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Digital simulations are especially helpful in physics education, but most simulations provide only a visual-
ization of a phenomenon while obscuring the mathematical relationships that model its behavior. Our team is
developing a suite of online simulations called DynamicsLab, which combine visual representations with an
ability to input and alter the governing physics equations. Here, we share excerpts from a group of clinical
interviews, in which intermediate physics students explored the first iterations of a DynamicsLab simulation of
a characteristic problem in Classical Mechanics: the bead on a spinning hoop. The students were given predict-
observe-explain prompts to investigate the way they connected the mathematical representation to the physical
phenomenon. We highlight three episodes in which students had to revise unsuccessful predictions, and how
these instances indicate that engaging with the DynamicsLab simulation encouraged the students to draw upon
a more diverse range of knowledge elements to support their physical and mathematical reasoning.
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I. INTRODUCTION

Digital simulations have become a powerful component of
the modern physics educator’s toolkit [1]. The ability to ex-
plore physics in a virtual space can be especially powerful
for phenomena that are difficult for students to envision in
their heads alone [2]. Simulations can empower students by
providing multiple lines of simultaneous representation (e.g.
visuals alongside graphs) and allowing for flexible engage-
ment capable of accommodating multiple levels of exper-
tise [3]. Empirical studies using simulations as alternatives
and/or supplements to classroom and laboratory instruction
have found them to be effective means for evoking conceptual
change in students [4–6]. Given these powerful affordances,
it is unsurprising that online simulations have become a staple
across many levels of physics education.

Most popular physics simulation tools provide a visual ex-
ample of a phenomenon and allow users to set the value of rel-
evant parameters to observe the effect on the system [7]. We
feel that this format, while surely useful in many contexts, has
one critical shortcoming: it obscures the actual relationship
between the parameters – the equations and formulas model-
ing the physical mechanisms – behind the scenes and away
from students’ access. As such, simulations of this nature
will likely do very little to impact the way physics students
connect the realities of physical systems to the mathematical
representations used to model them.

The ability to connect between physical concepts and their
associated mathematical form is a vital component of physics
problem-solving [8, 9]. For more basic mathematics, students
have been shown to have a rich intuition about the common
forms used in equation building (e.g. addition and subtrac-
tion) [10]. However, as the complexity of mathematical forms
rises, students can struggle to overcome the novel challenges
[11]. In the context of physics, the mathematical complexity
is exacerbated by the immense variety of conceptual com-
plexity that physics equations can contain [12]. In the face
of such obstacles, students are in need of instructional scaf-
folding to assist them in navigating the confusing (and often
counter-intuitive) topics found in upper-division physics.

Our research group has been developing a set of online
simulations called DynamicsLab [13] to assist in teaching
challenging concepts in upper-division physics courses. Im-
portantly, these simulations include the option for students to
input their own equations and compare them to the simula-
tion’s model. We believe this additional degree of interaction
will enable intermediate physics students to construct a more
detailed perspective on how various mathematical symbols
and operations reflect the realities of physical mechanisms.

This work pertains to a simulation of a bead threaded onto
a wire hoop, in which the hoop is spun around a vertical
axis (seen in Fig. 1). The bead-on-hoop problem (p.261 in
[14]) is commonly used in Classical Mechanics courses to
explore and practice Lagrangian mechanics – an advanced
physics procedure which constructs equations of motion for
constrained phenomena using energy functions and differen-

tial equations. Pilot interviews found that students could of-
ten perform the calculations of Lagrangians with a high de-
gree of confidence and accuracy, but they often have far less
sense for the conceptual meaning of their solutions in the
physical context [15]. In this work, we will share the ac-
counts of three intermediate physics students using the Dy-
namicsLab bead-on-hoop simulation to improve their under-
standing of the problem’s equations of motion.

II. THEORETICAL FRAMEWORK

This work utilizes the epistemological perspective knowl-
edge in pieces (KiP) [16]. KiP models knowledge as a
collection of individual knowledge elements within a web
of context-based connections. When a learner embarks on
sensemaking in a novel situation, salient details of the prob-
lem context will ‘activate’ a subset of knowledge elements
based on their apparent relevance to the current task. Novices
often activate elements that, while useful in other cases, may
not be applicable to the problem at hand. Likewise, they may
overlook elements that would indeed be useful if they have
not yet developed (or moreover, reinforced) the elements’
connections to the problem. Through instruction and practice,
learners refine these contextual connections to better activate
the most productive and relevant knowledge elements.

Related knowledge elements can activate each other
through a process called ‘cuing’ – a knowledge element
which bears a strong ‘cuing priority’ with another will be
more likely to activate in conjunction with its companion.
Knowledge elements which are often activated together in
similar contexts will develop strong cuing priority on their
own through standard use. In contrast, when a problem re-
quires drawing upon disparate sectors of knowledge simulta-
neously (such as physics problems requiring an understand-
ing of both causal mechanisms and abstract representations),
it is far less likely for the activation of elements in one area
to activate elements in the other domain. Our goal is to use
targeted activities which emphasize or draw attention to the
connections between these otherwise-distant knowledge ele-
ments to enhance their cuing priority and improve the global
coherence of learners’ knowledge systems.

III. METHODS

Physics students enrolled in the Classical Mechanics
course at our university were invited to volunteer for clini-
cal interviews to test out early iterations of the DynamicsLab
bead-on-hoop simulation. In total, six students agreed and
met with the lead author for roughly 1.5 hours each. Af-
ter discussing their current understanding of Lagrangian me-
chanics, the students (if they had not done so in class already)
performed the derivation for the equation of motion for the
bead-on-hoop problem [14]. The solution comes out to:
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FIG. 1. Screenshot of the DynamicsLab bead-on-hoop simulation [13]. Users can alter the parameters (such as gravity and angular velocity),
as well as enter their own equations of motion to govern the behavior of the bottom "test hoop." The graphs on the right plot the velocity and
angular position of the reference and test hoop for visual comparison.

θ̈ = sinθ(ω2cosθ − g/r), (1)

where θ is the angular position of the bead (measured from
the bottom of the hoop), ω is the angular velocity of the hoop,
g is the gravitational constant, and r is the radius of the hoop.
The students then explained how Eq. 1 could be used to find
the positions on the hoop at which a stationary bead would
remain stationary (called ‘critical’ or ‘equilibrium’ points).

Then, the students were introduced to DynamicsLab and
allowed to explore freely. When the students were suffi-
ciently comfortable with the interface, they were asked to in-
put equations of motion into the ‘test equations’ boxes. After
converting Eq. 1 from a second-order derivative to two first-
order derivatives (using the known relationship θ̇ = v/r) and
adding a friction term, the final equation is:

v̇ = rsinθ(ω2cosθ − g/r)− kv. (2)

When Eq. 2 is executed in the DynamicsLab simulation (as
seen in Fig. 1), the motion of the bead on the test hoop exactly
matches the motion of the bead on the reference hoop.

To conclude, the students were given a set of instructional
prompts, which used the predict-observe-explain format and
either asked 1) how would the behavior of the bead be af-
fected by a given change in the equations, or 2) what kind

of change in the equations would generate a target behavior?
Audio, video, and screen recordings of the interviews were
captured and analyzed using an iterative observe-schematize-
systematize procedure [17] in accordance with Knowledge
Analysis [18, 19], a KiP-aligned methodology for studying
the structure and dynamics of knowledge.

IV. FINDINGS

Overall, the students displayed a strong intuitive sense for
the relationship between the equations and the behavior of the
bead. In response to the prompts, the majority of the students’
predictions were nearly or entirely accurate. This suggests
that many intermediate physics students have already begun
to develop a robust capacity for connecting abstract and con-
crete conceptualizations.

For this work, we chose to focus on the minority of in-
stances in which students had to revise unsuccessful predic-
tions. These occurrences shed light on the ways in which
the simulation and activity design encouraged the students
to draw upon a wider assortment of sensemaking resources.
Here, we present examples taken from the interviews of three
students: Armando, Alena, and Youssef.
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A. Flipping Gravity

The first prompt was to predict how the bead would behave
if the negative sign in front of the g/r term in Eq. 2 were
flipped to a positive sign. Armando initially approached this
task by relying solely on mathematical reasoning. He under-
stood from working through the derivations that the locations
of the bead’s equilibrium points were found by setting Eq. 1
equal to zero (as there would be no angular acceleration at
these points). Armando recalled that when the parenthetical
term was zero, the resulting θ described the equilibrium point
shown in Fig. 1, where the bead comes to rest just below 90
degrees. This mathematical reasoning led Armando to con-
clude that the flipping of the sign of g/r would disrupt the
stability that arose from that portion of the equation of mo-
tion:

"You have this relationship between the omega
and the gravity that are contrary to each other.
As the gravity increases, it kind of steals away
from this omega. But if we add to it, then I’m
guessing the critical point... I think it’ll disappear
entirely... because this term will never be zero."

But when Armando implemented the equation change in
DynamicsLab, the equilibrium point was not eliminated. In-
stead, it shifted from just below 90 degrees to just above 90
degrees on the test hoop.

Armando’s judgement that the parenthetical could never
equal zero when the sign of g/r was positive had overlooked
a subtle mathematical nuance: the cosθ in the first term intro-
duces a negative sign in some quadrants of the hoop. When
the sign on g/r was reversed to positive, the parenthetical
would now equal zero at a position where the value of the
ω2cosθ term was the same but its sign was flipped to nega-
tive. This would occur when the horizontal component of the
bead’s position (the magnitude of cosθ) was unchanged, but
it was in the next quadrant – thus reflecting the equilibrium
point over the horizontal axis.

The persistence of the test bead’s stability surprised Ar-
mando, who now had to construct an explanation for the un-
foreseen result. Interestingly, Armando did not attempt to
revise his mathematical intuitions surrounding the equation
to explain the behavior. Instead, he drew upon his conceptual
understanding of the phenomenon to address the discrepancy:

"It’s flipping the sign of g, right? Nothing else
is really changing. But by making that to an ad-
dition, you can almost now think that instead of
gravity pointing down, it’s now pointing up."

Indeed, Armando’s envisioning of the flipped sign as a re-
versal of the direction of gravity was sound, and it sufficiently
explained the behavior of the test bead: as the centrifugal
force urged the bead away from the axis, it was gravity that
prevented the bead from reaching the limit of 90 degrees.
With gravity reversed, the same effect would occur, just with
the bead being held in the upper quadrant instead of the lower.

B. Flipping Friction

Similar to the first, another prompt had the students con-
sider the effect of changing the sign in front of the friction
term (kv) from negative to positive. Alena’s first intuition
correctly identified that "that force would keep adding to it."
However, something about the circular nature of the phenom-
ena and the trigonometric functions involved caused her to
temper her predictions:

"The cosine and sine would help regulate it... as
θ got smaller, v might get smaller, which would
decrease the amount it’s adding to it."

From her statements, it is unclear if Alena believed that
the bead would slow down and lose velocity at some point,
or that the bead’s positive acceleration would simply be less-
ened while still remaining positive. In either case, it is more
important to note that Alena was connecting the trigonomet-
ric effects that appeared elsewhere in the equation of motion
to the friction term (which had no trigonometric function).

Alena’s prediction that the positive friction force would
be reigned in was refuted by DynamicsLab; when Alena re-
versed the sign on the friction term, the test bead quickly took
off, accelerating non-stop until it sped around the hoop mul-
tiple times each second. As Alena came to terms with the re-
sult, she did not mention the mitigating effects of trigonomet-
ric terms again, indicating that she had possibly abandoned
that connection. Instead, she used a new term to described
her updated conceptualization:

"It gets faster and faster, but it doesn’t slow
down. It looks like it just keeps going... that
makes sense, because as your v is increasing, be-
cause we added it, it means the change in v is in-
creasing. It’s like a feedback loop, it just makes
the v get bigger."

Alena connected the behavior of this additive-friction sce-
nario to a relational ontology seen in many other real-world
contexts: the "feedback loop." This new connection suggests
that Alena (like Armando in the previous example) was ex-
panding the pool of knowledge resources upon which she
drew to inform her interpretations as her mathematical rea-
soning was challenged.

C. Removing Velocity

In a more open-ended prompt, the students were asked to
choose one of the terms or variables in Eq. 2 and remove
it. From the options, Youssef decided that he would re-
move v from both test equations. Like Armando and Alena,
Youssef’s first prediction followed primarily from mathemati-
cal reasoning: as he altered the equations, he stated that delet-
ing a variable from an expression was equivalent to "essen-
tially, holding it fixed at one." Youssef concluded that his ac-
tions would cause the velocity of the bead to be held constant
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indefinitely. In turn, he believed that "this whole equation, v̇,
is going to be zero."

In general, Youssef’s assumption that deleted variables are
mathematically equivalent to a substituted constant value of
‘one’ is correct. Yet, it is an overextension to extrapolate that
v would remain at one perpetually. Eq.2 is a differential equa-
tion – it states that the rate of change in v is dependent on v
itself. When the v is removed, the rate of change of v will no
longer depend on v [20], but the formula will still yield some
value based on the other parameters (in fact, the initial rate of
change would be numerically equivalent to the value found
using an unaltered Eq.2 and v = 1). This value of v̇ would
still represent the rate of change of the velocity of the bead
regardless of the presence or absence of v in Eq.2. As long
as v̇ was non-zero, the simulation would calculate new values
for v using this function as time progressed.

Youssef’s prediction was short-lived as the test bead con-
tinued to accelerate and change speeds – albeit in an erratic
manner – even after the removal of v from the test equations.
The non-constant motion pushed Youssef to reconsider his
understanding of the relationship between v and v̇. Notably,
one resource which Youssef drew upon to accept the bead’s
unexpected behavior was attending to the other parts of Eq.2
that had remained unchanged. Youssef realized that "we still
have omega in play here... the omega squared is still mak-
ing it rise – the centrifugal force." Youssef’s articulation of
the centrifugal force, albeit brief, indicates that he was try-
ing to situate his updated explanation in conceptual terms –
something that was not present in his previous attempt.

V. DISCUSSION

In each of the examples presented, the students crafted an
initial prediction based primarily (or even entirely) on math-
ematical reasoning. Our KiP perspective urges us to note that
the mathematical principles which the students drew upon to
justify their predictions were all productive: Armando look-
ing for possible zeros in the function, Alena considering the
bounded nature of sines/cosines, and Youssef equating vari-
able elimination to substituting a ‘one’ are all useful strategies
that have wide-ranging relevance across many mathematical
domains. Moreover, the students did not activate these re-
sources by chance; each idea had a clear relevance to the
salient features of the bead-on-hoop equations of motion, and
their contributions were not moot. Productive student ideas
such as these should be validated and encouraged to reinforce
their activation in potentially relevant contexts.

KiP can also offer an idea as to why these students went to
their mathematical knowledge so readily in their explanation-
building: the instructional prompts discussed here each
started with a proposed change to the structure or composi-
tion of the equations. Drawing the students’ attention to this
inciting alteration at the onset of their sensemaking would cue
any knowledge or experience the students had regarding the

focal representational construct (e.g. cuing resources about
positives and negatives when being asked to flip a sign).

As we described each students’ mathematical justification
for their initial prediction in the previous section, we pointed
out the flaws in the students’ reasoning or the subtleties of
the application that the students had overlooked. We did not
do this to expose the students’ deficiencies or make any argu-
ments about their lack of capability in these matters (a starkly
anti-KiP endeavor [21, 22]). Instead, we wanted to show that
the mathematical arguments used by the students were not
unsalvageable – with some careful attention, they could be re-
fined and applied successfully to the bead-on-hoop problem.
With that in mind, we find it intriguing that these students did
not return to their proposed mathematical ideas when their
predictions were refuted by the simulation. Instead, they ap-
peared to move away from their initial mathematical ideas in
favor of searching for an explanation elsewhere. In the cases
we shared, each student found some amount of clarity in con-
ceptual connections that weren’t present in their first articu-
lation: Armando and Youssef pointed to conceptual pieces
that were specific to the bead-on-hoop problem (gravity and
the centrifugal force, respectively), while Alena mentioned a
more generalizable conceptual idea (the feedback loop).

Seeing the students reach for a wider variety of knowledge
resources when revising their predictions is a promising sign
for the feasibility of simulations like DynamicsLab: draw-
ing the students’ attention to the equation in the predict step
seemed to cue mathematical ideas, whereas attending to the
visual behavior in the observe step seemed to cue concep-
tual resources about the physical mechanisms and relation-
ships. That said, it was not our goal to have students relin-
quish or abandon their previous mathematical thinking, but
instead to widen the scope of relevant ideas to include both
mathematical and conceptual resources simultaneously. In an
ideal instructional environment, students working with Dy-
namicsLab would be encouraged to explore the applicability
of mathematical and conceptual ideas in tandem to enhance
the connections between these two domains of knowledge.

In short, these preliminary results serve to validate Dynam-
icsLab’s motivation to include mathematical manipulation in
digital simulations. We believe the diversity of mathemati-
cal and conceptual resources seen in the data would not have
been demanded by a simulation which only displayed a visu-
alization of a phenomenon without its accompanying math-
ematical representation. By allowing students to interact di-
rectly with mathematical representations alongside coupled
visual models, we believe they can construct deeper and more
reliable connections between the symbols on the page and the
physics of the real world.
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