Cycle-Detection Based Decimation Policies for
Lossy Source Encoding

Masoumeh Alinia and David G. M. Mitchell
Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003
e-mail: {aliniama,dgmm}@nmsu.edu

Abstract—We propose a variant of the belief propagation
guided decimation (BPGD) algorithm for the lossy binary sym-
metric source coding problem, called DeciPolicy, which enables
different decimation policies to decide when to trigger decima-
tion, which variables to decimate, and which value to assign
to decimated bits. In particular, we introduce a method that
uses information about the cycles existing in the graph of a low-
density generator matrix (LDGM) code to select candidate nodes
for decimation. The proposed family of policies can be combined
to include cycle detection-based decimation, parallel decimation
of several bits, and random or hard value assignment. We
demonstrate the algorithms on different constructions of LDGM
codes, including an optimized irregular degree distribution and
semi-regular Ising models, and show that our decimation policies
lower the distortion when compared to various classical soft and
hard BPGD algorithms, closing the gap to the rate-distortion
limit.

I. INTRODUCTION

In modern 5G networks and beyond, it will be critical
to employ lossy source coding with limited block length to
ensure ultra-reliable and low-latency communication. Lossy
source coding aims to reduce the size of a given sequence in
a way that allows for reconstruction up to some acceptable
distortion. Linear codes can attain Shannon’s rate-distortion
limit for binary sources under the Hamming distance metric
[1]. In [2], it was demonstrated that achieving the binary rate-
distortion (RD) limit is possible through low-density parity-
check (LDPC)-like codes, although their degrees increase
logarithmically with the block length. Low-density generator
matrix (LDGM) codes, their duals, were shown to achieve the
RD limit under optimal encoding as the average node degrees
increase [3]. LDGM codes share a similar representation as
LDPC codes in terms of a sparse factor graph, which enables
the efficient use of message-passing algorithms [4].

In practice, it is crucial to identify encoding strategies that
are both simple to implement and capable of achieving the RD
limit. Utilizing a conventional belief propagation (BP) algo-
rithm falls short of delivering optimal performance for lossy
source coding because of its unreliable marginal estimation
in quantization. This occurs due to a large number of com-
pressed words that result in approximately the same distortion,
causing difficulty in convergence. Consequently, modifications
have been made to BP algorithms, typically introducing a
decimation step that periodically fixes bits and reduces the
solution space in order to facilitate encoder convergence. This
has been proposed in terms of either hard-decimation [5] or
soft-decimation [6], as well as several variations (such as soft-
hard BPGD [7]). Soft decimation achieves good distortion
performance with linear complexity in code block length by

substituting the hard decimation step with a soft indicator
function; however, the performance of the algorithm depends
heavily on the optimal parameter selection for the indicator
function, which controls the distortion. In [8], a framework
based on the cavity method is utilized to calculate a critical
threshold for softness parameters in the soft and soft-hard
BPGD algorithms. When the parameters are selected close to
or equal to this threshold, the soft-hard BPGD algorithm out-
performs both the hard- and soft-decimated BPGD algorithms
in terms of rate-distortion performance. Asymptotically, these
algorithms can display distortion performance approaching the
RD limit, however they suffer in the finite length regime as a
result of the cycles in the Tanner graph of the generator matrix.
The corresponding message correlation during encoding re-
sults in suboptimal performance and longer convergence times.
In addition, conventionally nodes are selected for decimation
randomly [9], or according to their bias (likelihood) values
[6], without consideration of the graph and cycle structure.

In this paper, we address this issue by introducing a novel
approach called cycle detection that uses the graph structure
and cycle distribution to guide the selection of variables to
decimate within BPGD. It involves ‘breaking’ cycles in the
Tanner graph by periodically identifying variable nodes that
participate in the most short cycles, and fixing their variable
values during decimation, thereby removing those variables
from the graph structure. This can be combined with other
steps to optimize the encoder convergence, such as policies for
determining when to initiate decimation, how many variables
to decimate, and what values to assign to the decimated
variables. We demonstrate our approach on various LDGM
codes, including optimized irregular LDGM codes [6] and
semi-regular graphs via the Ising model [9]. Our numerical
results show that certain combinations of policies involving
cycle detection-based decimation, parallel and non-parallel
decimation, and random or deterministic variable selection sig-
nificantly outperform the state-of-the-art algorithms in terms
of rate-distortion performance and complexity.

The primary objective of this paper is to introduce a
framework for integrating different policies into the BPGD
algorithm to improve convergence, distortion performance,
and lower algorithmic complexity. Specifically, we make the
following contributions:

1) We introduce a parametric approach called DeciPolicy
for implementing various decimation policies within
BPGD. DeciPolicy relies on three essential parameters
for decimation: (i) a policy determining when to initiate
decimation, (ii) a policy specifying which variables are



subject to decimation, and (iii) a policy dictating the
values assigned to variables after decimation. The ver-
satility of DeciPolicy arises from the ability to combine
any policy from (i) with any policy from (ii) and (iii).

2) We present a range of decimation policies, drawing
inspiration from existing methods and proposing new
ones. These policies can be combined in various ways,
depending on the problem at hand.

3) We implement and assess these combinations of deci-
mation policies on various LDGM codes. We compare
their performance against established methods like hard
decimation and soft decimation. We observe that certain
decimation policies significantly outperform existing
methods in terms of solution quality and algorithmic
cost.

The remainder of this paper is structured as follows: Section II
provides background information on LDGM code ensembles
for lossy source coding and the soft-hard BPGD algorithm
[8] that inspired our DeciPolicy. In Section III, we outline the
general framework of DeciPolicy and offer several examples
of decimation policies. Section IV presents our experimental
results and analysis of DeciPolicy, evaluating different combi-
nations of decimation policies against soft and hard decimation
algorithms. Finally, in Section V, we conclude the paper.

II. BACKGROUND
A. LDGM code ensembles for lossy source coding

In this paper, we quantize a source sequence s =
(s1,82,...,8Nn) consisting of N independent and identically
distributed Bernoulli (p = 1/2) random variables to the index
word w = (wq, wa, ..., wps) via an LDGM code with a com-
pression rate of R = % The word w is used to reconstruct the
source sequence as §, where the mapping w — §(w) depends
on the LDGM code. For the binary quantization problem,
we use the Hamming metric d (s,8) = + vazl [s; — &;i| to
calculate the distortion. In lossy source coding, the final goal is
to minimize the average distortion D = E [d (s, §)], where E[-]
is the expectation taken over all possible source sequences s.
The rate-distortion function is in the form R(D) =1— H(D)
for D € [0,0.5] and O otherwise, where H is the binary
entropy function.

LDGM codes [13], as duals of LDPC codes, can be rep-
resented by generator matrix G € {0,1}V*M. We define
the factor graph of this code as G = (V,C,E) where
vV={1,....M},C={1,...,.N},and E={...,(a,i),...}
denote the code bit nodes, the generator nodes and the edges
connecting them, respectively. The vector (a,?) denotes an
edge between generator node a and code bit ¢, which occurs
iff G,; = 1. We will use indices a,b,c € C to denote
generator nodes and indices 7, j,k € V to denote code bits.
We define the sets C(i) = {a € C | (a,i) € E} and
V(a) ={i € V| (a,i) € E}. For an LDGM code C, defined
by the generator matrix G, and for an index word w, the
reconstructed source sequence is given by § = Gw.

In this paper, we draw codes from both the Ising model
construction of [9] and an optimized degree distribution [6],
which is optimized in a manner similar to density evolution in

the analysis of LDPC codes for channel coding. In the Ising
model, each edge emanating from a regular generator node
with degree k is connected uniformly at random to one of the
bit nodes. The degree of bit nodes is a random variable with
Binomial distribution Bi(kN, 1/M) scheme, hence we refer to
these codes as semi-regular. In the asymptotic regime of large
N, M, the bit node degrees have i.i.d. Poisson distribution with
an average degree k/R. The connections between generator
nodes and code bits in an optimized LDGM code are specified
by a degree distribution (A, p) from the edge perspective,
plx) = Y, pix™ and A(z) = Y, \ja'~!, where p; and
A; denote the proportion of all edges connected to generator
nodes and bit nodes with degree ¢, respectively.

B. Cycles in a Graph

A walk of length [ in G is a sequence of nodes
v1,V2,...,v41 in VUC such that edge (a, ) connects v; and
v forall ¢ € {1,2,...,1}. A walk is called a closed walk
or a cycle if the two end nodes are identical, i.e., if v; = v,
and if the nodes v;, 1 < ¢ <[ are distinct. The girth g of a
graph is the length of the shortest cycle in the graph. Fig. 1(a)
shows an example of an LDGM graph G, where two 4-cycles
are highlighted in blue and red, respectively.

C. Soft-Hard BPGD

The algorithm used in this paper is a combination of both
hard and soft decimation. Following [7], our algorithm uses
soft decimation equations like [6], but after each iteration it
searches for a bit node with maximum bias value. This bit
node is then fixed in all future steps, and the graph is reduced
with the hard decimation process. The soft-decimation BP
algorithm equations are updated as follows

_ ~ 1

RS Y RO, RS- Y RO LAY,
acC(7) beC(i)\a

(1)

RV =2(-1 tanh ™ |5 [[ BY.]. @

JEV (a)\i

R(t) R(t)
B = tanh <5 , B =tanh )0
t Dt t
where Rf;_)w Rf]lﬂ, and Bi(_)m denote the message sent from

code node ¢ to check node node a, the message sent from
check node a to code node 7, and the bias associated with

RZ(-ZQ at iteration ¢, respectively; Rl@ and Bi(t) denote the

likelihood ratio of code bit ¢ and the bias associated with
RrY respectively; and 8 = tanh(y) and p are non-negative

7 0
parameters. The ~y parameter reflects the effort of the message-
passing algorithm to find the resulting codeword § = Gw as
close to s as possible. The larger the ~, the stronger is the

effort. On the other hand, the structure of the code imposes

a limit on how strong this effort can be. The term lREg o 18

added to the plain BP equation to make the decimation softer.
The soft indicator function

1
— —pW

2
Is(BY )y = Ztanh ' (B
u o

1—>a)



approximates the hard-indicator function [7], given as

; -0, Bz(t—)wz = _17
Iy (Bfla) =140, -1< Bfﬂa <1,
~+00, Bz‘(t—)m =1,

where g controls the softness of the approximation and is
called the softness parameter. Algorithm 1 describes the
procedure, where ¢ indicates the iteration number, {OREN
the LDGM code graph at iteration ¢, and w; represents the
binary value assigned to code node i. The initial information
to check node node messages, REO_)W, are set to 0.1 with

P (R(O) = 0.1) = 0.5, and reset to O at iteration 1.

1—a

Algorithm 1 Soft-Hard Decimation Algorithm

Require: At iteration ¢ = 0, initialize graph instance G(*=0);
Generate a Bernoulli symmetric source word s;
while V' # () do
Update th_fal ) according to (1) for all (a,i) € E}
Update }A%ffll according to (2) for all (i,a) € E;
Compute bias sz and BZ-(t) according to (3);
Find B(®) = max; {)BP
it B(Y) > 0 then
w; < "0’ )
else
Wy <— /1/;
end if
Va € C(i), 8, ¢ Sq @ w; (update source);
Reduce the graph G < G\{i};
Gt = GW\{i} (remove code node i and all its
edges);
end while

| i not ﬁxed};

In [6], there is no analytical way to tune the value of p or
[ in order to give the best distortion performance. There, and
in subsequent papers, e.g., [7], the best value of yx is found
numerically by exhaustive and expensive code simulation.
In [8], spin glass theory in the cavity method is applied to
carefully tune the softness parameters in the soft-hard BPGD
algorithm to ensure good RD performance.

III. DECIMATION POLICIES FOR BPGD

The emphasis of our framework revolves around the concept
of decimation, which involves augmenting the BP algorithm by
reducing the solution space so that the algorithm will converge
- typically by assigning a value to a variable. Consequently, our
framework addresses three pivotal questions: (i) determining
the time to trigger decimation, (ii) selecting which variable(s)
to decimate, and (iii) establishing the values to assign to
the decimated variable(s). Each of these questions can be
addressed through various criteria, and DeciPolicy outlines
these criteria as decimation policies, which serve as parameters
for the decimation process.

A. Motivational Example

The performance of message-passing algorithms is sig-
nificantly influenced by specific graphical structures within
the Tanner graph of the code, particularly short cycles and
related objects such as trapping sets. Researchers have spent
significant effort to design LDPC codes for channel coding
problems avoiding such structures. In the following example,
we show that cycles are similarly detrimental for BPGD
algorithms on LDGM code graphs.

Example II1.1. We consider two codes of length N = 2100,
drawn from the (3,6)-regular LDGM block code ensemble with
R = 1/2 and lifting size 350. Code A has the cycle distribution
Ny =700, Ng = 1050, Ng = 1400, and N9 = 17500, where
N shows the number of cycles with length [, while code B has
Ny = 2100, Ng = 2800, Ng = 23800, and N;p = 149100.
Applying Algorithm 1, we obtain D4 = 0.379524 and Dp =
0.394762, respectively.

In this paper, rather than optimize the code graph to remove
cycles, we focus on selecting a decimation policy that can
reduce the impact of cycles in a general code graph.

B. DeciPolicy

We refer to the factor graph state at iteration ¢ as G°.
This state represents the combined status of all the data
structures utilized by the BP-based algorithm to work with
the associated factor graph. These data structures encompass
various elements such as the marginal values w;, a value
w; for the corresponding variable, the messages exchanged
between variables (R;;), and the collection of variables that
have been decimated, labeled as WW. We designate the set
encompassing all possible factor graph states as S.

Definition 1. A decimation policy is a tuple P = (1,1, X)
where:

o 7 : S — {0,1} represents the condition required to
initiate the decimation process, specifically referred to
as the trigger policy;

o ¢ = (¢,0) represents the policy for selecting variables
to decimate, where ¢ : S — F C V is a filtering policy
responsible for choosing possible candidate variables for
the purpose of decimation, and 0 : F x S — V' C V
represents the condition that dictates when to carry out
variable decimation, known as the perform policy;

e X : v xS — {0,1} is the policy used for assigning
a value to a given variable v € V known as the
assignment policy.

This framework can accommodate a diverse set of
decimation-driven algorithms by specifying distinct decima-
tion policies. For example, one may consider a DeciPolicy
instance, where it initiates decimation after a predefined num-
ber of iterations (7 function), randomly selects a variable for
decimation from the entire pool of non-decimated variables (¢
function), and determines the value for the decimated variable
by sampling it according to its marginal probability values (x
function).



The DeciPolicy framework is incorporated in BPGD as
Algorithm 2. In the next subsections, we detail the three
criterion 7, 1, and Y.

Algorithm 2 Soft-Hard DeciPolicy Algorithm
Require: A factor graph G = (V,C, E), policy P = (7,9, x),
source sequence S, Lnax

1) Initialize BP messages, t < 0,
2) W+ 0, w*=0
3) while 7(G) =0 and t < I, do
4)  TIterate BP following equations (1)-(3)
5) t++
6) end while
7) while W #V and t < I, do
8)  Choose node set V' = ¢ (G")
9) for w; € V' do
10) wf + x(w;, G)
11) W WuU{w;}

12) Update G! (remove code node 7 and all its edges)
13) t+ +
14) end for

15) end while

16) if W #V then

17)  Assign values to remain variables w* in V\W
18) end if

19) return w*

C. The Trigger Policy T

The trigger policy 7 takes input G¢ and outputs 0 or 1, indi-
cating decimation should not, or should, begin, respectively. In
the initial method introduced by [10], decimation is initiated
when BP can no longer proceed, i.e.,

1

0, otherwise.

, if Gt is quiescent,

Tconverge (gf) déf { “4)
This triggering mechanism involves identifying the quiescent
(dormant) state of the current factor graph. We propose to use
a variant of this that is based on the change in message (bias)
values. Formally, the condition for triggering decimation is
defined as follows:

o def )1, if v <e,
Thias = . 5
bias () {0, otherwise, ®)
where v = ﬁz(i,a)eE ’ﬁflt:? — ]%ffln is the average

difference of messages in two successive iterations and € > 0
is some small positive number. We will use this decimation
trigger in our soft-hard decimation algorithm where we check
if the total number of messages does not change significantly
in two successive iterations. The message values are deter-
mined by (2).

In specific scenarios marked by strict time or computational
constraints, waiting for the convergence of BP may be imprac-
tical. Consequently, one might contemplate decimating before
reaching convergence. The alternative strategy often depends

Fig. 1. Cycle-detection policy to identify a potential code bit to decimate.

on the iteration index. For example, in [9], decimation begins
directly, e.g., 7(G') = 1 V¢t > 0 but, for example in [7],
decimation is delayed as 7(G?) = 1 where t > I, for some
integer Iinit.

D. The Perform Policy 1) (Cycle-Detection)

Now that our algorithm has the capability to determine
when decimation should occur, the next question is: “Which
variables should be decimated?” The ¢ = (¢, ) policy takes
as input a graph state G and the variable node set V. The
“filter” ¢(S) returns the set F' C V containing variable nodes
that are to be considered for decimation. Then 0(F, G!) returns
the set V' C V of variable nodes that should be decimated.
In contrast to the hard BPGD approach [9], it is possible to
simultaneously decimate multiple variables, e.g., |[V'| > 1, as
seen in certain variations of [7]. Moreover, the selection of
variables to be decimated is not random but rather informed,
determined by the ¢ criterion.

In previous works (e.g., [6]- [9]), the variable selection was
independent of the graph structure. In those works, the ¢ filter
would output the set F' = V\W, i.e., all non-decimated nodes
over candidates, we refer this policy as ¢,1; now, @ selects the
node(s) from the filter to decimate. One approach is for 6 to
select z nodes randomly and uniformly from the filter output;
we refer to this policy as Grna(2). Another (more complex)
possibility is to search over all nodes that pass the filter and
decimate the z nodes with largest bias; we refer to this policy
as Omaxbias(2). If there are multiple candidates with equally
large bias, we select the z nodes from them randomly and
uniformly. Both hard BPGD [9] and soft-hard BPGD [7] use
Omaxbias(2), conventionally with z = 1.

We now introduce a new approach (cycle-detection) that
selects candidates for decimation from among those with
largest bias but with the extra condition that we pick those
that participate in the most short cycles in the factor graph. In
this context, decimation considers cycles, making it a suitable
strategy to break these cycles and improve the algorithm
performance. Fig. 1 illustrates this approach. We observe from
Fig. 1(a) that, of all the candidate nodes to decimate (assuming
all have approximately equal bias), w, participates in the most
cycles (two of the 4-cycles are shown with red and blue).
Consequently, decimating w,, as shown in Fig. 1(b), has the
effect of breaking those cycles for future iterations and limiting
the associated correlation in messages.



Our algorithm therefore requires knowledge of the cycle
distribution of the graph. Detecting and enumerating cycles
in the factor graph can be accomplished by graph theoretic
methods (e.g., [11] and methods described therein) or, as
we used in this work, by employing a modified BP process
by incorporating additional information (meta-data) into the
BP messages [12]. We remark that cycle enumeration need
only be performed once (offline) prior to the DeciPolicy
algorithm. From this, we create a data structure that tabulates
the cycles that a variable node participates in. As the algorithm
proceeds and the graph is reduced, cycles are removed from
the structure, and the number of cycles per node is updated.
In order to reduce complexity, in our implementation we
only record cycles of length equal to the girth g and use
that multiplicity to determine the node(s) to decimate. Other
strategies are possible, however we have found this to be
effective for all graphs considered (see Section IV).

For the cycle decimation policy, to reduce complexity, we
use a more stringent filter ¢y;,s, which returns all undecimated
nodes such that the bias is maximum (or it can be set to filter
all nodes with bias larger than some threshold). Then, the node
selection fycie(2) policy returns the z nodes that participate in
the most cycles from the filter. In our implementation, we only
enumerate cycles of length equal to the girth for this policy.

E. The Assignment Policy x

After identifying the variables to be decimated, the next
consideration is: “What values should be assigned to the
decimated variables?”” The values assigned to these decimated
variables are assigned using the x function, which can be
deterministic, although it still relies on the factor graph’s
current state. The most straightforward variable assignment
mechanism following propagation involves choosing values
with the highest marginal value or utility function. Indeed,
[9] employs two deterministic criteria for inference: 1) Hard
Decision:

|

where 7 is the index of the variable that is decimated in the
iteration ¢; and 2) Randomized Decision:

Bernoulli (%) , if B; =0,

with prob 1 (1 + tanh(yR!)),

7
with prob 3 (1 — tanh(yR!)). @

In our numerical results, we will use the hard decision with
bias values compared via soft decimation equations (1)-(3).

IV. NUMERICAL RESULTS

In this section, the results of various experiments of a C++-
based implementation of Algorithm 2 are reported for different
LDGM code ensembles. Codes were generated randomly
following the Ising model or the optimized degree distribution
from [6],

Mz) = 29, (®)

p(r) = 0.275698z + 0.25537x% + 0.076598z° + 0.392332°.
©)

0.5

Soft BPGD [6], N=10000
e Soft-hard DeciPolicy, N=10000
Soft BPGD [6], N=100

e Soft-hard DeciPolicy, N=100

0.4r

Distortion
o
w
‘

021

0.1 L======e==
0 0.05

0.1 ¢ 0.15 0.2 0.25

Fig. 2. BPGD distortion as a function of £ for LDGM codes with R = 1/2.

The performance of different combinations of decimation poli-
cies in DeciPolicy is compared to hard BPGD [9], soft BPGD
[6], and its extension soft-hard BPGD [8]. In the following
examples, decimation policies are noted as a descriptive triple.
For instance, DeciPolicy(bias, [cycle, 2], hard) means that
decimation is triggered with the bias trigger (2 iterations with
a total change less than ¢ = 0.01) (7), the cycle-detection
policy with z = 2 variables to be decimated per iteration (v),
and a hard value assignment ().

Fig. 2 compares the average distortion obtained by varying
softness parameter £ in the soft-hard BPGD using the De-
ciPolicy algorithm versus soft decimation [6]. The constructed
LDGM code is irregular, rate R = 1/2, length N = 100 or
10000, following the optimized degree distribution (8)-(9). For
this example, we set DeciPolicy(bias, [cycle, 1], soft-hard) for
the soft-hard BPGD algorithm. We observe that employing
cycle detection yields better distortion results for all &, where
the corresponding optimal distortion values are D = 0.112293
for DeciPolicy and D = 0.116371 for soft BPGD.

Table I shows the performance of Algorithm 2 compared to
Algorithm 1 in [8] (soft-hard BPGD) and Algorithm 1 (hard
BPGD) [9] in terms of the average distortion performance.
All numerical results presented are obtained by averaging
over 1000 trials using the same LDGM code with length
128000 constructed from the Ising model with different check
node degrees k. For all algorithms we set I,,,,, = 2000, the
decimation trigger (7) is set with ¢ = 0.01; the perform policy
(1)) for DeciPolicy is cycle detection with z = 1 variable
decimated per iteration, whereas for [8] and [9] we use the
maxbias policy with z = 1; and x is hard decimation. We
observe that the distortion performance of the cycle detection
DeciPolicy significantly outperforms those with hard BPGD
and soft-hard BPGD. For all algorithms, the performance
worsens with increasing k; this behavior follows from the fact
that the suboptimal BPGD threshold worsens with increasing
k as a result of the cycles in the graph, while the optimal
encoding threshold improves to the Shannon limit [9]. We note
the gap between DeciPolicy and the others is increasing with
k, possibly due to the cycle decimation being more effective



[% [ BPGD[9] [ BPGD[S] | DeciPolicy |
3] 01536 | 0.1326 | 0.1218
4] 01617 | 01528 | 0.1378
5| 0.1825 | 0.1663 | 0.1504
TABLE 1

AVERAGE DISTORTION RESULTS OF DECIPOLICY COMPARED TO HARD
BPGD [9] AND SOFT-HARD BPGD [8].

- Theoretical bound
05t e LDGM codes N=5000 [9] i
* LDGM codes N=5000 [8]
04 % o LDGM codes N=5000, DeciPolicy
Ly i
5]
503 1
'45 \'\,D .
A \'\\ +
0.2¢ ~Loooe 1
O . .
\'\.\ [} * °
0.1r T D e e
~— e
Tl D
0 s s s S -
0 0.2 0.4 0.6 0.8
Rate

Fig. 3. Distortion performance over a range of rates for LDGM codes with
BPGD and soft-hard BPGD.

with a larger number of cycles.

Fig. 3 compares the average distortion obtained from the
hard and soft-hard BPGD algorithms versus soft-hard DeciPol-
icy as a function of R for long code lengths. The constructed
codes have check node degrees £ = 4 and length N = 5000.
The distortion is computed for fixed R, and for 50 instances,
the empirical average is taken. We compare against the RD
bound D, (R), shown as the lowest dotted black curve. We
observe that, as expected, the distortion performance of codes
over all rates has the ordering hard [9], soft-hard [8], and
DeciPolicy from worst to best, with larger gains for larger R.

Finally, to reduce the number of required iterations (and
therefore complexity), we compare the DeciPolicy(bias, [cycle,
z], random) with different z, i.e., the z > 1 code nodes with
the largest bias and most cycles are decimated each iteration.
We constructed an LDGM code with a length of 2000 from the
Ising model with generator node degree k = 3, averaging over
1000 trials. Table II shows the average distortion performance
obtained of Algorithm 2 (D), the gain compared to Algorithm
1 (measured as A(D) = D; — Ds), distortion loss for various
z compared to D; (with z = 1) and finally, the complexity
of the algorithm measured as the average number of updates
that a code bit received over the entire process. The numerical
results in Table II indicate that, by increasing the number z of
decimated code nodes at each iteration (parallel decimation),
the complexity decreases drastically but with a corresponding
distortion loss. However, this could be desirable; for example,
at z = 10, we observe only a 0.31% loss in distortion
performance for a 87% decrease in computational complexity.

[ z [ D2 [ A(D) | Distortion Loss | Complexity |
1 || 0.1505 | 0.0210 — 991.37
2 || 0.1512 | 0.0203 0.0007 497.70
3 || 0.1525 | 0.0190 0.0020 333.21
4 ] 0.1527 | 0.0188 0.0022 317.19
10 || 0.1536 | 0.0179 0.0031 122.95
TABLE II

AVERAGE DISTORTION AND COMPLEXITY RESULTS FOR DECIPOLICY
WITH VARIOUS DECIMATED NODES PER ITERATION z.

V. CONCLUSIONS

We proposed the novel DeciPolicy method, which is pa-
rameterized in terms of policies to decide when to trigger
decimation, which variables to decimate, and which values
to assign to decimated variables. In particular, we showed that
decimation should not be performed randomly, as is the con-
vention, rather it should take the graph structure into account.
By following the proposed cycle detection policy, we observe
significant gains in decimation performance. The approach was
verified numerically for LDGM codes constructed from both
optimized irregular and semi-regular Ising models.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-2145917.

REFERENCES

[1] T. J. Goblick, “Coding for discrete information source with a distortion
measure,” Ph.D. dissertation, MIT, 1963.

[2] Y. Matsunaga and H. Yamamoto, “A coding theorem for lossy data
compression by LDPC codes,” IEEE Trans. Inf. Theory, vol. 49, pp.
2225-2229, 2003.

[3] M. Wainwright and E. Martinian, “Low-density graph codes that are
optimal for source/channel coding and binning,” IEEE Trans. Inf. Theory,
vol. 55, no. 3, 2009.

[4] M. Wainwright, E. Maneva and E. Martinian, “Lossy Source Compression
Using Low-Density Generator Matrix Codes: Analysis and Algorithms,”
IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1351-1368, 2010.

[5] T. Filler and J. J. Fridrich, “Binary quantization using belief propa-
gation with decimation over factor graphs of LDGM codes,” CoRR,
vol.abs/0710.0192, 2007.

[6] D. Castanheira and A. Gameiro, “Lossy source coding using belief
propagation and soft-decimation over LDGM codes,” IEEE Int. Symp.
on Personal, Indoor and Mobile Radio Comm., pp. 431-436, 2010.

[7] A. Golmohammadi, D. G. M. Mitchell, J. Kliewer and D. J. Costello,
“Encoding of spatially coupled LDGM codes for lossy source compres-
sion,” IEEE Trans. Comm., vol. 66, no. 11, pp. 5691-5703, 2018.

[8] M. Alinia and D. G. M. Mitchell, “Optimizing Parameters in Soft-hard
BPGD for Lossy Source Coding,” Int. Symp. on Topics in Coding (ISTC),
Brest, France, pp. 1-5, Sept. 2023.

[9] V. Aref, N. Macris and M. Vuffray, “Approaching the Rate-Distortion
Limit With Spatial Coupling, Belief Propagation, and Decimation,” IEEE
Trans. Inf. Theory, vol. 61, no. 7, pp. 3954-3979, 2015.

[10] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, “Clusters of solu-
tions and replica symmetry breaking in random K-satisfiability,” J. Stat.
Mechanics: Theory and Experiment, vol. 2008, no. 4, p. P04004, 2008.

[11] A. Gomez-Fonseca, R. Smarandache, and D. G. M. Mitchell, “An
Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic
LDPC Codes,” IEEE J. Sel. Areas in Inf. Theory, vol. 4, pp. 499-513,
2023.

[12] M. Karimi and A. H. Banihashemi, “Message-Passing Algorithms for
Counting Short Cycles in a Graph,” IEEE Trans. Comm., vol. 61, no. 2,
pp. 485-495, Feb. 2013.

[13] Z. Sun, M. Shao, J. Chen, K. M. Wong, and X. Wu, “Achieving the Rate-
Distortion Bound With Low-Density Generator Matrix Codes,” IEEE
Trans. Comm., vol. 58, pp. 1643-1653, Jun. 2010



