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Abstract—Generalized low-density parity-check (GLDPC)
codes, where single parity-check constraints on the code bits are
replaced with generalized constraints (an arbitrary linear code),
are a promising class of codes for low-latency communication.
The block error rate performance of the GLDPC codes, combined
with a complementary outer code, has been shown to outperform
a variety of state-of-the-art code and decoder designs with
suitable lengths and rates for the 5G ultra-reliable low-latency
communication (URLLC) regime. A major drawback of these
codes is that it is not known how to construct appropriate
polynomial matrices to encode them efficiently. In this paper,
we analyze practical constructions of quasi-cyclic GLDPC (QC-
GLDPC) codes and show how to construct polynomial generator
matrices in various forms using minors of the polynomial
matrix. We consider mixed QC-GLDPC constructions, where
favorable tradeoffs can be found in code rate vs. error correcting
performance by only generalizing a proportion of the constraint
nodes, and show that our approach extends naturally to these
constructions. Finally, we show that by applying double graph-
liftings, the code parameters can be improved without affecting
the ability to obtain a polynomial generator matrix.

I. INTRODUCTION

Generalized low-density parity-check (GLDPC) codes,
where single parity-check constraints are replaced by a general
linear code, have been shown to have several advantages over
conventional LDPC codes, including large minimum distance
[1]–[3], good iterative decoding performance [4], [5], fast
decoding convergence speed [6], and low error floors [7], [8].
The performance and convergence speed of the BP decoder
can be further improved by applying a reinforcement learning
approach to optimize the scheduling of messages in the
decoder [9]. This improved performance from the generalized
constraints comes at the cost of reduced coding rate, which
is generally not desirable for many communication systems.
However, these codes are well suited for next generation
machine-to-machine (M2M) type communications and ultra
reliable low latency communications (URLLC), which are
expected to have low coding rate, e.g., R = 1/12, and short
block lengths ranging from hundreds of bits to one or two
thousand [10].

Conventional quasi-cyclic LDPC (QC-LDPC) codes have a
highly structured parity-check matrix, which can be composed
as an array of circulant matrices. Consequently, they are at-
tractive for implementation purposes since their structure leads
to efficiencies in decoder design [11]. Quasi-cyclic GLDPC

(QC-GLDPC) codes were proposed in [7], where irregular
protograph-based designs were shown to possess good per-
formance in both the waterfall and error floor regions. In [5],
a practical construction of QC-GLDPC codes were proposed
for URLLC, where the optimal proportion of generalized
Hamming constraints (to minimize the gap to capacity) was
determined by an asymptotic analysis. The optimal proportions
were found to be 0.75% of the constraint nodes in the (2, 6)-
regular and (2, 7)-regular cases, while this proportion increases
to the 0.8% in the (2, 15)-regular case. A major drawback of
these codes is that it is not known how to leverage the circulant
based generalized matrix to construct appropriate polynomial
matrices to encode them efficiently.

As a result of the rich structure of QC-LDPC codes, their
matrix representations have been studied in a number of works.
These include methods to construct a generator in standard
form (e.g., [12]), which allows high throughput systematic
encoding but the resulting generator matrix is typically dense.1

The sparse parity-check matrix is often represented as an array
of circulant permutations, which faciliate efficient implemen-
tation but will typically have a number of linearly dependent
rows. Although Gaussian elimination can be employed to
compute the rank with a complexity of O(n3), it is desirable
to have an analytic way to compute the rank, particularly for
classes of algebraic QC-GLDPC codes. Methods to compute
the rank of QC-LDPC codes have been investigated, including
approaches involving Fourier transforms [13] and the matrix
polynomial representation [14]. However, these approaches
are limited to certain code parameters. In [15], we presented
a method to compute the rank of any parity-check matrix
representing a QC-LDPC code, and hence the dimension of
the code, by using the minors of the corresponding polynomial
parity-check matrix. This formula, can be applied to compute
the rank of the QC-GLDPC codes as well.

In this paper, we extend our results from [15] and show how
the approach extends naturally to QC-GLDPC codes. Using
the QC-GLDPC constructions from [5] and [7] as examples,
we demonstrate how to compute polynomial generator matri-
ces, allowing efficient encoding. It is shown that the method
also applies to mixed constructions, where the parity-check

1Systematic encoding, where the information is directly embedded in the
codeword, is often preferred in practice.



matrix has a mixture of generalized and single parity-check
constraints. We consider the design of these codes and show
that they can have large minimum distance. In particular, the
generator matrices will often have rows that are equal (or
close to) the minimum distance of the code, giving tight upper
bounds that are hard to obtain otherwise. We discuss how the
approach can also be used to determine the rank of the parity-
check matrix of QC-GLDPC codes. Throughout the paper,
we show that by applying double graph-liftings, the code
parameters can be improved without affecting the ability to
obtain a polynomial generator matrix. Importantly, this allows
the code designer to finely tune the number of generalized
constraints to optimize the performance/rate trade-off.

II. DEFINITIONS, NOTATIONS AND BACKGROUND

We use the following notation. For any positive integer L,
[L] denotes the set {1, 2, . . . , L}. For any matrix M , we let
MI,J be the sub-matrix of M that contains only the rows of
M whose index appears in the set I and only the columns of
M whose index appears in the set J ; if I equals the set of all
row indices of M , we will simply write MJ . We use the short-
hand MJ\i for MJ\{i}. If I and J have the same cardinality,
we use ∆I,J = det(HI,J ), and ∆J = det(H[nc],J ).

As usual, an LDPC code C is described as the nullspace
of a parity-check matrix H to which we associate a Tanner
graph [16] in the usual way. The girth girth(H) of a graph is
the length of the shortest cycle in the graph.

A. Protographs and polynomial representations

A protograph [17], [18] is a small bipartite graph rep-
resented by an nc × nv parity-check or base biadjacency
matrix B with non-negative integer entries bij . The parity-
check matrix H of a protograph-based LDPC block code can
be created by replacing each non-zero entry bij by a sum of
bij non-overlapping N ×N permutation matrices and a zero
entry by the N×N all-zero matrix. Graphically, this operation
is equivalent to taking an N -fold graph cover, or “lifting”, of
the protograph. We denote the N × N circulant permutation
matrix where the entries of the N ×N identity matrix I are
shifted to the left by r positions modulo N as Ir.

A QC-LDPC code of length n = nvN is a protograph-
based LDPC code, for which the N × N lifting permutation
matrices are all circulant matrices Ir. Thus a QC code has an
ncN × nvN parity-check matrix H of the form

H =

H1,1 H1,2 · · · H1,nv

...
...

. . .
...

Hnc,1 Hnc,2 · · · Hnc,nv

 , (1)

where the N ×N sub-matrices Hi,j are circulant; applying
equal circular shifts to each length-N sub-blocks of a code-
word results in a codeword. With the help of the well-known
isomorphism between the ring of circulant matrices over the
binary field F2 and the ring F2[x]/(xN−1) of F2-polynomials
modulo xN −1 (see, e.g., [19]), a QC LDPC code can also be
described by an nc× nv polynomial parity-check matrix over

F2[x]/(xN − 1). In particular, with the ncN × nvN parity-
check matrix H described above we associate the polynomial
parity-check matrix H(x) ∈ F〈N〉2 [x]nc×nv as

H(x) =

 h1,1(x) h1,2(x) · · · h1,nv
(x)

...
...

. . .
...

hnc,1(x) hnc,2(x) · · · hnc,nv (x)

 . (2)

Here hi,j(x) = xr corresponds to the circulant permutation
matrix Ir. Moreover, with any vector

c = (c1,0, . . . , c1,N−1, . . . , cnv,0, . . . , cnv,N−1)

in FnvN
2 , we associate the polynomial vector c(x) =(

c1(x), . . . , cnv
(x)
)

where ci(x) ,
N−1∑
s=0

ci,sx
s. Then, the con-

dition H ·cT = 0T (in F2) is equivalent to H(x) ·c(x)T = 0T

in F2[x]/(xN − 1).

B. Minors and equivalent matrices

In [15] we gave a method (based on polynomial minors
of H(x)) to construct polynomial generator matrices for QC-
LDPC codes. We recall here the part of the theorem that
addresses the case in which H has full rank, since it is used
in this paper.

Theorem 1 ( [15]). Let H be the ncN × nvN parity-check
matrix of a QC code C and let H(x) be its corresponding
polynomial parity-check matrix over F2[x]/(xN − 1).

If there exists a subset S of size nc of [nv] where, for
simplicity and w.l.o.g., we assume that S = [nc], such that
∆S = det

(
HS(x)

)
is invertible in F2[x]/(xN − 1), then the

m×nv matrix below is a polynomial generator matrix for C, (∆S1\1)T · · · (∆S1\nc
)T

...
...

(∆Sm\1)T · · · (∆Sm\nc
)T

diagm(∆S)

 ,

where m , nv−nc, Si = S∪{nc + i}, for all i ∈ [m], ∆Si\j
, det

(
HSi\j(x)

)
, for all j ∈ [nc], diagm(∆S) is a diagonal

m×m matrix with each diagonal entry equal to ∆S .

C. GLDPC Codes

Let a component code corresponding to one of the constraint
ci be represented by a mci × nci parity-check matrix. The
constraint matrix of a QC-GLDPC code is also represented as
(1) and (2), however the full parity-check matrix is obtained
by replacing each one entry with the corresponding column of
the component parity-check matrix. Consequently, the design
rate of the GLDPC code is

R = 1−
∑nc

i=1 m
ci

nv
. (3)

Conventionally, BP decoding is performed on the constraint
graph, corresponding to (1), where component decoding can
be performed as desired, e.g., BCJR, BP, etc., with different
performance/complexity trade-offs. This paper focuses on the
design and efficient encoding of GLDPC codes.



III. GENERATOR MATRICES FOR QC-GLDPC CODES

In this section, we construct generalized LDPC codes using
pre-lifting [20] and results developed in [5], that are likely to
have good performance, and show how we can find generator
matrices for them.

We start from a 2N × nvN QC LDPC codes based on the
all-one protograph, with nv = 6, 7, 15, therefore, we can take,
w.l.o.g., the following constraint matrix

H ,

[
1 1 1 · · · 1
1 xi2 xi3 · · · xinv

]
.

A. Case nv = 6

We consider first the case where the first constraint (N
check nodes) are all simple nodes and the second constraint
node is a shortened Hamming code with parity-check matrix

hGC ,

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 , (4)

Therefore, the parity-check matrix of the GLDPC code can be
written as

HGC ,


1 1 1 1 1 1
1 xi2 0 xi4 0 0
1 0 xi3 0 xi5 0
0 xi2 xi3 0 0 xi6

 . (5)

Let f1 , 1+x−i4 +x−i5 , f2 , 1+xi2−i4 +xi2−i6 , and f3 ,
1+xi3−i5 +xi3−i6 . Following Theorem 1, if the gcd between
any of f1, f2, f3, and xN + 1 is 1, e.g., gcd(f3, x

N + 1) = 1,
then the matrix[
fT
3 0 fT

1 xi4fT
3 xi5fT

3 + xi3−i5fT
1 xi3−i6fT

1

0 fT
3 fT

2 xi4−i2fT
3 xi3−i5fT

2 xi6−i2fT
3 + xi3−i6fT

2

]
is a polynomial generator matrix for the code. In the case that
this is not true, we add a few naturally occurring codewords
to obtain a generator matrix using the method in [15].

Example 2. For N = 79, the exponents were taken to be
[i2, i3, i4, i5, i6] = [54, 66, 71, 55, 69] in [5], for which H has
girth 12. We compute fi and obtain

f1 = 1 + x8 + x24, f2 = 1 + x62 + x64, f3 = 1 + x11 + x76.

Since gcd(f3, x
79 + 1) = 1 in F2[x], f3 is invertible and the

matrix above is a polynomial generator matrix of the code.
Note that the weight 18 of the rows of the matrix G is an
upper bound to the minimum distance of the GLDPC code,
while the actual minimum distance of this code is 16. As such,
we obtain a [475, 158, 16] code. �

For this protograph, it was shown in [5] that the iterative
decoding threshold was closest to capacity when 75% of the
simple check nodes of the lifted 2N × 6N scalar matrix
with (4). But this will, in most cases, break the QC structure
and make the encoding less efficient. In order to maintain
the QC structure, and possibly create a stronger code (with
better minimum distance), we will apply some of our previous
techniques from [21] concerning double liftings (a “pre-lift"
and a “final lift"). First, we must increase the lifting to

N = 90, which is the first even exponent for which the girth
of the 2× 6 QC-code is still 12. Then it can be seen that the
2 × 6 polynomial constraint matrix is equivalent to a 4 × 12
matrix by rearranging the rows so that the N -lift is split into a
2-(pre)lift and an N/2 final lift. Finally, we will take 3 out of
the 4 polynomial rows and change their constraint nodes into
generalized ones (achieving the desired optimal proportion).

Example 3. We revisit Example 2 and rearrange the constraint
matrix

H =

[
1 1 1 1 1 1
1 x54 x66 x71 x55 x69

]
to observe a 2-prelift, obtaining the following equivalent
matrix (see [20] for details): 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1
1 0 x27 0 x33 0 0 x36 0 x28 0 x35

0 1 0 x27 0 x33 x35 0 x27 0 x34 0

 .

By generalizing the first three constraints of this matrix using
(4) and the factor N = 90/2 = 45, we obtain the following
parity-check matrix HGC for a GLDPC code:

1 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1 0 x27 0 0 0 0 x36 0 0 0 0
1 0 0 0 x33 0 0 0 0 x28 0 0
0 0 x27 0 x33 0 0 0 0 0 0 x35

0 1 0 x27 0 x33 x35 0 x27 0 x34 0


This code has minimum distance 39 and rate R = 91/540 =
0.168. The matrix in (6) of rank 88 is obtained through
Theorem 1. Due to the rank loss, additional codewords need
to be considered that increase the rank to the desired 91:
(f, f, f, f, 0, 0, 0, 0, f, f, f, f), (0, 0, f, f, f, f, f, f, f, f, 0, 0)
and (g, 0, g, 0, g, 0, 0, 0, 0, 0, 0, 0), where f and g are the poly-
nomials satisfying (1+x)·f = 1+x45 and (1+x3)·g = 1+x45,
in F2[x]. Since these are dense, substituting these with vectors
obtained by creating linear combinations of these vectors with
the rows of the matrix obtained with Theorem 1, will yield
sparser vectors while maintaining rank 91.

We can also use different matrices for the generalized
constraint nodes. For example, we generalized some of the
nodes using

hGC,0 ,
[
M1 M2

]
,

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


and some with hGC,1 ,

[
M2 M1

]
, where Mi are 3 × 3

matrices. The following GLDPC code with overall parity-
check matrix below in (8) has minimum distance 48 and rate
R = 90/540 = 1/6 = 0.166 for N = 78, while, for N = 38,
it has the same rate and minimum distance 40 (while the
original H has girth 8). The matrix H has full rank, so there
is a nonzero polynomial minor, and we can quickly find the
polynomial generator matrix using the results from [15].





x41 + x40 + x34 + x14 + x7 + x2

(x+ 1)(x42 + x11 + x7 + x4) + x41 + x34 + x15 + 1
0

x42 + x41 + x34 + x23 + x16 + x15 + x12 + x8 + x7 + 1
x26 + x18 + x14 + x8 + x6 + 1

(1 + x+ x2)(x41 + x6) + x34 + x24 + x23 + x15 + x4 + 1
x41 + x40 + x34 + x14 + x7 + x2

x43 + x23 + x16 + x11 + x5 + x4

x41 + x40 + x34 + x26 + x18 + x8 + x7 + x6 + x2 + 1
x24 + x23 + x12 + x11 + x6 + x5

x26 + x18 + x14 + x8 + x6 + 1
x43 + x24 + x16 + x12 + x6 + x4

0
(x+ 1)(x3 + x27 + x34 + x38 + x41) + x25 + x32

x41 + x40 + x34 + x14 + x7 + x2

(1 + x+ x2)(x3 + x41) + (1 + x)(x27 + x34) + x39 + x31

x34 + x33 + x28 + x27 + x+ 1
(1 + x+ x2)(x33 + x3) + (1 + x)(x41 + x27) + x25 + x6

x41 + x40 + x34 + x14 + x7 + x2

x43 + x38 + x32 + x31 + x25 + x5

x34 + x33 + x28 + x27 + x+ 1
x39 + x38 + x33 + x32 + x6 + x5

x41 + x40 + x33 + x28 + x27 + x14 + x7 + x2 + x+ 1
x43 + x39 + x33 + x31 + x25 + x6


(6)



x20 + x15 + x12 + x9 + x7 + x
x28 + x27 + x13 + x11 + x6 + x

x31 + x26 + x20

x28 + x27 + x22 + x17 + x13 + x6 + x
x17 + x12 + x6

x28 + x27 + x22 + x17 + x13 + x6 + x
x31 + x26 + x15 + x12 + x9 + x7 + x

x22 + x17 + x11

x20 + x17 + x15 + x9 + x7 + x6 + x
x22 + x17 + x11

x31 + x26 + x20 + x17 + x12 + x6

0

x28 + x23 + x22 + x21 + x20 + x16 + x14 + x11 + x4 + x3

x30 + x26 + x23 + x19 + x18 + x15 + x14 + x13 + x12 + x10 + x9 + x6 + x4 + x3

x33 + x28 + x26 + x25 + x22 + x21 + x20 + x15 + x14

x26 + x25 + x24 + x23 + x19 + x18 + x17 + x15 + x14 + x10 + x9 + x4 + x3

x33 + x28 + x26 + x25 + x22 + x21 + x20 + x15 + x14

x31 + x25 + x24 + x23 + x20 + x19 + x18 + x15 + x14 + x12 + x10 + x9 + x6 + x4 + x3

x33 + x26 + x25 + x23 + x16 + x15 + x11 + x4 + x3

x30 + x25 + x24 + x17 + x13 + x12 + x6

x33 + x26 + x25 + x23 + x16 + x15 + x11 + x4 + x3

x31 + x30 + x26 + x25 + x24 + x20 + x13

0
x31 + x26 + x20 + x17 + x12 + x6


(7)



1 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 x36 0 x28 0 0
0 0 x27 0 0 0 0 x36 0 0 0 x35

0 0 0 0 x33 0 0 0 0 x28 0 x35

0 1 0 x27 0 x33 x35 0 x27 0 x34 0


(8)

�
The polynomial generator matrix is given in (7). Note that

it is transposed (the powers in (7) should also be changed to
minus the values in the exponents, but we do not do this for
readability). We also note that the matrix is relatively dense,
which relates to the complexity of encoding. Recall however,
that the minimum distance (i.e., row weight) must be 40.

Remark 4. In summary, the construction takes the first con-
straint row

[
1 1 . . . 1

]
and replaces it by

[
M1 M2

]
. We

then take half of the rows and columns of the second constraint
row

[
1 xi2 . . . xinv

]
and replace it by

[
M2 M1

]
, while

leaving the rest as simple check nodes. It is important to do
this by rearranging rows and columns to display the matrix
as a double lifting. This method can be used for the other
protographs and it can also be used with larger than double
lifting. We will demonstrate this in the next subsections. �

B. Case nv = 7

We consider that the component codes will be the Hamming
code with parity check matrix

hGC ,

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (9)

(or any other parity-check matrix of a Hamming (7, 4, 3)
code). For example, let N = 68 and set the exponents
[i2, i3, i4, i5, i6, i7] = [61, 49, 44, 1, 46, 14], such that H has

girth 12. By generalizing one constraint, we get the parity-
check matrix

HGC ,


1 x61 x49 x44 x x46 x14

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 .

The rate is R = 204/476 = 0.428 and the minimum distance
is 16. Since the matrix H has a nonzero minor, we apply the
method described in Theorem 1 to find the generator matrix.

We can improve the code parameters by applying the same
idea as before, rearranging rows and columns in[

1 1 1 1 1 1 1
1 x61 x49 x44 x x46 x14

]
to display a sequence of two liftings (since N is even), and
obtain 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 x31 0 x25 x22 0 0 x x23 0 x7 0
0 1 x30 0 x24 0 0 x22 1 0 0 x23 0 x7

.
We generalize some of its nodes with hGC,0 and some with

hGC,1, where

hGC,0 ,
[
M1 M2

]
,

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 ,

hGC,1 ,
[
M2 M1

]
=

1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1

 .



[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 x6 x18 x23 x7 x21 x x3 x9 x27 x19 x28 x16 x17 x20

]
∼ (10) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 x3 0 x9 0 0 x12 0 x4 0 x11 0 x 0 x2 0 x5 0 x14 0 x10 x14 0 x8 0 0 x9 x10 0
0 1 0 x3 0 x9 x11 0 x3 0 x10 0 1 0 x 0 x4 0 x13 0 x9 0 0 x14 0 x8 x8 0 0 x10

 (11)



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 0 x9 0 0 0 0 x4 0 0 0 x 0 x2 0 0 0 x14 0 0 x14 0 0 0 0 x9 0 0
0 0 x3 0 x9 0 0 0 0 0 0 x11 0 x 0 0 0 x5 0 x14 0 0 0 0 x8 0 0 x9 0 0
0 0 0 0 0 0 0 x12 0 x4 0 x11 0 x 0 0 0 0 0 0 0 x10 x14 0 x8 0 0 x9 0 0
1 0 x3 0 x9 0 0 x12 0 x4 0 x11 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x10 0

0 1 0 x3 0 x9 x11 0 x3 0 x10 0 1 0 x 0 x4 0 x13 0 x9 0 0 x14 0 x8 x8 0 0 x10


(12)

For example, the parity-check matrix

1 0 1 0 1 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 0 x22 0 0 x x23 0 0 0
0 0 0 x31 0 0 x22 0 0 x 0 0 x7 0
0 0 0 0 0 x25 x22 0 0 0 x23 0 x7 0

0 1 x30 0 x24 0 0 x22 1 0 0 x23 0 x7


gives a GLDPC code, with N = 68/2 = 34, minimum
distance between 26 and 31, and rate R = 136/476 = 2/7 =
0.28. The matrix H has full rank, so there is a nonzero
polynomial minor, so we can find quickly a polynomial
generator matrix using Theorem 1.

We can also change the order of the second matrix and
possibly create better codes. For example, with one transpo-
sition of two columns, we obtain a code with the same rate
but possibly better distance between 27 and 33. Each of these
matrices have full rank, so there is a nonzero polynomial minor
that allows us to find a polynomial generator matrix. t
C. Case nv = 15

For nv = 15, we suppose that the component codes are
again Hamming codes, with hGC,0 ,

[
M1 M2

]
= 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


and hGC,1 ,

[
M2 M1

]
following [7].

We take N = 31 and the exponents [i2, i3, . . . , i15] =
[6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 28, 16, 17, 20], for which H has
girth 8 to obtain HGC given by[

1 x6 x18 x23 x7 x21 x x3 x9 x27 x19 x28 x16 x17 x20

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

]
.

We apply the method described earlier to find a generator
matrix, since the matrix H has a nonzero polynomial minor.

The code has rate R = 310/465 and minimum distance 6
(only an increase of 2 over the original), with a decrease of
rank (404 decreased to 310). The reason for the improvement
not being significant is that N is too small. We can instead
take

1 0 x18 0 x7 0 x x3 0 x27 0 x28 0 x17 0

0 x6 x18 0 0 x21 x 0 x9 x27 0 0 x16 x17 0

0 0 0 x23 x7 x21 x 0 0 0 x19 x28 x16 x17 0

1 x6 x18 x23 x7 x21 x 0 0 0 0 0 0 0 x20

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

,
like in [7], or try any other rearrangement of the matrix H . In
this case, the rank is not full and the rate is R = 218/465, but
the minimum distance is 16 ≤ d ≤ 29. Note that the original
matrix has rank 8 (not 12).

Alternatively, we can write the parity-check matrix, for an
even N , as a 2-lifting and a N/2 lifting, and apply the method
from the other cases. We rearrange rows and column to display
a sequence of two liftings (for some even N ) to obtain the code
in (10). We now generalize the first 2N nodes with hGC,0 and
the next N nodes with hGC,1, leaving the last N nodes as
simple parity-checks. The final parity-check matrix is in (12).

IV. CONCLUDING REMARKS

This paper shows how to obtain a generator matrix for a
QC-GLDPC code using minors of the polynomial parity-check
matrix. The approach can be applied to fully generalized ma-
trices, or partially generalized (with mixed constraint nodes) in
order to find better performance/rate trade-offs. The resulting
matrices can be presented in several forms that may facilitate
efficient encoder implementation as well as minimum distance
analysis. We also demonstrated that the code parameters can
be improved by applying a double graph-lifting procedure that
does not affect the ability to obtain a polynomial generator
matrix.
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