

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

their performance improves consistently with the scale of their

computational budget [16], which is itself a function of the model

and training data size.

For instance, LLM performance on program synthesis bench-

marks increases linearly with the magnitude (log scale) of the num-

ber of parameters in the model [17]. This suggests that there is

substantial performance to be unlocked for software engineering

tasks by leveraging the largest publicly available language models.

However, most existing work in this space to date either trains

small models from scratch [2, 10, 18], or fine-tunes modest-sized

models [11], missing out on the scale of state-of-the-art LLMs.

This is in part because LLMs are not immediately suited off-the-

shelf for coding tasks that do not involve code generation, like

fault localization. State-of-the-art LLMs for code [13, 14, 19, 20] are

trained to generate code in a left-to-right manner, with each token

predicted from its preceding context. We posit that models trained

in this way are less suitable for token-level discriminative tasks,

like line-level fault localization, because the representation for any

given token is only conditioned on the context to the left.

In this paper, we present a promising alternative: we train light-

weight bidirectional adapters, themselves small models of the same

architecture as the base LLM, on top of left-to-right language mod-

els. These adapters add relatively few parameters and can be trained

effectively on small datasets of real bugs, such as Defects4J [21],

without updating the underlying LLM. We demonstrate that the

representations learned by pretrained left-to-right language models

already contain a wealth of knowledge about the suspiciousness of

lines of code, which increases strongly with the size of the LLM. We

can leverage this power through our adapters to find bugs while

requiring just a few hundred training samples for pretraining. Our

approach yields better fault localization performance than prior

work while requiring significantly less data preprocessing overhead.

Importantly, our approach does not use test cases at all, and there-

fore does not depend on test code quality for its performance. Our

approach does not need to run or analyze the test cases or examine

the program behavior on test cases to perform localization. Because

the approach is lightweight, it can effectively fine-tune existing

LLMs for particular languages (we show applicability to C, Java,

and Python), or particular defect classes (we show applicability to

functional defects and security vulnerabilities), with a relatively

small amount of training data.

In summary, we make the following contributions.

• LLMAO. We propose a technique that uses different config-

urations of language models to predict faulty lines across

three languages and two different application domains.

• Novel large language model based learning for FL. We

showed that with fine-tuning on top of off-the-shelf large

language models, we can achieve a higher fault detection

rate than previous MLFL techniques without the use of test

cases.

• DL based security vulnerability detection. LLMAO is the

first MLFL technique that can detect code line level vulnera-

bilities in the security domain.

• Empirical evaluation. We evaluated LLMAO against recent

state-of-the-art FL models to show its effectiveness in fault

localization.

1 public StrBuilder appendFixedWidthPadRight(Object, int, char) {

2 ...

3 if (width > 0) {

4 ensureCapacity(size + width); // SBFL=0.35

5 String str = (obj == null ? getNullText()

6 : obj.toString()); //SBFL=0.35

7 int strLen = str.length(); //SBFL=0.35

8 ...

9 public StrBuilder appendFixedWidthPadLeft(Object, int, char) {

10 // relevant code identical to the above

11 ...

12 public String getNullText(){

13 return nullText; // SBFL=0.71

14 }

(a) Code snippet implicated in Apache Commons Lang bug #47

from Defects4J . Both methods throw a NullPointerException when

getNullText() also returns null (line 7). The developer addressed

this by adding null checks after the assignment to str (not shown).

Select lines are annotated with Ochiai [6] suspiciousness score.

1 public void testLang412Right() {

2 StrBuilder sb = new StrBuilder();

3 sb.appendFixedWidthPadRight(null, 10, '*');

4 assertEquals("Failed to invoke appendFixedWidthPadRight",

5 "**********", sb.toString());

6 } //Test fails due to NullPointerException in appendFixedWidthPadRight()

7 public void testLang412Left() {

8 StrBuilder sb = new StrBuilder();

9 sb.appendFixedWidthPadLeft(null, 10, '*');

10 assertEquals("Failed to invoke appendFixedWidthPadLeft",

11 "**********", sb.toString());

12 } //Test fails due to NullPointerException in appendFixedWidthPadLeft()

(b) Lang’s bug #47 and corresponding failed tests

Figure 1: Apache Commons Lang Bug #47, from Defects4J

• Artifact availability. Our data, tool, and model checkpoints

are available at Figshare.1

2 MOTIVATION

In this section, we discuss in detail two real-world bugs that test-

based FL techniques struggle to clearly localize. We use these ex-

amples to motivate why we propose a novel language model based

fault localization technique that shifts the dependence on tests to

an LLM’s latent understanding of source code.

2.1 General Logic Defects

Consider Figure 1a, which shows snippets of code from twomethods

in the Apache Commons Lang project. Lang-47 (i.e., bug #47 of the

Lang project) from the Defects4J (V1.2.0) [21] dataset highlights

a null pointer exception that can be triggered in both of these

methods, for the same reason. The issue was addressed by adding

the null pointer check and initialization shown starting on line 7 in

appendFixedWidthPadRight; the identical code and block added

in appendFixedWidthPadLeft is elided for brevity.

1https://figshare.com/s/35f36bff735d3c805a89

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Given tests, we can use the Ochiai SBFL formula [6] to calculate

code line suspiciousness scores to help pinpoint this bug. SBFL tech-

niques in general compute suspiciousness by applying a formula to

each entity (line, in this case) in the codebase based on test coverage

information for passing and failing tests. Specifically, Ochiai counts

for each code line (ℓ) the number of failed tests covering ℓ (ℓ5) or

not covering ℓ (=5), and the number of passed tests covering ℓ (ℓ?)

or not covering ℓ (=?). The suspiciousness score of a code line (ℓ)

is then $2ℎ808 (ℓ) = ℓ5 (ℓ5 + ℓ?)
(− 1

2) (ℓ5 + =5)
(− 1

2) .

Several tests in the Apache Commons Lang test suite execute this

code. The two that throw null pointer exceptions, demonstrating

the bug, are shown in Figure 1b. Five others (not shown) execute

these two methods as well, but are passing.

Figure 1a shows Ochiai scores computed using these tests. The

scores demonstrate a common limitation of SBFL, which is that it

cannot disambiguate between lines in a single straight-line block,

as shown in appendFixedWidthPadRight. testLang412Right()

executes lines 1–7, corresponding to the then block of the check

on line 3. This computation is also misled by the small number of

triggering tests: both failing tests cover getNullText, while only

two of the five passing tests do. Line 13 in Figure 1a has a much

higher score than the code in the two methods that call it.2

MLFL techniques like DeepFL [2] use other features on top of

SBFL suspiciousness scores for training data, like textual similarity

information, to guide theirmodel to detect faultymethods. However,

DeepFL only has confidence in method-level fault localization, with

limited results at the statement level.

Our technique can detect line 7 from Figure 1a as highly suspi-

cious. It assigned a score of 0.33 on line 7, and ranks it the fourth

most suspicious line in the code file. Our technique also assigned a

score of 0.27 on line 1, and ranks it the seventh most suspicious line

in the code file. In contrast, our technique only assigned a score of

0.09 for line 13, which is not within the top 20. Language models are

good at detecting these types of defects because they recognize un-

likely inputs [22]. Consider just the text of the code, line 5 appears

to assign a null-like value (the result of getNullText()) to src

under some conditions. Line 7 then invokes a method on src. Even

without knowing the implementation of getNullText() in depth

(for which traditional program analyzers would be more suitable

than language models), this pattern is suspicious to a human reader

and a large language model alike.

2.2 Vulnerability Detection

Logical errors are not the only type of code mistakes that can

impact software quality. Software security vulnerabilities are often

the target of various forms of cyber-attacks.

The Devign dataset [23] labels vulnerable functions from four

open-source C-language repositories (requiring 600 man hours

of manual labeling). Figure 2 shows a bug from the Qemu open-

source project,3 one of the four studied repositories in Devign. The

bug lines (highlighted) correspond to CWE-362, within the top

25 most dangerous Common Weakness Enumeration (CWE) list.4

2Note that the test suite includes another test, testGetSetNullText, which explicitly
checks that getNullText returns null (not the empty string).
3https://qemu.org/
4https://cwe.mitre.org//top25/archive/2022/2022_cwe_top25.html

1 DISAS_INSN(divw)

2 {

3 TCGv reg;

4 TCGv tmp;

5 TCGv src;

6 int sign;

7 sign = (insn & 0x100) != 0;

8 reg = DREG(insn, 9);

9 if (sign) {

10 tcg_gen_ext16s_i32(QREG_DIV1, reg);

11 } else {

12 tcg_gen_ext16u_i32(QREG_DIV1, reg);

13 }

14 SRC_EA(env, src, OS_WORD, sign, NULL);

15 tcg_gen_mov_i32(QREG_DIV2, src);

16 if (sign) {

17 gen_helper_divs(cpu_env, tcg_const_i32(1));

18 } else {

19 gen_helper_divu(cpu_env, tcg_const_i32(1));

20 }

21 tmp = tcg_temp_new();

22 src = tcg_temp_new();

23 tcg_gen_ext16u_i32(tmp, QREG_DIV1);

24 tcg_gen_shli_i32(src, QREG_DIV2, 16);

25 tcg_gen_or_i32(reg, tmp, src);

26 set_cc_op(s, CC_OP_FLAGS);

27 }

Figure 2: Qemu’s CWE-362 (Race condition vulnerability)

CWE describes CWE-362 as concurrent execution using shared

resource with improper synchronization (i.e., race condition). Al-

though Qemu’s repository5 includes test cases for crashes and input

behaviors, none of the test cases covers concurrency bugs that only

occur during run time. Indeed, concurrency bugs like race condi-

tions are ill-suited for discovery via traditional testing.

As a result, test based fault localization and debugging methods

are clearly inapplicable to this kind of defect. This has of course

motivated significant work in profiling and analysis to discover and

address them [23, 24]. Chakraborty et al. [24] found that existing

modeling techniques do not completely capture code semantics in

vulnerability detection. Existing deep learning based vulnerability

detection tools only go as far as predicting any vulnerability in

a code snippet or program file, rather than individual statements.

Traditional approaches such as static analysis can be used to detect

race conditions [25?]. However, these approaches are either precise

but not scalable or can scale for large programs but incur a high

false positive rate, limiting their usage in practice.

Fortunately, a dataset like Devign encompasses significant man-

ual effort in labeling existing security vulnerabilities in existing

code, as has been done for lines 10, 12, and 23–25 in Figure 2.

We show in this paper that an FL-specific model pretrained on

a large-scale LLM can also detect security vulnerabilities without

test cases.

Our technique detects lines 3, 4, 10, 12, and 23 as faulty in Figure

2, in which lines 10, 12, and 23-25 are actual vulnerability lines. Our

technique successfully localizes three of the five lines that are faulty.

5https://github.com/qemu/qemu

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Surprisingly, lines 3 and 4 are variable declarations (i.e., variables

reg and tmp) for the actual faulty lines 10–12, and 23–25.

3 APPROACH

In this section, we discuss the key ideas behind our language model

enabled fault localization technique. Figure 3 shows an overview of

LLMAO’s training setup. The input to LLMAO is a buggy program;

its output is a list of suspiciousness scores corresponding to each

code line’s probability of being buggy – values close to 1 indicate

that lines are likely defective. As shown in Figure 3, we first tokenize

the input and then provide it to a pretrained left-to-right LLM. From

this LLM, we obtain one (high-dimensional) vector representation

per line, which we provide to a small bidirectional model that

predicts bugginess probabilities for each line. We only train the

final stage of this model; the LLM remains frozen and can be easily

replaced with other powerful open-source models. Figure 5 shows

a more detailed description of our language modeling procedure,

which we describe in detail in Section 3.2. In the following sections,

we describe each component of LLMAO.

3.1 Left-to-right Language Models

Neural Language Models typically produce text in a left-to-right

manner, producing each word given its prefix context. This both

enables efficient training, as any document can be turned into a

collection of as many training samples as there are tokens, and en-

ables them to generate new text once trained. Virtually all modern

language models are attention-based models that use the Trans-

former architecture [26]. In these models, each token exchanges

information with all other tokens via a learned attention proce-

dure. To efficiently train left-to-right Transformer models on an

entire document in which each token is generated only from its

prefix context thus involves “masking out” part of the attention

matrix to prevent each token from attending to its suffix context

(essentially, the future). Figure 5 (top) shows the causal attention

mechanism used to train a left-to-right language model. Figure 5

describes a simplified Transformer model for both CodeGen and

our bidirectional language model. Auto-regressive and left-to-right

LMs [13, 14, 19, 20] use all previous tokens (i.e., tokens to the left)

to predict the probability of the next token (i.e., tokens to the right).

Left-to-right models are useful for program generation tasks, as

shown in Figure 4. Specifically, the lower triangular part of the

attention matrix remains unmasked (visualized as blue) while atten-

tion in the remaining part is masked out (white). This configuration

allows each token to attend to itself and all past tokens, but prevents

it from attending to future tokens.

Our approach is compatible with any left-to-right language

model, but is most effective when the underlying model is large

and has been pretrained on a large volume of code data. At present,

the CodeGen family of models [13] is most suitable for this role.

These are a series of increasingly large left-to-right languagemodels

trained for program synthesis in three stages:

(1) Each model is first trained on the natural language dataset

ThePile, an 825.18 GiB mostly English language text corpus

collected by Gao et al. [27] for language modeling. 7.6% of

the dataset is programming language data collected from

GitHub repositories with >100 stars.

(2) The models are then further trained on data from the Google

BigQuery GHArchive dataset, which consists of open-source

code across multiple programming languages – C, C++, Go,

Java, JavaScript, and Python.

(3) Finally, the models are tuned on the BIGPYTHON dataset,

which contains a large amount of Python data.

Checkpoints after each stage are released for every model size,

ranging from 350M to 16B parameters. The 16B model outperforms

the original Codex model [14] on a Python program synthesis task.

While language models are typically used to predict the next

token, they can also return the “hidden” states from their final

Transformer layer. When generating text, these states are converted

to a next-token prediction via a simple linear transformation. As

such, these states tend to represent themodel’s knowledge about the

evolving context at each point in the file, making them intrinsically

useful. As shown in Figure 5, we extract the final hidden states for

each newline (NL) token in each training sample from CodeGen

to produce a condensed sequence representation in which each

token represents one line. We pair these with their corresponding

location (i.e., line #5 of a 50 line file) and save these to disk.

To train our model, we load these encoded lines in batches, where

we retrieve samples of up to 128 contiguous newline states at a time.

We choose this number because the CodeGen model can consume

a maximum of 2,048 tokens as its input size; inputs with 128 lines

almost always fit this token budget. Samples with fewer lines are

padded, along with the label vector, to obtain a uniform length.

Padding entries are ignored in the loss computation. When files

contain more than 128 lines, we sample a series of 128 line windows

that cover each faulty line in the file. Specifically, we repeatedly

create a sample with up to 128 lines starting from a random offset

before the immediate next faulty lines that is not yet covered by a

previous segment. We then mark all faulty lines in this segment as

covered and repeat until all lines are covered by at least one segment.

We choose random starting offsets to ensure that the faulty lines

within the split code lines are not consistently at the same indices

(e.g., right at the start or in the middle), which would cause our

model to memorize certain index locations as faulty lines. This

enables our technique to handle inputs longer than 2048 tokens.

3.2 Bidirectional Adapter

While left-to-right language models extract rich representations per

token, they are ill-suited for fault prediction because the represen-

tation of each given token only reflects knowledge of its left-ward

context. One solution might predict buggy lines based on the final

hidden state, reflecting the model’s knowledge after the entire file

has been processed, but this creates a bottleneck where that state

must store information from each line in the entire file. This bottle-

necking phenomenon [28] is precisely why the NLP field moved

away from Recurrent Neural Networks, which represent sequences

with a single hidden state, and towards attention-based models,

which preserve and use the state of each token [26].

We postulate that we can leverage these rich learned represen-

tations at each token by training just a few more Transformer

layers that allow the model to exchange information between rep-

resentations of later and earlier lines, thereby generating a new,

bidirectionally aware representation for each line of code. We can

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 3: LLMAO ’s architecture, which takes as input a buggy program and produces a list of suspiciousness scores for each code line

1 # Recursive binary search

2 def binarySearch(list, left, right, i):

3 middle = ???

(a) Left-to-right language model prompt

1 # Recursive binary search

2 def binarySearch(list, left, right, i):

3 middle = (left + right) // 2

4 if arr[middle] == x:

5 return middle

(b) Left to right language model completion

Figure 4: Left-to-right language model code generation

do so by removing the causal attention mask that normally prevents

the exchange of information with “future” tokens in our added lay-

ers. In our case, we assume that the entire file has already been

written, so this constraint is unnecessary. This yields a bidirectional

encoder. As shown in Figure 5, the attention masking matrix for the

bidirectional model allows all tokens in the sequence to attend to

each other (visualized in blue). We thus train a bidirectional adapter

consisting of a configurable number of Transformer layers, follow-

ing the standard Transformer encoder architecture [26]. Concretely,

our approach involves five steps, visualized in Figure 5:

Step 1:We start with a series of code tokens� = [20, 21, . . . , 2#].

We query a causally pretrained Transformer T%) to transform these

into a representational “states” (∈ R#×� , where � represents the

pretrained model’s dimensionality. This step takes place “offline”,

as we do not tune the pretrained model.

Step 2: We extract the representations of each newline token to

obtain state per line in the original program: (#! ∈ R"×�
= ([28 =

\n], where" is the number of original newlines and typically" ≪

. We conjecture that these tokens’ states reasonably accurately

capture the information of their line in the file’s prefix context.

Step 3: The dimension of the pretrained model’s states,� , ranges

up to 6,144 for the CodeGen models we built on. We use a signif-

icantly smaller dimension 3 ≪ � for our adapter layers, because

they are trained on limited data. We first reduce the dimension of

(#! to '#! ∈ R"×3
= (#! ,3 where,3 ∈ R�×3 is a learnable

weight, equivalent to a fully connected layer. We experiment with

dimensions 3 ∈ {256, 512, 1024}

Step 4:We then train an=-layer bidirectional Transformer adapter

T� with the same internal dimension 3 . This gives us the final rep-

resentation of each newline token �#! ∈ R"×3 , which aims to

capture their role in the bidirectional context. We set the number

of Transformer layers to = = 2.

Step 5: We transform each newline token’s representation to

a single value ranging from 0 to 1 via a sigmoid-activated dense

projection � = f ('#! ,1) where,1 ∈ R3×1. The resulting pre-

dictions per newline token can be seen as probability estimates

of each line being buggy according to the model. These are com-

pared against the ground-truth labels) ∈ {0, 1}" using the binary

cross-entropy loss L�� =) ln� + (1 −)) ln (1 − �). This loss is

backpropagated through all layers up to, but not including, those in

the pretrained network to obtain gradients. Given these gradients

averaged across a sufficiently large minibatch of samples, the model

states are updated to make its predictions more likely to agree with

the training labels, using the setup described in Section 4.1.6.

4 EVALUATION

In this section, we present our approach and results for the follow-

ing three research questions.

RQ1. How does LLMAO compare with prior FL techniques?

We evaluate our technique’s performance in comparison with ex-

isting FL techniques on the same dataset.

RQ2. How well does LLMAO’s performance generalize to

new projects? We evaluate LLMAO’s performance on previously-

unseen code, to assess its generalizability beyond its training data.

RQ3. How does each component of LLMAO impact its perfor-

mance? We conduct an ablation analysis to evaluate the impact of

different components on the performance of our model.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Figure 5: Attention masking procedure of LLMAO

RQ4. How generalizable is LLMAO to other languages and do-

mains? We evaluate LLMAO on different languages and domains.

4.1 Setup

4.1.1 Dataset. Our work investigates the effectiveness of LLMs in

the setting of fault detection. To determine how well our proposed

technique can perform on real world faults, we select four datasets

with source code and corresponding labeled fault lines.

• Defects4J V1.2.0 : A Java benchmark dataset with 395 bugs

from 6 Java projects [21]. We use V1.2.0 for most of our

benchmarks instead of the latest version (V2.0.0) to compare

on the same dataset as most prior FL techniques.

• Defects4J V2.0.0: A Java benchmark dataset with additional

bugs over Defects4J V1.2.0 [21]. To show that our approach

can generalize to faults from unseen projects, we further

evaluate our tool as trained on Defects4J V1.2.0 on 226 new

bugs from the newest Defects4J version (from projects total-

ing 165k more lines of code). We exclude the first 45 bugs in

Jsoup and all in Gson/Jacksoncore because of trouble repro-

ducing them (as seen in prior work [3]).

• BugsInPy: a Python benchmark with 493 bugs from 17 dif-

ferent projects [29].

• Devign: a C benchmark with 5,260 from two open-source

projects [23]. The original Devign dataset contains 15,512 se-

curity vulnerabilities from four different projects [23]. How-

ever, the authors of Devign only released a partial dataset

available online.

All datasets include fixing commits that correspond to each fault.We

identify faulty statements as those that are changed in the git diff as-

sociated with each commit, following prior approaches [11, 22, 30].

We then track line numbers of changed statements as training labels.

4.1.2 Baselines. LLMAO takes as input source code, and outputs a

ranked list of probabilities corresponding to how likely a code line

is buggy. To the best of our knowledge, no existing FL approaches

take as input only the source code as natural language. However,

we compare against existing FL approaches that take as input both

source code and test code to observe if an LLM-enabled FL technique

can produce comparable results without the dependence on tests

or test coverage information.

Our baselines are recent, state-of-the-art statement-level MLFL

approaches: DeepFL [2], DeepRL4FL [10], and TRANSFER-FL [11].

DeepFL, and DeepRL4FL are MLFL techniques that take the test

coverage information as model input. TRANSFER-FL builds on pre-

vious test-based MLFL approaches with pretrained information

from open-source Java programs. We also include Ochiai [6], the

best-performing SBFL approach. We use the prior techniques’ repli-

cation packages to compute Top-N scores, including their handling

of tied ranks (if any); we follow DeepFL’s approach for accounting

for tied ranks for Ochiai.

Our tool produces a fault probability score for each line of a code

file (i.e., statement level fault localization). Previous approaches

output a ranked list of either suspicious statements or suspicious

methods. In particular, DeepFL [2] is trained at the method level,

i.e., predicting which methods are defective.

To compare, we follow other prior work and use DeepFL’s spec-

trum and mutation-based features that are applicable to detect-

ing faulty statements. DeepRL4FL, and TRANSFER-FL perform

statement-level fault localization by default, similar to LLMAO.

Since the repository and processed dataset for DeepRL4FL are not

publicly available, we directly cite the experimental results reported

in their paper [10]. For each of the other compared techniques, we

run their tool for a total time of 30 minutes, which is comparable

to our tool’s training time for 300 epochs.

4.1.3 Validation. For each of our three datasets, we perform a 10-

fold cross validation on the entire dataset. Specifically, we shuffle

the dataset and train 10 models with 90% of the training set each,

holding out the remaining 10% for validation, so that each sample

in the dataset is held out exactly once. This is by contrast with some

prior evaluations that in their default settings, validate tools within

individual projects (using one bug in a given Defects4J project for

validation and training on other bugs in that same project) [2, 3,

10, 11]. An effective and robust FL tool using machine learning or

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Hyperparameters used for model training, both for the

model trained from scratch and the three models trained on top of

the various CodeGen models

Hyperparameter From Scratch 350M 6B 16B

Max learning rate 5e-6 1e-4 7e-6 4e-6

Min learning rate 1e-8 1e-7 1e-7 1e-7

Model dimension 256 1024 4096 6144

Layers 8 2 2 2

Batch size 64 32 32 32

Epochs 2000 300 300 300

language models should be able to predict faulty locations while

trained on code from different projects.

Training FL models on a particular project may produce over-

fitting to a particular project and reduces applicability, requiring a

relatively rich project and bug history before a technique can be

used. We therefore believe that our 10-fold validation approach is

more generalizable for training models on larger code datasets. As

is done in some prior evaluations [2, 10], we also separately evaluate

the degree to which our model trained on one set of projects gener-

alizes to a set of projects not seen in training (without retraining

for those new projects).

We also deploy an early-stopping mechanism for each of our

training runs. We checkpoint and record the epoch with the single

highest average precision and recall score on the held-out valida-

tion dataset after every epoch. Once these scores stop improving for

sufficiently many epochs (i.e., around 300 for all our model config-

urations), we stop training and use the best-performing checkpoint

to calculate the Top-N metrics against the ground-truth labels.

4.1.4 Evaluation Metrics. We use the following evaluation metrics:

Top-N. Top-N measures the number of faults with at least one

faulty element located within the first N positions (N=1, 3, 5). De-

velopers only examine a small amount of the most-likely buggy

elements within a ranked list [31], with particular attention paid

to the top-5 elements [32]. To compare against state-of-the-art

techniques, we adopt Top-N following prior work [2–4].

AUC of the model’s ROC Curve. Although most developers in-

spect only top-5 elements in a given list, we also aim tomeasure how

overall prediction compares against the ground truth. A Receiver

Operating Characteristic (ROC) curve shows the performance of

one classification model at all thresholds. It can be used to evaluate

the overall model strength for making precise and accurate predic-

tions. The area under an ROC curve (AUC) measures the usefulness

of a test. AUC is a number between 0 and 1; higher is better. We

measure the AUC at each of our model’s top performing points in

time, averaging precision and recall. We choose AUC to observe

the prediction strength of our models at their peak performance.

4.1.5 Ablations. We conduct an ablation analysis to evaluate the

impact of different components on the performance of our model

(RQ3). We run five variants of our proposed technique for the De-

fects4J V1.2.0 dataset. We first evaluate LLMAO pretrained on Code-

Gen, and LLMAO without any pretraining to evaluate the impact

of the pretrained large language model’s final hidden states. For

the pretrained models, we checkpoint with three different CodeGen

sizes (i.e., 350 million, 6 billion, and 16 billion parameters) to eval-

uate the impact of the pretrained model’s size on finetuning. We

also train a version of our model without bidirectional layers, using

only the CodeGen auto-regressive attention mechanisms for fault

localization. We aim to determine if left-to-right LLMs can detect

faults directly, without any customization for code understanding.

4.1.6 Hyperparameters. Table 1 shows the hyperparameters used

in training all our models. We reduced the learning rates until both

the training and validation loss converged in a stable manner. Fol-

lowing the established practice in language model training [33], we

use a learning rate warm-up of 1000 steps and a cosine learning rate

decay until a global minimum learning rate of 1e-7 across 20k steps.

Each model is trained on a single GPU. For the CodeGen pretrained

models, we use a uniform batch size of 32 and perform gradient

accumulation to ensure every batch of our data fits on a single GPU.

For a fair comparison of LLMAO’s components (RQ3), we use the

same number of training epochs (300) for all pretrain sizes and

projected dimensions. However, the non-pretrained bidirectional

model requires a much longer training time (some 2,000 epochs)

for the validation loss to converge.

We train all configurations of our model on a uniform dimension

of 512, which is projected down from the various CodeGen models’

hidden state dimensions (i.e., 1024, 4096, and 6144). We use a 8

attention heads for all our models.

4.1.7 Environment. All results presented in this section were ob-

tained using an Intel(R) Xeon(R) 6248R CPU @ 3.00GHz running

Debian GNU/Linux 1 and a single Nvidia Quadro RTX 8000 GPU.

Our largest model, LLMAO with CodeGen-16B, takes 20 minutes to

train on the BugsInPy dataset, 30 minutes on the Defects4J dataset,

and 2 hours on the Devign dataset.

4.2 Results

RQ1: How does LLMAO compare with prior DL-based FL

tools? Table 2 (top) details experimental results showing how our

tool compares against state-of-the-art FL techniques. The first 4

techniques are from prior approaches; we evaluate our LLMAO

using three CodeGen pretrain sizes. The results show the Top-N (N

∈ {1, 3, 5}) score for each technique. Table 2 shows that LLMAO

with the largest (16B) pretrained CodeGen size outperforms all

the compared techniques. Even with smaller pretrain sizes (350M

and 6B), LLMAO performs similarly to the top-performing prior

methods.

Per Table 2, LLMAO with 16B CodeGen pretrain size detects

84 more faults within Top-5 than the top-performing SBFL tech-

nique, Ochiai (84.8% improvement). LLMAO detects 48 more faults

within the Top-5 than the first proposed deep learning based FL

technique DeepFL (35.6% improvement), and 23 more faults within

the Top-5 than the latest state-of-the-art test-based MLFL approach

TRANSFER-FL (14.4% improvement). For the Top-3 and Top-1 met-

ric, LLMAO pretrained on the 16B CodeGen model can detect 14

more faults (10.4% improvement) and 2 more faults (2.3% improve-

ment) than the state-of-the-art tool TRANSFER-FL. We observe that

our LMFL technique improves particularly over prior FL techniques

when more suspicious lines are inspected (i.e., higher Top-5 scores).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Table 2: LLMAO performance on 395 bugs from Defects4J V1.2.0, compared to prior techniques (top); on 226 additional bugs from Defects4J

V2.0.0 (middle); and with ablation (bottom, again on defects from Defects4J V1.2.0)

FL type Technique Top-1 Top-3 Top-5

SBFL Ochiai 19 (4.8%) 65 (16.5%) 99 (25.1%)

MLFL

DeepFL 57 (14.4%) 95 (24.1%) 135 (34.2%)

DeepRL4FL 71 (18.0%) 128 (32.4%) 142 (35.9%)

TRANSFER-FL 86 (21.8%) 135 (34.2%) 160 (40.5%)

LMFL
LLMAO with CodeGen-350M 82 (20.8%) 106 (26.8%) 126 (31.9%)

LLMAO with CodeGen-6B 85 (21.5%) 115 (29.1%) 160 (40.5%)

LLMAO with CodeGen-16B 88 (22.3%) 149 (37.7%) 183 (46.3%)

LMFL, new projects LLMAO with CodeGen-16B 72 (31.9%) 93 (41.2%) 123(54.4%)

LMFL Ablation
−?A4CA08=8=6

(6 layers, trained from scratch)

5 (1.3%) 24 (6.2%) 30 (7.6%)

−1838A42C8>=0; 030?C4A

(predict directly from CodeGen-16B)

10 (2.6%) 60 (15.2%) 85 (21.5%)

A Wilcoxon signed-rank test [34] indicates that the top-N val-

ues the difference between LLMAO with CodeGen-16B and prior

techniques in terms of performance at the several top-N values is

statistically significant (p-values ranging from 0.01 to 0.03).

When considering Top-1 scores, our approach is only slightly

better than TRANSFER-FL, which performs roughly on-par with

our CodeGen-6B model. However, note that prior techniques only

achieve comparable results with our tool by requiring readily-

available tests and test coverage as input. Writing tests and pro-

ducing test coverage are time-consuming activities, and tests are

not always available or useful when debugging. Furthermore, both

DeepFL and TRANSFER-FL techniques include mutation-based

fault localization information, which is very time-consuming to

collect (i.e., hours of online collection time per bug [2]).

RQ1 Summary

LLMAO pretrained on the largest CodeGen size improves on the

state-of-the-art by 14.4% on Top-5, without relying on test cases,

program analysis, or even compilable code.

RQ2. Howwell does LLMAO ’s performance generalize to new

projects?We additionally evaluate LLMAO on bugs from the newer

Defects4J V2.0.0, on projects that were not seen in pretraining (an

additional 165K lines of code). The “LMFL, new projects” row in

Table 2 shows that LLMAO with 16B CodeGen pretrain size detects

72/226 faults in top 1, 93/226 faults in top 3, and 123/226 faults in

top 5.

Although we avoid strong statistical claims in this case study

setting, these results are comparable to LLMAO’s performance on

projects included in its training data, suggesting that it generalizes

well. Several previously-published techniques are also evaluated for

cross-project generalizability, in a variety of experimental settings.

DeepFL and DeepRL4FL repeatedly train a model on N-1 projects

and test it on a held-out project; in both cases, performance on

the cross-project setting degrades compared to the within-project

setting. GRACE [3] localizes to the method level (rather than the

Table 3: LLMAO’s Top-N Effectiveness on Different Datasets

Metric BugsInPy Defects4J Devign

lines 76,672 168,960 7,180,160

Top-1 51/493 (10.3%) 88/395 (22.3%) 1478/5260 (28.1%)

Top-3 59/493 (12.0%) 149/395 (37.7%) 2050/5260 (39.0%)

Top-5 75/493 (15.2%) 183/395 (46.3%) 3171/5260 (60.3%)

statement level); its cross-project evaluation also looks at defects

from Defects4J V2.0.0. GRACE’s performance also degrades slightly

on new defects, though less than prior work. A key advantage of our

approach is that LLMAO generalizes well to unseen projectswithout

retraining of any kind. This argues for our technique’s practicality

both in terms of performance and time/compute requirements.

RQ2 Summary

LLMAO pretrained on the largest CodeGen size using data from

Defects4J V1.2.0 performs well on bugs in unseen projects (not

included in the training data), without additional training costs.

RQ3. How does each component of LLMAO impact its per-

formance? The bottom two rows of Table 2 show the impact of

pretrained models on LLMAO’s performance.

Without PretrainingWe trained our bidirectional language model

from scratch, using the same tokenizer as CodeGen for tokeniz-

ing the inputs. We replace CodeGen’s token-level representation

with a learnable embedding for each token. We then pass these

embeddings through 6 bidirectional Transformer layers (a typical

minimum for Transformers) and predict the bugginess probabil-

ity for states corresponding to newline tokens only (other tokens

are embedded alongside these but ignored in the final layer). This

model, trained on a sample size of 395 (i.e., total number of labeled

Defects4J bugs) can achieve only a Top-1 of 5 (1.3%), Top-3 of 24

(6.2%), and Top-5 of 30 (7.6%). LLMAO without any pretraining

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

performs significantly worse than LLMAO based on any size of

CodeGen.

Without the Bidirectional Adapter We train a single linear projec-

tion from CodeGen-16B’s final hidden states to a bugginess score for

each line, thus omitting the bidirectional attention adapter layers.

This approach performs better than LLMAO trained from scratch,

with a Top-1 of 10 (2.6%), Top-3 of 60 (15.2%), and Top-5 of 85

(21.5%). This highlights how much program understanding a left-to-

right LLM trained on a large corpus of code encodes in its learned

representations. Although left-to-right models are not targeted at

text-understanding, an LLM that can generate code given a natu-

ral language prompt can evidently learn to understand faults to a

similar level of top performing SBFL approaches. Given enough

fine-tune training on top of the previous task of code generation,

CodeGen-16B without any further configuration is able to detect

85 Defects4J bugs (21.5%), which is only 14% worse than the top

performing SBFL model Ochiai. However, using CodeGen-16B for

fault localization directly still performs significantly lower than all

LLMAO models with bidirectional adapter layers. We perform an

additional Wilcoxon signed-rank test [34] to observe that the top-N

values of LLMAO with CodeGen-16B yields significantly better re-

sults than LLMAOwithout pretraining andwithout the bidirectional

adapter at U = 0.05 (p-values of 0.008 and 0.02).

Underlying LLMs Comparing our tool on different pretrained

CodeGen sizes, we see an improvement in fault detection as the

underlying model grows. LLMAO pretrained on CodeGen-350M

improves upon LLMAO without the bidirectional adapter layers by

72 on Top-1. LLMAO pretrained on CodeGen-6B can detect 3 more

faults on Top-1 than CodeGen-350M, and LLMAO pretrained on

CodeGen-16B can find an additional 3 compared to CodeGen-6B. At

higher Top-N targets, the performance improves more steeply with

the size of the underlying model. For instance, LLMAO fine-tuned

on CodeGen-350M detects 96 more faults than without pretraining,

while fine-tuning on top of CodeGen-16B uncovers another 153.

RQ3 Summary

Although left-to-right language models can directly localize some

faults, adding the bidirectional adapter layers is crucial for achiev-

ing state-of-the-art fault localization. Furthermore, we show that

our tool using the largest pretrained LLM (i.e., CodeGen 16B)

significantly outperforms all other variations of our model.

RQ4. How generalizable is LLMAO to other languages and

domains? To evaluate our proposed technique on different lan-

guages and domains, we run all three pretrain sizes of our tool

on the BugsInPy [29] dataset for localizing Python bugs, and the

Devign [23] dataset for localizing C security vulnerabilities. We

believe that measuring our tool on two other languages and one

other defect domain can evaluate the effectiveness of modeling

code defects as specific behaviors in natural language.

We observe from Table 3 that LLMAO can localize faulty state-

ments with Top-1 of 10.3% on BugsInPy, and 28.1% for Devign. We

observe that the performance of LLMAO improves as the size of

the training dataset increases. Although Defects4J has fewer bugs

than BugsInPy, we find that in total, Defects4J has 53% more code

lines combined from all code files than the BugsInPy dataset. Since

our approach considers source code as natural language, a larger

database of code lines gives our models more training data. In par-

ticular, our largest dataset Devign with over 7 million lines of code

achieves a Top-5 of 60.3% (i.e., 60.3% of our model’s top-5 suspicious

lines have at least one line that is an actual vulnerability).

Figures 6a, 6b and 6c show the ROC curve for each of our trained

models compared to the completely random curve (i.e., AUC=0.5).

A ROC curve shows the performance of our model at all clas-

sification thresholds. The completely random curve has the true

positive rate equal to the false positive rate at every classification

threshold. We plot the ROC for our model trained on Defects4J ,

BugsInPy, and Devign after 300 epochs without any pretraining (i.e.,

the Transformer ROC curve), CodeGen-350M pretraining, CodeGen-

6B pretraining, and finally CodeGen-16B pretraining.

We observe a clear improvement on the AUC as we use the

CodeGen final hidden states for training, and the AUC continues to

improve as we use larger CodeGen models. In particular, the AUC

for Figure 6a yields 0.539 onDefects4J trained from scratch, 0.573 on

Defects4J trained from CodeGen-350M, 0.638 on Defects4J trained

from CodeGen-6B, and 0.677 on Defects4J trained from CodeGen-

16B. Figures 6b and 6c show a significant improvement in our

model’s predictive power as we use a larger dataset of code corpus.

LLMAO with CodeGen-16B trained on our smallest dataset BugsInPy

yields an AUC of 0.571, and LLMAO with CodeGen-16B trained on

our largest dataset Devign yields an AUC 0.855. We observe that

our model’s predictive performance on Devign is better than our

model’s predictive performance on BugsInPy at all thresholds.

RQ4 Summary

Our approach generalizes to other languages and domains, given

a large enough labeled. LLMAO is more confident in its fault

detection as the size of both training data and the pretrained

model scale up. LLMAO is also particularly effective for locating

security bugs in C where test cases are not available.

5 RELATEDWORK

We discuss in the following sections the most recent advances in

fault localization and LLM for code.

5.1 SBFL and MBFL

Spectrum-based Fault Localization (SBFL) [1, 6, 35, 36] andMutation-

based Fault Localization (MBFL) [8, 37–39] have been extensively

studied for fault localization.

SBFL calculates the suspiciousness score of each code line to

represent the probability of the line being faulty. SBFL measures

the number of failed and passed tests that cover each code line

to generate the suspiciousness score. To generate suspiciousness

scores, SBFL uses a ranking formulae based on the test coverage

information of each code line. Although SBFL is widely accepted

due to its simplicity and efficiency, SBFL takes coverage as the only

input information, and more specifically only retrieves the number

of tests from test coverage information. Test coverage alone cannot

always encapsulate the faulty behaviors from code lines.

MBFL techniques [8, 37–39] mitigate the limitations of SBFL

by applying mutation testing to generate mutants for the original

program under a test suite. The original program is mutated with

Large Language Models for Test-Free Fault Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6 DISCUSSION AND THREATS

Why does it work? Recent LLMs train on such a large corpus of

data that they can generate functionally correct code bodies from

simple natural language documentation [14].

Models such as Codex [14] and InCoder [48] can perform the

opposite direction as well: generate natural language docstring

from code snippets alone. These abilities suggest that LLMs extract

a significant amount of semantic knowledge from the code they

process, even as their objective is just to predict each next token.

We believe that this ability to reason about code semantics trans-

lates naturally to reasoning about defects or vulnerabilities. While

the model may have been mostly trained on correct code, it likely

notes surprising, bug-related patterns much as traditional language

models do [22], incorporating this information into token repre-

sentation, since knowledge of a potential mistake is important for

next-token prediction as well. Our first attempt to directly train

a fault localizer on top of an LLM specialized in program synthe-

sis supported this notion by yielding surprisingly strong results

(Top-5 score of 85), but still fell short of common baselines. Our

second key observation is that the LLM’s knowledge at any given

token is also incomplete, lacking awareness of suffix. Many bugs,

including the one in Figure 1a, cannot be reliably determined until

close to the end of the program, so the model is incentivized to

store information about potentially important missing knowledge

(in the example: whether getNullText() can return null) in the

representation of earlier tokens (those on line 5) for later tokens

to consider. Our adapter layers were subsequently introduced to

exploit the observation that the representations of later tokens

might contain valuable information for determining the bugginess

of earlier ones. The resulting model outperformed all baselines and

showed strong signs of improving with the scale of the underlying

LLM, strongly supporting this approach.

Threats to validity. One threat to internal validity lies in using

diff descriptions of bug-fixing commits to identify faulty state-

ments. Different annotators can disagree about the true cause of a

defect [49], and parsing commits provides a noisy proxy for truly

faulty lines associated with a bug. We mitigate this threat first by

relying on well-established previously-published datasets with his-

torical bug fixes. These datasets are manually curated to confirm

that the commits in question do fix a given bug, and Defects4J ’s

bug-fixing commits are further pruned to include only bug-relevant

changes (reducing the influence of unrelated “tangled” changes

such as refactorings). We note that Defects4J , on which the bulk of

our experiments are performed, is a very common dataset in prior

fault localization work, supporting comparison and consistency.

The use of the commit to indicate ground-truth faulty statements

or methods has similar precedent in the literature (e.g., but not

limited to, refs [11, 22, 30]). At worst, a developer fix provides a

conservative approximation of code defectiveness. We further miti-

gate the risks of mistakes in our implementation by releasing our

scripts, code, and data as part of a replication package for this work

available at https://figshare.com/s/35f36bff735d3c805a89. Threats

to external validity lie in whether results on our benchmarks will

generalize to real-world contexts. To reduce this threat, we eval-

uate on the widely-used Defects4J-V1.2.0 [21] with hundreds of

real-world bugs. Although it is a widely-used benchmark, recent

techniques may be overfitting to it [50]; we therefore additionally

train our tool on two other benchmarks, BugsInPy and Devign.

As LLMAO is trained on top of CodeGen, which takes as training

data roughly 65 GiB of code fromGitHub repositories up to 2021, we

can not fully mitigate the bias that our datasets could be included

in its training data. However, CodeGen was trained on a very large

volume of code, meaning that the model retains relatively little

memory of our partition of that training data. The training data of

CodeGen also does not include the manually annotated labels for

bugs, but rather the repositories of the faulty code directly, which

would not bias our fault localization models.

Threats to construct validity lie in measurements used. We use

multiple metrics widely used to evaluate both fault localization and

ML models. We also perform our experiments under 10-fold cross

validation and across three datasets to strengthen generalizability.

7 CONCLUSIONS

In this paper, we propose LLMAO, an LLM-based approach for lo-

calizing program defects, which include general logic defects as

well as security vulnerabilities. We perform an empirical study on

395 real bugs from Defects4J , 493 bugs from BugsInPy, and 5,260

security vulnerabilities from Devign. Our results show that LLMAO

can outperform existing state-of-the-art deep learning based fault

localization techniques without the use of insights from extensive

program analysis, or any test cases. In particular, LLMAO can lo-

calize 48/395 more faults within the Top-5 than the first proposed

deep learning based fault localizer, DeepFL, which is guided by

SBFL and MBFL artifacts that require extensive manual labor to

attain. LLMAO can localize 23/155 more bugs within Top-5 than

TRANSFER-FL, which is the latest state-of-the-art deep learning

based fault localizer. The comparison of AUC on different versions

of our model shows that training on top of larger LLMs improves

performance significantly and that our approach based on bidi-

rectional adapter layers is essential for achieving state-of-the-art

localization scores. The experimental results show that pretraining

on the largest CodeGen model (e.g., 16 billion parameters) achieves

the highest AUC on all our studied datasets. To the best of our

knowledge, LLMAO is the first DL based tool to localize security

vulnerabilities on a line level without requiring test cases or even

compilable code.

ACKNOWLEDGEMENTS

This work was partially supported by the US National Science

Foundation (NSF) awards CCF-1750116 and CCF-1762363, and by

ANI 045917 award funded by FEDER and Portuguese Foundation

for Science and Technology (FCT).

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-

based fault localization,” in Testing: Academic and industrial conference practice
and research techniques-MUTATION (TAICPART-MUTATION 2007), pp. 89–98,
IEEE, 2007.

[2] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault diagnosis
dimensions for deep fault localization,” in Proceedings of the 28th ACM SIGSOFT
international symposium on software testing and analysis, pp. 169–180, 2019.

[3] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and L. Zhang, “Boosting
coverage-based fault localization via graph-based representation learning,” in
Proceedings of the 29th ACM Joint Meeting on European Software Engineering

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Conference and Symposium on the Foundations of Software Engineering, pp. 664–
676, 2021.

[4] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization to detect co-change fixing
locations,” in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 659–
671, 2022.

[5] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pp. 273–282, 2005.

[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of similarity
coefficients for software fault localization,” in 2006 12th Pacific Rim International
Symposium on Dependable Computing, pp. 39–46, IEEE, 2006.

[7] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to localize
developer faults for evolving software,” ACM SIGPLAN Notices, vol. 48, no. 10,
pp. 765–784, 2013.

[8] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating faulty programs
for fault localization,” in 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, pp. 153–162, IEEE, 2014.

[9] T. T. Chekam, M. Papadakis, and Y. Le Traon, “Assessing and comparing mutation-
based fault localization techniques,”

[10] Y. Li, S. Wang, and T. Nguyen, “Fault localization with code coverage represen-
tation learning,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering, pp. 661–673, IEEE, 2021.

[11] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving fault localization
and program repair with deep semantic features and transferred knowledge,” in
Proceedings of the 44th International Conference on Software Engineering, pp. 1169–
1180, 2022.

[12] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience: Evalu-
ating the usability of code generation tools powered by large language models,” in
Chi conference on human factors in computing systems extended abstracts, pp. 1–7,
2022.

[13] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and
C. Xiong, “Codegen: An open large language model for code with multi-turn
program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021.

[15] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee,
Y. T. Lee, Y. Li, S. Lundberg, et al., “Sparks of artificial general intelligence: Early
experiments with gpt-4,” arXiv preprint arXiv:2303.12712, 2023.

[16] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”
arXiv preprint arXiv:2001.08361, 2020.

[17] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic evaluation of
large language models of code,” in Proceedings of the 6th ACM SIGPLAN Interna-
tional Symposium on Machine Programming, pp. 1–10, 2022.

[18] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-based approach
for automated program repair,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 511–523, 2022.

[19] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
K. McDonell, J. Phang, et al., “Gpt-neox-20b: An open-source autoregressive
language model,” arXiv preprint arXiv:2204.06745, 2022.

[20] L. Tunstall, L. Von Werra, and T. Wolf, Natural language processing with trans-
formers. O’Reilly Media, Inc., 2022.

[21] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to
enable controlled testing studies for java programs,” in Proceedings of the 2014
international symposium on software testing and analysis, pp. 437–440, 2014.

[22] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu, “On the"
naturalness" of buggy code,” in Proceedings of the 38th International Conference
on Software Engineering, pp. 428–439, 2016.

[23] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identifi-
cation by learning comprehensive program semantics via graph neural networks,”
Advances in neural information processing systems, vol. 32, 2019.

[24] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based vulnerability
detection: Are we there yet,” IEEE Transactions on Software Engineering, 2021.

[25] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions
and deadlocks,” ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 237–252,
2003.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[27] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,
A. Thite, N. Nabeshima, et al., “The pile: An 800gb dataset of diverse text for
language modeling,” arXiv preprint arXiv:2101.00027, 2020.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[29] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E. Tan,
Y. Yieh, et al., “Bugsinpy: A database of existing bugs in python programs to
enable controlled testing and debugging studies,” in Proceedings of the 28th ACM
joint meeting on european software engineering conference and symposium on the
foundations of software engineering, pp. 1556–1560, 2020.

[30] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via
context-based code representation learning and attention-based neural networks,”
Proc. ACM Program. Lang., vol. 3, oct 2019.

[31] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?,” in Proceedings of the 2011 international symposium on software
testing and analysis, pp. 199–209, 2011.

[32] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on automated
fault localization,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 165–176, 2016.

[33] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training compute-optimal large
language models,” arXiv preprint arXiv:2203.15556, 2022.

[34] R. F. Woolson, “Wilcoxon signed-rank test,”Wiley encyclopedia of clinical trials,
pp. 1–3, 2007.

[35] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization using
code coverage,” in 31st Annual International Computer Software and Applications
Conference, vol. 1, pp. 449–456, IEEE, 2007.

[36] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing program edits
based on spectrum information,” in 2011 27th IEEE International Conference on
Software Maintenance, pp. 23–32, IEEE, 2011.

[37] V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call graph-based
impact prediction using mutation testing,” Software Quality Journal, vol. 25,
pp. 921–950, 2017.

[38] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault localization,”
Software Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[39] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. DeHalleux, andH.Mei, “Test generation
via dynamic symbolic execution for mutation testing,” in 2010 IEEE international
conference on software maintenance, pp. 1–10, IEEE, 2010.

[40] L. C. Briand, Y. Labiche, and X. Liu, “Usingmachine learning to support debugging
with tarantula,” in The 18th IEEE International Symposium on Software Reliability,
pp. 137–146, IEEE, 2007.

[41] Z. Zhang, Y. Lei, Q. Tan, X.Mao, P. Zeng, and X. Chang, “Deep learning-based fault
localization with contextual information,” IEICE TRANSACTIONS on Information
and Systems, vol. 100, no. 12, pp. 3027–3031, 2017.

[42] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1,
pp. 61–80, 2008.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,”Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[44] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,”
Advances in neural information processing systems, vol. 13, 2000.

[45] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, and S. Roy,
“Program synthesis using natural language,” in Proceedings of the 38th International
Conference on Software Engineering, pp. 345–356, 2016.

[46] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language
models,” in Proceedings of the 35th ACM SIGPLAN conference on programming
language design and implementation, pp. 419–428, 2014.

[47] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “An empirical cyber-
security evaluation of github copilot’s code contributions,” ArXiv abs/2108.09293,
2021.

[48] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t. Yih,
L. Zettlemoyer, and M. Lewis, “Incoder: A generative model for code infilling
and synthesis,” arXiv preprint arXiv:2204.05999, 2022.

[49] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and A. Zeller,
“Where is the bug and how is it fixed? an experiment with practitioners,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, (New York, NY, USA), p. 117–128, Association for Computing
Machinery, 2017.

[50] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical review of java
program repair tools: A large-scale experiment on 2,141 bugs and 23,551 repair
attempts,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 302–313, 2019.

