
Minimizing Distortion in Data Embedding Using
LDGM Codes and the Cavity Method

Masoumeh Alinia and David G. M. Mitchell
Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003

e-mail: {aliniama,dgmm}@nmsu.edu

Abstract—In this paper, we propose a lossy source coding
approach to improve embedding efficiency in steganography. A
higher embedding efficiency (decreasing the distortion function)
is desirable since it leads to better security. We propose to
use a soft-hard belief propagation guided decimation (BPGD)
algorithm for the encoding problem with low-density generator
matrix (LDGM) codes. However, for good distortion perfor-
mance, the parameters of the soft or soft-hard BPGD need to be
tuned. To achieve this, we apply the cavity method to predict a
value called the dynamical phase transition, which can minimize
the distortion function for the soft-hard BPGD. This approach
facilitates secure steganography by finding optimal parameters
for the distortion function without the need for exhaustive
search and simulation. Our method is shown to outperform
related works in terms of embedding efficiency, performance,
and complexity.

I. INTRODUCTION

Steganography and cryptography both hide secret messages,
but steganography aims to conceal the message’s existence by
embedding the message in media without detection. Alice and
Bob may use steganography to communicate their escape plan,
embedding the message in an image called the cover image.
Wendy, the warden, is unable to distinguish between cover
and stego images. Alice can embed the message in the cover
image in various ways, using cover selection, cover synthesis,
or cover modification [1].

A common problem with empirical cover objects is their
difficulty in accurate modeling. Attackers can exploit the mis-
match to create sensitive detection schemes [2]. Additionally,
oversimplified models [3] can introduce security weaknesses.
One solution is to use more complex models, but this is
often difficult, and the majority of existing steganographic
constructions are tailored to a specific model and can not read-
ily adjust to more intricate models [4]. A common approach
is to minimize embedding distortion through heuristics, such
as matrix embedding [5], wet paper codes [6], and minimal
embedding distortion steganography [7]. The principle of
minimum embedding distortion has produced the most secure
steganographic methods for digital media, although current
schemes are limited by additive distortion functions that cannot
capture interactions among embedding changes [8].

Practical coding theory methods can improve stegano-
graphic schemes by increasing their embedding efficiency,
defined as the expected number of random message bits [10].
In [7], a framework is proposed to achieve a minimum em-
bedding distortion (impact) using low-density generator matrix
(LDGM) and syndrome codes with the Survey Propagation
(SP) message-passing algorithm. The problem of optimally
encoding a message with the smallest embedding distortion

requires a binary quantizer performing near the rate-distortion
(RD) bound. It was shown in [9] that LDGM codes can be used
with a proper encoding algorithm to achieve such performance.

The approach of [7] considers an encoding algorithm for
LDGM codes utilizing hard decimation [11]. Decimation
(pruning the code graph and reducing the solution space)
is an effective technique to force the convergence of the
belief propagation (BP) algorithm. Such an approach works
well for lossy source coding with LDGM codes; however,
the computational complexity of the proposed method is
O(n2). Soft BPGD was proposed in [14], where an indicator
function is introduced to approximate the hard decimation,
and was shown to have a very good distortion performance
for optimized irregular LDGM codes. Since the new algorithm
incorporates the decimation step into the BP update equations
with just one more addition and multiplication per edge, the
overall computational complexity is O(n) instead of O(n2).
A variation called soft-hard decimation [15] was later shown
to further improve performance with an additional complexity
for various classes of LDGM codes. However, one drawback
of these approaches is that they have algorithmic parameters
that must be optimized to achieve good RD performance.

In this work, we use binary quantization based on belief
propagation guided decimation (BPGD) with LDGM codes
for lossy source encoding to compute the distortion function.
Specifically, we consider soft and soft-hard versions of BPGD.
We measure the impact of embedding modifications, where
the sender aims to minimize the distortion function while
embedding the payload. To achieve good distortion results,
the BPGD algorithm parameters should be carefully chosen,
which is conventionally done with expensive and exhaustive
Monte Carlo Simulation. Here, we provide a framework based
on the cavity method, extending our results in [12], to compute
a critical threshold for the BPGD parameters in an interval
where the phase transition changes. Parameters equal to or
close to the threshold value achieve superior rate-distortion
performance and higher embedding efficiency compared to
the binary quantizer [7]. The proposed method is shown to
outperform related works in terms of embedding efficiency,
performance, and complexity.

II. BACKGROUND

In this section, we start by giving some basic defini-
tions related to the distortion function in steganography. We
then proceed to discuss matrix embedding methods and how
LDGM codes can be used in this context. Finally, we discuss
how the Gibbs distribution can be applied for this problem.



Fig. 1. Model of the steganographic scheme.

A. Distortion Function in Steganography

When embedding message M using some steganographic
scheme, we take the cover image represented using a symbol
assignment function as a sequence s ∈ Fn

q and we change this
sequence to the stego image represented as a sequence ŝ ∈ Fn

q .
Further, we assume that our message M can be represented
as a sequence m ∈ Fm

q . A steganographic scheme is a pair of
embedding and extraction mappings Emb(·) : Fn

q ×M→ Fn
q

and Ext(·) : Fn
q →M, satisfying

Ext(Emb(s,M)) = M, ∀s ∈ Fn
q , ∀M ∈M, (1)

where M refers to the set of all possible messages that can
be communicated. The embedding capacity of the scheme is
log |M| and we will use the binary case Fq = GF (2) for our
approach. The system diagram of the steganographic scheme
is shown in Fig. 1.

The impact of embedding modifications will be measured
using a distortion function D. The cost of making an embed-
ding change at pixel si is ρi ≥ 0. The total embedding impact
is defined as D(s, ŝ) = ∥s − ŝ∥D =

∑n
i=1 ρi|si − ŝi|. The

expected value E[D(s, ŝ)] is calculated for all cover objects s
and messages of length m. Suppose we want to communicate
m bits on a test channel using n bits. For s, ŝ ∈ {0, 1}n,
we define error pattern z ∈ {0, 1}n as zi = δ (si, ŝi), where
δ (x, y) = 1 when x = y and δ (x, y) = 0, otherwise.
Additionally, we define D (z) = D (s, ŝ) as the distortion
impact of making an error . Assume that we make an error
pattern z with probability p (z), the amount of communicated
information is the entropy of p (z)

H(p) = −
∑
z

p(z) log2 p(z).

In order to to find the probability distribution p(z) on the
space of all possible flipping patterns z which minimizes
the expected value of distortion

∑
z D(z)p(z) subject to the

condition

H(p) =
∑
z

p(z) log2 p(z) = m,
∑
z

p(z) = 1,

we solve the Lagrange multipliers equation. Let

L(p(z)) =
∑
z

p(z)D(z) + c1

(
m−

∑
z

p(z) log2 p(z)

)
+

c2

(∑
z

p(z)− 1

)
,

then
∂L

∂p(z)
= D(z)− c1 (log2 p(z) + 1/ ln(2)) + c2 = 0

if and only if p(z) = Ae−γD(z), where A−1 =
∑

z e
−γD(z)

and γ is determined from

−
∑
z

p(z) log2 p(z) = m.

B. Matrix Embedding
In the steganography scheme known as matrix embedding

[7], the receiver has knowledge of the relative message length,
denoted as α = m/n, and the number of secret message
bits, m. This information can be pre-agreed upon, or a small
portion of the cover can be reserved to convey α using a few
quantized bits dependent on a cryptographic key. We consider
a binary linear code, denoted as C, with dimensions [n, n−m],
consisting of an n×(n−m) generator matrix G and an m×n
parity check matrix H. These matrices are shared between
the sender and recipient. The coset C(m) is defined as
C(m) = {u ∈ {0, 1}n | Hu = m}, where m represents the
secret message and corresponds to the syndrome m ∈ {0, 1}m.
The following embedding scheme [7] communicates m bits in
an n-element cover

ŝ = Emb(s,m) ≜ arg min
u∈C(m)

∥s− u∥D

Ext(ŝ) = Hŝ = m.

Here, ŝ are the bits assigned to the stego image. To minimize
the embedding impact, the sender should select the member ŝ
of the cosetC(m) that is closest to s (closest in metric ∥·∥D).
Let vm ∈ C(m) be selected arbitrarily, then since C is linear,

min
u∈C(m)

∥s− u∥D = min
c∈C
∥s− (vm + c)∥D

= min
w∈{0,1}n−m

∥s− vm −Gw∥D .
(2)

The equation (2) represents the embedding as a binary quan-
tization problem. The sender needs to find w ∈ {0, 1}n−m

such that Gw is closest to s−vm. In other words, the sender
is compressing the source bit sequence z = s− vm to n−m
information bits w so that the reconstructed vector Gw is as
close to the source sequence as possible. In order to process a
secure embedding scheme, we need to be careful to generate
a code with proper encoding and decoding algorithms to find
vm, with minimal distortion. According to rate-distortion the-
ory, the rate of any source encoding algorithm that compresses
n bits into n−m bits is bounded by R = 1−m/n ≤ 1−H(d),
where d = D/n is the average distortion per bit. Therefore,
the maximal embedding efficiency e of any matrix embedding
scheme is bounded above by e ≤ α

H−1(α) , where α = m/n

is the relative message length and e = m/D is the average
number of message bits embedded per unit distortion.



C. LDGM code ensembles for steganography
LDGM codes, as duals of LDPC codes, can be represented

by generator matrix G ∈ {0, 1}n×k. We define the factor
graph of this code as G = (V,C,E), where V = {1, . . . , k},
C = {1, . . . , n}, and E = {. . . , (a, i), . . .} denote the code
bit nodes, the generator nodes, and the edges connecting
them, respectively. The vector (a, i) denotes an edge between
generator node a and code bit node i, which occurs iff
Ga,i = 1. We will use indices a, b, c ∈ C to denote generator
nodes and indices i, j, k ∈ V to denote code bit nodes.
We define the sets C(i) = {a ∈ C | (a, i) ∈ E} and
V (a) = {i ∈ V | (a, i) ∈ E}. In this paper, we follow
the construction of [13], where each edge emanating from a
regular check node with degree l is connected uniformly at
random to one of the bit nodes. The degree of bit nodes is
a random variable with Binomial distribution Bi(ln, 1/k). In
the asymptotic regime of large n, k, the bit node degrees have
i.i.d. Poisson distribution with an average degree l/R. For an
LDGM code C, defined by the generator matrix G, and for
a codeword w, the reconstructed source sequence is given by
ŝ = Gw.

In this paper, we quantize a sequence s = (s1, s2, . . . , sn)
consisting of n independent and identically distributed
Bernoulli random variables to the nearest codeword w =
(w1, w2, . . . , wk), giving a compression rate of R = k

n . The
codeword w is used to reconstruct the source sequence as ŝ,
where the mapping w → ŝ(w) depends on the LDGM code.
The measure of binary quantization is the Hamming metric
d (s, ŝ) = 1

n

∑n
i=1 |si − ŝi|. The final goal is to minimize

the average distortion D = E [d (s, ŝ)], where E[·] is the
expectation taken over all possible source sequences s. The
rate-distortion function is in the form R(D) = 1−H(D) for
D ∈ [0, 0.5] and 0 otherwise, where H is the binary entropy
function.
D. Gibbs distribution

The probability p(z) from the distortion function described
in Section II-A follows an exponential Gibbs distribution with
respect to distortion D(z). In statistical mechanics, the Gibbs
distribution is a probability measure that gives the probability
of finding a system in a particular state [16]. It is a function of
the state’s energy and the temperature of the system. BPGD en-
coding can be understood as examining the scenario where the
temperature approaches zero in the Gibbs distribution with a
Hamiltonian. We can therefore utilize the features of the Gibbs
distribution to minimize the distortion function using the cavity
method adopted for our soft BPGD algorithm, resulting in a
method to determine bounds on optimal algorithm parameters.
In other words, we search to minimize the expected embedding
impact E[D(s, ŝ)] with proper selection of parameters for
covers of length n, embedding capacity m, and destructibility
measure ρi = 1.

Let us equip the solution space {0, 1}nR of the equation
ŝ = Gw with a conditional probability which is linked to spin
glass theory in statistical mechanics. We consider the general
class of Gibbs distribution of the form

Pγ(w | s) =
1

Zγ

∏
a∈C

e−2γNd(s,ŝ(w)). (3)

The term 2Nd (s, ŝ(w)) is called random Hamiltonian func-
tion which a cost-function for assignments of variables wi ∈
{0, 1}. Here, the different source bits and different graph
ensembles of LDGM codes give different cost functions. The
parameter γ is the inverse temperature, and the normalizing
factor Zγ is the partition function. From a statistical me-
chanics point of view, finding the most reliable code word
w∗ = argmaxw Pγ (w | s) is to find the minimum energy
configuration [13]. The minimum energy per node is equal
to 2dN,min, in which dN,min = minw d (s, ŝ(w)). In the
cavity method, the one-step replica symmetry breaking (1RSB)
gives the exact value for the internal energy. This can allow
the computation of the optimal distortion numerically by
the population dynamics method known as Monte Carlo in
channel coding.

III. SOFT-HARD BPGD
This section discusses the soft and soft-hard BPGD algo-

rithms that we will use to construct an efficient embedding
scheme with LDGM codes. The soft-decimation BP algorithm
equations [14] are updated as follows

η
(t+1)
i =

∑
a∈C(i)

η̂
(t)
a→i, η

(t+1)
i→a =

∑
b∈C(i)\a

η̂
(t)
b→i +

1

µ
η
(t)
i , (4)

η̂
(t+1)
a→i = 2(−1)sa+1 tanh−1

β
∏

j∈V (a)\i

B
(t)
j→a

 , (5)

B
(t)
i = tanh

(
η
(t)
i

2

)
, B

(t)
i→a = tanh

(
η
(t)
i→a

2

)
, (6)

where η
(t)
i→a, η̂

(t)
a→i, and B

(t)
i→a denote the message sent from

code node i to check node node a, the message sent from
check node a to code node i, and the bias associated with
η
(t)
i→a at iteration t, respectively; η

(t)
i and B

(t)
i denote the

likelihood ratio of code bit i and the bias associated with
η
(t)
i , respectively; and β = tanh(γ) and µ are non-negative

parameters. The γ parameter reflects the effort of the message-
passing algorithm to find the resulting codeword ŝ = Gw as
close to s as possible. The larger the γ, the stronger is the
effort. On the other hand, the structure of the code imposes a
limit on how strong this effort can be.

The term 1
µη

(t)
i→a is added to the plain BP equation to make

the decimation softer. The soft indicator function IS(B
(t)
i→a) =

2
µ tanh−1(B

(t)
i→a) = 1

µη
(t)
i→a approximates the hard-indicator

function [15], given as

IH

(
B

(t)
i→a

)
=


−∞, B

(t)
i→a = −1,

0, −1 < B
(t)
i→a < 1,

+∞, B
(t)
i→a = 1,

where µ controls the softness of the approximation and is
called the softness parameter. The soft-hard BPGD combines
elements of both hard [11] and soft decimation [14]. Similar to
soft decimation equations, our algorithm identifies a bit node
with the maximum bias value after each iteration. Algorithm
1 describes the procedure, where t indicates the iteration



number, G(t) is the LDGM code graph at iteration t, and wi

represents the binary value assigned to code node i. The initial
information to check node node messages, η

(0)
i→a, are set to

±0.1 with P
(
η
(0)
i→a = 0.1

)
= 0.5, and reset to 0 at iteration

number 1.

Algorithm 1 Soft-Hard Decimation Algorithm

Require: At iteration t = 0, initialize graph instance G(t=0);
Generate a Bernoulli symmetric source word s;
while V ̸= ∅ do

Update η
(t+1)
i→a according to (4) for all (a, i) ∈ E;

Update η̂
(t)
a→i according to (5) for all (i, a) ∈ E;

Compute bias B
(t)
i→a and B

(t)
i according to (6);

Find B(t) = maxi

{∣∣∣B(t)
i

∣∣∣ | i not fixed
}

;

if B(t) > 0 then
wi ← ′0′ ;

else
wi ← ′1′;

end if
∀a ∈ C(i), sa ← sa ⊕ wi (update source);
Reduce the graph G ← G\{i};
G(t+1) = G(t)\{i} (remove code node i and all its

edges);
end while

The primary benefit of this formulation lies in its capacity
to restrict the belief of information bits in the direction of
the current bit belief during each iteration, as opposed to
limiting beliefs solely at the decimation step. This allows for
a continuous refinement of information bit beliefs throughout
each iteration. Consequently, all bits undergo decimation si-
multaneously, as opposed to a fixed number of information
bits at each decimation step, as observed in [11]. In [7],
there is no analytical way to tune the value of γ in order
to give the best distortion performance. The best value of γ is
conventionally found numerically by exhaustive and expensive
code simulation. In the next section, we apply spin glass theory
in the cavity method to carefully tune γ and the softness
parameters µ or β in the soft-hard BPGD algorithm to ensure
good RD performance.

IV. CAVITY METHOD TO DETERMINE PARAMETERS FOR
SOFT-HARD BPGD

The best assignment for bit w∗ is obtained from the
corresponding bit marginal value. However here the cavity
method assumes that (3) can be decomposed into a convex
superposition of measures

Pγ(w | s) =
N∑

λ=1

ωλPγ,λ(w | s). (7)

The summation of weights ωλ = e−γN(fλ−f) should be one,
where fλ is the free energy. Therefore

e−γNf ≈
N∑

λ=1

e−γNfλ ≈ e−γN minφ(φ−γ−1Σ(φ;γ)), (8)

where eNΣ(φ;γ) counts the number of extremal states Pγ with
free energy fλ ≈ φ. The cavity method seeks two thresholds,
γd and γc, in which the nature of the decomposition (7)
changes. For γ < γd this measure is extremal and N = 1.
For γd < γ < γc, the measure is a convex superposition of an
exponentially large number of extremal states. The exponent
φ − γ−1Σ(φ; γ) in (8) is minimized at a value φint (γ) such
that Σ (φint (γ); γ) > 0. Then the complexity function

Σ(γ) ≡ Σ (φint (γ); γ) = γ (φint (γ)− f(γ)) (9)

describes the growth rate of extremal states (7). The com-
plexity function decreases as γ increases, becoming negative
at γc, which is the point where it loses its meaning. At γd,
there are no singularities in the free and internal energies,
and their analytical expressions do not change in the range
0 < γ < γc. The transition at γd is dynamic, and Markov
chain Monte Carlo algorithms have an equilibration time that
diverges when γ approaches γd. The cavity method uses the
population dynamic approach to predict phase transitions by
solving fixed point integral equations.

The cavity method [13] is applied to soft BPGD equations,
and the BP formulation with a soft indicator function that
we use will result in certain changes to the computation.
We first derive the cavity equations needed to compute the
complexity function (9) for our soft-hard BPGD algorithm.
For BP equations (4) and (5), we need to replace (−1)sa = J
as well as express the bias in terms of variable to check
node updates using (6), since the average field hi in the
cavity method must be defined as η

(t)
i→a = γhi. To derive

the fixed point equations, the cavity equations are written for
an average ensemble of the graph and source word, which
involve messages on the edges of the graph. For the integral
fixed point equations and their relations, the interested reader
may refer to appendices B and C of [13]. The derivations and
adaptations to the present setting of soft-hard BPGD and the
proper approach for finding γd follows [12] and are omitted
due to space constraints.

V. NUMERICAL RESULTS

A. Determining γ

In order to obtain parameter thresholds for soft-hard BPGD,
we now derive the corresponding values βd = (1−e−2γd)/(1+
e−2γd) and µd = e4γd following the procedure outlined in
Section IV. Since decimated BP can correctly sample the
Gibbs-Boltzmann measure up to γd, we can see that the
optimal value for γ can be found near the dynamic phase
γd. Therefore, the best value of µ for soft-hard BPGD can
be found in the interval

(
0, e4γd

)
. This can either be used

to reduce the search space for an optimal value of µ, or the
thresholds can be used directly in the BP equations. These
techniques significantly reduce the complexity of exhaustive
search techniques based on code simulation, such as [11],
which need to be re-run for each code/code ensemble.

In Fig. 2, we plot the distortion of an LDGM code as a
function of γ with n = 2000, R = 1/2, and check node degree
l = 3 for 0 < γ < 1.5. From right to left, as the temperature
increases (inverse of γ), we observe that the distortion curve
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Fig. 2. The relation between distortion and γ.

shows a slow decrease, followed by a sharp increase around
the phase transition threshold. The lowest distortion occurs
within the flat region and as long as γ is selected within this
flat segment, the distortion does not vary much. We leverage
this characteristic, calculating the distortion curve (embedding
efficiency) of the BPGD at a pre-determined γ value (γd =
0.81208 in this example).

B. Simulation Results
We have implemented Algorithm 1 in C++ and run a Monte

Carlo simulator for some constructed LDGM codes to compare
the embedding efficiency against the proposed LDGM codes
from [7]. For each code construction, we computed the value
of γ with the cavity method. Codes were generated randomly
with regular check nodes and irregular bit nodes degrees with
a binomial distribution as described in Section II-C.

Fig. 3 displays a comparison of the embedding efficiency
obtained from the LDGM codes [7] and soft-hard BPGD
algorithm as a function of α for two different code lengths n =
10000 and n = 100000. Our LDGM codes are constructed
randomly, as described in section II-C, with a constant check
node degree l = 5. The proposed dynamic phase transition in
the cavity method described in Section IV can be applied to
determine different γd related to α. For example, the value of
the γd for α = 1/2 with cavity method is 0.832 without the
need for exhaustive computation and search. The embedding
efficiency is computed for fixed α and the empirical average
is taken. Then, each embedding efficiency was obtained by
averaging over 20 randomly generated messages. The com-
parison indicates the embedding efficiency of simulated codes
using the BPGD algorithm outperforms codes simulated with
the encoding scheme [7]. Note that the results are compared
for the computed threshold and not numerically optimized.

Fig. 4 demonstrates the impact of code length on the
embedding efficiency. The algorithm was run for 100 iterations
of a randomly drawn LDGM code with a constant check
node degree 9, R = 1/2, and different codeword lengths.
The results were obtained by averaging over 100 trials. The
dynamic phase transition in the cavity method for this degree
distribution is γd = 0.671 for this simulation. We observe
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Fig. 3. Embedding efficiency over a range of α for long codes with BPGD
and [7].
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Fig. 4. Embeding efficiency using BPGD for LDGM codes with R = 1/2.

that the embedding efficiency approaches the upper bound as
the code length grows. The final gap in embedding efficiency
between the theoretical bound and codes based on the code
length n = 105 is less than 0.07 bits per change, smaller than
the gap for algorithm [7].

VI. CONCLUSIONS

This paper considered the problem of minimizing embed-
ding efficiency in steganography using LDGM codes and soft-
hard BPGD encoding. We presented a framework employing
the cavity method to optimize distortion function parameters.
Numerical simulation results confirm that optimized distortion
performance is achieved when parameters are chosen at or near
the threshold value, outperforming the hard BPGD algorithm.
This strategy can mitigate the need for expensive computer
searches and simulations to optimize parameters, while main-
taining good rate-distortion performance and therefore better
embedding efficiency.
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