by a dense layer. In
addition, the SVM score of v with respect to the latent
space can be calculated by applying the scoring function

Regular Paper116

Figure 11. The neural network architecture of a MINION model.

of the one-class SVM model. In the scoring function, K is
the RBF kernel, xi is a support vector, αi is the coefficient
of support vectors [23].

It is interesting to note that in an early implementation,
the in-class training set included additional images obtained
by rotating the original wafermap. While this strategy might
help a MINION recognize a rotated version of original
wafermap, it made the MINION model less accurate to
recognize the original wafermap. As a result, we abandoned
this strategy and used only the two in-class images as de-
scribed above. After a MINION is trained, when performing
actual recognition, the input wafermap is used to generate
multiple inputs by rotating with ±x○, e.g. ±10○. Then, if any
of the inputs is recognized, we consider the original input as
recognized. In this way, a MINION is still able to recognize
a rotated version of the original wafermap.

6.1. Triplet loss training with dual objectives

As shown in Figure 10, training a MINION uses various
kinds of images. The in-class includes two images: the
anchor (let it be denoted as “AN”) and the original wafermap
(denoted as “ORI”). The out-out-class (“OUT-C”) includes
the all-pass (“AP”), the all-fail (“AF”), the ¬LCC, and
random images.

The high-level training objective for the MINION aims
at aligning the output embedding vectors based on the
concept region defined by the SVM model. Specifically, we
desire the embedding vector of the in-class image “ORI”
be inside the concept region, while the embedding vectors
of the out-of-class images are positioned away from the
concept region. On top of both, we desire the anchor “AN”
to be mapped to the embedding vector with the highest
SVM score. To achieve all these objectives, the loss function
contains two parts: vector mapping and triplet loss [25].

To achieve vector mapping, we use a loss equation as
below. Recall that t1 is the vector with the highest SVM
score. We let f represent the mapping function of the neural
network in the current training iteration.

Lvector = ∣∣f(AN) − t1∣∣
2
+ ∣∣f(AP) − t0∣∣

2
+ ∣∣f(AF) − t7∣∣

2 (3)

The t0 is the embedded vector that gives the median
SVM score among all the vectors corresponding to digit “0”

images. Similarly, the t7 corresponds to the digit “7” image.
We chose digits “0” and “7” because their embedded vectors
in the latent space form a distribution that is the two farthest
from the distribution of digit “1” vectors.

The second part of the loss function is a variant of the
Triplet Loss [25], and is shown below.

Ltri =max(Tin −ϕ(ORI),0)+max(ϕ(OUT-C)−Tout),0) (4)

The ϕ() represents the SVM scoring function. The
“OUT-C” is a randomly-selected out-of-class image each
time. Tin is a constant calculated as Tin = ϕ(t1) − 0.05,
i.e. we desire the image “ORI” to be mapped to some
vector whose SVM score is within 0.05 from the highest
SVM score (the score of t1). Moreover, Tout is a constant
calculated as Tout = ϕ(t0) + 0.2, we desire the out-of-class
image to be mapped to some SVM score no greater than
Tout. This is because the score ϕ(t0) is rather small and
hence, an adjustment is needed to relax the objective to
make it more attainable.

The final loss is the sum of Lvector and Ltri and in the
training, this loss is minimized. During training, the standard
mini-batch stochastic optimization is employed. Specifically,
an Adam optimizer [26] is used with a learning rate of 0.001
and batch size of 10. Model selection is based on selecting
the model that obtains a loss value no more than 0.02 and
has the lowest loss value among all models trained over a
total of 300 epochs.

In addition to the hyperparameter selections typically
involved in standard neural network training, MINION’s
training includes consideration of several other important pa-
rameter choices. For example, the number of augmented out-
of-class samples is a user-specified parameter. The image
transformation of a wafermap can involve more complicated
settings. The random wafermap generation can be based
on a fixed or a range of yield values. The heuristic used
to extract the LCC wafermap involves several parameters
such as the size of the CC and the number of CCs to
retain, etc. The parameters used in our MINION training
were determined empirically through extensive experiments,
based on performance observed on the public WM-811K
dataset and private test datasets from three production lines.

7. Experiments - Answering analytic questions

One of the most important objectives in wafermap ana-
lytics is to detect a yield issue, collect evidence, and generate
an action. Analyzing “patterns” is just a means to attain this
objective. An analysis has to start from somewhere. In view
of the objective, perhaps the most relevant question is:

Is there a SYSTEMATIC TREND in the dataset?

The key to answer this question is to define the concept
“SYSTEMATIC TREND”. Based on the definition of sys-
tematic trend described in Section 4.4 and the definition of
primitive pattern described in Section 4.3, Figure 12 shows
an answer with two trends. The primitive patterns are named
as “P##”, shown below each wafermap. The dataset had

Regular Paper117

Figure 12. Two systematic trends found on WM-811K wafermaps

7038 wafermaps in 306 lots from WM-811K, based on the
wafer size 27 × 25 (518 dies). There were 14 trends found
in this dataset, each with four or more wafers across at least
two lots. Figure 12 shows two examples to demonstrate the
capability of using WM-Graph to answer this question.

Another relevant question in view of the objective is:

Is there a PROBLEMATIC LOT in the dataset?

Figure 13. From the left plot, pick the problematic lot 20772 to show

Again, the key is to interpret the term “PROBLEMATIC
LOT” and our interpretation has been discussed before in
Section 4.5. That is, a problematic lot has high yield loss
and large systematic strength. Figure 13 shows a 2D plot
where x-axis is the systematic strength and y-axis is the
lot-based yield loss. From the plot, we can pick “lot20772”
as the problematic lot and its wafermaps are shown with
a subgraph extracted from the MINIONs graph. On this
subgraph, wafermaps from the lot are directly connected
with at least another wafermap in the lot. Visually, we can
see a trend formed by those wafermaps. There are also five
other wafermaps (shown outside the red box) which are
indirectly connected to the wafermaps in the subgraph.

As an interesting side note, on the plot shown in Fig-
ure 13 the highest yield loss is from “lot20773”. This lot
has only one wafer and the wafermap is shown.

Suppose now we decide that lot20772 is a problematic
lot. Based on this lot, we desire to find all other lots showing

the same problem, by asking the question:

Other lots showing the SAME PROBLEM as lot20772?

Figure 14. Lot-based same-problem search result for lot20772

As shown in Figure 14, lot20772 contains only one
primitive pattern that is named “P00”. The answer to this
question can be based on finding all other lots containing
the primitive pattern P00. There were 22 lots found in the
search. Figure 14 shows 7 of them, where the number of
P00 wafermaps in each lot is equal to or greater than two.

Answering the above three questions is based on find-
ing the primitive patterns on the MINIONs graph. The
“SYSTEMATIC TREND” and “PROBLEMATIC LOT” are
two convenient concepts to start the investigation. In some
cases, one might be interested in examining the data from
the “PATTERN” perspective to check if there are other
issues not showing up as a “SYSTEMATIC TREND” or
as a “PROBLEMATIC LOT”. In this case, we can ask the
following questions to check out other potential issues.

What PATTERNs are in the dataset?

Figure 15. 20 primitive patterns found, named “P00” to “P19”. In each case,
the # of wafermaps in the pattern set is shown, e.g. P00 has 61 wafermaps.

According to the support concepts defined in Section 4.3,
a primitive pattern is a set of connected maximal cliques
in the MINIONs graph. Given a graph, there can be an
enormous number of maximal cliques. While it is possible
to enumerate all the maximal cliques as a start, this might
not be the most effective way. One alternative is to start
with a set of rules to narrow the selection to those maximal
cliques satisfying certain intuitive properties.

With this idea, we manually wrote 8 rules. These
rules were based on features commonly used for analyzing

Regular Paper118

wafermaps (see, e.g. [1]) These rules were used to describe
our intuitive notions about the following 8 patterns: center,
donut, arc, cluster, ring, catastrophic, grid, and scratch.
These rules were conservative rules to ensure that they
captured the “obvious” cases satisfying our pattern notions.
Using the rules, we collected a set of wafermaps each
satisfying at least one rule, as the starting point. For each
wafermap in the set, we found the anchor pattern(s) contain-
ing the wafermap. If there was none, then the wafermap was
simply ignored. Then, extending from the anchor patterns
we established the primitive patterns.

We omit discussion of the detail for the rules, as they
are not that crucial. They are auxiliary to provide a starting
point. Keep in mind that with WM-Graph, the important
question is never about the accuracy of a pattern classifi-
cation scheme. Rather, when we obtain a set of primitive
patterns, the important question is whether or not they are
sufficient for us to attain the analytic objective, that is,
to detect a yield issue, collect evidence, and generate an
action. It is important to note that regardless of the rules,
the primitive patterns have to satisfy the graph properties
as defined in Section 4.3. In this sense, rules are used as a
guide to direct our attention to certain patterns but not as a
definition for a pattern. The pattern definitions are always
graph-based in WM-Graph.

Figure 15 shows that there were 20 primitive patterns
found, ordered by the number of wafermaps in each pattern
set. For each pattern, one representative wafermap is shown.
This wafermap is the one with the largest LCC size from
the largest maximal clique in the primitive pattern set.

Suppose one find a wafermap wp and is concerned with
the issue shown on the wafermap. In this case, the following
question might be asked:

Is there a lot having the SAME ISSUE as wp?

Figure 16. Ten lots each containing one wafermap having the “same issue”

Figure 16 shows the result for a selected wp from lot
44880. First, the wp is found to be in the primitive pattern set
P01. There are seven other wafermaps in P01, each belong-
ing to a different lot. Then, there are three other wafermaps
directly connected to wp. These three also belong to three
different lots. For each lot, we calculate the lot’s “systematic
strength w.r.t. wp” using the formula (2) in Section 4.5 and
denote this as S in the figure. As seen, the highest S is
with lot44917 and is only 1.202, which means that there is

only one wafermap “close to” wp. This is indeed the case
when we checked on other wafermaps in lot44917. The next
closest wafermap had a distance 6 to wp. Because all other
lots have a smaller S than lot44917, on all those lots, the
“issue” also affects only one wafer.

What PATTERNs are in the dataset?

Figure 17. Similar results as that shown in Figure 15 before

Next, we will show results based on the private dataset
containing 12782 wafers in 666 lots. Figure 17 shows the
primitive patterns found in two separate analyses, each
focusing on fails from a particular test bin (bin B1 and bin
B2). Notice that the six primitive patterns based on B2 all
show a “grid” with some minor variations, i.e. from the
perspective of MINIONs graph, they are not the same.

Is there a SYSTEMATIC TREND in the dataset?

Figure 18. Similar results as that shown in Figure 12 before

Then, asking the systematic trend question based on bin
B2 found many trends with the grid patterns. Figure 18
shows one of the grid trends based on three lots, named
X,Y,Z. In these lots, most wafermaps belong to B2’s P00
pattern with a few to B2’s P04 pattern.

Is there a PROBLEMATIC LOT in the dataset?
Figure 19 shows the result by asking the problematic

lot question. Wafermaps in four selected lots are shown,
including the one with the highest yield loss and the one
with the largest systematic strength. The two lots highlighted

Regular Paper119

Figure 19. Similar results as that shown in Figure 13 before

with red box are more interesting, as one showing a grid-like
pattern and the other showing a donut pattern.

8. Conclusion

This paper introduces WM-Graph, a graph-based frame-
work designed to enable flexible wafermap analytics. WM-
Graph can support a comprehensive set of graph-based con-
cepts and operations, allowing developers to build higher-
level constructs to address complex analytical questions,
such as identifying systematic trends or detecting problem-
atic lots. Experimental results are provided to showcase
some of the WM-Graph’s functionalities. WM-Graph fa-
cilitates wafermap analytics at a conceptual level, allowing
concepts to be described using natural language phrases.
This capability is essential for the development of the AI
assistant, IEA-Plot, first introduced in [24].

Acknowledgment This work is supported in part by Na-
tional Science Foundation Grant No. 2006739. The authors
are thankful to Sergio Mier, Leon Wang and Patty Pun of
Qualcomm for their valuable inputs to our research.

References
[1] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pattern

recognition and similarity ranking for large-scale data sets,” IEEE
Tran. on Semi. Manufacturing, vol. 28, no. 1, pp. 1–12, 2015.

[2] Y. J. Zeng, L.-C. Wang, and C. J. Shan, “Miniature interactive
offset networks (minions) for wafer map classification,” in IEEE
International Test Conference, 2021, pp. 190–199.

[3] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering
for quality improvement and excursion detection,” IEEE International
Test Conference, 2017.

[4] M. Fan, Q. Wang, and B. van der Waal, “Wafer defect patterns
recognition based on optics and multi-label classification,” IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2016.

[5] J. Yu and X. Lu, “Wafer map defect detection and recognition using
joint local and nonlocal linear discriminant analysis,” IEEE Tran. on
Semi. Manufacturing, vol. 29, no. 1, pp. 33–43, 2016.

[6] a. a. Minghao Piao, “Decision tree ensemble-based wafer map failure
pattern recognition based on radon transform-based features,” IEEE
Tran. on Semi. Manufacturing, vol. 31, no. 2, pp. 250–257, 2018.

[7] N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and
analysis based on convolutional neural network,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 4, pp. 566–573, 2019.

[8] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, “Ada-
balgan: An improved generative adversarial network with imbalanced
learning for wafer defective pattern recognition,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 3, pp. 310–319, 2019.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and J. Bengio, “Generative adversarial net-
works,” arXiv:1406.2661, 2014.

[10] T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer
map classification based on data augmentation,” IEEE Transactions
on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663–672, 2020.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1,
pp. 318–362, 1986. [Online]. Available: https://doi.org/10.21105

[12] M. Saqlain, Q. Abbas, and J. Y. Lee, “A deep convolutional neural
network for wafer defect identification on an imbalanced dataset
in semiconductor manufacturing processes,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 3, pp. 436–444, 2020.

[13] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect pat-
terns classification using deep selective learning,” ACM/IEEE Design
Automation Conference, 2020.

[14] H. Hu, C. He, and P. Li, “Semi-supervised wafer map pattern
recognition using domain-specific data augmentation and contrastive
learning,” in 2021 IEEE International Test Conference (ITC), 2021,
pp. 113–122.

[15] Y. J. Zeng, L.-C. Wang, C. J. Shan, and N. Sumikawa, “Learning a
wafer feature with one training sample,” in IEEE International Test
Conference, 2020, pp. 1–10.

[16] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[17] M. Fink, “Object classification from a single example utilizing class
relevance metrics,” Advances in Neural Information Processing Sys-
tems, pp. 449–456, 2005.

[18] L.-C. Wang and J. Zeng, “Machine learning support for wafer-level
pattern analytics,” Chapter 9 in Machine Learning Support for Fault
Diagnosis of System-on-Chip, Springer Nature, 2023.

[19] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013. [Online]. Available: https://arxiv.org/abs/1312.6114

[21] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing
variational autoencoders,” 2017. [Online]. Available: https://arxiv.
org/abs/1706.02262

[22] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[23] B. Schölkopf and et al., Learning with Kernels:Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[24] M. Dupree, M. J. Yang, Y. J. Zeng, and L.-C. Wang, “Iea-plot:
Conducting wafer-based data analytics through chat,” in IEEE In-
ternational Test Conference. IEEE, 2023.

[25] X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in European Conference on Computer Vision, Sep 2018.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

Regular Paper120

https://doi.org/10.21105
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1706.02262
https://arxiv.org/abs/1706.02262

