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Abstract

Cooling energy demand is sensitive to urban form and socioeconomic characteristics of cities. Climate
change will impact how these characteristics influence cooling demand. We use random forest
machine learning methods to analyze the sensitivity of cooling demand in Chicago, IL, to weather,
vegetation, building type, socioeconomic, and control variables by dividing census tracts of the city
into four groups: below-Q1 income-hot days; above-Q1 income-hot days; below-Q1 income-regular
days; and above-Q1 income—regular days. Below-Q1 census tracts experienced an increase in cooling
demand on hot days while above-Q1 census tracts did not see an increase in demand. Weather (i.e.
heat index and wind speed) and control variables (i.e. month of year, holidays and weekends)
unsurprisingly had the most influence on cooling demand. Among the variables of interest, vegetation
was associated with reduced cooling demand for below-Q1 income on hot days and increased cooling
demand for below-Q1 income on regular days. In above-Q1 income census tracts building type was
the most closely associated non-weather or control variable with cooling demand. The sensitivity of
cooling demand for below-Q1 income census tracts to vegetation on hot days suggests vegetation
could become more important for keeping cities cool for low-income populations as global
temperatures increase. This result further highlights the importance of considering environmental
justice in urban design.

1. Introduction

Cooling demand lays at the crux of climate change and human well-being (Khosla et al 2021). Rapid rates of
urbanization and climate change are expected to increase the global population exposed to extreme heat
(Tuholske et al2021). Urban areas can be up to 7 °C warmer than surrounding rural areas, a phenomenon
referred to as the urban heat island (UHI) effect (Oke 1982, Peng et al 2012, Streutker 2002). The interaction of
the UHI effect with accelerated urbanization and climate change—which is increasing the severity and frequency
of extreme heat events (Fischer et al 2021, Meehl and Tebaldi 2004, Russo et al 2014)-means that while
heatwaves are regional events, urban centers may become the foci of the most frequent and severe heat events.
Over 55% of the global population lives in urban areas, a proportion expected to increase to 68% by 2050
(United Nations 2019), which translates to an additional 2.5 billion people frequently experiencing extreme
urban heat. Current projections suggest a 1.5 °C target for global warming is no longer feasible, which will result
in hundreds of more cooling degree days (degree-days above 65 °F or 18 °C) in many parts of the world
(Miranda et al 2023). The most severe impacts will fall on members of communities least able to escape them
(Lehnert et al 2020).

© 2024 The Author(s). Published by IOP Publishing Ltd
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Events such as the heatwave in Chicago in 1995 (Semenza et al 1996) and those across Europe in 2003
(Beniston 2004) and 2019 (Xu et al 2020) show the adverse impacts of extreme temperatures on human health,
economic systems, and environmental systems (Huang et al 2023). Robine et al (2008) estimated the heatwaves
across Europe in 2003 prompted widespread adverse economic impacts and caused 70,000 excess deaths—a
figure nearly matched in 2022 and that could become the new normal for Europe by 2030 (Ballester et al 2023).
In 2021 the heatwave and associated drought in the Pacific Northwest US caused an estimated $8.9 billion in
damages (NCEI 2022).

To mitigate the increasing frequency and severity of climate disasters, the concept of resilience has become a
dominant paradigm in several disciplines, including engineering (Bruneau et al 2003), ecology (Holling 1973),
and the social sciences (Adger 2000). A resilient system has the capacity to learn from previous disturbances,
persist through disturbances, adapt during disturbances, and transform to more ideal state during and after a
disturbances (Elmqvist et al 2019, Zanotti et al 2020). Building resilient cities requires an examination of both
external and internal drivers of disturbance and understanding community, city, and regional scale resources for
increasing resilience.

Extreme heat events are disturbances, and an increasing number of studies on the interactions of urban heat
and energy have been conducted. Temperature drives cooling demand more than any other weather variable
(Gallo Cassarino et al 2018), and the UHI effect increases building energy consumption (Liet al 2019). In urban
areas temperature is shaped by the interaction of human energy use behaviors (Meggers et al 2016), the built
environment (Yin et al 2018), and the amount and spatial arrangement of vegetation in the city (Yan et al 2019).
Most of the trapped heat in a city comes from radiation from the Sun. Human activities, such as air conditioning
and transportation, also contribute significantly to urban heating (Salamanca et al 2014). The built environment,
such as roads and buildings, traps and absorbs heat, which slows the transfer of heat out of the system.
Conversely, urban vegetation—specifically urban tree canopy—not only disrupts the absorptive capacity of the
built environment through the provision of shade, but also speeds the transfer of heat out of the system through
evapotranspiration (Rahman et al 2020). Planting urban trees has been suggested as a promising strategy for
climate and pollution adaptation (Pataki et al 2021).

Urban vegetation can cool the temperature of cities (Carlson et al 1981, Gallo et al 1993, Rahman et al 2020,
Ziter et al 2019), but few studies observe the direct impact of urban vegetation on cooling energy demand in the
city. Recent studies connect vegetation and cooling demand using simulation (Erell and Zhou 2022, Ko 2018).
Moss et al (2019) performed a meta-analysis on evapotranspiration rates for a variety of tree species to simulate
the cooling impact of urban trees. Using a theoretical model of the built environment, they estimated that the
cooling provided by trees reduced energy demand costs in inner London by over 2.1 million annually. While
valuable, theoretical models fail to capture the nuance of heterogenous urban landscapes, where the
heterogeneity extends from vegetation patch types to the uneven distribution of tree canopy. Managing cooling
demand requires a better real-world understanding of not only the elements introducing and influencing heat,
but also the capacity of residents to respond to the increased temperatures the heat creates.

The inequity of socioeconomic resources impacts both overall cooling demand and the ability of individuals
to respond to extreme heat events. Socioeconomic and behavioral factors influence how, when, or if a household
uses cooling (Steemers and Yun 2009, Pfenninger et al 2014). Heatwaves in the past two decades have revealed
the vulnerability of disadvantaged populations to extreme heat events (Thomson et al 2019). The distribution of
heat in urban areas disproportionately impacts marginalized populations and communities of color. In the
Midwest US city of Cleveland, higher land surface temperatures correlated with minoritized neighborhoods
(Declet-Barreto et al 2016). This trend has been seen in cities across the US, including in the metropolitan areas
of Pinellas County, FL (Mitchell and Chakraborty 2014), and cities across the Southwest US (Dialesandro et al
2021). Often, this discrepancy in urban heat is paired with a discrepancy in tree canopy cover.

Many studies have reported positive correlations between urban canopy and wealth (Landry et al 2020,
Gerrish and Watkins 2018, Schwarz et al 2015). Pham et al (2012) demonstrated minoritized communities often
have less canopy area and that this discrepancy is more pronounced on public land than private land, meaning
there are fewer street trees and parks in these communities. Not only are poorer neighborhoods more vulnerable
to extreme events due to less canopy cover, but the urban canopy within those neighborhoods is more vulnerable
to those events, as well (Landry et al 2020).

The impact of cooling from vegetation goes beyond mitigating the UHI effect that can exacerbate extreme
heat events. It also addresses the significant sustainability challenge of reducing energy demand (Khosla et al
2021). Many studies have explored the cooling effect of vegetation in cities, but few have linked this effect with
potential impacts on electricity demand. Furthermore, studies that have focused on cooling demand neglect the
influence of cooling demand drivers will change under extreme temperatures. Managing the increase in cooling
demand is critical to sustainable and resilient development (Khosla et al 2021).

In this study we examined the sensitivity of cooling demand of communities to vegetative extent and income
under warming temperatures. We used a random forest (RF) analysis approach to understand the role of
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Figure 1. In (a), clockwise from top-left, the quadrants are the groups below-Q1 income and hot days (BH; n = 624), above-Q1
income and hot days (AH; #n = 2304), above-Q1 income and regular days (AR; n = 3552), and below-Q1 income and regular days
(BR; n = 962). Dashed vertical and horizontal red lines are, respectively, log(income) threshold for poverty level and maximum heat
index threshold for hot/regular days. Individual points represent the 7442 ZIP code—days. In (b), choropleth maps of Chicago ZIP
codes for enhanced vegetation index (EVI; spectral band ratio) averaged over the study period and median household income ($ per
year) are displayed, in which red-colored borders indicate below-Q1 income groups.

vegetation in mitigating energy use compared to other meteorological, physical, and social characteristics. We
distinguished the importance of drivers of energy demand on average, or ‘regular,” days and ‘hot’ days (heat
index above 90 °F) and between economic classes. We used Chicago, IL, US as a representative large city situated
in a temperate climate with a diverse population and land use distribution.

2.Data and methods

2.1. Site description

Chicago is the third largest city in the US (figure 1(b)). It extends over 227.63 square miles and has a population
of over 2.7 million from diverse ethnic backgrounds (29.2% Black or African American, 28.6% Hispanic or
Latino, and 33.3% White). Over 17% of Chicago residents are below the poverty line, which is higher than the
national average of 11% (US Census Bureau 2020). Most of the land in Chicago is dedicated to residential areas
and utility and transportation corridors. Natural areas, institutional areas, and commercial areas all take up
small but similar areas (Brandt et al 2017). Like many urban areas around the world, the number of extreme heat
days in Chicago is increasing. From 1961 to 1990, Chicago experienced 347 days when the temperature failed to
drop below 70°F. This count increased to 507 days from 1991 to 2020 (NCEI 2022).

2.2, Data sources
The data used in this study consisted of residential electricity demand data, heat index and wind speed data,
socioeconomic data, and vegetation index data across 61 ZIP code areas of Chicago. The electricity demand data
were anonymized residential data collected every 30-min at the ZIP code-scale from Commonwealth Edison
(ComEd). The month and day of the year were taken into account as control variables (i.e. weekends and
holidays have different electricity patterns). The heat index and wind speed (collectively called weather data) are
constituted at a temporal resolution of 3 h and a spatial resolution of 4 km from the National Centers for
Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (INOAA).
Socioeconomic data included median household income, the proportion of the nonwhite population, as well as
the proportion of Hispanic population, the proportion of the population with at least a bachelor’s degree, and
unemployment rate, as well as residential building type and year of construction, from the 2017 5-Year ACS.
Socioeconomic data was downloaded at the ZIP code-scale from the US Census Bureau’s American Community
Survey (ACS). For the vegetation index data, the enhanced vegetation index (EVI) was downloaded from the
National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer
(MODIS). Raw EVI data has a temporal resolution of 16 days and a spatial resolution of 250 m. The time of year
variables (henceforth called control variables) were embedded in the electricity demand data (see appendix A for
more detail about the data used in this study).

Data were selected for the summer monthsJune through September 2017to capture the overlap between the
hottest temperatures of the year and fullest canopy cover. We aggregated all data to the same spatial and
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Table 1. RMSE of each fitted model. The best RMSE for each group is in bold.

RF GBM BART MARS GLM GAM SVM

Group

train test train test train test train test train test train test train test
BH 0.12 0.11 0.14 0.15 0.12 0.12 0.15 0.15 0.23 0.21 0.20 0.21 0.21 0.21
BR 0.064  0.057 0.085 0.081 0.070  0.065 0.096  0.097 0.14 0.14 0.13 0.14 0.14 0.14
AH 0.094  0.098 0.12 0.12 0.10 0.11 0.15 0.15 0.20 0.19 0.20 0.19 0.20 0.19
AR 0.058 0.054 0.082 0.082 0.070 0.17 0.10 0.11 0.14 0.14 0.13 0.14 0.14 0.15
Avg. 0.083  0.080 0.11 0.11 0.091 0.091 0.12 0.12 0.18 0.17 0.17 0.17 0.17 0.17

temporal resolution for the analysis. Electricity demand data had the coarsest spatial resolution at the ZIP code-
scale, so we aggregated all data to the ZIP code-scale. Based on convention in the literature, we used the daily-
level (i.e. daily sum of electricity demand) for the temporal resolution (Lyon and Barnston 2017, Anderson and
Bell 2011).

2.3.Data processing
We pre-processed the electricity consumption data to better represent the demand characteristics of each ZIP
code. Instead of dividing cooling demand by population in each ZIP code, we introduced the relative demand,
which can better represent the sensitivity of demands in response to extreme climatic events (see appendix A.6).

We then reduced the dimensions of the demographics dataset by consolidating categorical variables into
larger categorical variables. We combined two building type variables—single-detached and single-attached—
into one variable named single-family type. We combined buildings with more than 2 units and less than 20 units
into a variable named multi-family type. We called buildings with more than 20 units large-apartment type. We
also separated years of construction into two groups—pre- and post-2010—using the natural break closest to
the median of building construction years, and we aggregated education level into bachelors and above and other.
Lastly, we normalized variance in population among different ZIP code areas by converting all demographic
variable values to percent.

There were in total 7442 data points in total, and we split the dataset into 75% training set and 25% test set.
We used the training set for fitting parameters and hyper-parameters of each predictive model with the 5-fold
cross validation method, and test set for the model comparison.

2.4. Data analysis

We built several predictive models of the relative electricity demand from weather, socioeconomic, and
environmental variables. Then, we analyzed sensitivity of electricity demand against extreme heat events (i.e.
heatwaves) in relation to socioeconomic and environmental variables, using model inferencing techniques. We
created four groups based on the median household income and the daily maximum heat index to compare how
different income levels reacted to higher temperatures. To form the groups, we first split the median household
income into two categories: income level below $25,100 (below-Q1 income), which is the 2018 federal poverty
threshold for four-person families (HHS 2020), and income level above $25,100 (above-Q1 income).
Approximately 20% of regions were below-Q1 income. We then divided the daily maximum heat index into two
groups: heat index above 90 °F (hot days) and below 90 °F (regular days). A heat index value 90 °F is the ‘Extreme
Caution’ threshold from the National Weather Service of NOAA (NWS 2020). Approximately 40% of the
summer days in 2017 were classified as hot days. The resulting four groups were below-Q1 income and hot days
(BH; n = 624), below-Q1 income and regular days (BR; n = 962), above-Q1 income and hot days (AH;

n = 2304), and above-Q1 income and regular days (AR; n = 3552; figure 1).

For each group, we trained multiple supervised machine learning models to compare out-of-sample
predictive accuracy: 1) generalized linear models (GLM), 2) generalized additive models (GAM), 3) multivariate
adaptive regression splines (MARS), 4) random forest (RF), 5) gradient boosted tree machine (GBM), and 6)
Bayesian additive regression trees (BART) (see appendix B for more information on machine learning methods).
Then, we selected the best model for predicting cooling demand based on out-of-sample root mean square error
(RMSE), which was RF for all groups (table 1). All the experiments were conducted using models in the caret
packagev6.0.86inRv3.6.2 (KuhnM 2008).

RF is a tree-based method, which typically have low bias and high interpretability. RF loses some of its
interpretability to lower variance and improve its predictive accuracy. We used two model inferencing
techniques to interpret the final RF model: variable importance and partial dependence. Both of these are
effective tools to post-analyze non-parametric models. To prevent misinterpreting spurious relationships, we
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Figure 2. Random forest variable importance (VI) scores of important predictors excluding weather and control variables. Note that
only the variables selected through Step 2 of variable selection for above- and below-Q1 are included in the figure for each division of
groups. Vegetation is the only variable that appears in both BH and BR (See appendix C: figure C2 for an all variable plot).

Table 2. VSUREF results; variables are ordered from the highest importance to the lowest importance. Vegetation, socioeconomic, and
building type variables are in boldface.

Group  Step I: elimination Step 2: for-interpretation

BH Wind Speed, Heat Index, Non-working Day, July, June, August, Vegetation up-to July

BR Heat Index, July, August, Wind Speed, June, Non-working Day, Vegetation, Hispanic Population,  up-to POC Population
POC Population, Apartment, Multi-family House, random, Single-family House

AH Heat Index, Wind Speed, June, Non-working Day, August, July, Apartment, Multi-family House, up-to Single-family House

Single-family House, Education, Vegetation, Income, Building Age 10+yr, Unemployment
Rate, POC Population
AR Heat Index, July, Wind Speed, August, June, Non-working Day, Apartment, Multi-family House, up-to Single-family House
Single-family House, Education, Vegetation, Income, Building Age 10+yr, POC Population,
Unemployment Rate, Hispanic Population

used data-driven variable selection first to eliminate the least important variables then to select the most
influential variables.

3. Results

EVI (henceforth called vegetation) appears as the key predictor for cooling demand during hot days for the
below-Q1 income group and is more important during hot days than during regular days for both income
groups (figure 2). This was also true when the dataset was run on the full-variable models (i.e. without variable
selection).

3.1. Variable selection

Vegetation was the only non-weather or non-control variable kept during the first elimination step of variable
selection for all groups (table 2; See appendix B.4.2 for variable selection methods). However, the second step of
for-interpretation variable selection rarely selected vegetation or any socioeconomic variables. Although
vegetation was not selected in BH, AH, and AR in the second step of variable selection, we included vegetation in
the RF model training to ensure we could describe what relationship does exist between vegetation and cooling
demand for each group per the objectives of the study.

3.2. Associations of variables

Variable selection selects weather and control variables as the best predictors of cooling demand for each group
(table 2). In all groups, weather variables are the most important predictors of cooling demand; specifically
maximum heat index is the most important predictor of demand during regular days and maximum wind speed
is the most important predictor during hot days. For above-Q1 groups, building type follows the weather and
control variables in importance, and the association of vegetation with cooling demand is stronger than
randomness (figures 3(b) and (d)). In below-Q1 groups, vegetation and race follow the weather and control
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Figure 3. Variable importance plots after Step 2 of variable selection. The x-axis indicates a relative variable importance (VI) score with
the most important variable’s VI score scaled to 100. ‘Random’ represents artificially-added random noise.

variables in importance (figures 3(a) and (c)). The importance of socioeconomic variables remains similar or
slightly lower on hot days (see appendix C).

3.3. Directions of associations

The maximum heat index and maximum wind speed are positively associated with cooling demand (figure 4(a)
and (b)). Above-Q1 groups living in apartments have lower cooling demand than those living in single-family
residences (figure 4(c)). Off-day, a control variable, is an important predictor for all four groups (figure 4(d)). On
hot days, people use more energy during weekdays (i.e. Non-working day equal to 1), while, on regular days,
people use more energy during weekends. Vegetation is positively associated with cooling demand for below-Q1
income on regular days but is negatively associated with cooling demand for above-Q1 income on hot days
(figure 4(e)).

In the above-Q1 income groups, building type was more important in the above-Q1 income and hot days
group (AH). Apartment buildings are much less sensitive to heat stress than other types of buildings, observing
that the relative demand is close to 1.0 when the proportion of apartment type building is high (figure 4(c)). The
regions with more apartment buildings have comparatively steady cooling demand with higher relative demand
on regular days and lower relative demand on hot days compared to other regions.

Vegetation increased in importance on hot days in both income groups (figure 2). The association with
vegetation is higher in below-Q1 income groups, and higher vegetation tends to decrease with cooling demand
sensitivity (figures 2 and 4(e)). For BH (4(e), top-left), vegetation is negatively associated with the relative
demand, while for BR (4(e), bottom-left), vegetation is positively associated on regular days.

However, the association with vegetation becomes weaker in above-Q1, which is evidenced by the slope
becoming moderate and the confidence intervals narrowing (figure 4(e)). We also observe that this association
between vegetation and cooling demand is robust to the heat index threshold for hot days; that is, when we
increase the heat index threshold, the observed trend remains the same. Note that, in these partial dependence
plots, we took only the marginal association of vegetation into account excluding the effects of weather variables
(thus, excluding the cooling effect of urban vegetation), and vegetation still has an influence on human behavior
with respect to energy consumption.

Vegetation demonstrates a stronger association with cooling demand during hot days than during regular
days for both income groups (figure 2). This was also true when the model was run on the full-variable models
(i.e. without VSURF).
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Figure 4. Partial dependence plots of cooling demand. In each quartet of plots, clockwise starting top-left, the plots are below-Q1
income and hot days (BH), above-Q1 income and hot days (AH), above-Q1 income and regular days (AR), and below-Q1 income and
regular days (BR). Note the varying y-axes.

4, Discussion

This Chicago-based study analyzed the sensitivity of cooling demand to environmental and socioeconomic
resources of communities under warming temperatures. In particular, the impact of vegetation was studied. A
random forest model identified the predictive value of urban characteristics on cooling demand for four groups
of ZIP codes delineated by wealth and temperature. The results showed vegetation is an important driver of
cooling demand in low-income neighborhoods, reducing cooling demand on hot days and increasing cooling
demand on regular days. Furthermore, the results indicate that low-income, low-vegetation communities react
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to heat stress more drastically by increasing electricity demands than low-income, high-vegetation
communities. For above-Q1 income groups, building type (e.g., single family versus multi-family residence)
superseded vegetation in importance. However, the importance of vegetation increased for both below- and
above-Q1 income groups for hot days.

Weather and control parameters were the most influential drivers of cooling demand, but these parameters
are not easily adjusted. Other urban characteristics, such as vegetation, building type, or distribution of wealth
can be influenced by policy. Vegetation area was the most influential driver of cooling demand in below-Q1 ZIP
codes on hot days. Vegetated area has long been shown to impact urban temperatures (Erell and Zhou 2022,

Ko 2018, Skelhorn et al 2016). Urban vegetation can serve as a refuge from heat stress (Yan et al 2019), and

lower income groups may be more likely to use this shelter effect during extreme heat events, which may explain
the higher sensitivity displayed in low-income, low-vegetated ZIP codes. Vegetated area exhibited a positive
relationship with cooling demand for below-Q1 income groups on regular days. This result was surprising given
the cooling effect of trees (Rahman et al 2020), but tree canopy can trap heat. Additionally, some patterns may be
lost at the spatial, temporal, or economic resolutions used in this study. The mechanisms underlying this result
bear further study.

Low-income neighborhoods often have less vegetation than their wealthier counterparts (Declet-Barreto
etal 2016, Pham et al 2012) and are more exposed to extreme heat (Chakraborty et al 2019, Yin et al 2023). Public
parks and cooling centers help residents combat extreme heat events, but cooling centers require air
conditioning, which requires more energy to run, and access can be uneven (Fraser et al 2017). Low-income
populations also have fewer resources to respond to the effects of extreme heat (Rosenthal ef al 2014). Lower
cooling demand means residents are spending less on cooling, resulting in less strain on the electrical grid
(Khosla et al 2021). As more days meet the hot day threshold, reducing the costs under-resourced communities
face can increase their resilience.

While below-Q1 ZIP codes consistently experienced an increase in demand on hot days, above-Q1 ZIP
codes did not exhibit this trend. Furthermore, in the wealthier ZIP codes, no relationship between hot days and
cooling demand existed in the model. Perhaps wealthier ZIP codes have more household items drawing power
so whatever increase in power usage is offset by a reduction in other electricity use, or the residents of these ZIP
codes have more capacity to travel to cooler places in anticipation of hot days. In addition to the magnitude of
cooling demand not changing between regular and hot days in above-Q1 ZIP codes, the non-control variables
for above-Q1 ZIP codes show little change in importance (figure 3). Building type remains more important to
cooling demand in above-Q1 ZIP codes than vegetation. Indeed, the effects of vegetation in above-Q1 groups
may be due to other factors, such as the effect of Chicago’s downtown. The results suggest large apartment
buildings experience less cooling demand on hot days, which aligns with existing empirical studies that high-rise
residential buildings tend to have less cooling demand than single-family or low-rise apartment buildings,
especially in extreme consumption cases (Kaza 2010). Despite building type driving cooling demand more than
vegetation in above-Q1 groups, the importance of vegetation still increases on hot days (figure 2).

Urban vegetation both affects and is affected by the urban climate. How this relationship changes with the
warming global climate will impact what mechanisms are available to cool cities (Winbourne et al 2020). This
study suggests the importance of vegetation on cooling demand increases on hot days; however, the vulnerability
of vegetation also increases on hot days. Cooling from vegetation is dependent on the health of the vegetation:
Water-stressed vegetation undergoes reduced evapotranspiration, and weakened canopy provides less shade.
Furthermore, vegetation can die if heat or water stress from heatwaves or drought is too severe or persists too
long Marchin et al 2022.

Though extreme heat events can disrupt ecosystems, there are ways to improve the resilience of urban
vegetation. Diversity and quantity of vegetation can mitigate some vegetation sensitivity to extreme heat events.
Planting vegetation climate-consciously in locations within cities the vegetation can survive may both improve
the resilience of the vegetation and the resilience of the city.

Studies modeling cooling demand typically use daily mean temperature (Colelli and De Cian 2020). By using
daily maximum heat index, we incorporate the impact of urban characteristics at more extreme temperatures,
which could soon be the norm (Hayhoe et al 2010). Separating hot days from regular days allows us to describe
the sensitivity of the factors influencing urban temperatures, similar to (Zhao et al 2023). With climate change
scenarios suggesting more days will fit the criteria of hot days, understanding the influence of urban
characteristics at hotter temperatures can help build better cooling demand models and guide urban design. The
results of this study suggest vegetation is the strongest non-weather and non-control driver of cooling demand in
below-Q1 ZIP code. This result emphasizes the importance of environmental justice in urban forests since
low-income neighborhoods tend to have less vegetation (Nesbitt et al 2019).

Corroborating the impact of vegetation on cooling demand with data on access to urban forests and cooling
centers further could inform where cooling interventions are most needed. Regardless, correlations between
vegetation extent and reduced cooling demand do exist at the ZIP code level. Since ZIP codes can vary in extent,
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however, the homogeneity of more densely populated ZIP codes compared to less densely populated ZIP codes
could be a valuable future point of analysis. Ultimately, understanding how vegetation and building type interact
with temperatures to increase or decrease energy demand for cooling can lead to more resilient cities.

5. Conclusion

This work shows that higher levels of vegetation are associated with lower levels of cooling demand, especially in
low-income neighborhoods on hot days. With a plenitude of literature espousing the dearth of maintained
vegetation in low-income areas, these results offer another reason to plant climate-appropriate trees in
survivable areas.

Since temperatures are anticipated to rise, we include a variable describing ‘hot’ days to study how the
characteristics of cities may influence cooling demand as temperatures increase. For low-income ZIP codes,
vegetation significantly increases in importance. For high-income ZIP codes, both large-apartment building
type and vegetation experience subtle increases in importance for predicting cooling demand.

To counteract the ill-effects of increasing frequency and severity of extreme heat events, we must understand
what factors influence how individuals react to extreme heat events. We need also consider how the complexity
and heterogeneity of responses to extreme heat events in urban areas will reflect the urban systems themselves.
Understanding how the characteristics of cities influence cooling demand in a warming climate helps us build
more resilient cities. Future work could explore the interactions of urban characteristics and warm temperatures
for more cities than just Chicago. Exploring the effects on groups with other vulnerabilities, such as old age,
could also help characterize the current gaps in extreme heat mitigation.
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