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Abstract

Cooling energy demand is sensitive to urban form and socioeconomic characteristics of cities. Climate

changewill impact how these characteristics influence cooling demand.Weuse random forest

machine learningmethods to analyze the sensitivity of cooling demand inChicago, IL, toweather,

vegetation, building type, socioeconomic, and control variables by dividing census tracts of the city

into four groups: below-Q1 income–hot days; above-Q1 income–hot days; below-Q1 income–regular

days; and above-Q1 income–regular days. Below-Q1 census tracts experienced an increase in cooling

demand on hot dayswhile above-Q1 census tracts did not see an increase in demand.Weather (i.e.

heat index andwind speed) and control variables (i.e.month of year, holidays andweekends)

unsurprisingly had themost influence on cooling demand. Among the variables of interest, vegetation

was associatedwith reduced cooling demand for below-Q1 income on hot days and increased cooling

demand for below-Q1 income on regular days. In above-Q1 income census tracts building typewas

themost closely associated non-weather or control variable with cooling demand. The sensitivity of

cooling demand for below-Q1 income census tracts to vegetation on hot days suggests vegetation

could becomemore important for keeping cities cool for low-income populations as global

temperatures increase. This result further highlights the importance of considering environmental

justice in urban design.

1. Introduction

Cooling demand lays at the crux of climate change and humanwell-being (Khosla et al 2021). Rapid rates of

urbanization and climate change are expected to increase the global population exposed to extreme heat

(Tuholske et al 2021). Urban areas can be up to 7 °Cwarmer than surrounding rural areas, a phenomenon

referred to as the urban heat island (UHI) effect (Oke 1982, Peng et al 2012, Streutker 2002). The interaction of

theUHI effect with accelerated urbanization and climate change–which is increasing the severity and frequency

of extreme heat events (Fischer et al 2021,Meehl andTebaldi 2004, Russo et al 2014)–means that while

heatwaves are regional events, urban centersmay become the foci of themost frequent and severe heat events.

Over 55%of the global population lives in urban areas, a proportion expected to increase to 68%by 2050

(UnitedNations 2019), which translates to an additional 2.5 billion people frequently experiencing extreme

urban heat. Current projections suggest a 1.5 °C target for global warming is no longer feasible, whichwill result

in hundreds ofmore cooling degree days (degree-days above 65 °F or 18 °C) inmany parts of theworld

(Miranda et al 2023). Themost severe impacts will fall onmembers of communities least able to escape them

(Lehnert et al 2020).
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Events such as the heatwave inChicago in 1995 (Semenza et al 1996) and those across Europe in 2003

(Beniston 2004) and 2019 (Xu et al 2020) show the adverse impacts of extreme temperatures on human health,

economic systems, and environmental systems (Huang et al 2023). Robine et al (2008) estimated the heatwaves

across Europe in 2003 promptedwidespread adverse economic impacts and caused 70,000 excess deaths—a

figure nearlymatched in 2022 and that could become the newnormal for Europe by 2030 (Ballester et al 2023).

In 2021 the heatwave and associated drought in the PacificNorthwestUS caused an estimated $8.9 billion in

damages (NCEI 2022).

Tomitigate the increasing frequency and severity of climate disasters, the concept of resilience has become a

dominant paradigm in several disciplines, including engineering (Bruneau et al 2003), ecology (Holling 1973),

and the social sciences (Adger 2000). A resilient systemhas the capacity to learn fromprevious disturbances,

persist through disturbances, adapt during disturbances, and transform tomore ideal state during and after a

disturbances (Elmqvist et al 2019, Zanotti et al 2020). Building resilient cities requires an examination of both

external and internal drivers of disturbance and understanding community, city, and regional scale resources for

increasing resilience.

Extreme heat events are disturbances, and an increasing number of studies on the interactions of urban heat

and energy have been conducted. Temperature drives cooling demandmore than any otherweather variable

(Gallo Cassarino et al 2018), and theUHI effect increases building energy consumption (Li et al 2019). In urban

areas temperature is shaped by the interaction of human energy use behaviors (Meggers et al 2016), the built

environment (Yin et al 2018), and the amount and spatial arrangement of vegetation in the city (Yan et al 2019).

Most of the trapped heat in a city comes from radiation from the Sun.Human activities, such as air conditioning

and transportation, also contribute significantly to urban heating (Salamanca et al 2014). The built environment,

such as roads and buildings, traps and absorbs heat, which slows the transfer of heat out of the system.

Conversely, urban vegetation—specifically urban tree canopy—not only disrupts the absorptive capacity of the

built environment through the provision of shade, but also speeds the transfer of heat out of the system through

evapotranspiration (Rahman et al 2020). Planting urban trees has been suggested as a promising strategy for

climate and pollution adaptation (Pataki et al 2021).

Urban vegetation can cool the temperature of cities (Carlson et al 1981, Gallo et al 1993, Rahman et al 2020,

Ziter et al 2019), but few studies observe the direct impact of urban vegetation on cooling energy demand in the

city. Recent studies connect vegetation and cooling demand using simulation (Erell and Zhou 2022, Ko 2018).

Moss et al (2019) performed ameta-analysis on evapotranspiration rates for a variety of tree species to simulate

the cooling impact of urban trees. Using a theoreticalmodel of the built environment, they estimated that the

cooling provided by trees reduced energy demand costs in inner London by over 2.1million annually.While

valuable, theoreticalmodels fail to capture the nuance of heterogenous urban landscapes, where the

heterogeneity extends fromvegetation patch types to the uneven distribution of tree canopy.Managing cooling

demand requires a better real-world understanding of not only the elements introducing and influencing heat,

but also the capacity of residents to respond to the increased temperatures the heat creates.

The inequity of socioeconomic resources impacts both overall cooling demand and the ability of individuals

to respond to extreme heat events. Socioeconomic and behavioral factors influence how,when, or if a household

uses cooling (Steemers andYun 2009, Pfenninger et al 2014). Heatwaves in the past two decades have revealed

the vulnerability of disadvantaged populations to extreme heat events (Thomson et al 2019). The distribution of

heat in urban areas disproportionately impactsmarginalized populations and communities of color. In the

MidwestUS city of Cleveland, higher land surface temperatures correlated withminoritized neighborhoods

(Declet-Barreto et al 2016). This trend has been seen in cities across theUS, including in themetropolitan areas

of Pinellas County, FL (Mitchell andChakraborty 2014), and cities across the Southwest US (Dialesandro et al

2021). Often, this discrepancy in urban heat is pairedwith a discrepancy in tree canopy cover.

Many studies have reported positive correlations between urban canopy andwealth (Landry et al 2020,

Gerrish andWatkins 2018, Schwarz et al 2015). Pham et al (2012) demonstratedminoritized communities often

have less canopy area and that this discrepancy ismore pronounced on public land than private land,meaning

there are fewer street trees and parks in these communities. Not only are poorer neighborhoodsmore vulnerable

to extreme events due to less canopy cover, but the urban canopywithin those neighborhoods ismore vulnerable

to those events, as well (Landry et al 2020).

The impact of cooling from vegetation goes beyondmitigating theUHI effect that can exacerbate extreme

heat events. It also addresses the significant sustainability challenge of reducing energy demand (Khosla et al

2021).Many studies have explored the cooling effect of vegetation in cities, but few have linked this effect with

potential impacts on electricity demand. Furthermore, studies that have focused on cooling demand neglect the

influence of cooling demand drivers will change under extreme temperatures.Managing the increase in cooling

demand is critical to sustainable and resilient development (Khosla et al 2021).

In this studywe examined the sensitivity of cooling demand of communities to vegetative extent and income

underwarming temperatures.We used a random forest (RF) analysis approach to understand the role of
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vegetation inmitigating energy use compared to othermeteorological, physical, and social characteristics.We

distinguished the importance of drivers of energy demand on average, or ‘regular,’ days and ‘hot’ days (heat

index above 90 °F) and between economic classes.We usedChicago, IL, US as a representative large city situated

in a temperate climate with a diverse population and land use distribution.

2.Data andmethods

2.1. Site description

Chicago is the third largest city in theUS (figure 1(b)). It extends over 227.63 squaremiles and has a population

of over 2.7million fromdiverse ethnic backgrounds (29.2%Black or African American, 28.6%Hispanic or

Latino, and 33.3%White). Over 17%ofChicago residents are below the poverty line, which is higher than the

national average of 11% (USCensus Bureau 2020).Most of the land inChicago is dedicated to residential areas

and utility and transportation corridors. Natural areas, institutional areas, and commercial areas all take up

small but similar areas (Brandt et al 2017). Likemany urban areas around theworld, the number of extreme heat

days inChicago is increasing. From1961 to 1990, Chicago experienced 347 days when the temperature failed to

drop below 70°F. This count increased to 507 days from1991 to 2020 (NCEI 2022).

2.2.Data sources

The data used in this study consisted of residential electricity demand data, heat index andwind speed data,

socioeconomic data, and vegetation index data across 61 ZIP code areas of Chicago. The electricity demand data

were anonymized residential data collected every 30-min at the ZIP code-scale fromCommonwealth Edison

(ComEd). Themonth and day of the yearwere taken into account as control variables (i.e. weekends and

holidays have different electricity patterns). The heat index andwind speed (collectively calledweather data) are

constituted at a temporal resolution of 3 h and a spatial resolution of 4 km from theNational Centers for

Environmental Prediction (NCEP) of theNationalOceanic andAtmospheric Administration (NOAA).

Socioeconomic data includedmedian household income, the proportion of the nonwhite population, as well as

the proportion ofHispanic population, the proportion of the populationwith at least a bachelorʼs degree, and

unemployment rate, as well as residential building type and year of construction, from the 2017 5-Year ACS.

Socioeconomic data was downloaded at the ZIP code-scale from theUSCensus Bureau’s AmericanCommunity

Survey (ACS). For the vegetation index data, the enhanced vegetation index (EVI)was downloaded from the

National Aeronautics and Space Administration (NASA)Moderate Resolution Imaging Spectroradiometer

(MODIS). RawEVI data has a temporal resolution of 16 days and a spatial resolution of 250 m. The time of year

variables (henceforth called control variables)were embedded in the electricity demand data (see appendix A for

more detail about the data used in this study).

Data were selected for the summermonthsJune through September 2017to capture the overlap between the

hottest temperatures of the year and fullest canopy cover.We aggregated all data to the same spatial and

(a) (b)

Figure 1. In (a), clockwise from top-left, the quadrants are the groups below-Q1 income and hot days (BH; n = 624), above-Q1
income and hot days (AH; n = 2304), above-Q1 income and regular days (AR; n = 3552), and below-Q1 income and regular days
(BR; n = 962). Dashed vertical and horizontal red lines are, respectively, log(income) threshold for poverty level andmaximumheat
index threshold for hot/regular days. Individual points represent the 7442 ZIP code–days. In (b), choroplethmaps of Chicago ZIP
codes for enhanced vegetation index (EVI; spectral band ratio) averaged over the study period andmedian household income ($ per
year) are displayed, inwhich red-colored borders indicate below-Q1 income groups.
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temporal resolution for the analysis. Electricity demand data had the coarsest spatial resolution at the ZIP code-

scale, sowe aggregated all data to the ZIP code-scale. Based on convention in the literature, we used the daily-

level (i.e. daily sumof electricity demand) for the temporal resolution (Lyon andBarnston 2017, Anderson and

Bell 2011).

2.3.Data processing

Wepre-processed the electricity consumption data to better represent the demand characteristics of each ZIP

code. Instead of dividing cooling demand by population in each ZIP code, we introduced the relative demand,

which can better represent the sensitivity of demands in response to extreme climatic events (see appendix A.6).

We then reduced the dimensions of the demographics dataset by consolidating categorical variables into

larger categorical variables.We combined two building type variables—single-detached and single-attached—

into one variable named single-family type.We combined buildings withmore than 2 units and less than 20 units

into a variable namedmulti-family type.We called buildings withmore than 20 units large-apartment type.We

also separated years of construction into two groups—pre- and post-2010—using the natural break closest to

themedian of building construction years, andwe aggregated education level into bachelors and above and other.

Lastly, we normalized variance in population among different ZIP code areas by converting all demographic

variable values to percent.

Therewere in total 7442 data points in total, andwe split the dataset into 75% training set and 25% test set.

We used the training set forfitting parameters and hyper-parameters of each predictivemodel with the 5-fold

cross validationmethod, and test set for themodel comparison.

2.4.Data analysis

Webuilt several predictivemodels of the relative electricity demand fromweather, socioeconomic, and

environmental variables. Then, we analyzed sensitivity of electricity demand against extreme heat events (i.e.

heatwaves) in relation to socioeconomic and environmental variables, usingmodel inferencing techniques.We

created four groups based on themedian household income and the dailymaximumheat index to compare how

different income levels reacted to higher temperatures. To form the groups, wefirst split themedian household

income into two categories: income level below $25,100 (below-Q1 income), which is the 2018 federal poverty

threshold for four-person families (HHS2020), and income level above $25,100 (above-Q1 income).

Approximately 20%of regionswere below-Q1 income.We then divided the dailymaximumheat index into two

groups: heat index above 90 °F (hot days) and below 90 °F (regular days). A heat index value 90 °F is the ‘Extreme

Caution’ threshold from theNationalWeather Service ofNOAA (NWS2020). Approximately 40%of the

summer days in 2017were classified as hot days. The resulting four groupswere below-Q1 income and hot days

(BH; n= 624), below-Q1 income and regular days (BR; n= 962), above-Q1 income and hot days (AH;

n= 2304), and above-Q1 income and regular days (AR; n= 3552;figure 1).

For each group, we trainedmultiple supervisedmachine learningmodels to compare out-of-sample

predictive accuracy: 1) generalized linearmodels (GLM), 2) generalized additivemodels (GAM), 3)multivariate

adaptive regression splines (MARS), 4) random forest (RF), 5) gradient boosted treemachine (GBM), and 6)

Bayesian additive regression trees (BART) (see appendix B formore information onmachine learningmethods).

Then, we selected the bestmodel for predicting cooling demand based on out-of-sample rootmean square error

(RMSE), whichwas RF for all groups (table 1). All the experiments were conducted usingmodels in thecaret

packagev6.0.86 in Rv3.6.2 (KuhnM2008).

RF is a tree-basedmethod, which typically have low bias and high interpretability. RF loses some of its

interpretability to lower variance and improve its predictive accuracy.We used twomodel inferencing

techniques to interpret thefinal RFmodel: variable importance and partial dependence. Both of these are

effective tools to post-analyze non-parametricmodels. To preventmisinterpreting spurious relationships, we

Table 1.RMSEof eachfittedmodel. The best RMSE for each group is in bold.

Group
RF GBM BART MARS GLM GAM SVM

train test train test train test train test train test train test train test

BH 0.12 0.11 0.14 0.15 0.12 0.12 0.15 0.15 0.23 0.21 0.20 0.21 0.21 0.21

BR 0.064 0.057 0.085 0.081 0.070 0.065 0.096 0.097 0.14 0.14 0.13 0.14 0.14 0.14

AH 0.094 0.098 0.12 0.12 0.10 0.11 0.15 0.15 0.20 0.19 0.20 0.19 0.20 0.19

AR 0.058 0.054 0.082 0.082 0.070 0.17 0.10 0.11 0.14 0.14 0.13 0.14 0.14 0.15

Avg. 0.083 0.080 0.11 0.11 0.091 0.091 0.12 0.12 0.18 0.17 0.17 0.17 0.17 0.17
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used data-driven variable selection first to eliminate the least important variables then to select themost

influential variables.

3. Results

EVI (henceforth called vegetation) appears as the key predictor for cooling demand during hot days for the

below-Q1 income group and ismore important during hot days than during regular days for both income

groups (figure 2). This was also truewhen the dataset was run on the full-variablemodels (i.e. without variable

selection).

3.1. Variable selection

Vegetationwas the only non-weather or non-control variable kept during thefirst elimination step of variable

selection for all groups (table 2; See appendix B.4.2 for variable selectionmethods). However, the second step of

for-interpretation variable selection rarely selected vegetation or any socioeconomic variables. Although

vegetationwas not selected in BH,AH, andAR in the second step of variable selection, we included vegetation in

the RFmodel training to ensure we could describe what relationship does exist between vegetation and cooling

demand for each group per the objectives of the study.

3.2. Associations of variables

Variable selection selects weather and control variables as the best predictors of cooling demand for each group

(table 2). In all groups, weather variables are themost important predictors of cooling demand; specifically

maximumheat index is themost important predictor of demand during regular days andmaximumwind speed

is themost important predictor during hot days. For above-Q1 groups, building type follows theweather and

control variables in importance, and the association of vegetationwith cooling demand is stronger than

randomness (figures 3(b) and (d)). In below-Q1 groups, vegetation and race follow theweather and control

Figure 2.Random forest variable importance (VI) scores of important predictors excludingweather and control variables. Note that
only the variables selected through Step 2 of variable selection for above- and below-Q1 are included in thefigure for each division of
groups. Vegetation is the only variable that appears in both BH andBR (See appendixC:figureC2 for an all variable plot).

Table 2.VSURF results; variables are ordered from the highest importance to the lowest importance. Vegetation, socioeconomic, and
building type variables are in boldface.

Group Step 1: elimination Step 2: for-interpretation

BH Wind Speed,Heat Index, Non-workingDay, July, June, August,Vegetation up-to July

BR Heat Index, July, August,Wind Speed, June, Non-workingDay,Vegetation,Hispanic Population,

POCPopulation,Apartment,Multi-familyHouse, random, Single-familyHouse

up-toPOCPopulation

AH Heat Index,Wind Speed, June, Non-workingDay, August, July,Apartment,Multi-familyHouse,

Single-familyHouse,Education,Vegetation, Income,BuildingAge 10+yr,Unemployment

Rate,POCPopulation

up-to Single-familyHouse

AR Heat Index, July,Wind Speed, August, June, Non-workingDay,Apartment,Multi-familyHouse,

Single-familyHouse,Education,Vegetation, Income,BuildingAge 10+yr,POCPopulation,

Unemployment Rate,Hispanic Population

up-to Single-familyHouse
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variables in importance (figures 3(a) and (c)). The importance of socioeconomic variables remains similar or

slightly lower on hot days (see appendix C).

3.3.Directions of associations

Themaximumheat index andmaximumwind speed are positively associatedwith cooling demand (figure 4(a)

and (b)). Above-Q1 groups living in apartments have lower cooling demand than those living in single-family

residences (figure 4(c)). Off-day, a control variable, is an important predictor for all four groups (figure 4(d)). On

hot days, people usemore energy duringweekdays (i.e. Non-working day equal to 1), while, on regular days,

people usemore energy duringweekends. Vegetation is positively associatedwith cooling demand for below-Q1

income on regular days but is negatively associatedwith cooling demand for above-Q1 income on hot days

(figure 4(e)).

In the above-Q1 income groups, building typewasmore important in the above-Q1 income and hot days

group (AH). Apartment buildings aremuch less sensitive to heat stress than other types of buildings, observing

that the relative demand is close to 1.0when the proportion of apartment type building is high (figure 4(c)). The

regionswithmore apartment buildings have comparatively steady cooling demandwith higher relative demand

on regular days and lower relative demand on hot days compared to other regions.

Vegetation increased in importance on hot days in both income groups (figure 2). The associationwith

vegetation is higher in below-Q1 income groups, and higher vegetation tends to decrease with cooling demand

sensitivity (figures 2 and 4(e)). For BH (4(e), top-left), vegetation is negatively associatedwith the relative

demand, while for BR (4(e), bottom-left), vegetation is positively associated on regular days.

However, the associationwith vegetation becomesweaker in above-Q1, which is evidenced by the slope

becomingmoderate and the confidence intervals narrowing (figure 4(e)).We also observe that this association

between vegetation and cooling demand is robust to the heat index threshold for hot days; that is, whenwe

increase the heat index threshold, the observed trend remains the same.Note that, in these partial dependence

plots, we took only themarginal association of vegetation into account excluding the effects of weather variables

(thus, excluding the cooling effect of urban vegetation), and vegetation still has an influence on human behavior

with respect to energy consumption.

Vegetation demonstrates a stronger associationwith cooling demand during hot days than during regular

days for both income groups (figure 2). This was also truewhen themodel was run on the full-variablemodels

(i.e. withoutVSURF).

Figure 3.Variable importance plots after Step 2 of variable selection. The x-axis indicates a relative variable importance (VI) scorewith
themost important variable’s VI score scaled to 100. ‘Random’ represents artificially-added randomnoise.
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4.Discussion

This Chicago-based study analyzed the sensitivity of cooling demand to environmental and socioeconomic

resources of communities under warming temperatures. In particular, the impact of vegetationwas studied. A

random forestmodel identified the predictive value of urban characteristics on cooling demand for four groups

of ZIP codes delineated bywealth and temperature. The results showed vegetation is an important driver of

cooling demand in low-income neighborhoods, reducing cooling demand on hot days and increasing cooling

demand on regular days. Furthermore, the results indicate that low-income, low-vegetation communities react

Figure 4.Partial dependence plots of cooling demand. In each quartet of plots, clockwise starting top-left, the plots are below-Q1
income and hot days (BH), above-Q1 income andhot days (AH), above-Q1 income and regular days (AR), and below-Q1 income and
regular days (BR). Note the varying y-axes.
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to heat stressmore drastically by increasing electricity demands than low-income, high-vegetation

communities. For above-Q1 income groups, building type (e.g., single family versusmulti-family residence)

superseded vegetation in importance. However, the importance of vegetation increased for both below- and

above-Q1 income groups for hot days.

Weather and control parameters were themost influential drivers of cooling demand, but these parameters

are not easily adjusted. Other urban characteristics, such as vegetation, building type, or distribution of wealth

can be influenced by policy. Vegetation areawas themost influential driver of cooling demand in below-Q1ZIP

codes on hot days. Vegetated area has long been shown to impact urban temperatures (Erell and Zhou 2022,

Ko 2018, Skelhorn et al 2016). Urban vegetation can serve as a refuge fromheat stress (Yan et al 2019), and

lower income groupsmay bemore likely to use this shelter effect during extreme heat events, whichmay explain

the higher sensitivity displayed in low-income, low-vegetated ZIP codes. Vegetated area exhibited a positive

relationshipwith cooling demand for below-Q1 income groups on regular days. This result was surprising given

the cooling effect of trees (Rahman et al 2020), but tree canopy can trap heat. Additionally, some patternsmay be

lost at the spatial, temporal, or economic resolutions used in this study. Themechanisms underlying this result

bear further study.

Low-income neighborhoods often have less vegetation than their wealthier counterparts (Declet-Barreto

et al 2016, Pham et al 2012) and aremore exposed to extreme heat (Chakraborty et al 2019, Yin et al 2023). Public

parks and cooling centers help residents combat extreme heat events, but cooling centers require air

conditioning, which requiresmore energy to run, and access can be uneven (Fraser et al 2017). Low-income

populations also have fewer resources to respond to the effects of extreme heat (Rosenthal et al 2014). Lower

cooling demandmeans residents are spending less on cooling, resulting in less strain on the electrical grid

(Khosla et al 2021). Asmore daysmeet the hot day threshold, reducing the costs under-resourced communities

face can increase their resilience.

While below-Q1ZIP codes consistently experienced an increase in demand on hot days, above-Q1ZIP

codes did not exhibit this trend. Furthermore, in thewealthier ZIP codes, no relationship between hot days and

cooling demand existed in themodel. Perhapswealthier ZIP codes havemore household items drawing power

sowhatever increase in power usage is offset by a reduction in other electricity use, or the residents of these ZIP

codes havemore capacity to travel to cooler places in anticipation of hot days. In addition to themagnitude of

cooling demand not changing between regular and hot days in above-Q1ZIP codes, the non-control variables

for above-Q1ZIP codes show little change in importance (figure 3). Building type remainsmore important to

cooling demand in above-Q1ZIP codes than vegetation. Indeed, the effects of vegetation in above-Q1 groups

may be due to other factors, such as the effect of Chicagoʼs downtown. The results suggest large apartment

buildings experience less cooling demand on hot days, which alignswith existing empirical studies that high-rise

residential buildings tend to have less cooling demand than single-family or low-rise apartment buildings,

especially in extreme consumption cases (Kaza 2010). Despite building type driving cooling demandmore than

vegetation in above-Q1 groups, the importance of vegetation still increases on hot days (figure 2).

Urban vegetation both affects and is affected by the urban climate. How this relationship changes with the

warming global climate will impact whatmechanisms are available to cool cities (Winbourne et al 2020). This

study suggests the importance of vegetation on cooling demand increases on hot days; however, the vulnerability

of vegetation also increases on hot days. Cooling fromvegetation is dependent on the health of the vegetation:

Water-stressed vegetation undergoes reduced evapotranspiration, andweakened canopy provides less shade.

Furthermore, vegetation can die if heat or water stress fromheatwaves or drought is too severe or persists too

longMarchin et al 2022.

Though extreme heat events can disrupt ecosystems, there areways to improve the resilience of urban

vegetation. Diversity and quantity of vegetation canmitigate some vegetation sensitivity to extreme heat events.

Planting vegetation climate-consciously in locationswithin cities the vegetation can survivemay both improve

the resilience of the vegetation and the resilience of the city.

Studiesmodeling cooling demand typically use dailymean temperature (Colelli andDeCian 2020). By using

dailymaximumheat index, we incorporate the impact of urban characteristics atmore extreme temperatures,

which could soon be the norm (Hayhoe et al 2010). Separating hot days from regular days allows us to describe

the sensitivity of the factors influencing urban temperatures, similar to (Zhao et al 2023).With climate change

scenarios suggestingmore dayswillfit the criteria of hot days, understanding the influence of urban

characteristics at hotter temperatures can help build better cooling demandmodels and guide urban design. The

results of this study suggest vegetation is the strongest non-weather and non-control driver of cooling demand in

below-Q1ZIP code. This result emphasizes the importance of environmental justice in urban forests since

low-income neighborhoods tend to have less vegetation (Nesbitt et al 2019).

Corroborating the impact of vegetation on cooling demandwith data on access to urban forests and cooling

centers further could informwhere cooling interventions aremost needed. Regardless, correlations between

vegetation extent and reduced cooling demand do exist at the ZIP code level. Since ZIP codes can vary in extent,
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however, the homogeneity ofmore densely populated ZIP codes compared to less densely populated ZIP codes

could be a valuable future point of analysis. Ultimately, understanding how vegetation and building type interact

with temperatures to increase or decrease energy demand for cooling can lead tomore resilient cities.

5. Conclusion

Thiswork shows that higher levels of vegetation are associatedwith lower levels of cooling demand, especially in

low-income neighborhoods on hot days.With a plenitude of literature espousing the dearth ofmaintained

vegetation in low-income areas, these results offer another reason to plant climate-appropriate trees in

survivable areas.

Since temperatures are anticipated to rise, we include a variable describing ‘hot’ days to study how the

characteristics of citiesmay influence cooling demand as temperatures increase. For low-incomeZIP codes,

vegetation significantly increases in importance. For high-income ZIP codes, both large-apartment building

type and vegetation experience subtle increases in importance for predicting cooling demand.

To counteract the ill-effects of increasing frequency and severity of extreme heat events, wemust understand

what factors influence how individuals react to extreme heat events.We need also consider how the complexity

and heterogeneity of responses to extreme heat events in urban areas will reflect the urban systems themselves.

Understanding how the characteristics of cities influence cooling demand in awarming climate helps us build

more resilient cities. Futurework could explore the interactions of urban characteristics andwarm temperatures

formore cities than just Chicago. Exploring the effects on groupswith other vulnerabilities, such as old age,

could also help characterize the current gaps in extreme heatmitigation.
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