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Abstract

Can graph neural networks generalize to graphs that are different from
the graphs they were trained on, e.g., in size? In this work, we study this
question from a theoretical perspective. While recent work established such
transferability and approximation results via graph limits, e.g., via graphons,
these only apply nontrivially to dense graphs. To include frequently en-
countered sparse graphs such as bounded-degree or power law graphs, we
take a perspective of taking limits of operators derived from graphs, such as
the aggregation operation that makes up GNNs. This leads to the recently
introduced limit notion of graphops (Backhausz and Szegedy, 2022). We
demonstrate how the operator perspective allows us to develop quantitative
bounds on the distance between a finite GNN and its limit on an infinite
graph, as well as the distance between the GNN on graphs of different sizes
that share structural properties, under a regularity assumption verified for
various graph sequences. Our results hold for dense and sparse graphs, and
various notions of graph limits.

1 Introduction

Since the advent of graph neural networks (GNNs), deep learning has become one of the
most promising tools to address graph-based tasks (Gilmer et al., 2017; Scarselli et al., 2009;
Kipf and Welling, 2017; Bronstein et al., 2017). Following the mounting success of applied
GNN research, theoretical analyses follow with many works studying GNNs’ representational
power (Azizian and Lelarge, 2021; Morris et al., 2019; Xu et al., 2019, 2020; Garg et al.,
2020; Chen et al., 2020; Maron et al., 2019; Loukas, 2020a,b; Abboud et al., 2021).

A hitherto less addressed question of practical importance is the possibility of size gener-
alization, i.e., transferring a learned GNN to graphs of different sizes (Ruiz et al., 2023a;
Levie et al., 2022; Xu et al., 2021; Yehudai et al., 2021; Bevilacqua et al., 2021; Chuang and
Jegelka, 2022; Roddenberry et al., 2022; Maskey et al., 2022, 2023), especially for sparse
graphs. For instance, it would be computationally desirable to train a GNN on small graphs
and apply it to large graphs. This question is also important to judge the reliability of the
learned model on different test graphs. To answer the size generalization question, we need
to understand under which conditions such transferability is possible – since it may not
always be possible (Xu et al., 2021; Yehudai et al., 2021; Jegelka, 2022) – and what output
perturbations we may expect. For a formal analysis of perturbations and conditions, we
need a suitable graph representation that captures inductive biases and allows us to compare
models for graphs of different sizes. Graph limits can help to formalize this, as they help
understand biases as the graph size tends to infinity.

Formally, approximation theory asks for bounds between a GNN on a finite graph and its
infinite counterpart, while transferability compares model outputs on graphs of different sizes.
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The quality of the bounds depends on how the two GNNs (and corresponding graphs) are
intrinsically linked, in particular, to what extent they share relevant structure. This yields
conditions for size generalization. For example, the graphs could be sampled from the same
graph limit (Ruiz et al., 2023a) or from the same random graph model (Keriven et al., 2020).

In particular, Ruiz et al. (2023a) study approximation and transferability via the lens of
graphons (Lovász, 2012; Lovász and Szegedy, 2006), which characterize the limits of dense
graphs. Yet, many real-world graphs are not dense, for instance, planar traffic networks, power
law graphs, polymer graphs, Hamming graphs (including hypercubes for error-correcting
code), or grid-like graphs e.g., for images. For sparser graphs, the correct notion of limit
suitable for deep learning is still an open problem, as typical bounded-degree graph limits
such as the Benjamini-Schramm limit of random rooted graphs (Benjamini and Schramm,
2001), or graphings (Lovász, 2012) are less well understood and often exhibit pathological
behaviors (see Section 2.1). Limits of intermediate graphs, such as the hypercubes, are even
more obscure. Hence, understanding limits, inductive biases and transferability of GNNs for
sparse graphs remains an open problem in understanding graph representation learning.

This question is the focus of this work. To obtain suitable graph limits for sparse graphs
and to be able to compare GNNs on graphs of different sizes while circumventing challenges
of sparse graph limits, we view a graph as an operator derived from it. This viewpoint is
naturally compatible with GNNs, as they are built from convolution/aggregation operations.
We show how the operator perspective allows us to define limits of GNNs of infinite sequences
of graphs. We achieve this by exploiting the recently defined notion of graphop, which
generalizes graph shift operators, and the action convergence defined in the space of graphops
(Backhausz and Szegedy, 2022). Our definition of GNN limits enables us to prove rigorous
bounds for approximation and transferability of GNNs for sparse graphs. Since graphops
encompass both graphons and graphings, we generalize similar bounds for graphon neural
networks (Ruiz et al., 2023a; Maskey et al., 2023) to a much wider set of graphs.

Yet, using graphops requires technical work. For instance, we need to introduce an appropriate
discretization of a graphop to obtain its corresponding finite graph shift operators. We
use these operators to define a generalized graphop neural network that acts as a limit
object, with discretizations that become finite GNNs. Then we prove approximation and
transferability results for both the operators (graphops and their discretizations) and GNNs.

Contributions. To the best of our knowledge, this is the first paper to provide approximation
and transferability theorems specifically for sparse graph limits. Our main tool, graphops,
has not been used to study GNNs before, although viewing graphs as operators is a classic
theme in the literature. Our specific contributions are as follows:

1. We define a graphop convolution, i.e., an operator that includes both finite graph convo-
lutions and a limit version that allows us to define a limit object for GNNs applied to
graphs of size n → ∞.

2. We rigorously prove an approximation theorem (Theorem 2) that bounds a distance
between a graphop A (acting on infinite-dimensional space) and and appropriate dis-
cretization An (acting on Rn), in the dM metric introduced by Backhausz and Szegedy
(2022). Our result applies to a more general set of nonlinear operators, and implies a
transferability bound between finite graphs (discretizations) of different sizes.

3. For neural networks, we present a quantitative approximation and transferability bound
that guarantees outputs of graphop neural networks are close to those of the corresponding
GNNs (obtained from discretization).

1.1 Related work

A summary of comparisons between our framework and related papers is in Table 1.

In structure, the closest related work is (Ruiz et al., 2023a), which derives approximation
and transferability theorems for graphon neural networks, i.e., dense graphs. For graphons,
the convolution kernel has a nice spectral decomposition, which is exploited by Ruiz et al.

1Rate of convergence to a small positive constant. For convergence to 0, Ruiz et al. (2020) showed

the rate of O(n−1/2).
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Sparse DenseBounded-degree Relatively-sparse
Number of edges Θ(n) Θ(n log n) Θ(n2)

Examples covered under our assumptions infinite grids,
polymer graphs

hypercubes,
Hamming graphs graphons

Graphons (Ruiz et al., 2023a) O(n−1)1

Unbounded graphons (Maskey et al., 2023) inexplicit
Random graph model (Keriven et al., 2020) O((log n)−1/2) O(n−1/2)

Spectral methods (1 layer) (Levie et al., 2022) inexplicit inexplicit
Graphings (1 layer) (Roddenberry et al., 2022) inexplicit

P -operators and graphops (ours) O(n−1/2) O(n−1/2) O(n−1/2)
Table 1: Summary of our results compared to related work. Quantitative results (e.g.
O(n−1/2)) upper-bound the distance between GNNs on sampled graphs of size n and the
limiting object in term of n (in an appropriate metric and limit notion). Empty cells are
graph models where the approaches in the corresponding papers do not apply to or give
trivial bounds (e.g. bounds that compare to a constant-0 graphon). "Inexplicit" refers to
asymptotic results where rates of convergence is not explicit.

(2023a). In contrast, sparse graph limits are not known to enjoy nice convergence of the
spectrum (Backhausz and Szegedy, 2022; Aldous and Lyons, 2007), also Appendix C.1, so
we need to use different techniques. Since the notion of graphop generalizes both dense
graph limits and certain sparse graph limits, our results apply to dense graphs as well. Our
assumptions and settings are slightly different from Ruiz et al. (2023a). For instance, they
allow the convolution degree K → ∞ and perform the analysis in the spectral domain,
whereas our K is assumed to be a fixed finite constant. As a result, their bound has better
dependence of O(1/n) on n–the resolution of discretization, but does not go to 0 as n → ∞.
Ours have extra dependence on K and a slower rate of O(n−1/2) but our bounds go to 0 as
n → ∞. Maskey et al. (2023) obtains further results for graphons on unbounded domain.
Ruiz et al. (2023b) studies the spectrum of sparser (but still Θ(n2) edges) graphons.

Other works use other notions than graph limits to obtain structural coherence. Levie et al.
(2022) obtain a transferability result for spectral graph convolution networks via analysis in
frequency domains. They sample finite graphs from general topologies as opposed to a graph
limit. Their graph signals are assumed to have finite bandwidth while ours is only assumed
to be in L2. Their signal discretization scheme is assumed to be close to the continuous
signals, while ours is proven to be so. Roddenberry et al. (2022) address sparse graphs
and give a transferability bound between the loss functions of two random rooted graphs.
However, the metric under which they derive their result is rather simple: if the two graphs
are not isomorphic then their distance is constant, otherwise, they use the Euclidean metric
between the two graph signals. This metric hence does not capture combinatorial, structural
differences of functions on non-isomorphic graphs. To study transferability, Keriven et al.
(2020) sample from standard random graph models, resulting in a bound of order O(n−1/2)
for dense graph and O((log n)−1/2) for relatively-sparse graphs. They do not cover bounded-
degree graphs and their bounds hold with high probability. In general, having access to
deterministic graph limit is considered a weaker assumption than having access to truly
random graphs since large graphs satisfy some notion of ‘almost randomness’ (e.g. via
Szemerédi regularity lemma). There are fascinating, tangile separations between graph limits
and random graphs, especially among sparse graphs, that are outside the scope of this paper.

Adjacent to transferability studies, Bevilacqua et al. (2021) (also inspired by Lovász and
Szegedy (2006)) uses induced homomorphism density to construct a graph representation that
works across graph sizes and demonstrates empirical gains in using this larger representation.
Maskey et al. (2022) uses graph limits to deduce generalization bounds for GNNs.

2 Background

Notation Let N be {1, 2, . . .} and write [n] = {1, . . . , n} for any n ∈ N. For a scalar ³ ∈ R
and a set S ¢ R, let ³S = {³s : s ∈ S}. ‘A.e.’ stands for ‘almost everywhere’.
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For a measure space (Ω, B, µ) and p ∈ [1, ∞], denote by Lp(Ω) the corresponding Lp function
spaces with norm ∥ · ∥p : f 7→ (

∫
Ω

|f |pdµ)1/p. For any p, q ∈ [1, ∞], define the operator norms
∥ · ∥p→q : A 7→ supv∈L∞ ∥vA∥q/∥v∥p.

For function spaces, we use F = L2([0, 1]) and Fn = L2([n]/n), for any n ∈ N. For any Lp

space H, denote by H[−1,1] the restriction to functions with range in [−1, 1] a.e. and HLip(L)

the restriction to functions that are L-Lipschitz a.e. and Hreg(L) = H[−1,1] ∩ HLip(L).

Graph neural networks (GNNs) GNNs2 are functions that use graph convolutions
to incorporate graph structure into neural network architectures. Given a finite graph
G = (V, E) and a function X : V → R (called graph signal or node features), a GNN ΦF

(F for ‘finite’) with L layers, ni neurons at the i-th layer, nonlinearity Ä and learnable
parameters h, is:

ΦF (h, G, X) = XL(h, G, X), (1)

[Xl(h, G, X)]f = Ä

(∑nl−1

g=1
Al,f,g(h, G)[Xl−1]g

)
, l ∈ [L], f ∈ [nl] (2)

X0(h, G, X) = X, (3)

where [Xl]f is the output of the f -th neuron in the l-th layer, which is another graph
signal. The input graph information is captured through order K graph convolutions

Al,f,g(h, G) :=
∑K

k=0 hl,f,g,kGSO(G)k, where GSO(G) is a graph shift operator corresponding
to G — popular examples include the adjacency matrix or the Laplacian (Kipf and Welling,
2017; Levie et al., 2022). The power notation is the usual matrix power, while the notation
hl,f,g,k highlights that there is a learnable parameter for each convolution order k, between
each neuron f and g from layer l − 1 to layer l of the neural network. Thus, the number of
learnable parameters in a GNN does not depend on the number of vertices of the graph.

2.1 Graph limits

Graph limit theory involves embedding discrete graphs into rich topological or geometric
spaces and studying the behavior of convergent (e.g. in size) graph sequences.

Dense graphs A popular example of graph limits are graphons - symmetric L1([0, 1]2)
(Lebesgue-measurable) functions whose value at (x, y) can be thought of (intuitively) as the
weight of the xy-edge in a graph with vertices in [0, 1]. Convergence in this space, under
the cut metric (see Appendix A for the exact definition), is dubbed dense graph convergence
because for any W ∈ L1([0, 1]2), ∥W∥□ = 0 iff W = 0 outside a set of Lebesgue measure 0.
This implies that graphs with a subquadratic number of edges, such as grids or hypercubes,
are identified with the empty graph in the cut norm. Dense graph convergence is very well
understood theoretically and is the basis for recent work on GNN limits (Ruiz et al., 2023a).

Sparse graphs Graphing (Lovász, 2012), is a direct counterpart of a graphon for sparse
graphs. Recall that graphons are not suitable for sparse graphs because the Lebesgue measure
on L2([0, 1]2) is not fine enough to detect edges of bounded-degree graphs. Therefore, one
solution is to consider other measure spaces. Graphings are quadruples (V, A, ¼, E) where V
and E are interpreted as the usual vertex and edge sets and (V, A, ¼) together form a Borel
measure such that E is in A × A satisfying a symmetry condition. While Lebesgue measures
are constructed from a specific topology of open sets on R, for graphings, we are allowed the
freedom to choose a different topological structure (for instance a local topology) on V . The
definition of graphings is theoretically elegant but harder to work with since the topological
structures are stored in the Ã-algebra.

Furthermore, a famous open conjecture by Aldous and Lyons (2007) asks whether all
graphings are weak local limits of some sequence of bounded-degree graphs. The unresolved
conjecture of Aldous and Lyons means that one cannot simply take an arbitrary graphing
and be guaranteed a finite bounded-degree graph sequence converging to said graphing,
which is the main approach in Ruiz et al. (2023a) for dense graphs. As a result, we expect

2The architecture is known as graph convolutional networks, but we call them GNNs for brevity.
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some regularity assumptions on the graph sequence for any work that handles sparse graph
limits, unless the authors try to tackle this conjecture itself. A self-contained summary of
graphings within the scope of this paper is provided in Appendix C. Infinite paths and cycles
also have nice descriptions in terms of graphings (also in Appendix C), which we will use in
our constructions for Lemma 2.

2.2 Graphops and comparing across graph sizes

More recently, Backhausz and Szegedy (2022) approach graph limits from the viewpoint of
limits of operators, called graphops. This viewpoint is straightforward for finite graphs: both
the adjacency matrix and Laplacian, each defining a unique graph, are linear operators on
R#vertices. Moreover, viewing graphs as operators is exactly what we do with GSOs and graph
convolutions. Hence, graphop seems to be an appropriate tool to study GNN approximation
and transferability. On the other hand, there are challenges with this approach: being related
to graphings, they inherit some of graphings’ limitations, such as the conjecture of Aldous
and Lyons (2007) and discontinuity of eigenvalues at the limit (Appendix C.1). Moreover, to
understand GNN transferability from size m to n, one needs to compare an m × m matrix
with an n × n matrix, which is nontrivial. This is done by comparing their actions on Rm

versus Rn. It turns out that these actions, under an appropriate metric, define a special
mode of operator convergence called action convergence. The resulting limit objects are
well-defined and nontrivial for sparse graphs and intermediate graphs, while also generalizing
dense graphs limits. We will describe this mode of convergence, the corresponding metric,
and our own relaxation of it later in this section.

We now describe how graphs of different sizes can be compared through the actions of their
corresponding operators on some function spaces.

Nonlinear (not necessarily linear) P -operators For an n-vertex graph, its adjacency
matrix, Laplacian, or random walks kernels are examples of operators on Lp([n]/n). To
formally generalize to the infinite-vertex case, Backhausz and Szegedy (2022) use P -operators,
which are linear operators from L∞(Ω) to L1(Ω) with finite ∥A∥∞→1. In this paper, we
further assume they have finite ∥ · ∥2→2 norm but are not necessarily linear. This allows us
to consider nonlinear GNN layers and the whole GNN itself in the same framework.

Graphops P -operators lead to a notion of graph limit that applies to both dense and sparse
graphs. Graphops (Backhausz and Szegedy, 2022) are positivity-preserving3, self-adjoint
P -operators. Adjacency matrices of finite graphs, graphons (Lovász and Szegedy, 2006), and
graphings (Lovász, 2012) are all examples of graphops.

(k, L)-profile of a nonlinear P -operator Actions of graphops are formally captured
through their (k, L)-profiles, and these will be useful to compare different graphops. Pick
k ∈ N, L ∈ [0, ∞] and A a P -operator on (Ω, B, µ). Intuitively, we will take k samples
from the space our operators act on, apply our operator to get k images, and concatenate
samples and images into a joint distribution on R2k, which gives us one element of the
profile. For instance, for n-vertex graphs, the concatenation results in a matrix M ∈ Rn×2k,
so each joint distribution is a sum (over rows of M) of n Dirac distributions. In the limit,
the number of atoms in each element of the profile increases, and the measure converges
(weakly) to one with density. More formally, denote by D(v1, . . . , vk) the pushforward of µ
via x 7→ (v1(x), . . . , vk(x)) for any tuple (vi)i∈[k] ∈ L2(Ω). The (k, L)-profile of A is:

Sk,L(A) := {D(v1, . . . , vk, Av1, . . . , Avk) : vi ∈ L∞
reg(L)(Ω), i = 1 . . . k}. (4)

Formally, denote by P(Rk) the set of Borel probability distributions over R2k. Regardless of
the initial graph size, or the space on which the operators act, (k, L)-profiles of A are always
some subsets of P(R2k) which allow us to compare operators acting on different spaces.

Convergence of P -operators We compare two profiles (closed subsets X, Y ¢ P(R2k))
via a Hausdorff metric dH(X, Y ) := max(supx∈X infy∈Y dLP (x, y), supy∈Y infx∈X dLP (x, y)).

3action on positive functions results in positive functions. This condition can be swapped out for
‘positiveness’ (ïAx, xð > 0, ∀x ∈ Dom(A)\{0}) to allow for Laplacians.
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Here, dLP is the Lévy-Prokhorov metric on P(R2k) (see exact definition in Appendix A),
which metrizes weak convergence of Borel probability measures, and translates action
convergence to weak convergence of measures. Finally, given any two P -operators A, B, we
can compare their profiles across all different k at the same time as

dM (A, B) :=
∑∞

k=1
2−kdH(Sk,L(A), Sk,L(B)). (5)

Intuitively, we allow dH to grow subexponentially in k by the scaling 2−k. Our definition of
profile slightly differs from that of Backhausz and Szegedy (2022), using L∞

reg(L) instead of
their L∞

[−1,1]. However, we will justify this deviation in Section 4.4, Theorem 4: by letting L

grow slowly in n, we recover the original limits in Backhausz and Szegedy (2022).

This action convergence turns out to be one of the ‘right’ notions of convergence that capture
both sparse and dense graph limits, as well as some intermediate density graphs:

Theorem 1 (Theorem 1.1 Backhausz and Szegedy (2022)). Convergence under dM is
equivalent (results in the same limit) to dense graph convergence when restricted to graphons
and equivalent to local-global convergence when restricted to graphings.

3 Graphop neural networks

Graph limits allow us to lift finite graphs onto the richer space of graphops to discuss
convergent graph sequences Gi → G. For finite GNNs (Eqn (2)), fixing the graph input Gi

and learnable parameter h results in a function ΦF (h, Gi, ·) that transforms the input graph
signal (node features) into an output graph signal. The transferability question asks how
similar ΦF (h, Gi, ·) is to ΦF (h, Gj , ·) for some i ̸= j. In our approach using approximation
theory, we will compare both functions to the limiting function on G. This is done by an
appropriate lift of the GNN onto a larger space that we call graphop neural networks.

We then introduce a discretization scheme of graphop neural networks to obtain finite GNNs,
similar to graphon sampling (Ruiz et al., 2023a) and sampling from topological spaces
(Levie et al., 2022). Finally, Lemma 1 asserts that, restricted to self-adjoint P -operators,
discretizations of graphops are indeed graph shift operators (GSOs).

3.1 Convolution and graphop neural networks

Similar to how GSOs in a GNN act on graph signals, graphops act on some L2 signals (called
graphop signals). The generalization is straightforward: replacing GSOs in the construction
of the GNN in Eqn. (2) with graphops results in graphop convolution and replacing graph
convolution with graphop convolution gives graphop neural networks.

Formally, fix a maximum order K ∈ N. For some measure space (Ω, B, µ), select a graphop A :
L2(Ω) → L2(Ω) and a graphop signal X ∈ L2(Ω). We define a graphop convolution operator
as a weighted sum of at most K − 1 applications of A: H(h, A)[X] :=

∑K−1
k=0 (hkAk)[X],

where h ∈ RK are (learnable) filter parameters and Ak is the composition of k duplicates of
A. The square bracket [v]i indicates the i-th entry of a tuple v.

For some number of layers L ∈ N, {ni}i∈[L] ∈ N, n0 := 1, define a graphop neural network Φ
with L layers and ni features in layer i as:

Φ(h, A, X) = XL(h, A, X), (6)

Xl(h, A, X) =

[
Ä

(∑nl−1

g=1
H(hl

f,g, A)[Xl−1]g

)]

f∈[nl]

, l ∈ [L], (7)

X0(h, A, X) = X (8)

with filter parameter tuple h = (h1, . . . , hL), hl ∈ (RK)nl×nl−1 for any l ∈ [L], and graphop
signal tuple Xl ∈ (L2(Ω))nl for any l ∈ [L] ∪ {0}. Eqn (7) and Eqn (2) are almost identical,
with the only difference being the input/output space: graphops replacing finite graphs, and
graphop signals replacing graph signals.
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3.2 From graphop neural networks to finite graph neural networks

We are specifically interested in finite GNNs that are discretizations of a graphop (for
instance finite grids as discretizations of infinite grids), so as to obtain a quantitative bound
that depends on the resolution of discretization. To sample a GNN from a given graphop
A : F → F , we first sample a GSO and plug it into Eqn (2). Choose a resolution m ∈ N and
define the GSO Am, for any graph signal X ∈ Fm (defined in Section 2) as:

AmX(v) := m

∫ v

v− 1

m

(AX̃)d¼, v ∈ [m]/m, (9)

Φm(h, A, X) := Φ(h, Am, X), (10)

where graphop signal X̃ ∈ F is an extension of graph signal X ∈ Fm defined as

X̃(u) := X

(+um,
m

)
, u ∈ [0, 1]. (11)

Shared structural properties of sampled graphs The discretization scheme introduced
for graphop can be intuitively understood as partitioning the vertex set into finitely many sets
and merging nodes and their connections in these sets, with an appropriate scaling of the edge
weights. Imagine blurring an n × n matrix into an n/2 × n/2 matrix by average-pooling over
each disjoint 2 × 2 square. As n → ∞ (and even for uncountable [0, 1]), this makes rigorous
the notion of making a high-resolution graph on a huge number of vertices more ‘blurry’ by
merging nodes in a way that still maintains some smoothness conditions, which is reminiscent
of the real-world procedures of training with low-resolution images before fine-tuning with
higher-resolution ones, or sampling from low-frequency graph Fourier transform domain.

Note that if A is linear then Am is necessarily linear, but our definition of graphop does not
require linearity. Therefore, Am is strictly more general than the matrix representation of
graph shift operators. We have the following well-definedness result:
Lemma 1. If a graphop A : F → F is self-adjoint, then for each resolution m ∈ N, the
discretization Am : Fm → Fm defined above is also self-adjoint.

The proof can be found in Appendix B. Compared to previous works, our discretization scheme
in Eqn (9) looks slightly different. In Ruiz et al. (2023a), given a graphon W : [0, 1]2 → R,
the discretization at resolution n was defined by forming the matrix S ∈ Rn×n : Si,j =
W (i/n, j/n). A related discretization scheme involving picking the interval endpoints at
random was also used, but the resulting matrix still takes values at discrete points in W .
These two sampling schemes rely crucially on their everywhere continuous assumptions for
the graphon W . Indeed, but for continuity requirements, two functions that differ only at
finite discrete points (i/n, j/n), i, j ∈ [n] are in the same L2 class of functions, but will give
rise to completely different samples. Furthermore, not every L2 class of functions has a
continuous representative. This means that our discretization scheme is strictly more general
than that used by Ruiz et al. (2023a) even when restricted to graphons. This difference
comes from the fact that we are discretizing an operator and not the graph itself. For our
purpose, taking values at discrete points for some limiting object of sparse graphs will likely
not work, since sparsity ensures that most discrete points are trivial.

4 Main result: Approximation and transferability

4.1 Results for P -operators

Our first set of theorems address approximation and transferability of P -operators: under
certain regularity assumptions to be discussed later, P -operators are well approximated by
their discretizations:
Theorem 2 (Approximation theorem). Let A : F → F be a P -operator satisfying Assumption
2 with constant CA; Assumption 3.A or 3.B with resolutions in N . Fix n ∈ N and consider
(k, Cv)-profiles. Let An : Fn → Fn be a discretization of A as defined in Eqn (9). Then:

dM (A, An) f 2

√
CACv

n
+

Cv + 1

n
. (12)
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Compared to theorems in Ruiz et al. (2023a), our explicit dependence on n has an extra
n−1/2 term that stems from techniques used to bound the Lévy-Prokhorov distance between
two entry distributions obtained from functions that differ by at most O(n−1) in L2 norm.

As an immediate corollary, invoking the triangle inequality yields a transferability bound.

Corollary 1 (Transferability). Let A : F → F be a P -operator satisfying assumptions of
Theorem 2 with constant CA and resolutions N . For any n, m ∈ N , let An : Fn → Fn and
Am : Fm → Fm be discretizations as defined in Eqn (9). Then:

dM (Am, An) f
(

m− 1

2 + n− 1

2

)
2
√

CACv + (m−1 + n−1)(Cv + 1). (13)

We emphasize that these theorems work for general nonlinear P -operators and not only the
linear graphops defined in (Backhausz and Szegedy, 2022).

Proof sketch The full proof of Theorem 2 is in Appendix D. To bound the distance in
dM between two operators, for each sample size k ∈ N, we give a bound on the Hausdorff
metric dH between the two (k, Cv)-profiles. As long as the dependence on k of these bounds
is polynomial, the infinite sum in the definition of dM converges. We do this by picking an
arbitrary distribution ¸ from Sk,Cv

(A), which by definition is given by a k-tuple F of functions
in L∞

reg(Cv). Discretize each element of F and consider its entry distribution results in ¸n ∈
Sk,Cv

(An). We show that we can give an upper bound of dLP (¸, ¸n) that is independent of the
choice of ¸ and thus same upper bound holds for sup¸∈Sk,Cv (A) inf¸n∈Sk,Cv (An) dLP (¸, ¸n). By
also selecting an arbitrary element of Sk,Cv

(An) and extending it to an element of Sk,Cv
(A),

we obtain another upper bound for sup¸n∈Sk,Cv (An) inf¸∈Sk,Cv (A) dLP (¸, ¸n) and thus for dH .
The different assumptions come in via different techniques used to bound dLP by a high
probability bound on the L2 norm of the functions in F and their discretization/extension.

4.2 Results for graphop neural networks

Not only are graphops and their discretizations close in dM , but, as we show next, neural
networks built from a graphop are also close to those built from graphop discretizations in
dM . We iterate that here we are comparing nonlinear operators (graphop neural networks)
that are acting on different spaces (L2([n]/n) for some finite n versus L2([0, 1])).

Before stating theoretical guarantees for graphop neural networks, let us introduce some
assumptions on the neural network activation function and parameters:

Assumption 1. Let the activation function Ä : R → R in the definition of graphop neural
networks be 1-Lipschitz and the convolution parameters h be such that |h| f 1 element-wise.

Theorem 3 (Graphop neural network discretization). Let A : F → F . Assume that A
satisfies Assumption 2 with constant CA and Assumption 3.A or 3.B with resolutions in N .
Fix n ∈ N and consider (k, Cv)-profiles. Under Assumption 1, we have:

dM (Φ(h, A, ·), Φ(h, An, ·)) fP1

√
CACv

n
+

Cv + 1

n
, (14)

where CA := (nmax

∑K
i=1 Ci

A)L, nmax = maxl∈[L] nl, and P1 is a constant depending on K, L.

Furthermore, we can invoke the triangle inequality to compare outputs of graphop neural
networks built from two different discretizations of A. For any m, n ∈ N ,

dM (Φ(h, Am, ·), Φ(h, An, ·)) fP1

√
CACv

(
m− 1

2 + n− 1

2

)
+ (Cv + 1)

(
n−1 + m−1

)
. (15)

Compared to the main theorems of Ruiz et al. (2023a), there are two main differences in our
results. First, our rate of O(n−1/2) is slower than the rate of O(n−1) in Ruiz et al. (2023a)
as a function of n. Yet, second, their bounds contain a small term that is independent of
n and does not go to 0 as n goes to infinity. This small term depends on the variability of
small eigenvalues in the spectral decomposition of the convolution operator associated with
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Figure 1: Hausdorff metric between samples
from 1-profiles of 2-hidden-layer GNN on finite
polymer graphs vs on large polymer graphs (see
Appendix A for polymer graphs). The GNN
uses GSO A2

n +An where An is the normalized
adjacency matrix on n nodes and ReLU nonlin-
earties at each layer. Different solid lines are
different random draws of functions that make
up the estimated 1-profile. See Appendix A
for details.

a graphon. The bound in Theorem 3, in contrast, goes to zero. We tested this bound in
Figure 1 for GNNs on polymer graphs, which suggest that O(n−1) rate may be possible.

The proof for this theorem is in Appendix D.3 for a more general Theorem 6. Note that it
does not suffice to simply use the fact that the assumptions play well with composition with
Lipschitz function Ä, which would result in a bound involving Φ(h, A, ·) and its discretiza-
tion (Φ(h, A, ·))n as a nonlinear operator, as opposed to a bound between Φ(h, A, ·) and
Φ(h, An, ·).Our proof shares the same structure as that of Theorem 2 while making sure that
the mismatch from discretizing/extending operators does not blow up with composition.

4.3 Assumptions

We discuss the main assumptions of our P -operators.

Assumption 2 (Lipschitz mapping). An operator A : F → F is CA-Lipschitz if ∥Af −
Ag∥2 f CA∥f − g∥2 for any f, g ∈ F .

We have already had a finite bound on the operator norm in the definition of P -operators.
For linear operators, Assumption 2 is equivalent to a bounded operator norm and is thus
automatically satisfied by linear P -operators.

The next few assumptions are alternatives; only one needs be satisfied by our P -operators.
Intuitively, they ensure that the images of our operator are not too discontinuous:

Assumption 3.A (Maps constant pieces to constant pieces). We say that an operator
A : F → F maps constant pieces to constant pieces at resolutions in N ¢ N if for any
n ∈ N , and for any f ∈ F[−1,1] that is a.e. constant on each interval (u − 1/n, u] for
u ∈ [n]/n, Af is also constant on (u − 1/n, u] for each u.

Assumption 3.B (Maps Lipschitz functions to Lipschitz functions). We say that an operator
A : F → F maps Lipschitz functions to Lipschitz functions at resolutions in N ¢ N if for
any n ∈ N , and for any f ∈ Freg(Cv), Af is Cv-Lipschitz.

This is the most restrictive assumption. However, the next lemma (proof in Appendix D)
describes some dense, sparse and intermediate graphs that satisfy these assumptions.

Lemma 2 (Well-behaved operators). The following examples satisy our assumptions:

1. Bounded-degree graphings: Let G be a graphing corresponding k-D grids or polymer
graphs (not necessarily regular graphs) with fixed monomers (Appendix A). For each
N ∈ N, there exists a locally equivalent graphing G′

N such that its adjacency operator
satisfies Assumption 3.A with some resolution set (see Lemma 5 and Lemma 7).

2. Lipschitz graphons: Let W be a Cv-Lipschitz graphon on Freg(Cv). Then the Hilbert-

Schmidt operator f 7→
∫ 1

0
W (·, y)g(y)dy satisfies Assumption 3.B with resolution in N.

3. General graphs: Let G be a (potentially infinite) graph with a vertex coloring of N colors
such that if two vertices have the same color, then the multisets of their neighbors’ colors
are the same. Then G’s adjacency operator satisfies Assumption 3.A with resolution N .
An N-d hypercube (more generally, Hamming graphs) which is neither bounded-degree
nor dense, satisfies the above condition with resolutions in {2n}n∈[N ].
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All our results also hold with a less restrictive assumption that allows for a failure of
Assumption 3.A and 3.B in a small set (see Assumption 4.A and 4.B in the Appendix).
The most general results are proven in Appendix D and hold in even slightly more relaxed
conditions which require the operators to map constant pieces to Lipschitz pieces (Assumption
5.A, 5.B in Appendix D).

4.4 Deviations and Justifications

All our theorems hold in slightly modified settings than those by Backhausz and Szegedy
(2022). Namely, we allowed for nonlinear P -operators, assumed that they have finite ∥ · ∥2→2

norm, and used (k, L)-profiles where we focus on Lipschitz functions (while Backhausz and
Szegedy (2022) consider all measurable functions in their profiles). Therefore, we need to
ensure that our changes still give us a useful mode of convergence that generalizes dense and
sparse graph convergences.

First, without the linearity assumption, the convergence proof by Backhausz and Szegedy
(2022) does not hold: we do not know if all limits of nonlinear graphops are still graphops.
However, our approximation results (Theorem 2) show special convergent sequences of
nonlinear operators, which go beyond the settings in (Backhausz and Szegedy, 2022). Studying
special nonlinear operator sequences is interesting since graphop NNs themselves are nonlinear
operators. We also assert that our restriction to operators acting on L2 spaces does not
affect convergence guarantees (Theorem 2.14 in (Backhausz and Szegedy, 2022)).

Next, we show that restriction to Lipschitz profiles, which is necessary for our proof technique,
does not affect the original convergence either, if we allow our Lipschitz constant to grow:

Theorem 4 (Growing profiles). Let L : N → R be a strictly increasing sequence such that

L(n)
n→∞−−−−→ ∞. Consider a sequence of P -operators (An : Fn → Fn)n∈N that is Cauchy in

the sense that d′
M (An, Am) :=

∑∞
k=1 2−kdH(Sk,L(n)(An), Sk,L(m)(Am)) → 0 as m, n → ∞.

If An → A under action convergence (Backhausz and Szegedy, 2022), then (An)n∈N converges
to the same limit under d′

M .

This theorem allows us to replace the Cv constant in our bound with a slowly growing
function in n and get back ‘action convergence’ as described in Backhausz and Szegedy
(2022) so that we can inherit its useful properties while still be able to draw on Lipschitz
assumptions in the profiles, without any realistic slowdown in the bound.

Proof sketch For some k ∈ N, by the completeness of the Hausdorff metric over the closed
subsets of the space of probability measures supported on R2k, the statement is equivalent
to showing dH(Sk(A), Sk,L(n)(An)) → 0 as n → ∞. The proof uses a Lipschitz mollification
argument to smooth out arbitrary measurable functions f1, . . . , fk that witness a measure in
the k-profile of A. By selecting a Lipschitz mollifier ϕ, we ensure that convolving fj with
ϕϵ : x 7→ ϵ−1ϕ(xϵ−1) results in a Lipschitz function that converges to f in L2 as ϵ goes to 0.

5 Discussion and Future directions

In this paper, we study size transferability of finite GNNs on graphs that are discretizations
of graphop, a recent notion of graph limit introduced by Backhausz and Szegedy (2022). We
achieve this by viewing GNNs as operators that transform one graph signal into another.
Under regularity assumptions, we proved that two GNNs, using two different-resolution
GSOs discretized from the same graphop, are close in an operator metric built from weak
convergence of measures.

For future direction, a principled study of spectral properties of graphops and graphop neural
networks would open doors for techniques from Fourier analysis as used in (Ruiz et al., 2023a;
Levie et al., 2022). This leads to distinct challenges, e.g., the spectral gap is not continuous
with respect to local-global limits and thus action convergence, but many more properties of
spectral measures of bounded-degree graphs are recently studied (Virag, 2018).
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A Additional details

Some highly repetitive parts in the proofs are presented informally (e.g. "use the same
techniques as...") to highlight the main ideas in the NeurIPS 2023 version of the paper. For
the complete formal proof, readers are advised to study a later version on arXiv.

A.1 Notations

We will use the following extra notations in the proof:

1. For some P -operator A ∈ L2(Ω) → L2(Ω), k ∈ N and {f1, . . . , fk} =: F ¢ L2(Ω),
let FA be the ordered 2k-tuple (f1, . . . , fk, Af1, . . . , Afk) and denote

FA(x) := (f1(x), . . . , fk(x), Af1(x), . . . , Afk(x)) ∈ R2k.

2. For some P -operator A ∈ L2(Ω) → L2(Ω), k ∈ N and {f1, . . . , fk} =: F ¢ L2(Ω),
let DA(F ) be the entry distribution D(f1, . . . , fk, Af1, . . . , Afk) .

A.2 Definitions

Cut norm and cut metric Here we define concretely the cut metric over the space of
graphons. Recall that graphons are L1([0, 1], F , ¼) Lebesgue-integrable functions. The space
of graphons is equipped with a norm known as the cut norm:

∥W∥□ := sup
S,T ∈F

∣∣∣∣
∫

S×T

W (x, y)d¼(x)d¼(y)

∣∣∣∣ , (16)

and a metric known as the cut metric:

d□(W1, W2) := inf
ϕ

∥W1 − W2 ◦ ϕ∥□, (17)

where ϕ is taken over all measure-preserving bijections from [0, 1] to [0, 1]. Intuitively, taking
the inf over all measure-preserving bijections allows the cut metric to identify graphons that
are just a rearrangement away from another. This generalizes symmetries in graphs, where
permuting the vertices (and the corresponding edges) do not change the graph itself. Lovász
(2012) shows that graphon convergence under the cut metric is well-behaved: every graphon
is a limit of a convergent sequence of graphons; and every Cauchy sequences converges to a
graphon. This mode of convergence is known as dense graph convergence.

Lévy-Prokhorov metric The definition of Lévy-Prokhorov metric on P(R2k) is:

dLP (¸1, ¸2) := inf{ϵ > 0 : ¸1(U) f ¸2(U ϵ) + ϵ ' ¸2(U) f ¸1(U ϵ) + ϵ, ∀U ∈ B2k},

where B2k is the Borel Ã-algebra generated from open subsets of R2k and

U ϵ := {y : ∃x ∈ R2k∥x − y∥2 < ϵ}. (18)

Specific graphs We will also define different graphs that we mentioned in the main paper.
Unless otherwise stated, we consider undirected graphs. A path on n-vertices for some n g 2
is the graph G = ([n], {(i, i + 1) : i ∈ [n − 1]}). Its high dimensional generalization are k-D
grids on nk vertices are the graphs Gk = ([n]k, {(u, v) : ∥u − v∥1 = 1}).

A Hamming graph H(d, q) with parameters d, q g 1 ∈ N is the graph with vertex set [q]d

and edge set contains all pairs u, v that differs at exactly 1 coordinate (Hamming distance
1). For instance, H(1, q) is the complete graph on q vertices and H(2, q) is the hypercube on
2q vertices.

An polymer graph Pk with k g 2 and finite n-vertex monomer M = (VM , EM ) is the graph
on kn vertices that contains k copies M1, . . . , Mk of M . Since M is finite, we can choose
a start s1 and end e1 vertices in VM1

. Mi’s being copies of M also means that there is an
isomorphism ϕi from VMi−1

to VMi
for each i ∈ [k − 1]. Let si and ei be inductively defined

as ϕi(si−1) and ϕi(ei−1) for i from 2 to k. Beside edges in the copies of M , we also add all
edges of the form (ei−1, si) for each i from 2 to k. See Figure 2 for an illustration.
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0 1

x

x + a mod 1

x − a mod 1

(a) Cayley graph of Z

0 1x

((x + a)) ((x + b)) ((x − b)) ((x − a))

(b) Cayley graph of Z2. (()) is computation mod 1

... ...

(c) Polymer graph whose unit is a graph
with 5 vertices. The pattern extends ad
infinitum on both sides.

0 1x

x + .2 x + .4 x + .6 x + .8((x − a))

(d) Graphing of (c). (()) is computation mod 0.2.
Edges drawn are from a single unit in the polymer.

Figure 2: Examples of limit objects. The vertex set is the interval [0, 1]. Example edges are
the arcs connecting points on the intervals. a and b are distinct irrational numbers. In each
graph, edges that miss an endpoint are identified as a single edge connecting the two existing
endpoints.

A.3 Illustrations

Figure 2 shows examples of graphings for a Cayley graph of Z,Z2 and a polynomer graph.

A.4 Experimental details

To empirically study the rate of convergence of the dM metric, we study an approximation
of Hausdorff metric between 1-profiles of GNNs build on small finite polymers to that built
on a large one. The result is in Figure 1 and we now detail the set up.

Architecture The GNN has 2 hidden layers, uses ReLU activation at each layer, including
the output layer. We fix a particular polynomial GSO A2 + A where A is the normalized (by
edge vertex degree) adjacency matrix of the input graph of the GNN. Monomer for each
polymer has size 5 and is the same monomer seen in Figure 2. The small polymers consist of
2, 4, 8, 16, 32 monomers. While the large monomers that take the place of the limit object
has 128 monomers.

1-profile estimation Recall that the 1-profile of an operator P consists of entry dis-
tributions of (f, Pf) where f runs through all measurable functions. It is therefore, not
tractable to construct the 1-profile exactly. Instead, we draw random F = {f1, f2, . . . , f10}’s
to construct a set of 10 probability distributions. Repetitions of this random drawing make
up the different solid lines in Figure 1. We construct each fi : [0, 1] → [−1, 1] as piecewise
linear function with pieces ((u − 1)/1000, u/1000] for u from 1 to 1000. We set fi(0) = 0 for
each i and recursively set fi(u/1000) = fi((u − 1)/1000) + q/100 where q is a random draw
from {−1, 1} uniformly. Finally, we linearly interpolate between two consecutive endpoints.
Numpy random seed is set at 1234567.

After getting this set F , for each operator P that are either GNN built on small polymers
or GNN built on the large one, we compute the set {D(fi, Pfi) : fi ∈ F} to get the
corresponding estimation of the 1-profile.
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Hausdorff metric computation Given a pair of 1-profile estimations to compute dH

over, we use optimal transport code from (Flamary et al., 2021) to compute the earth mover
distance between each pairs of distributions. This gives an approximation of dLP between
elements of the two profiles. Using the definition of Hausdorff distance, we obtain the result
in Figure 1.

A.5 Milder assumptions

As mentioned in the main text, we will work with the following slightly less restrictive set of
Assumptions.

Assumption 4.A (Maps constant pieces to constant pieces with high probability). We say
that an operator A : F → F maps constant pieces to constant pieces whp at resolutions in
N ¢ N if there exists a set E ¢ [0, 1] with Lebesgue measure ¼(E) < infn∈N 1/n, such that
for any n ∈ N , and for any f ∈ F[−1,1] that is a.e. constant on each interval (u − 1/n, u]

for u ∈ [n]/n, Af is constant on (u − 1/n, u]\E and ∥Af1E∥1 < infn∈N 1
n .

Assumption 4.B (Maps Lipschitz functions to Lipschitz functions with high probability).
We say that an operator A : F → F maps Lipschitz functions to Lipschitz functions whp at
resolutions in N ¢ N if there exists a set E ¢ [0, 1] with ¼(E) < infn∈N 1/n, such that for any
n ∈ N , and for any f ∈ F[−1,1], Af is Cv Lipschitz on [0, 1]\E and ∥Af1E∥1 < infn∈N 1

n .

Assumption 5.A (Maps constant pieces to Lipschitz pieces). We say that an operator
A : F → F maps constant pieces to Lipschitz pieces at resolutions in N ¢ N and constant C
if for any n ∈ N , and for any f ∈ F[−1,1] that is a.e. constant on each interval (u − 1/n, u]
for u ∈ [n]/n, we have that Af is C-Lipschitz on each (u − 1/n, u], for all u ∈ [n]/n.

Assumption 5.B (Maps constant pieces to Lipschitz pieces with high probability). We say
that an operator A : F → F maps constant pieces to Lipschitz pieces whp at resolutions in
N ¢ N and constant C if for any n ∈ N , there exists a set E ¢ [0, 1] with ¼(E) < 1

n such that
for any f ∈ F[−1,1] that is a.e. constant on each interval (u − 1/n, u] for u ∈ [n]/n, it holds

that Af is C-Lipschitz on each (u − 1/n, u]\E, for all u ∈ [n]/n and ∥Af1E∥1 < infn∈N 1
n .

B Omitted proofs from Section 3

Proof of Lemma 1. Fix m ∈ N and f, g ∈ Fm. Since P -operators are bounded, to show that
they are self-adjoint, it suffices to show that ïAmf, gð = ïf, Amgð where ï·, ·ð is the usual
inner product in the Hilbert space Fm. We have:

ïAmf, gð =
∑

u∈1/m[m]

(Amf)(u)g(u) (19)

=
∑

u∈1/m[m]

∫ u

u− 1

m

Af ′d¼ · g(u) (20)

=
∑

u∈1/m[m]

∫ u

u− 1

m

(Af ′)g′d¼ =

∫ 1

0

(Af ′)g′d¼ (21)

=

∫ 1

0

f ′(Ag′)d¼ (22)

=
∑

u∈1/m[m]

∫ u

u− 1

m

f ′(Ag′)d¼ = ïf, Agð , (23)

where the first line is the definition of the inner product in Fm, the second line is the
definition of the discretization Am (recall that for f ∈ Fm, f ′ ∈ F is the extension of f
defined as f ′(x) = f(+xm, /m)), the third line is because g′ is constant on fixed [u − 1/m, u]
intervals for each u and the fourth line is because A is self-adjoint.
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C Theory of graphings

In this subsection, we highlight definitions and key characteristics of graphings so that the
paper is self-contained. A much more in-depth discussion can be found in Lovász (2012).
Definition 1 (Borel graphs). Let Ω be a topological space and (Ω, F) be the corresponding
Borel space. A Borel graph is a graph (Ω, E) such that E ∈ F × F .

The following proposition asserts that bounded-degree graphs without automorphisms are
always Borel:
Lemma 3 (Proposition 18.6 from Lovász (2012)). If G is a bounded-degree graph without
automorphisms then there exists a topology Ä on V (G) (called the local topology) such that
G is Borel with respect to the Borel space built from Ä .

When the graph does have automorphisms, one can break the symmetries by coloring the
nodes with some set of colors (the fact that the graph has bounded degree means that one
only needs finitely many colors).

We next introduce the main object of interest:
Definition 2 (Graphings). A graphing is a quadruple G = (Ω, F , ¼, E) such that F is a
Borel Ã-algebra that makes (Ω, E) a Borel graph, and ¼ is a probability measure on (Ω, F)
satisfying: for any A, B ∈ F ,∫

A

degB(x)d¼(x) =

∫

B

degA(x)d¼(x), (24)

where degA(x) counts the number of neighbors in A of x.

As an example, we now describe paths and cycles in terms of graphings: let V be [0, 1], F the
Borel Ã-algebra generated by open intervals with rational endpoints and for each x ∈ [0, 1],
put (x, x ± a) in E if x ± a ∈ [0, 1] for some real number a < 1. For a < 1

2 , each connected
component of the graphing is a finite path. If we consider the edge set (x, x ± a mod 1) for
rational a, then it is not hard to see that connected components of the graphing are finite
cycles. If a is irrational, then the resulting graphing is a two-way infinite path, i.e., a path
with no “beginning” and no “end”. A formal argument, with an appropriate metric on the
space of graphings, can be made to show that the limit of cycles and paths coincides to be
the two-way infinite path.

Graphings are not unique in representing certain graphs. There are weak equivalences
between pairs of graphings that are formalized through the notion of local isomorphisms.
Definition 3 (Local isomorphisms of graphings). Let G1, G2 be two graphings. A measure-
preserving map φ : V (G1) → V (G2) is a local isomorphism if its restriction to almost every
connected component of G1 (outside of a set of connected component of measure 0) is a graph
isomorphism with one of the connect components of G2. More formally,

Pr
¼(G1)

((G1)x ≡ (G2)φ(x)) = 1, (25)

where ≡ is rooted graph isomorphism and (G1)x is the connected component of G1 rooted at
x.

Note that local isomorphism of graphings are not symmetric and the map φ needs not
be invertible. A stronger notion of equivalence, which is symmetric and transitive is local
equivalence:
Definition 4 (Local equivalence (informal)). G1 and G2 are locally equivalent if they have
the same subgraph densities t∗(F, G1) = t∗(F, G2) for every connected simple graph F .

The above definition is informal since we have not defined subgraph densities (which is done
via the Benjamini-Schramm interpretation of graphings). We state Definition 4 for readers
who are familiar with dense graph convergence of graphons since this is how such convergences
are defined. In fact, we can conveniently bypass formally defining local equivalence by the
following characterization:
Lemma 4 (Bi-local isomorphism (Theorem 18.59 in Lovász (2012))). Two graphings are
locally equivalent iff there is a third graphing with a local isomorphism to each of them - a
property called bi-local isomorphism.
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C.1 Degeneracy of eigenvectors

We give an heuristical argument why directed graphing limits can fail to have eigenvalues
and eigenvectors/eigenfunctions. Consider the sequence of one sided directed path: Gn =
(V = [n], E = {(i, i + 1) : i ∈ [n − 1]}), for n g 1. Note that this may not be a Cayley graph
in certain authors’ definition, which requires Caley graphs to be undirected. However, it
is a realistic example in machine learning since convolutional layers in CNNs are exactly
the adjacency operators of these directed graphs. The limiting adjacency operator for
this sequence, for all intents and purposes, is intuitively the shift operator (say, on ℓ2)
A : (x1, x2, x3, . . .) 7→ (0, x1, x2, . . .). An easy calculation then shows that this shift operator
does not have eigenvalues.

For a more formal argument and construction on failure cases of existence of eigenvectors
in undirected graphings (which is what we defined in this section), refer to Remark 1.6 of
Backhausz and Szegedy (2022).

D Omitted proofs from Section 4

D.1 Proof of Lemma 2

We prove each bullet point in Lemma 2 separately, in the next three lemmas.

In the following lemma, we show that graphings corresponding to infinite paths and high
dimensional grids satisfy the assumptions in the main results. Similar to how isomorphic
graphs represent the same graph, we only need to specify a locally isomorphic graphing that
represent the equivalence class of graphings containing the infinite path and high dimensional
grids.

Lemma 5 (Well-behaved GSOs - Graphings). Let G be a graphing corresponding to the
Cayley graph of Z (two-way infinite paths) or high-dimensional generalizations (infinite 2D
and 3D grids). For a graphing H, let A(H) be its adjacency operator. If H is regular, let
deg(H) be the degree of any of its vertices. For each N ∈ N, there exists locally equivalent
graphings:

1. G′
N such that A(G′

N ) satisfies Assumption 3.A with resolution set d(N) = {x ∈ N :
x³ = N for some ³ ∈ N}.

2. G′′
N such that A(G′′

N ) satisfies Assumption 4.A with resolution set [N ].

3. G′′′
N such that A(G′′′

N )/deg(G) satisfies Assumption 4.B with resolution set [N ].

Proof of Lemma 5. We will first show the results for two-way infinite paths. Higher dimen-
sional versions follow almost verbatim. Fix a ∈ R\Q irrational. Recall from Lovász (2012)
that the graphing G = ([0, 1], F , ¼, E) where F is the Borel Ã-algebra generated by open
intervals with rational endpoints, ¼ is some probability measure on ([0, 1], F) and E ∈ F × F
is defined as:

E := {(x, x ± a mod 1) | x ∈ [0, 1]}. (26)

That G is a graphing and each of its connected components is a copy of the Cayley graph of
Z generated by {−1, 1} is asserted in Lovász (2012).

1. Fix N ∈ N, the goal is to define a graphing G′
N that is locally equivalent to G such

that A(G′
N ) satisfies Assumption 3.A with resolution set d(N) - the divisor set of N .

Defining G′
N . Let G′

N := ([0, 1], F , ¼, E′
N ) where,

E′
N :=

{(
xj , j − 1

N
+

(
xj ± a

N
mod

1

N

))
: j ∈ [N ]/N, xj ∈

[
j − 1

N
, j

)}
.

(27)

Intuitively, G′
N consists of N disjoint copies of G shrunk to the space [0, 1/N). Since

E ¢ [0, 1] × [0, 1], G′
N is a graphing in the same Borel space as G.
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G′
N is locally equivalent to G. From Lemma 4 it suffices to display a local

isomorphism from a third graphing to each of them. Let G′
2N , defined similarly as

G′
N , be the third graphing. We claim that φ1 : x 7→ 2x mod 1 is a local isomorphism

from G′
2N to G′

N and φ2 : x 7→ 2Nx mod 1 is a local isomorphism from G′
2N to G.

Intuitively, G′
2N contains 2N copies of G while G′

N contains N copies of G. Thus,
our local isomorphisms only need to make sure that a connected component in one
copy of G in G′

N is mapped bijectively to a connected component in another copy
of G in G′

2N . We give a rigorous argument below.

For x picked randomly according to ¼, let j ∈ [2N ]/(2N) be such that x ∈ [j −
1/(2N), j). By definition of G′

2N , the connected component (G′
2N )x consists of

vertices of the form

v(k) = j − 1

2N
+ (x ± ak/(2N) mod 1/(2N)) ,

for some k ∈ Z and there is an edge from v(k) to v(k ± 1). Consider φ1(x) = 2x
mod 1 that sends v(k) to

φ1(v(k)) :=

(
2j − 1

N
+

(
2x ± ak

N
mod

1

N

))
mod 1.

Now consider the connected component of φ1(x) = 2x mod 1 in G′
N . Since x ∈

[j − 1
2N , j), φ1(x) ∈ [j′ − 1/N, j′) where [N ]/N ∋ j′ := 2j mod 1

N . Thus, the
connected component of (G′

N )φ1(x) consists of vertices of the form:

v′(k) := j′ − 1

N
+ (φ1(x) ± ak/N mod 1/N) (28)

=

(
2j mod

1

N

)
− 1

N
+

(
(2x mod 1) ± ak

N
mod

1

N

)
. (29)

With some modulo arithmetic manipulation, it is not hard to see that φ1(v(k)) = v′(k)
for all k ∈ Z. By definition of G′

N , there is an edge (v′(k), v′(k ± 1)). Therefore,
there is an edge (φ1(v(k)), φ1(v(k ± 1))). If ¼ is the uniform measure then we can
ignore vertices at the endpoints of our intervals ( points in [N ]/N ) and conclude
that (G′

2N )x ≡ (G′
N )φ1(x) with probability 1 when x ∼ ¼.

Now consider φ2(x) = 2Nx mod 1 that sends v(k) to:

φ2(v(k)) := (2Nj − 1 + (2Nx ± ak mod 1)) mod 1. (30)

The connected component of ϕ2(x) in G is in [0, 1] and consists of vertices of the
form:

v′′(k) := (2Nj − 1 mod 1) + (2Nx ± ak mod 1). (31)

Thus v′′(k) = φ2(v(k)) for each k ∈ Z and the definition of G implies that (G′
2N )x ≡

Gφ2(x) since both are isomorphic to the two-way infinite path. If ¼ is the uniform
measure then the above hold for a.e. x ∈ [0, 1].

G′
N satisfies Assumption 3.A with resolution set d(N). Let D be a divisor of

N , then D³ = N for some ³ ∈ N. The intuition is rather straightforward, since D is
a divisor of N , the partition into N equal intervals of [0, 1] is simply a finer partition
into D equal intervals. By construction, a vertex x of G′

N only has neighbors in the
1/N interval containing it. Therefore, if f is constant on each of the D pieces, it
is also constant on each of the N pieces and f(y) = f(x) = f(x′) = f(y′) for any
(x, y), (x′, y′) neighbors such that x and x′ come from the same 1/D pieces.

Here is a more formal argument. Fix f ∈ F[−1,1] that is a.e. constant on each
interval (u − 1/d, u] for u ∈ [D]/D. We need to show that A(G′

N )f is a.e. constant
on the same pieces where A(H) is the adjacency operator of a regular graphing H.
Fix d ∈ [D], fix x, x′ ∈ [d − 1/D, d). Let j be such that x ∈ [j − 1/N, j) and j′ be
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such that x′ ∈ [j′ − 1/N, j′). Since D³ = N , we have [j − 1/N, j), [j′ − 1/N, j′) ¦
[d − 1/D, d). Furthermore, by definition of G′

N , all neighbors of x and x′ are in
[j − 1/N, j) and [j′ − 1/N, j′) respectively, and thus in [d − 1/D, d). Therefore,
A(G′

N )f(x) = 2f(x) = 2f(x′) = A(G′
N )f(x′) for all x, x′ ∈ [d − 1/D, d), which

means that A(G′
N )f is constant on each of the pieces [d − 1/D, d) for each d ∈ [D].

2. Fix N ∈ N , the goal is to define a graphing G′′
N that is locally equivalent to G such

that A(G′′
N ) satisfies Assumption 4.A with resolution set [N ].

Since Q is dense in R, there exists a number ¶(N) < 1
4N2 such that 1

4N2 + ¶(N) is
an irrational number. Let G′′

N = ([0, 1], F , ¼, E′′
N ) where,

E′′
N :=

{(
x, x ±

(
1

4N2
+ ¶(N)

)
mod 1

)
: x ∈ [0, 1]

}
. (32)

That G′′
N is locally equivalence to G is easily seen via the ambiguity of selecting

a when defining G. Now we show that A(G′′
N ) satisfies Assumption 4.A with

resolution set [N ]. Pick M f N and f ∈ F[−1,1] that is a.e. constant on each pieces
(m − 1/M, m] for each m ∈ [M ]/M . Let

E =
⋃

m∈[M ]/M

(
m − 1

4N2
− ¶(N), m +

1

4N2
+ ¶(N)

]

then

¼(E) =
M∑

m′=1

2(1/(4N2) + ¶(N)) f M

N2
<

1

N
.

Pick x, x′ ∈ (m − 1/M, m]\E then x, x′ ∈ (m − 1/M + ϵ, m − ϵ] where ϵ = 1/(4N2) +
¶(N). Thus we have both x ± ϵ and x′ ± ϵ are in (m − 1/M, m]. By definition of
G′′

N , all neighbors of x and x′ are in the same 1/M piece as x and x′. Therefore, if
f ∈ F[−1,1] are constant on these pieces, so is Af .

3. Fix N ∈ N , the goal is define a graphing G′′′
N that is locally equivalent to G such

that A(G′′′
N ) satisfies Assumption 4.B with resolution set [N ].

Since Q is dense in R, there exists a number ¶(N) < 1/(4N) such that 1/(4N)+¶(N)
is an irrational number. Let G′′′

N = ([0, 1], F , ¼, E′′′
N ) where

E′′′
N :=

{(
x, x ±

(
1

4N
+ ¶(N)

)
mod 1

)
: x ∈ [0, 1]

}
(33)

That G′′′
N is locally equivalent to G is easily seen via the ambiguity of selecting a

when defining G. Now we show that A(G′′′
N ) satisfies Assumption 4.B with resolution

set [N ]. Pick M f N and f ∈ Freg(Cv) that is a.e. Cv-Lipschitz on [0, 1]. Set
ϵ = 1

4N + ¶(N) and let:
E = [0, ϵ) ∪ [1 − ϵ, 1). (34)

Then ¼(E) = 2ϵ < 1
N . Pick x, x′ ∈ [0, 1]\E, then x ± ϵ and x′ ± ϵ do not ‘loop over’

in the interval [0, 1] ( y mod 1 = y, for y ∈ {x, x′} + {±ϵ} ). Thus we have:

|Af(x) − Af(x′)| =
|f(x + ϵ) + f(x − ϵ) − f(x′ + ϵ) − f(x′ − ϵ)|

2
(35)

f |f(x + ϵ) − f(x′ + ϵ)| + |f(x − ϵ) − f(x′ − ϵ)|
2

(36)

f Cv|x − x′|, (37)

where in the last line we use Lipschitz property of f . This finishes the proof.
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Lemma 6 (Well-behaved operators - General graphs). Let G be a (potentially countably
infinite) graph with a coloring C : V (G) → [N ] for some N such that for each vertex u, v
with the same color, the multisets of their neighbors’ colors {C(u′) : (u′, u) ∈ E} are the
same. Additionally, assume that the cardinality of vertices of each color is the same: that
there is a bijection from {v : C(v) = c} to {v : C(v) = c; } for any colors c, c′. Then its
adjacency operator satisfies Assumption 3.A with resolution N .

Proof. Given that the cardinality of vertices of each color is the same, it is straightforward
to map (via a Lebsesgue-measure preserving bijection) vertices of V into equipartition of
[0, 1] into N pieces I1, ..., IN such that each partition contains vertices of the same color
and vertices from different partitions will have different colors. Let A be the normalized
adjacency operator of G and f be a function with finite L2 norm such that f is constant on
each Ij for each j from 1 to N . The goal is to show that Af is also constant on these pieces.

We show this by direct computation. Pick a vertex x and another vertex y from the same
piece, say Ik for some particular k. By our construction, x and y have the same color since
they come from the same piece. By our assumption, the multisets of their neighbors’ colors
is the same. However, since f is constant on each pieces, we have f(z) = f(u) for u, v of the
same color. Therefore, the multisets {f(z) : (z, x) ∈ E} and {f(z) : (z, y) ∈ E} is exactly
the same. Taking the appropriate countable sum over each multiset thus result in the same
number, i.e. Af(x) = Af(y), which finishes the proof.

Note that we can drop the countable requirement of the previous proof by invoking an
appropriate integral definition. Now we show that the hypercubes - an intermediate graph
that is neither dense nor bounded degree, satisfies the requirements of Lemma 6.

Lemma 7 (Well-behaved operators - Polymer graphs). Let P be a polymer graphing on
finite monomer n-vertex graph M = (VM , EM ). Let A be then normalized (by each vertex
degree) adjacency operator of a graphing. For each N ∈ N, there exists locally equivalent
graphings:

1. P ′
N such that A(P ′

n) satisfies Assumption 3.A with resolution set nd(N) = {nx ∈ N :
x³ = N for some ³ ∈ N}.

2. P ′′
N such that A(P ′′

N ) satisfies Assumption 4.A with resolution set n[N ].

3. P ′′′
N such that A(P ′′′

N ) satisfies Assumption 4.B with resolution set n[N ].

Proof. The exact same technique as Lemma 5 (make copies of ‘shrinked down’ graphings
to get the result with Assumption 3.A and find a small enough ¶(N) so that the wrap
around has small measure to get the result with Assumption 4.A and Assumption 4.B) works.
Intuitively, this is because we are replacing each node in the path graphing with a monomer
graph.

To handle coloring at the monomers details, use Lemma 6 with the coloring that assigns the
same color to the same node in each monomers (since each monomer is a copy of each other,
there is an isomorphism between the nodes and by ‘the same node’ we meant under this
isomorphism).

Lemma 8 (Well-behaved operators - Graphons). Let W : [0, 1]2 → [0, 1] be a Lipschitz
graphon, with Lipschitz constant C. In other words, W has finite L2 norm and is Lipschitz
in both variables. Then the Hilbert-Schmidt integral operator H that defines the adjacency
operator of W satisfies Assumption 3.B at any resolution when applied to graph(on) signal f
with L1 norm 1.
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Proof. The proof follows from definition. Take f ∈ L2([0, 1]) such that ∥f∥L2 = 1, then:

|Hf(x) − Hf(y)| =

∣∣∣∣
∫ 1

0

W (x, z)f(z)dz −
∫ 1

0

W (y, z)f(z)dz

∣∣∣∣ (38)

f
∫ 1

0

|W (x, z) − W (y, z))| · |f(z)|dz (39)

f
∫ 1

0

C|x − y| · |f(z)|dz = C|x − y|, (40)

where the first line is definition of the Hilbert-Schmidt operator H, the second line is triangle
inequality and the last line is due to Lipschitzness of W and L1 norm of f

Lemma 9 (Well-behaved operators - Hypercubes). Let C be a hypercube of dimension N .
Then the normalized adjacency matrix of C satisfies assumption 3.A with resolutions 2[n] for
each n < N .

Proof. We first display a mapping of the vertices in the hypercube over the interval [0, 1]
such that Assumption 3.A will be shown to hold. Recall that a hypercube vertices can be
represented by a binary string of N numbers. Here, similarly, we will associate a vertex v of
a hypercube with a number in [0, 1] by adding a 0. in front of its binary representation. For
example, 0.110101 (as a binary number) is a vertex correspond to the string 110101 when
N = 6. We call this representation mapping f : V → [0, 1]. Two vertices u, v are connected
by an edge iff f(v) and f(v) differs by exactly one digit in their binary representation.

To get a hypercube representation over the interval [0, 1], we simply take disconnected copies
of (uncountably) infinitely many hypercubes described above. To be more precise, for a
number x ∈ [0, 1], let A(x) be the N -letter binary string such that 0.A (as a string) is the
trunction of x to the N -th digit after the binary point. Then, x is connected to y ∈ [0, 1] iff
A(x) and A(y) differs in exactly one digit and x − A(x) = y − A(y). For example, for N = 4,
we connect 0.110101 with 0.010101 , 0.100101, 0.111101 and 0.110001. Notice how the first
four digits after the dots differ from the original number at exactly one letter, and the last
few digits always stay the same. In this example, A(x) = 0.1101 for x = 0.110101.

With this vertex representation in mind, we verify the conditions of Lemma 6. Let V . Fix
n < N and divide [0, 1] into 2n equipartitions and let vertices in the same partition enjoy
the same color. We will also number the partition/color by the binary representation of their
left hand endpoint. For example, the first interval is labelled 00..0 (n digits), the second
interval is labelled 00..01 (n digits). Select a vertex x from a partition with label a1a2 . . . an.
Then, by the definition of our hypercube representation, the neighbors of x have colors:

• Exactly 1 neighbor with color (a1 + 1 mod 1)a2 . . . an.

• Exactly 1 neighbor with color a1(a2 + 1 mod 1)a3 . . . an.

• . . .

• Exactly 1 neighbor with color a1a2 . . . an−1(an + 1 mod 1).

• Remaining N − n neighbors all have color a1a2 . . . an.

Therefore, the multiset of neighbors’ colors of x only depends on the fact that x comes from
a partition with label a1 . . . an and thus, two vertices of the same color has the same multiset
of neighbor’s colors. Since the condition of Lemma 6 holds, we have the conclusion for this
particular resolution n. Since n was chosen arbitrarily, the result holds for every n < N .

In future work, we formalizes the way in which the above proof holds for limiting object of
hypercube.
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D.2 Proof of Theorem 2

In this section, we prove a slightly more general version of Theorem 2.
Theorem 5 (General approximation theorem). Let A : F → F be a P -operator satisfying
Assumption 2 with constant CA; Assumption 5.A with constant Cc and resolutions in N . Fix
n ∈ N and consider (k, Cv)-profiles. Let An : Fn → Fn be a discretization of A as defined
in Equation (9). Then:

dM (A, An) f 8

(√
CACv

n
+

Cv + Cc

n

)
. (41)

If instead of Assumption 5.A, A satisfies Assumption 5.B with constant Cc and resolution
set N , then:

dM (A, An) f 8

(√
CACv + 1

n
+

Cv + Cc + 1

n

)
. (42)

If instead of Assumption 5.A and 5.B, A satisfies Assumption 4.B with resolution set N
then:

dM (A, An) f 8

(√
CACv + 1

n
+

Cv + 1

n

)
. (43)

Proof of Theorem 2. Fix k ∈ N. In order to derive an upper bound for dM , we find an upper
bound for the Hausdorff distance dH between the two k-profiles of A and An.

Bounding sup¸∈Sk,Cv (A) inf¸n∈Sk,Cv (An) dLP (¸, ¸n). To bound the sup inf quantity, we
first select an arbitrary ¸ ∈ Sk,Cv

(A). From this measure, we will construct a measure
¸n ∈ Sk,Cv

(An). If we can upper bound dLP (¸, ¸n) < M then we have:

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f dLP (¸, ¸n) < M, for all ¸ ∈ Sk,Cv
(A). (44)

If further M does not depend on the choice of ¸, then we have

sup
¸∈Sk,Cv (A)

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f M.

We now proceed with this plan. Fix an arbitrary ¸ ∈ Sk(A), by definition of k-profiles, there
is a corresponding tuple F = (f1, . . . , fk) with elements in Freg(Cv) such that DA(F ) = ¸.

Form:

F ′ :=

{
Fn,reg(Cv) ∋ f ′

j : u 7→ n

∫ u

u−1/n

fjd¼ | j ∈ [k]

}
, ¸n := DAn

(F ′). (45)

That f ′
j ∈ Fn,reg(Cv) is asserted in Lemma 10.

Bounding dLP (¸, ¸n) For some ϵ > 0 to be we want to show that dLP (¸, ¸n) f ϵ, which
is equivalent to showing, for any U ∈ B2k,

¸(U) f ¸n(U ϵ) + ϵ and ¸n(U) f ¸(U ϵ) + ϵ. (46)

Recall that U ϵ was defined in Eqn (18).

Fix any U ∈ B2k, we have

¸(U) =

∫

R2k

1U dDA(F ) =

∫ 1

0

1FA∈U d¼, (47)

and

¸n(U ϵ) =

∫

R2k

1UϵdDAn
(F ′) =

∑

u∈[n]/n

1

n
1F ′

An
∈Uϵ . (48)

23



Subtracting both sides yield:

¸(U) − ¸n(U ϵ) =
∑

u∈[n]/n

∫ u

u−1/n

1FA(x)∈U − 1F ′

An
(u)∈Uϵd¼(x). (49)

Similarly, we have:

¸n(U) − ¸(U ϵ) =
∑

u∈[n]/n

∫ u

u−1/n

1F ′

An
(u)∈U − 1FA(x)∈Uϵd¼(x) (50)

Let yx = +xn, /n. Recall that E ¢ [0, 1] defined in Assumption 5.B and 4.B is the set of x
where Lipschitzness of the image under A may fail. Let E = ∅ if we are using Assumption
5.A alternatively. Define the events:

E1
U (ϵ) = {x : FA(x) ∈ U ' F ′

An
(yx) ̸∈ U ϵ} (51)

E2
U (ϵ) = {x : F ′

An
(yx) ∈ U ' FA ̸∈ U ϵ} (52)

E ′(ϵ) = {x : ∥FA(x) − F ′
An

(yx)∥2 > ϵ} (53)

Ej(ϵ) = {x : |fj(x) − f ′
j(yx)| > ϵ/

√
2k}, j = 1..k (54)

Ej,A(ϵ) = {x : |Afj(x) − Anf ′
j(yx)| > ϵ/

√
2k}, j = 1..k. (55)

Using this notation, one also has

¸(U) − ¸n(U ϵ) f ¼(E1
U ) and ¸n(U) − ¸(U ϵ) f ¼(E2

U ). (56)

It is straightforward to see E l
U (ϵ) ¦ E ′(ϵ), l = 1, 2 for any U by definition of U ϵ. Furthermore,

E ′(ϵ) ¦
k⋃

j=1

Ej(ϵ) ∪ Ej,A(ϵ), (57)

since if all 2k dimensions are bounded in absolute value by ϵ/
√

2k then the Euclidean distance
of the vector is bounded by ϵ.

Therefore it suffices to bound ¼(Ej(ϵ)) + ¼(Ej,A(ϵ)) for each j ∈ [k].

Bounding ¼(Ej(ϵ)). Since fj is Cv-Lipschitz for all j, we have:

|fj(x) − f ′
j(yx)| =

∣∣∣∣∣fj(x) − n

∫ yx

yx−1/n

fj(z)d¼(z)

∣∣∣∣∣ (58)

= n

∣∣∣∣∣

∫ yx

yx−1/n

fj(x) − fj(z)d¼(z)

∣∣∣∣∣ (59)

= n

∫ yx

yx−1/n

|fj(x) − fj(z)|d¼(z) (60)

f n

∫ yx

yx−1/n

Cv

n
d¼(z) =

Cv

n
, (61)

where the first line is definition of f ′
j , the second line is because ¼((u − 1/n, u]) = 1

n , the
third line is by triangle inequality and the last line is because of Lipschitzness of fj .

Thus, choosing ϵ >
√

2kCv/n means that ¼(Ej(ϵ)) = 0. (We can tighten this bound by only
assuming that fj is Cv-Lipschitz outside a set of small measure.)

Bounding ¼(Ej,A). Let F[−1,1] ∋ f̃ be the extension of f ′ defined as f̃(x) = f ′(+xn, /n)

for all x ∈ [0, 1]. Note that f̃ is not continuous in general and hence not Lipschitz. We have
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for any x ∈ [0, 1]:

|Afj(x) − Anf ′
j(yx)| =

∣∣∣∣∣Afj(x) − n

∫ yx

yx− 1

n

Af̃j(z)d¼(z)

∣∣∣∣∣ (62)

f n

∫ yx

yx− 1

n

∣∣Afj(x) − Af̃j(z)
∣∣ d¼(z), (63)

where we used uniformity of ¼ and triangle inequality. From here, we proceed slightly
differently depending on the specific assumptions.

Proof via Assumption 5.A or 5.B. If A satisfies Assumption 5.A or Assumption 5.B,
then we have for each x:

|Afj(x) − Anf ′
j(yx)| f n

∫ yx

yx− 1

n

∣∣Afj(x) − Af̃j(x)
∣∣+
∣∣Af̃j(x) − Af̃j(z)

∣∣ d¼(z) (64)

f
∣∣Afj(x) − Af̃j(x)

∣∣+ n

∫ yx

yx− 1

n

∣∣Af̃j(x) − Af̃j(z)
∣∣ d¼(z). (65)

Define the following events:

E1
j,A(ϵ) :=

{
x :
∣∣Afj(x) − Af̃j(x)

∣∣ >
ϵ

2
√

2k

}
(66)

E2
j,A(ϵ) :=

{
x ̸∈ E : n

∫ yx

yx−1/n

∣∣Af̃j(x) − Af̃j(z)
∣∣ d¼(z) >

ϵ

2
√

2k

}
(67)

Then it is clear that Ej,A ¦ E1
j,A ∪ E2

j,A ∪ E and thus ¼(Ej,A) f ¼(E1
j,A) + ¼(E2

j,A) + ¼(E).

Bounding ¼(E1
j,A(ϵ)) via Assumption 5.A or 5.B. Because of Assumption 2, we have:

∥Af̃j − Afj∥2 f CA∥f̃j − fj∥2. By Lp norms inequality, we have

∥Af̃j(x) − Afj(x)∥1 f CA∥f̃j − fj∥2 f CACv

n
. (68)

where the last inequality is due to

∥f̃j − fj∥2
2 =

∫ 1

0

(f̃j(x) − fj(x))2d¼(x) (69)

=
∑

u∈[n]/n

∫ u

u−1/n

(f ′
j(u/n) − fj(x))2d¼(x) (70)

=
∑

u∈[n]/n

∫ u

u−1/n

(
n

∫ u/n

(u−1)/n

fj(z)d¼(z) − fj(x)

)2

d¼(x) (71)

f
∑

u∈[n]/n

∫ u

u−1/n

n2

(∫ u

u−1/n

|fj(z) − fj(x)|d¼(z)

)2

d¼(x) (72)

f C2
v

n2
. (73)

We have:
CACv

n
g
∫ 1

0

|Af̃j(x) − Afj(x)|dx (74)

=

∫

E1

j,A
(ϵ)

|Af̃j(x) − Afj(x)|dx +

∫

[0,1]\E1

j,A
(ϵ)

|Af̃j(x) − Afj(x)|dx (75)

g ϵ

2
√

2k
¼(E1

j,A(ϵ)) + 0. (76)

Thus selecting ϵ > 2
√

(
√

2k
√

kCACv)/n = 2
5

4 k
3

4 (CACv/n)
1

2 gives ¼(E1
j,A(ϵ)) f ϵ

2k .
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Bounding ¼(E2
j,A(ϵ)) via Assumption 5.A or 5.B. Notice that f̃j is constant in each

(u − 1/n, u] and thus by Assumption 5.A or 5.B, Af̃j is Cc-Lipschitz in each (u − 1/n, u]\E.
Therefore we have, for x ∈ [0, 1]\E and z ∈ (yx − 1/n, yx]\E:

|Af̃j(x) − Af̃j(z)| f Cc|x − z| f Cc

n
. (77)

When z ∈ E, we use the second condition in Assumption 5.B to get ∥Af̃j1E∥1 f 1
n and thus

for any x ̸∈ E:

n

∫ yx

yx−1/n

∣∣Af̃j(x) − Af̃j(z)
∣∣ d¼(z) (78)

=n

∫

(yx−1/n,yx]∩E

∣∣Af̃j(x) − Af̃j(z)
∣∣ d¼(z) + n

∫

(yx−1/n,yx]\E

∣∣Af̃j(x) − Af̃j(z)
∣∣ d¼(z) (79)

fCc

n
+ n

∫

(yx−1/n,yx]∩E

∣∣Af̃j(x)
∣∣+
∣∣Af̃j(z)

∣∣ d¼(z) (80)

fCc

n
+ |Af̃j(x)|n¼(Ex) + ∥Af̃j1Ex

∥1 (81)

fCc + 1

n
+ |Af̃j(x)|n¼(Ex), (82)

where Ex = (yx − 1/n, yx] ∩ E.

For x ∈ E2
j,A(ϵ), we have:

Cc + 1

n
+ |Af̃j(x)|n¼(Ex) >

ϵ

2
√

2k
, (83)

or equivalently,

|Af̃j(x)| >
1

n¼(Ex)

(
ϵ

2
√

2k
− Cc + 1

n

)
(84)

Since 1/n g ∥Af̃j1E∥1, we have:

1 g
(

ϵ

2
√

2k
− Cc + 1

n

)∫

E2

j,A

1

¼(Ex)
d¼(x) + 0 (85)

g
(

ϵ

2
√

2k
− Cc + 1

n

) ∑

u∈[n]/n

1

¼(Eu)

∫

E2

j,A
∩(u−1/n,u]

1d¼(x) (86)

g
(

ϵ

2
√

2k
− Cc + 1

n

)
n¼(E2

j,A). (87)

Thus choosing ϵ > 4
√

2k(Cc + 1)/n means that:

1 g ϵ

4
√

2k
n¼(E2

j,A), (88)

or

¼(E2
j,A) f 4

√
2k

ϵn
. (89)

Finally, choosing ϵ >

√
16k

√
2k

n = 2
9

4 k
3

4

n
1

2

makes ¼(E2
j,A) f ϵ

4k ; and choosing ϵ > 4k
n makes

¼(E) < 1
n < ϵ

4k .
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Putting everything together via Assumption 5.A or 5.B. Thus, we can choose

ϵ = 8k

(√
CACv+1

n + Cv+Cc+1
n

)
to get:

¼(E ′(ϵ)) f
k∑

j=1

ϵ

k
= ϵ, (90)

which allows us to conclude:
dLP (¸, ¸n) f ϵ. (91)

Since ¸ was chosen arbitrarily, we have for all ¸ ∈ Sk(A),

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f dLP (¸, ¸n) f ϵ. (92)

Thus we also have:
sup

¸∈Sk,Cv (A)

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f ϵ. (93)

Proof via Assumption 4.B. Here, we use the other triangle inequality to get for each x:

|Afj(x) − Anf ′
j(yx)| f n

∫ yx

yx− 1

n

|Afj(x) − Afj(z)| +
∣∣Afj(z) − Af̃j(z)

∣∣ d¼(z) (94)

f n

∫ yx

yx− 1

n

|Afj(x) − Afj(z)| d¼(z) + n

∫ yx

yx− 1

n

∣∣Afj(z) − Af̃j(z)
∣∣ d¼(z).

(95)

Define the following events:

E1
j,A(ϵ) :=

{
x : n

∫ yx

yx− 1

n

∣∣Afj(z) − Af̃j(z)
∣∣ d¼(z) >

ϵ

2
√

2k

}
(96)

E2
j,A(ϵ) :=

{
x ̸∈ E : n

∫ yx

yx− 1

n

|Afj(x) − Afj(z)| d¼(z) >
ϵ

2
√

2k

}
(97)

Then it is clear that Ej,A ¦ E1
j,A ∪ E2

j,A ∪ E and thus ¼(Ej,A) f ¼(E1
j,A) + ¼(E2

j,A) + ¼(E).

Bounding ¼(E1
j,A(ϵ)) via Assumption 4.B. Because of Assumption 2, we have: ∥Af̃j −

Afj∥2 f CA∥f̃j − fj∥2. By Lp norms inequality, we have

∥Af̃j − Afj∥1 f CA∥f̃j − fj∥2 f CACv

n
. (98)

where the last inequality is due to

∥f̃j − fj∥2
2 =

∫ 1

0

(f̃j(x) − fj(x))2d¼(x) (99)

=
∑

u∈[n]/n

∫ u

u−1/n

(f ′
j(u) − fj(x))2d¼(x) (100)

=
∑

u∈[n]/n

∫ u

u−1/n

(
n

∫ u

u−1/n

fj(z)d¼(z) − fj(x)

)2

d¼(x) (101)

f
∑

u∈[n]/n

∫ u

u−1/n

n2

(∫ u

u−1/n

|fj(z) − fj(x)|d¼(z)

)2

d¼(x) (102)

f C2
v

n2
. (103)
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Consider:

¼(E1
j,A(ϵ)) · ϵ

2
√

2k
f
∫ 1

0

n

∫ yx

yx− 1

n

∣∣Afj(z) − Af̃j(z)
∣∣ d¼(z)d¼(x) (104)

=
∑

u∈[n]/n

∫ u

u−1/n

∣∣Afj(z) − Af̃j(z)
∣∣ d¼(z) (105)

= ∥Afj − Af̃j∥1 f CACv

n
. (106)

Thus selecting ϵ >

√
CACv4k

√
2k

n = 2
5

4 k
3

4 (CACv/n)
1

2 gives ¼(Ej,A(ϵ)) f ϵ
2k .

Bounding ¼(E2
j,A(ϵ)) via Assumption 4.B. Notice that fj is Lipschitz in [0, 1] and thus

by Assumption 4.B, Afj is Cv-Lipschitz in [0, 1]\E. Therefore we have, for x ∈ [0, 1]\E and
z ∈ (yx − 1/n, yx]\E and:

|Afj(x) − Afj(z)| f Cv|x − z| f Cv

n
. (107)

When z ∈ E, we use the second condition in Assumption 4.B to get ∥Afj1E∥1 f 1
n and thus

for any x ̸∈ E:

n

∫ yx

yx−1/n

|Afj(x) − Afj(z)| d¼(z) (108)

=n

∫

(yx−1/n,yx]∩E

|Afj(x) − Afj(z)| d¼(z) + n

∫

(yx−1/n,yx]\E

|Afj(x) − Afj(z)| d¼(z)

(109)

fCv

n
+ n

∫

(yx−1/n,yx]∩E

|Afj(x)| + |Afj(z)| d¼(z) (110)

fCv

n
+ |Afj(x)|n¼(Ex) + ∥Afj1Ex

∥1 (111)

fCv + 1

n
+ |Afj(x)|n¼(Ex), (112)

where Ex = (yx − 1/n, yx] ∩ E.

For x ∈ E2
j,A(ϵ), we have:

Cv + 1

n
+ |Afj(x)|n¼(Ex) >

ϵ

2
√

2k
, (113)

or equivalently,

|Afj(x)| >
1

n¼(Ex)

(
ϵ

2
√

2k
− Cv + 1

n

)
(114)

Since 1/n g ∥Afj1E∥1, we have:

1 g
(

ϵ

2
√

2k
− Cv + 1

n

)∫

E2

j,A

1

¼(Ex)
d¼(x) + 0 (115)

g
(

ϵ

2
√

2k
− Cv + 1

n

) ∑

u∈[n]/n

1

¼(Eu)

∫

E2

j,A
∩(u−1/n,u]

1d¼(x) (116)

g
(

ϵ

2
√

2k
− Cv + 1

n

)
n¼(E2

j,A). (117)

Thus choosing ϵ > 4
√

2k(Cv + 1)/n means that:

1 g ϵ

4
√

2k
n¼(E2

j,A), (118)
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or

¼(E2
j,A) f 4

√
2k

ϵn
. (119)

Finally, choosing ϵ >

√
16k

√
2k

n = 2
9

4 k
3

4

n
1

2

makes ¼(E2
j,A) f ϵ

4k ; and choosing ϵ > 4k
n makes

¼(E) < 1
n < ϵ

4k .

Putting everything together via Assumption 4.B. Thus, we can choose ϵ =

8k

(√
CACv+1

n + Cv+1
n

)
to get:

¼(E ′(ϵ)) f
k∑

j=1

ϵ

k
= ϵ, (120)

which allows us to conclude:
dLP (¸, ¸n) f ϵ. (121)

Since ¸ was chosen arbitrarily, we have for all ¸ ∈ Sk(A),

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f dLP (¸, ¸n) f ϵ. (122)

Thus we also have:
sup

¸∈Sk,Cv (A)

inf
¸n∈Sk,Cv (An)

dLP (¸, ¸n) f ϵ. (123)

Bounding sup¸n∈Sk,Cv (An) inf¸∈Sk,Cv (A) dLP (¸, ¸n). In this direction, we proceed identi-
cally, but now choose ¸n arbitrarily in Sk,Cv

(An). By definition of (k, Cv)-profiles, there
exists a tuple F = (f1, . . . , fk) each in Fn,reg(Cv) such that ¸n = DAn

(F ).

Construct

F ′ :=
{

Freg(Cv) ∋ f ′
j : x 7→ (1 − yxn + xn)fj(yx) + (yxn − xn)fj(yx − 1/n)

}
, (124)

¸ = DA(F ′), (125)

where yx = +xn, /n for each j ∈ [k]. That f ′
j ∈ Freg(Cv) is asserted in Lemma 11. Intuitively,

f ′
j is the continuous piecewise linear function that interpolates fj , created by joining fj(u −

1/n) and fj(u) with a line segment for each u ∈ [n]/n. Note also that f ′
j(u) = fj(u) for all

u ∈ [n]/n.

Bounding dLP (¸, ¸n). As with the previous direction, we start with an arbitrary U ∈ Bk

and write down the differences:

¸n(U) − ¸(U ϵ) =
∑

u∈[n]/n

∫ u

u−1/n

1FAn (u)∈U − 1F ′

A
(x)∈Uϵd¼(x), (126)

¸(U) − ¸n(U ϵ) =
∑

u∈[n]/n

∫ u

u−1/n

1F ′

A
(x)∈U − 1FAn (u)∈Uϵd¼(x). (127)

Define the events:

E1
U (ϵ) = {x : FAn

(yx) ∈ U ' F ′
A(x) ̸∈ U ϵ} (128)

E2
U (ϵ) = {x : F ′

A(x) ∈ U ' FAn
(yx) ̸∈ U ϵ} (129)

E ′(ϵ) = {x : ∥FAn
(yx) − F ′

A(x)∥2 > ϵ} (130)

Ej(ϵ) = {x : |fj(yx) − f ′
j(x)| > ϵ/

√
2k}, j = 1..k (131)

Ej,A(ϵ) = {x : |Anfj(yx) − Af ′
j(x)| > ϵ/

√
2k}, j = 1..k. (132)
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Using this notation, one also has

¸(U) − ¸n(U ϵ) f ¼(E1
U ) and ¸n(U) − ¸(U ϵ) f ¼(E2

U ). (133)

It is straightforward to see E l
U (ϵ) ¦ E ′(ϵ), l = 1, 2 for any U by definition of U ϵ. Furthermore,

E ′(ϵ) ¦
k⋃

j=1

Ej(ϵ) ∪ Ej,A(ϵ), (134)

since if all 2k dimensions are bounded in absolute value by ϵ/
√

2k then the Euclidean distance
of the vector is bounded by ϵ.

Therefore it suffices to bound ¼(Ej(ϵ)) + ¼(Ej,A(ϵ)) for each j ∈ [k].

Bounding ¼(Ej(ϵ)). Since f ′
j is Cv-Lipschitz for all j (Lemma 11), we have:

|fj(yx) − f ′
j(x)| = |f ′

j(yx) − f ′
j(x)| f Cv

n
. (135)

Thus, choosing ϵ >
√

2kCv/n means that ¼(Ej(ϵ)) = 0. (We can tighten this bound by only
assuming that fj is Cv-Lipschitz outside a set of small measure.)

Bounding ¼(Ej,A). Let F[−1,1] ∋ f̃ be the extension of f defined as f̃(x) = f(+xn, /n) for
all x ∈ [0, 1]. Note that f̃ is not continuous in general and hence not Lipschitz. We have for
any x ∈ [0, 1]:

|Af ′
j(x) − Anfj(yx)| =

∣∣∣∣∣Af ′
j(x) − n

∫ yx

yx− 1

n

Af̃j(z)d¼(z)

∣∣∣∣∣ (136)

f n

∫ yx

yx− 1

n

∣∣Af ′
j(x) − Af̃j(z)

∣∣ d¼(z), (137)

where we used uniformity of ¼ and triangle inequality. The last thing that we need to show
is:

∥f ′
j − f̃j∥2

2 =

∫ 1

0

((1 − yxn + xn)f(yx) + (xn − yxn)f(yx − 1/n) − f(yx))2d¼(x) (138)

=

∫ 1

0

n2(yx − x)2(f(yx) − f(yx − 1/n))2d¼(x) (139)

f C2
v

n2
. (140)

From here, by a word-for-word argument, we can show that the same choice of ϵ does the
trick to make ¼(E ′(ϵ)) f ϵ. This works since we only use the fact that f ′

j ∈ Freg(Cv) as well
as assumption conditions in the previous proof.

Bounding dM . We have:

dH(Sk(A), Sk(An)) = max( sup
¸n∈Sk(An)

inf
¸∈Sk(A)

dLP (¸n, ¸), sup
¸∈Sk(A)

inf
¸n∈Sk(An)

dLP (¸, ¸n)) f ϵ.

(141)

Therefore,

dM (A, An) f
∞∑

k=1

8k

(√
CACv+1

n + Cv+1
n

)

2k
f 8

(√
CACv + 1

n
+

2Cc + Cv + 1

n

)
. (142)
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Lemma 10. Fix n ∈ N. Fix f ∈ Freg(Cv). Define the restriction f ′ : 1
n [n] → [−1, 1] : u 7→

n
∫ u

u−1/n
f(z)d¼(z). Then f ′ ∈ Fn,reg(Cv).

Proof. Firstly, we have for any u ∈ [n]/n:

|f ′(u)| f n

∫ u

u−1/n

|f(z)|d¼(z) f n

∫ u

u−1/n

1d¼(z) = 1. (143)

Therefore ∥f ′∥L2([n]/n) f n/n = 1 and thus f ′ is measurable. Finally, for any u < u′ ∈ [n]/n:

|f ′(u) − f ′(u′)| f n

∫ u

u−1/n

|f(z) − f(z + (u′ − u))| d¼(z) f Cv(u′ − u), (144)

where we use Lipschitz property of f in the last inequality. This shows that f ′ is also
Cv-Lipschitz.

Remark 1. The restriction to F[−1,1] is necessary for this lemma to work because L2([0, 1])
functions can blow up near 0.

Lemma 11. Fix n ∈ N. Fix f ∈ Fn,reg(Cv). Let yx := +xn, /n for any x ∈ [0, 1]. Define the
extension f ′ : x 7→ (1 − yxn + xn)f(yx) + (xn − yxn)f(yx − 1/n). Then f ′ ∈ Freg(Cv).

Proof. Firstly, since f ′ linearly interpolates between points of f , its range cannot exceed
that of f . The restricted range immediately implies that the L2 norm is bounded by 1
since the support is also in [0, 1]. Finally, for any x < x′ ∈ [0, 1], if there is a u such that
x, x′ ∈ [u − 1/n, u) then the fact that the interpolation is linear means that the line segment
from f ′(x) to f ′(x′) shares the same slope as that from f(u) to f(u − 1/n), which is at most
Cv since f ∈ Fn,reg(Cv). Otherwise, there exists a u < u′ ∈ [n]/n such that x ∈ [u − 1/n, u)
and x′ ∈ [u′ − 1/n, u′). We have:

|f ′(x)−f ′(x′)| f |f ′(x)−f ′(u)|+ |f ′(u)−f ′(u′ −1/n)|+ |f ′(u′ −1/n)−f ′(x′)| f Cv(x′ −x),
(145)

which proves Lipschitzness of f ′.

D.3 Proofs for Section 4.2

The following result characterizes the behaviors of Assumptions 2, 5.A, 5.B and 4.B under
addition, multiplication by scalars, power, and element-wise composition with a 1-Lipschitz
map:

Lemma 12. Fix k ∈ N and ³ ∈ R. Recall that Ä : R → R is a 1-Lipschitz map. Let
A1, A2 : F → F satisfy Assumption 2 with constant C1

A and C2
A respectively; and Assumption

5.A or 5.B or 4.B with constant C1
c and C2

c respectively with common resolution set N .
Then:

1. A1 + A2 satisfy Assumptions 2 and 5.A or 5.B or 4.B with constant (C1
A + C2

A) and
(C1

c + C2
c ) respectively.

2. ³A1 satisfies Assumption 2 and 5.A or 5.B or 4.B with constant |³|C1
A and |³|C1

c
respectively.

3. ÄA1 (where the composition is done element-wise) satisfies Assumption 2 and 5.A
or 5.B or 4.B with constant C1

A and C1
c respectively.

4. Furthermore, if C1
c = 0 then A2 ◦ A1 satisfies Assumption 2 and 5.A 5.B or 4.B

with constant C1
AC2

A and C2
c respectively.

Proof of Lemma 12. To recall, A1, A2 : F → F are P -operators that satisfies Assumption 2
with constant C1

A and C2
A respectively and Assumption 5.A or 5.B or 4.B with constant C1

c
and C2

c respectively with common resolution set N . We now show each part of the Lemma.
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1. We have, for any f, g ∈ F :

∥(A1 + A2)f − (A1 + A2)g∥2 f ∥A1f − A1g∥2 + ∥A2f − A2g∥2 (146)

f C1
A∥f − g∥2 + C2

A∥f − g∥2, (147)

where the first line is triangle inequality and the second line is Assumption 2.

Let f ∈ Freg(Cv) piecewise constant on intervals [n]/n and x, y ∈ (u − 1/n, u] for
some n ∈ N and u ∈ [n], we have:

|(A1 + A2)f(x) − (A1 + A2)f(y)| f |[A1f ](x) − [A1f ](y)| + |[A2f ](x) − [A2f ](y)|
(148)

f C1
c |x − y| + C2

c |x − y|, (149)

where the first line is triangle inequality and the second line is Assumption 5.A.

2. We have, for any f, g ∈ F :

∥(³A1)f − (³A1)g∥2 f |³| · ∥A1f − A1g∥2 (150)

f |³|C1
A∥f − g∥2, (151)

where the first line is property of norm and the second line is Assumption 2.

Let f ∈ Freg(Cv) piecewise constant on intervals [n]/n, and x, y ∈ (u − 1/n, u] for
some n ∈ N and u ∈ [n], we have:

|(³A1)f(x) − (³A1)f(y)| f |³[A1f ](x) − ³[A1f ](y)| (152)

f |³|C1
c |x − y|, (153)

where the second line is Assumption 5.A.

3. We have, for any f, g ∈ F :

∥(ÄA1)f − (ÄA1)g∥2 f ∥A1f − A1g∥2 (154)

f C1
A∥f − g∥2, (155)

where the first line is Lipschitz property of Ä and the second line is Assumption 2.

Let f ∈ Freg(Cv) piecewise constant on intervals [n]/n and x, y ∈ (u − 1/n, u] for
some n ∈ N and u ∈ [n], we have:

|(ÄA1)f(x) − (ÄA1)f(y)| f |Ä([A1f ](x)) − Ä([A1f ](y))| (156)

f |A1f(x) − A1f(y)| f C1
c |x − y|, (157)

where the second line is Lipschitz property of Ä and Assumption 5.A.

4. We have, for any f, g ∈ F :

∥(A2A1)f − (A2A1)g∥2 f C2
A∥A1f − A1g∥2 (158)

f C1
AC2

A∥f − g∥2, (159)

where the first line is Lipschitz property of A2 and the second line is that of A1.

Let f ∈ Freg(Cv) piecewise constant on intervals [n]/n. Since A1 send constant pieces
to constant pieces, the final implication follows direction from Assumption 5.A of
A2.

Lemma 13. Fix n ∈ N , k ∈ [K] ∪ {0}, A : F → F satisfies Assumption 2 with constant CA

and Assumption 5.A with constant Cc and resolution set N . Let n ∈ N , f1 ∈ Fn, f2 ∈ F .
Recall that f̃ ∈ F denotes the extension of f ∈ Fn to [0, 1] as f̃(x) = f(+xn,)/n. If

∥f̃1 − f2∥2 f M for some positive constant M then

∥Ãk
nf1 − Akf2∥2

2 f 3k+1kC2
c C2k

A

n2
+ 3kC2k

A M. (160)
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If A satisfies Assumption 5.B with constant Cc instead then the bound becomes:

∥Ãk
nf1 − Akf2∥2

2 f 3k+1k(Cc + 1)2C2k
A

n2
+ 3kC2k

A M. (161)

If A satisfies Assumption 4.B instead then the bound becomes:

∥Ãk
nf1 − Akf2∥2

2 f 3k+1k(Cv + 1)2C2k
A

n2
+ 3kC2k

A M. (162)

Proof. When k = 0, the bound is vacuously true. We will hide the measure in integrals when
it is clear from context in this proof.

Assume that the bound is correct up to some k − 1. We have:

∥Ãk
nf1 − Akf2∥2

2 (163)

=
∑

u∈1/n[n]

∫ u

u− 1

n

(Ak
nf1(u) − Akf2(z))2dz (164)

=
∑

u∈1/n[n]

∫ u

u− 1

n

(
n

∫ u

u− 1

n

A ˜[Ak−1
n f1](y)dy − Akf2(z)

)2

dz (165)

Here we can use Jensen’s inequality to get:

∥Ãk
nf1 − Akf2∥2

2 (166)

=n
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
A ˜[Ak−1

n f1](y) − A[Ak−1f2](z)

)2

dydz (167)

(168)

We proceed slightly differently based on the exact assumptions that we have. If A satisfies
Assumption 5.A or 5.B then:

∥Ãk
nf1 − Akf2∥2

2 (169)

fn
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
|A ˜[Ak−1

n f1](y) − A ˜[Ak−1
n f1](z)| + |A ˜[Ak−1

n f1](z) − A[Ak−1f2](z)|
)2

dydz

(170)

fn
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
Cc + 1

n
+ |A ˜[Ak−1

n f1](z)|n¼(Ez) + |A ˜[Ak−1
n f1](z) − A[Ak−1f2](z)|

)2

dydz

(171)

f
∫ 1

0

(
Cc + 1

n
+ |A ˜[Ak−1

n f1](z)|n¼(Ez) + |A ˜[Ak−1
n f1](z) − A[Ak−1f2](z)|

)2

dz (172)

f3(Cc + 1)2

n2
+ 3

∫ 1

0

(A ˜[Ak−1
n f1](z)n¼(Ez))2dz + 3∥A ˜[Ak−1

n f1] − A[Ak−1f2]∥2
2dz. (173)

Here, we give a heuristic argument while the formal argument is exactly similar to that in

Theorem 2. The term 3
∫ 1

0
(A ˜[Ak−1

n f1](z)n¼(Ez))2dz can be made as close to 0 as possible
simply by changing the requirement on ¼(E) to be smaller and smaller (see the discussion
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after Assumption 4.A). At the same time, our assumptions ensure that since Ãk−1
n f1 is a

piecewise constant function, the action of A on it cannot become too wild (Lipschitz outside
of E and bounded L1 norm inside E). This heuristic argument, when made rigorous can
help us conclude that:

∥Ãk
nf1 − Akf2∥2

2 f 3(Cc + 1)2

n2
+ 3C2

A∥Ãk−1
n f1 − Ak−1f2∥2

2 (174)

Plug in the inductive hypothesis and solve the recurrent to get the bound.

Similarly, if we are instead using Assumption 4.B then we use the other triangle inequality
to conclude:

∥Ãk
nf1 − Akf2∥2

2 (175)

fn
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
|A ˜[Ak−1

n f1](y) − A[Ak−1f1](y)| + |A[Ak−1f1](y) − A[Ak−1f2](z)|
)2

dydz

(176)

f2n
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
A ˜[Ak−1

n f1](y) − A[Ak−1f1](y)

)2

dydz

+ 2n
∑

u∈1/n[n]

∫ u

u− 1

n

∫ u

u− 1

n

(
Cv + 1

n
+ |A[Ak−1f2](z)|n¼(Ez)

)2

dydz (177)

f3(Cv + 1)2

n2
+ 3

∫ 1

0

(A[Ak−1f1](z)n¼(Ez))2dz + 3∥A ˜[Ak−1
n f1] − A[Ak−1f2]∥2

2. (178)

Again, we will make use of a heuristic argument to argue that the middle term can be
controlled by controlling ¼(E) since A sends Lipschitz functions to Lipschitz functions
outside of E and has bounded L1 norm inside of E. Therefore:

∥Ãk
nf1 − Akf2∥2

2 f3(Cv + 1)2

n2
+ 3∥A ˜[Ak−1

n f1] − A[Ak−1f2]∥2
2. (179)

Solve the recurrent to get the result in the statement of the Lemma.

Lemma 14. In the same setting as Lemma 13, recall that a tilde over a function in Fn

denotes its extension to F . If A satisfies Assumption 2 with constant CA and Assumption

5.A with constant Cc and resolution set N . Let Φ(h, A, ·) = Ä
(∑

g∈nl

∑K−1
k=0 AkΦg(h, A, ·)

)

for some Φg graphop neural network such that ∥Φ̃g(h, An, f) − Φg(h, A, f̃)∥2 < M for all
g ∈ [nl]. Then:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2
2 f K2n2

l 3K
(
Kn−2C2

c C2K
A + C2K

A M
)

. (180)

If instead A satisfies Assumption 5.B with constant Cc then the bound becomes:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2
2 f K2n2

l 3K
(
Kn−2(Cc + 1)2C2K

A + C2K
A M

)
. (181)

If instead A satisfies Assumption 4.B then the bound becomes:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2
2 f K2n2

l 3K
(
Kn−2(Cv + 1)2C2K

A + C2K
A M

)
. (182)
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Proof. We have:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2
2 (183)

=
∑

u∈ 1

n
[n]

∫ u

u−1/n

(
Ä

(
∑

g

∑

k

Ãk
nΦg(h, An, f)(x)

)
− Ä

(
∑

g

∑

k

AkΦg(h, A, f̃)(x)

))2

d¼(x)

(184)

f
∑

u∈ 1

n
[n]

∫ u

u−1/n

(
∑

g

∑

k

Ãk
nΦg(h, An, f)(x) − AkΦg(h, A, f̃)(x)

)2

d¼(x) (185)

f
∑

u∈ 1

n
[n]

∫ u

u−1/n

(
∑

g

∑

k

∣∣∣Ãk
nΦg(h, An, f)(x) − AkΦg(h, A, f̃)(x)

∣∣∣
)2

d¼(x) (186)

fKnl

∑

u∈ 1

n
[n]

∫ u

u−1/n

∑

g

∑

k

(∣∣∣Ãk
nΦg(h, An, f)(x) − AkΦg(h, A, f̃)(x)

∣∣∣
)2

d¼(x) (187)

=Knl

∑

g

∑

k

∥Ãk
nΦg(h, An, f)(x) − AkΦg(h, A, f̃)(x)∥2

2 (188)

fKnl

∑

g

∑

k

3k+1kC2
c C2k

A

n2
+ 3kC2k

A ∥Φ̃g(h, An, f) − Φg(h, A, f̃)∥2
2 (189)

fn−2n2
L · K3 · C2

c · 3KC2K
A + K2 · n2

l · 3KC2K
A · M (190)

=K2n2
l 3K

(
Kn−2C2

c C2K
A + C2K

A M
)

, (191)

where in the first line, we use the fact that continuous extension commutes with finite
element-wise sum and element-wise application of Ä, while expanding L2 norm; the second
line uses Lipschitz property of Ä; the third line uses triangle inequality; the fourth line uses
equivalence of p-norms in finite dimensional vectors; the fifth line is again L2 norm definition;
the sixth line applies Lemma 13 and the rest is algebra.

To get the rest of the cases, applies different versions of Lemma 13.

Lemma 15. Let Φ be an L-layer graphop neural network in the same setting as Lemma 13.
If A satisfies Assumption 5.A with constant Cc then:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2 f n−1(3KKnmaxCK
A )L max

(
Cv, 3KK2CcnmaxCK

A

)
. (192)

If instead A satisfies Assumption 5.B with constant Cc then the bound becomes:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2 f n−1(3KKnmaxCK
A )L max

(
Cv, 3KK2(Cc + 1)nmaxCK

A

)
.

(193)
If instead A satisfies Assumption 4.B then the bound becomes:

∥Φ̃(h, An, f) − Φ(h, A, f̃)∥2 f n−1(3KKnmaxCK
A )L max

(
Cv, 3KK2(Cv + 1)nmaxCK

A

)
.

(194)

Proof. Solve the recurrent in Lemma 14.

We now prove a more general version of Theorem 3

Theorem 6. Let A ∈ F satisfying Assumption 2 with constant CA and Assumption 5.A
with constant Cc and resolution set N ¦ N. Let n ∈ N and form the discretization An as per
Theorem 2. Let h be normalized such that |h| f 1 element-wise and form the graphop neural
network Φ(h, A, ·) : F → F and Φ(h, An, ·) : Fn → Fn. We have the following approximation
bound:

dM (Φ(h, A, ·), Φ(h, An, ·)) f n−1/2P1

√
CACv + CcnmaxCK

A · P2 + Cvn−1 (195)

where P1 = 3KL and P2 = 3KK2.
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If instead A satisfies Assumption 5.B with constant Cc then the bound becomes:

dM (Φ(h, A, ·), Φ(h, An, ·)) f n−1/2P1

√
CACv + (Cc + 1)nmaxCK

A · P2 + (Cv + 1)n−1 (196)

If instead A satisfies Assumption 4.B then the bound becomes:

dM (Φ(h, A, ·), Φ(h, An, ·)) f n−1/2P1

√
CACv + (Cv + 1)n−1 (197)

Proof. The proof structure is similar to the proof of Theorem 2. For brevity of expo-
sition, we will write h as the (shared) set of parameters in the graphop neural net-
works and shorten Φ := Φ(h, A, ·) and Φn := Φ(h, An, ·). Fix k ∈ N, we will bound
sup¸∈Sk,Cv (Φ) inf¸n∈Sk,Cv (Φn) dLP (¸, ¸n).

Fix arbitrary ¸ ∈ Sk,Cv
(Φ). By definition of a (k, Cv)-profile, there exists f1, . . . , fk ∈

L∞
reg(Cv)([0, 1]) such that ¸ = DΦ(f1, . . . , fk). For all j ∈ [k], let Fn ∋ f ′

j : [n]/n ∋
u 7→

∫ u

u−1/n
fj(z)d¼(z). That f ′

j ∈ L∞
reg(Cv)([n]/n) is shown in Lemma 10. Set ¸n =

DΦn
(f ′

1, . . . , f ′
k).

Bounding dLP (¸, ¸n). Fix some ϵ > 0 to be specified later, by definition of dLP , we need
to bound, for each U ∈ Bk:

¸(U) − ¸n(U ϵ) =

∫ 1

0

1(f1(x),...,Φfk(x))∈U d¼(x) −
∑

u∈[n]/n

1

n
1(f ′

1
(u),...,Φnf ′

k
(u))∈Uϵ . (198)

Notice that since ¼ is the Lebesgue measure, one can denote yx = +xn, /n and write:

¸(U) − ¸n(U ϵ) =

∫ 1

0

1(f1(x),...,Φfk(x))∈U − 1(f ′

1
(yx),...,Φnf ′

k
(yx))∈Uϵd¼(x). (199)

Since the integrand is only positive when (f1(x), . . . , Φfk(x)) ∈ U and
(f ′

1(yx), . . . , Φnf ′
k(yx)) ̸∈ U ϵ and this conjuction only happens when ∥(f1(x), . . . , Φfk(x)) −

(f ′
1(yx), . . . , Φnf ′

k(yx))∥2 > ϵ, we have:

¸(U) − ¸n(U ϵ) f ¼(E(ϵ)) f
k∑

j=1

¼(E0
j (ϵ)) + ¼(E1

j (ϵ)), (200)

where
E(ϵ) := {x : ∥(f1(x), . . . , Φfk(x)) − (f ′

1(yx), . . . , Φnf ′
k(yx))∥2 > ϵ}, (201)

Ez
j (ϵ) = {x : |Φzfj(x) − Φz

nf ′
j(yx)| >

ϵ√
2k

}, for z ∈ {0, 1}, j ∈ [k], (202)

where B0 is the identity operator for any operator B in the appropriate space.

Bounding ¼(E1
j (ϵ)). Fix j ∈ [k], we have:
∫ 1

0

|Φfj(x) − Φnf ′
j(yx)|dx f

√∫ 1

0

(
Φfj(x) − Φnf ′

j(yx)
)2

dx (203)

=∥Φfj − Φ̃nf ′
j∥L2 (204)

fn−1(3KKnmaxCK
A )L max

(
Cv, 3KK2CcnmaxCK

A

)
. (205)

where the last line uses Lemma 15 under Assumption 5.A with constant Cc. Similar results
are obtained for the other assumptions.

We also have: ∫ 1

0

|Φfj(x) − Φnf ′
j(yx)|dx g ¼(E1

j (ϵ)) · ϵ√
2k

+ 0. (206)

Thus selecting

ϵ >

√
2k

√
2k · n−1(3KKnmaxCK

A )L max
(
Cv, 3KK2CcnmaxCK

A

)
(207)

makes ¼(E1
j (ϵ)) < ϵ

2k .
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Bounding ¼(E0
j (ϵ)). This step simply uses Lipschitzness of the graph signal to bound its

discretization and is thus identical to that in Theorem 2. In short, choosing ϵ >
√

2kCv/n
gives ¼(E0

j (ϵ)) = 0.

Bounding sup¸n∈Sk,Cv (Φn) inf¸∈Sk,Cv (Φ) dLP (¸, ¸n). This direction uses the same tech-
nique as in Theorem 2.

Putting everything together Defining CA = (nmaxKCK
A )L gives a choice of:

ϵ = n−1/2P1

√
CACv + CcnmaxCK

A · P2 + Cvn−1 (208)

where P1 = 3KL and P2 = 3KK2.

For other choices of assumptions, we obtain similar bounds.

E Additional results

E.1 Proof of Theorem 4

Because of completeness of dH in the space of closed subsets of P(R2k) for every k ∈ N, the
statement in Theorem 4 is equivalent to showing that for each k ∈ N, we have Sk,L(n)(An)
converges to Sk(A) in dH . We do this via a mollification argument.

Definition 5 (Lipschitz mollifier). A Lipschitz mollifier in R is a smooth (infinitely differ-
entiable) function ϕ : R → R satisfying:

1.
∫
R

ϕ(x)d¼(x) = 1.

2. limϵ→0 ϕϵ(x) := limϵ ϵ−1ϕ(x/ϵ) = ¶(x) - the Dirac function.

3. Although not standard, we require ϕ to be 1-Lipschitz and symmetric around 0
(ϕ(x) = ϕ(−x)).

Given a measureable function f ∈ L∞
[−1,1](R), defines the convolution operation:

f ∗ ϕ : x →
∫

R

f(y)ϕ(y − x)d¼(y). (209)

The next result shows the existence of such a function:

Lemma 16. Let ϕ : R → R be:

ϕ(x) =

{
e−(1−x2)2

/Z if |x| f 1

0 otherwise,
(210)

where Z is a normalization constant to make sure that
∫
R

ϕd¼ = 1. Then ϕ is a Lipschitz
mollifier.

Proof. The first property is built into the definition. The second property is obvious since
the support of ϕ(x/ϵ) is [−ϵ, ϵ] and thus it converges to the Dirac function as ϵ goes to 0.
Lipschitz-ness can be seen by computing the first derivative (since the function is smooth)
over (−1, 1) and see that it is bounded in [−1, 1]. Symmetry is also obvious since the function
depends only on the absolute value of its argument.

Consequences of a Lipschitz mollifier include:

Lemma 17. Let ϕ be a Lipschitz mollifier and ϵ > 0, then for any measurable f ∈ F∞
[−1,1](R),

f ∗ ϕϵ is max(1, ϵ−2)-Lipschitz and limϵ→0 ∥f − f ∗ ϕϵ∥2 = 0.
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Proof. For the first part of the statement, consider:

|f ∗ ϕϵ(x) − f ∗ ϕϵ(y)| =

∣∣∣∣
∫

R

f(z)ϕϵ(z − x) − f(z)ϕ(z − y)d¼(z)

∣∣∣∣ (211)

f
∫

R

∣∣∣∣
f(z)

ϵ

(
ϕ

(
z − x

ϵ

)
− ϕ

(
z − y

ϵ

))∣∣∣∣ d¼(z) (212)

f 1

ϵ

∫

R

∣∣∣∣
z − x

ϵ
− z − y

ϵ

∣∣∣∣ d¼(z) (213)

f |x − y|
ϵ2

(214)

For the second part, we have:

|f ∗ ϕϵ(x) − f(x)| f
∫

R

ϕϵ(z − x)|f(z) − f(x)|d¼(z) (215)

f
∫

R

ϕϵ(z)|f(z + x) − f(x)|d¼(z), (216)

where we use two changes of variables.

Square both sides and take integral over x and use Jensen inequality to get:

∥f ∗ ϕϵ − f∥2
2 f

∫

R

∫

R

(ϕϵ(z))2(f(z + x) − f(x))2d¼(z)d¼(x). (217)

Apply Fubini-Tonelli theorem to factorize the mollifier, we get:

∥f ∗ ϕϵ − f∥2
2 f

∫

R

∫

R

(f(z + x) − f(x))2d¼(x)(ϕϵ(z))2d¼(z) (218)

=

∫

R

(
ϵ−1

∫

R

(f(z + x) − f(x))2d¼(x)

)
(ϕ(zϵ−1))2d¼(z). (219)

Apply a final change of variable:

∥f ∗ ϕϵ − f∥2
2 f

∫

R

(∫

R

(f(zϵ + x) − f(x))2d¼(x)

)
(ϕ(z))2d¼(z). (220)

Therefore, as ϵ goes to 0, the inner integrand goes to 0. Since f and f ∗ ϕϵ are all bounded
(as f ∈ [−1, 1]) for small enough ϵ, we can apply dominated convergence to conclude that
the integral itself goes to 0 and thus the 2-norm on the left hand side also goes to 0.

We are now ready to proceed with the proof of Theorem 4. Given an element ¸ ∈ Sk(A),
there exists a set of functions F = {f1, . . . , fk} ¦ L∞

[−1,1]([0, 1]). Each of these functions
can be extended to R by setting f(x) = f(0) if x f 0 and f(x) = f(1) if x > 1. Call the
extended function f ′. Now we can apply mollification convolution to each of them to get a
family of functions {fj,ϵ := f ′

j ∗ ϕϵ}j∈[k],ϵ>0. Recall that we have shown fj,n := f
j,1/

√
L(n)

to

be L(n)-Lipschitz for each n ∈ N. Let f ′′
j,n be the restriction of fj,n to Fn. Then f ′′

j,n is still
L(n)-Lipschitz (in the metric on 1/n[n] induced by metric on [0, 1]) and thus we can find a
profile for F ′′

n := {f ′′
1,n, . . . , f ′′

k,n} in Sk,L(n)(An).

Furthermore, by property of mollifier and the fact that L(n) → ∞ as n goes to infinity,
we have ∥fj,n − f ′

j∥2 → 0 with n → ∞. Since f ′
j is constant outside [0, 1], we also have

∥fj,n,|[0,1] −fj∥F → 0 with n. Using the same proof technique as Theorem 2, we can conclude
that:

dLP (DAn
(F ′′

n ), DA(F ))
n→∞−−−−→ 0, (221)

and thus Sk(A) ¦ limn Sk,L(n)(An). For the other direction, recall that Sk(A) = limn Sk(An)
and that Sk,L(n)(An) ¦ Sk(An). Together with completeness of dH , we conclude that

lim
n

dH(Sk(A), Sk,L(n)(An)) = 0.

Conjecture 1 (Action convergence of graphop neural networks). Let (An)n∈N be an action
convergent sequence of graphops. Then (Φ(h, An, ·))n∈N is an action convergent sequence of
P -operators.
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