
Worst-Case Convergence Time of ML Algorithms via
Extreme Value Theory

Saeid Tizpaz-Niari
University of Texas at El Paso

El Paso, TX, USA
saeid@utep.edu

Sriram Sankaranarayanan
University of Colorado Boulder

Boulder, CO, USA
srirams@colorado.edu

ABSTRACT

This paper leverages the statistics of extreme values to predict
the worst-case convergence times of machine learning algorithms.
Timing is a critical non-functional property of ML systems, and
providing the worst-case converge times is essential to guarantee
the availability of ML and its services. However, timing properties
such as worst-case convergence times (WCCT) are difficult to verify
since (1) they are not encoded in the syntax or semantics of under-
lying programming languages of AI, (2) their evaluations depend
on both algorithmic implementations and underlying systems, and
(3) their measurements involve uncertainty and noise. Therefore,
prevalent formal methods and statistical models fail to provide rich
information on the amounts and likelihood of WCCT.

Our key observation is that the timing information we seek rep-
resents the extreme tail of execution times. Therefore, extreme
value theory (EVT), a statistical discipline that focuses on under-
standing and predicting the distribution of extreme values in the
tail of outcomes, provides an ideal framework to model and analyze
WCCT in the training and inference phases of ML paradigm. Build-
ing upon the mathematical tools from EVT, we propose a practical
framework to predict the worst-case timing properties of ML. Over
a set of linear ML training algorithms, we show that EVT achieves
a better accuracy for predicting WCCTs than relevant statistical
methods such as the Bayesian factor. On the set of larger machine
learning training algorithms and deep neural network inference,
we show the feasibility and usefulness of EVT models to accurately
predict WCCTs, their expected return periods, and their likelihood.

ACM Reference Format:

Saeid Tizpaz-Niari and Sriram Sankaranarayanan. 2024. Worst-Case Con-
vergence Time of ML Algorithms via Extreme Value Theory. In Confer-

ence on AI Engineering - Software Engineering for AI (CAIN 2024), April

14ś15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3644815.3644989

1 INTRODUCTION

Machine learning (ML) has been significantly integrated into mod-
ern software developments where they are routinely leveraged
to assist in safety-critical decision-making such as autonomous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0591-5/24/04. . . $15.00
https://doi.org/10.1145/3644815.3644989

cars [26], medical diagnosis [7], malware detection [45], informa-
tion leak [42], and aircraft collision avoidance systems [22]. Re-
cently, neuron-based foundational AI models such as ChatGPT
showed great performance on some of the most challenging pro-
gramming tasks such as synthesizing programs from a high-level
natural language specification and even outperformed domain ex-
perts (e.g., lawyer and physician) in answering questions.

Suchwide adoption ofML techniques comes with concerns about
reliability, accountability, privacy, fairness, greenness, etc. One sub-
stantial concern, especially due to the rapid adaptation of large
language models, is the environmental risks [37] of training ML
models where the computations required for deep neural networks
(DNNs) have been doubling every few months [2]. The software
engineering community considers the timing analysis as a critical
non-functional property and has spent significant efforts to verify,
validate, and analyze the timing properties of software. However,
there are no systematic methods to predict and provide guarantees
on the worst-case computation times of ML-based software sys-
tems to reduce their environmental risks, improve their runtime
performance, and increase their availability. Similar to traditional
software, one challenge is that timing is not encoded as a part of
the syntax or semantics of underlying programming languages.
Furthermore, it is a product of both software and platforms that
execute the software. Modern data-driven software brings new
challenges to the analysis since the computation times significantly
depend on the characteristics of training data, in addition to the
architecture of ML models, their hyperparameters, GPUs, etc.

Due to these challenges in the static verification of timing prop-
erties, one approach is to explore dynamic analysis techniques and
provide statistical guarantees on the estimation of worst-case con-
vergence times (WCCT), i.e., time taken to reach a desirable state
such as a loss value below a threshold during training. Statistical
model checking via hypothesis testing is a common method to
provide such statistical guarantees. In doing so, one might come
up with two hypotheses where the null hypothesis is a predicate
that the execution times are below a threshold and the alternative
hypothesis is the negation of such predicate. Then, they can use
a Bayesian factor testing such as Jeffreys [19] to accept the null
hypothesis with very strong evidence if the experiments witness
𝐾 ≥ 90 sequential true evaluations of the null hypothesis. Simi-
larly, the rule of three [21] can provide 95% confidence intervals
[0, 3/K] on the likelihood of observing a false evaluation given
that we have observed 𝐾 ≥ 30 true evaluations. However, such
hypothesis testing provides limited information and may fail to pro-
vide richer quantitative information about the severity (amounts),
return periods, and likelihood of worst-case convergence times.

211

2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN)

CAIN 2024, April 14ś15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

In this paper, we propose a method and a tool to provide a
quantitative estimation of worst-case convergence times based on
extreme value theory (EVT) [13]. While statistical theories such
as the central limit theorem focus on the expected quantities of
random variables, they often overlook unusually rare quantities.
The EVT overcomes this problem by focusing on the extremely rare
events and high (low) quantities in the random observations. Prior
works have significantly leveraged EVT to bound the worst-case
execution times of programs in the embedded and real-time systems
where the motivations are the uncertainty of underlying hardware
systems [11, 18, 29]. In addition, EVT has been used to find rare
bugs in circuit design [3, 39]. To the best of our knowledge, this is
the first work to study the feasibility, scalability, and usefulness of
EVT for providing probabilistic bounds on the convergence times
of ML algorithms.

Our key observation is that the worst-case convergence

times (WCCT) of data-driven software over independent

random samples represent the maximum over a set of

random variables. Thus, if valid, EVT can provide useful

information to model and predict the WCCT of ML

algorithms with probabilistic guarantees.

Our experiments include both micro-benchmarks as well as re-
alistic machine learning algorithms. Over a set of linear training
benchmarks, we found that it is feasible to model the worst-case
computation times via EVT, and it significantly improves the ac-
curacy of WCCT predictions as compared to the baseline Bayes
factor [20, 35] in 83% of cases. Given at most 261 samples, the EVT
method is able to predict the actual WCCTs of the next 10,000
queries with more than 75% accuracy (compared to the baseline) in
40% of cases.

Over 4 popular ML training algorithms (logistic regression, deci-
sion trees, Gaussian process, and discriminant analysis), we found
that EVT is scalable and accurately predicts the WCCT of training
in 57% of cases. Over 3 deep neural network models as controllers
for cyber-physical systems, we found that EVT can accurately pre-
dict the WCCT of inference convergences in 75% of cases. Our
observations include: i) EVT might be a more useful tool in the
inference stage compared to the training stage; and ii) EVT extrapo-
lations become more accurate in the longer horizon (e.g., it is more
accurate to predict the WCCT up to 10K queries as compared to
500 queries). In summary, we make the following contributions:

• A feasibility study of applying extreme value theory for
reasoning about the worst-case convergence times of data-
driven applications,

• A quantitative statistical method that measures the severity,
period, and likelihood of extremely rare computation times
for the convergence, and

• A large set of experiments that show the usefulness and
scalability of our approach in adapting EVT for ML training
processes and DNN-based inference.

2 BACKGROUND

Extreme value theory [8] is a statistical branch that deals with the
analysis of extreme events in a random process. Given a set of inde-
pendent and identically distributed random variables {𝑧1, . . . , 𝑧𝑛},

the extreme value theory is concerned with the min/max statis-
tics of a random process, i.e., 𝑀𝑛 = max({𝑧1, . . . , 𝑧𝑛}) or 𝑀𝑛 =

min({𝑧1, . . . , 𝑧𝑛}) as 𝑛 → ∞.
Under some mild assumptions, it has been proved (e.g., see Lead-

better et al. [24]) that 𝑃𝑟 [(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛 < 𝑧] → 𝐺 (𝑧) as 𝑛 → ∞

and 𝐺 belongs to a family of distributions called the generalized
extreme value (GEV) family. Each such distribution has the CDF of

𝐺 (𝑧) = exp

{

−
[

1 + 𝜉
(𝑧 − 𝜇

𝜎

)]−1/𝜉
}

,

defined over {𝑧 : 1 + 𝜉 (𝑧 − 𝜇)/𝜎 > 0}. The model has three parame-
ters: a location parameter −∞ < 𝜇 < +∞, a scale parameter 𝜎 > 0,
and a shape parameter−∞ < 𝜉 < +∞. Type I, known as the Gumbel
family, defines a subset of GEV distribution when 𝜉 → 0. The tail
behavior of type I, 𝑧+, has infinite support, but the density of GEV
decays exponentially (guarantees are feasible up to a bounded). For
type II, 𝜉 > 0 and 𝑧+ have infinite support, decaying polynomially
(limited guarantees are feasible). For a special case where 𝜉 ≥ 1, the
mean of GEV is infinite, decaying logarithmically, so no statistical
guarantee is feasible. Finally, for type III, 𝜉 < 0 and 𝑧+ has finite
support. In this case, the statistical guarantees on the worst-case
outcomes are feasible for a long horizon.

Generalized Pareto Distribution. There are two basic approaches
to infer the parameters of GEV distributions: block maximum and
threshold approach. The block maximum approach divides samples
into blocks of the same size and uses the maximum of each block as
the extreme value. Since such an approach is more appropriate for
seasonal data, in this paper, we use the threshold approach where
extreme events that exceed some high threshold𝑢, i.e., {𝑥𝑖 : 𝑥𝑖 > 𝑢},
are extreme values. Labeling these exceedances by {𝛿 (1) , . . . , 𝛿 (𝑘) },
we define threshold excesses by𝛿 𝑗 = 𝑥 𝑗−𝑢 for 1≤ 𝑗≤𝑘 . It follows that
if 𝑃𝑟 [𝑀𝑛 < 𝑧] → 𝐺 (𝑧), then for large enough 𝑢, the distribution
function of (𝑇 − 𝑢), conditional on 𝑇 > 𝑢, is approximately

𝐻 (𝑡) = 1 −

(

1 +
𝜉𝑡

𝜎̂

)−1/𝜉

where 𝑡 > 0 and 𝜎̂ = 𝜎 + 𝜉 (𝑢 − 𝜇) [8]. This distribution is known as
generalized Pareto distribution. The implication of shape parameter
𝜉 is the same as 𝐺 (𝑧), as a special case of GEV distribution.

Threshold Selection. A proper choice of threshold value 𝑢 is critical
to analyze the behavior of extreme value distributions. Low values
of threshold 𝑢 might include non-tail samples and lead to mixture
distributions that violate the asymptotic basis of the model. On the
other hand, high values of threshold 𝑢 might include only a few tail
samples and lead to low confidence in the model due to high vari-
ance. Therefore, it is critical to be confident on the threshold value
to provide any guarantees on the worst-case fairness behaviors.

Return Levels. It is often convenient to model extreme value distri-
butions using return levels. The inverse of the probability density
function of GEV at probability 𝑝 , is the return level 𝛿𝑝 , associated
with the return period 1/𝑝 . Therefore, the level 𝛿𝑝 is expected to be
exceeded on average once every 1/𝑝 period of time. A return level

is represented with (𝑚,𝛿𝑚) where𝑚 is the time period (e.g., the
number of queries with the ML model) and the level 𝛿𝑚 is the ex-
pected extreme value during the𝑚 period (e.g., expected worst-case
execution times in the next𝑚 queries).

212

WCCT of ML algorithms via EVT CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

3 OVERVIEW

To illustrate the process of extreme value analysis and show the
efficacy of EVT in analyzing the worst-case execution times, we use
a simple example of a mock social network server [4] that applies
different actions on the profile of users. We send requests to apply
different types of photo filters on the images that have different
convergence times.

Test Cases.We randomly generate inputs and collect the compu-
tation times of applying photo filters on the public image of users.
Overall, we collected 4,419 response times.

Characteristics of EVT distribution. Figure 1a shows the com-
putation times where we set the threshold for the extreme response
times to 15.7 seconds to fit the GEV distributions. This threshold
lies on the three standard deviations of the mean execution times
(i.e., it is higher than 99.7% of observed data). We use the maximum
log-likelihood to estimate the parameters of the GEV distribution
using the observed data. The empirical probability density func-
tion against the modeled one is shown in Figure 1b. We infer the
location, scale, and shape of GEV to be 16.3 (+/- 0.1), 0.4 (+/- 0.1),
and 0.0 (+/- 0.1) where the numbers in the parentheses show the
standard errors.

Validity. Since the shape is zero, the type of EVT distribution is I:
the tail is infinite but decays exponentially. Therefore, the extrap-
olations can be valid for extrapolation up to a bounded horizon.
Another way to validate the GEV model is to examine the QQ plots,
a plot of various quantiles of the data (empirical) against the quan-
tiles predicted by the GEV model. Each point in the plot represents
a particular quantile (eg., 5-th percentile) from the data vs. that
predicted by the model. An ideal fit is denoted by a 45◦ line in the
plot. The QQ-plot is shown in Figure 1c. Based on the plot, we can
ensure the validity of extrapolation up to an extreme computation
time of 16.8 (s).

Usefulness. Figure 1d shows the m-return level of extreme con-
vergence times of the algorithm. For example, the 1000-return level
quantifies the expected extreme execution times (i.e, the expected
all timings that exceed the threshold) that will be observed in the
next 1,000 queries. Since we only have 4,419 response times, to vali-
date the usefulness of the extrapolations, we use the first 419 traces
to infer GEV distributions and compare the prediction of worst-
case convergence times (WCCT) to the actual observed worst-case
WCCT for the next 500, 1000, 2000, and 4000 queries. The GEV-
based extrapolations show the return levels are 16.0 (s) [15.4, 16.7],
16.3 (s) [15.5, 17.0], 16.5 (s) [15.4, 17.7], and 16.9 (s) [15.4, 18.4],
respectively, where the intervals show 95% lower and upper confi-
dence intervals. The actual WCCTs are 16.7, 16.7, 16.8, and 17.2 in
the next 500, 1000, 2000, and 4000 queries that are well within 95%
confidence intervals. Furthermore, we can use GEV distributions
to calculate the likelihood of extreme execution costs in the next
𝑠 steps. The chance of observing extreme response times of 16.8
(s) or more in the next 1, 10, 100, and 1,000 queries are 0.1%, 1.1%,
10.7%, and 77.8%, respectively.

4 PROBABILISTIC WORST-CASE
CONVERGENCE TIME

We study the non-functional behaviors of machine learning soft-
ware and seek to provide statistical guarantees on the worst-case
convergence time. We consider two stages in the machine learning
life cycle: 1) training stage where the ML model is synthesized from
the data and hyperparameters using core ML training algorithms;
and 2) inference stage where the prediction is made for a given
query by the pre-trained ML model.

The Convergence of ML.We define the convergence separately
for training and inference in our setting.
Training Convergence. We can abstractly view a training stage
as the problem of identifying a mapping 𝑀 : X → Y from a
set X of inputs to a set Y of outputs by learning from a fixed
dataset D = {(xi, yi)}

𝑁
𝑖=1 so that 𝑀 generalizes well to previ-

ously unseen testing data D∗ = {((x∗i), y
∗
i)}

𝑀
𝑖=1. In doing so, the

training involves configuration parametersÐcharacterizing the set
H of hyperparametersÐthat let the users define the hypothesis
class for the learning tasks. Given a hyperparameter configuration
ℎ ∈ H , the ML training sift through the given dataset D to learn
an łoptimalž value 𝜃 ∈ Θℎ and thus compute the learning model
𝑀 (𝜃 |D, ℎ) : X → Y automatically. In doing so, the training pro-
cess can be seen as an optimization algorithm to minimize a loss
function (e.g., impurity, cross-entropy, hinge). Given a criterion
such as the number of iterations in the DNN or tolerance in the sup-
port vector machines; the convergence of the training algorithm
is to reach a state that satisfies one of the stopping criteria and
returns the model parameter 𝜃 .
Inference Convergence. Let 𝜃∗ ∈ Θℎ be an optimal parameter (i.e.,
a model with the minimum loss) inferred from the training stage.
Let𝑀𝜃 ∗ : X → Y be the corresponding model to infer a prediction
𝑦 ∈ Y for a query 𝑥 ∈ X. The convergence time is the time taken
to derive predictions by the model and reach a desirable goal (e.g.,
for a model that controls a robot; it is the time taken to derive the
robot from its initial state to a final state by predicting the next
action in each step).

Convergence Time. We use a high-level cost model to define the
convergence time. The cost model of a ML𝑀 is the (non-functional)
cost of computations (e.g., running time, memory usages, network
packets, etc). Rather than abstracting costs with notions such as the
number of byte-code executed, we use the actual execution times.
The convergence time is thus the computation cost of reaching to
the convergence state from an initial state during the training or
inference stages.

In our monitoring setting, we observe the queries of ML over
different input values {𝑥1, . . . , 𝑥𝑛} and record the convergence times
{𝑡1, . . . , 𝑡𝑛}. Since we potentially have a large number of samples,
we can compute both the expected values and the standard deviation
of costs and thus, conclude whether the difference of the mean value
from 0 is statistically significant. For example, if a value exceeds
two standard deviations, then this value is statistically significant
in the convergence time with certainty 95%.

From a practical standpoint, it is crucial to ensure that there
are no significant deviations from the mean, but also to model
and reason about the cost of ML training and inference on the

213

CAIN 2024, April 14ś15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) (b) (c) (d)

Figure 1: Overview Example. (a) The computation times of applying photo filters with a threshold of 15.6 seconds. (b) the density plot for GEV

distribution (blue) vs. empirical model (black), (c) quantile Plot for the execution time of the photo algorithm, (d) m-return level plot for the

computation times of the algorithm with expected values and their 95% CI.

worst-case scenarios (i.e., the tail of convergence times) such as the
expected worst-case convergence in the future.

Definition 4.1 (Problem Statement). Given an ML model𝑀

and a set of input traces {𝑥1, . . . , 𝑥𝑛}, our goal is to (1) model the

statistics of worst-case convergence times, i.e., 𝑀𝑛 = max𝑛𝑖=1 𝑡𝑖 ; (2)

study the validity of extrapolation to provide probabilistic guarantees

on the worst-case convergence; and (3) quantify the frequency and

significance of extreme convergence time in a long horizon.

We are interested in the maximum value of convergence times,
denoted as𝑀𝑛 , over a large population of 𝑛 samples. Each sample is
a random variable that differs from one sample to another. Since we
assume that the values, corresponding to different samples, do not
depend on each other, the largest value 𝑀𝑛 can be viewed as the
maximum of a large number of independent identically distributed
random variables. Therefore, extreme value theory (EVT) is an ideal
framework to study the corresponding limit distributions and the
convergence to these distributions. We adapt the statistics of EVT
to model, predict, and quantify the worst-case convergence time of
ML algorithms for both training and inference stages.

5 EXPERIMENTS

We first provide details on the implementations. Then, we discuss
the scalability and validity of EVT on a set of classic textbook al-
gorithms implemented in Python and run in a super-computing
machine. Finally, we show the feasibility, scalability, and useful-
ness of EVT on bounding the worst-case convergence times of ML
training and inference.

5.1 Implementation Details and Research
Questions

We monitor the applications on a super-computing machine with
the Linux Red Hat 7 OS and an Intel Haswell 2.5 GHz CPU with
24 cores (each with 128 GB of RAM). In doing so, we simulate
the queries with random test cases generated independently and
uniformly from the domain of variables. For training algorithms,
we generate the input traces using DPFuzz [43], the state-of-the-art
fuzz testing method to characterize the worst-case performance of
ML training algorithms. For deep neural networks, we simulate the
traces using state-of-the-artmethods for the functional properties of
cyber-physical systems [16]. We implemented the EVT algorithms
in R using evd and extRemes libraries [17]. We used mrlplot()

to pick thresholds, fevd() to fit extreme value distribution, and
return.level() to extract return levels.

RQ1 How do GEV-based predictions of WCCT compare to the
baseline statistical testing via Bayes factor on the set of
linear training algorithms?

RQ2 How accurate and useful are GEV-based extrapolations of
WCCT of training popular ML algorithms?

RQ3 How accurate and useful are GEV-based extrapolations for
the inference computation times of DNN models?

RQ1: Accuracy of GEV compared to the Bayes
factor method.

We perform experiments on 10 benchmarks over the linear sup-
port vector machines. We use two classical datasets: census [14]
is a binary classification dataset that predicts whether an individ-
ual has an income over 50𝐾 a year. The dataset has 14 attributes.
Bank Marketing [15] is another classic tabular dataset that predicts
whether an individual, described with 17 features, subscribes to the
term deposit of the bank. We chose the linear model with these
datesets as the baseline ML algorithms to evaluate the efficacy of
GEV, in comparison to the prevalent statistical testing. Specifically,
we consider Jeffreys test [20, 35], a variant of Bayes factor, with a
uniform prior that finds a lower-bound on the number of successive
samples 𝐾 that is sufficient for us to accept a maximum observed
computation time as the WCCT of the training algorithms. The
number of such samples 𝐾 is obtained via:

𝐾 ≥ ⌈(− log2 𝐵)/(log2 𝜃)⌉

where 𝐵 in the numerator is Bayes factor and can be set to 100

for a very strong evidence. For instance, to achieve a 𝜃 = 0.95 (a
confidence of 95%), we are required to set 𝐾 ≥ 90 to be highly
confident in accepting the worst-case computation times.

Table 1 shows the performance of GEV extrapolations compared
to the baseline Bayes factor. We use 20%, 40%, 60%, 80%, and 95% of
Census and Bank for 5 different training scenarios per each dataset.
We report observed the average and worst-case convergence times
of training (T), the number of samples to convince the Jeffreys test
with the 95% confidence (b), the prediction based on the test (T𝑏),
the characteristics of GEV distributions inferred using b samples
when the test convinced, the predictions based on GEV distributions
(RL), and the error of GEV prediction as compared to the baseline.

214

WCCT of ML algorithms via EVT CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

Table 1: Convergence Times of Training Linear Support Vector Machine with Prevalent Datasets of Various Sizes. Since the Bayesian factor (BF)

is 95% confidence on the WCCT after observing 𝑏 samples, we only use 𝑏 samples to infer GEV distributions. Legend: #N: Size of Training

Dataset, T: Average of Convergence Time (ms), T𝑛 : Actual Max. Convergence Times Observed after 𝑛 Queries (ms), 𝑏: The number of samples

observed until the Bayes factor (BF) convinced, T𝑏 : Actual Observed WCCT up to the 𝑏-th sample (this is the prediction of Bayes factor),

Parameters: (𝜇, 𝜎, 𝜉) of GEV distribution, 𝜏 : Thresholds of GEV distribution (s), RL𝑛 : GEV-based Prediction of Max. Convergence Times after 𝑛

Queries (ms), Error𝑛 :
𝑅𝐿𝑛−𝑇𝑛
𝑇𝑛−𝑇𝑏

: the percentage of Error of GEV predictions, compared to the baseline Bayes factor (an error of -1.0). Note: 𝐾 = 103.

Benchmark Observed Convergence Time BF GEV Characteristics GEV-based Predictions Accuracy

Dataset #N T T1𝐾 T2𝐾 T5𝐾 T10𝐾 𝑏 T𝑏 𝜇 𝜎 𝜉 𝜏 RL1𝐾 RL2𝐾 RL5𝐾 RL10𝐾 Error1𝐾 Error5𝐾 Error10𝐾
Census 6512 169.3 538 538 538 538 148 401 340 18.7 0.0 250 410 431 462 489 -0.93 -0.38 -0.36
Census 13024 323.7 630 712 778 844 261 555 584 17.3 0.0 520 644 666 697 724 +0.19 -0.36 -0.41
Census 19536 480.7 1235 1235 1235 1235 101 1117 956 46.5 0.0 757 1112 1175 1263 1301 -1.05 +0.24 +0.56
Census 26048 681.5 1780 1816 1966 2147 244 1553 1312 47.2 0.1 1010 1671 1830 2082 2311 -0.48 +0.28 +0.27
Census 32235 827.3 1990 2504 2504 2673 140 1670 1673 92.1 0.0 1246 2054 2178 2339 2463 +0.20 -0.20 -0.21

Bank 9042 392.1 636 636 654 654 134 636 492 23.1 0.0 392 553 577 607 632 -9.99 -2.10 -1.20
Bank 18084 477 1249 1249 1283 1357 168 819 962 31.9 0.1 747 1093 1161 1265 1354 -0.36 -0.04 -0.01
Bank 27126 740 2089 2089 2319 2515 94 1276 1453 58.9 0.1 1111 1814 1956 2171 2358 -0.34 -0.14 -0.13
Bank 36168 1069 2822 3703 3703 3772 94 1862 2240 140.1 0.0 1570 2765 2939 3186 3384 -0.06 -0.28 -0.20
Bank 44758 1322 3515 4378 4378 4378 193 3515 3096 220.6 0.0 2066 3931 4212 4612 4935 -9.99 +0.27 +0.65

To measure the prediction error, we compare the GEV prediction
of the 𝑛-th queries (RL𝑛) to the actual WCCT at the 𝑛-th queries
(T𝑛), while factoring the baseline Jeffreys test prediction (T𝑏) as

following: 𝑅𝐿𝑛−𝑇𝑛𝑇𝑛−𝑇𝑏
. Negative values show that the GEV-based pre-

diction under-estimates the actual WCCT whereas positive val-
ues show that the GEV-based prediction over-estimates the actual
WCCT. The absolute value shows the percentage of error. For ex-
ample, in Table 1 for the Census dataset with 32235 samples, the
GEV used only 140 initial samples and predicted the WCCT in the
next 10,000 queries with an error of 21% (under-estimated). Note
that GEV and Jeffreys have the same error rate when the error
is +1.0 or -1.0 whereas values between -1.0 and +1.0 show GEV
outperformed Jeffreys test and value below -1.0 or above +1.0 show
Jeffreys achieved better results. We truncated any error below -10.0
or above +10.0.

Overall, Table 1 shows that GEV-based predictions have lower
prediction errors compared to the baseline Jeffreys test in 25 cases
out of 30 cases whereas the Jeffreys test is more accurate in 5
cases (cases with errors less than -1.0 such as Bank with 9042 data
samples). Since Jeffreys test accepts the WCCT after at most 261
samples (see the column 𝑏); the GEV prediction used at most 261
samples to extrapolate for the next 1K, 2k, 5k, and 10k queries
(the column 𝑏 shows the number of samples used to derive GEV
parameters). In 22 cases out of 30 cases; GEV prediction under-
estimates the actual WCCT whereas in the remaining 8 cases, it
overestimates the actual WCCT. The errors of GEV predictions are
below 50%, 25%, and 10% in 22, 11, and 3 cases out of 30, compared
to the Jeffreys test.

Answer RQ1:Overall, GEV predicts the worst-case convergence
times more accurately than the baseline Bayes factor method
in 83% of cases. Compared to the baseline, GEV predictions are
more than 50%, 75%, and 90% accurate in 73%, 37%, and 10% of
cases, respectively.

RQ2: GEV predictions of WCCT for ML training
algorithm.

We consider the application of EVT for bounding the worst-case
convergence times in training classical (non-neuron) ML models.
Our goal is to evaluate the feasibility, usefulness, and scalability
of extreme value theory in modeling, quantifying, and bounding
the worst-case convergence times of ML training phase. In doing
so, we consider the training of four mature ML training algorithms
and wish to provide an upper-bound on the convergence time of
training via extreme value theory. For each case study, we discuss
whether such a bound is possible, the frequency of extreme training
convergence time, and the expected return levels.

Rather than using the Jeffreys test [20], we follow the standard
methods in selecting the threshold of extreme value to fit GEV
distributions, according to Coles et al. [8]. The initial threshold
is set to the mean of samples plus two standard deviations and
implies that only 4.56% of data samples are considered as the tail
samples. Since this might not give us a valid GEV (examples of
invalid GEV include a shape of 1.0 or more, negative return levels,
and decreasing return levels as the number of queries increases), we
vary the threshold down to the mean of samples plus one standard
deviation (with a rate of 0.05%). If we could not find any valid GEV,
we return failed. We say a GEV prediction is accurate if it includes
the actual WCCT within its 95% confidence range of prediction.

Logistic Regression. Logistic regression is a popular classifier that
supports various linear and non-linear solvers such as newton and
saga. We study the implementations in scikit-learn library [31].

Test Cases. We used DPFuzz [43] with i.i.d mode and randomly
generate the training dataset via the dataset synthesizer library [32].
Within 4 hours, we generate 16, 568 models with different training
datasets as well as hyperparameters. The computation times of
these training tasks are inputs to the EVT analysis.

Feasibility and Scalability. Figure 2a shows the recorded compu-
tation times as well as the threshold of 10.7 for extreme values.
It takes less than 2 seconds to infer GEV distributions. Figure 2b
shows the empirical vs. modeled probability density functions. The

215

CAIN 2024, April 14ś15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) (b) (c) (d)

Figure 2: Logistic Regression. (a) training convergence times for logistic regression varying input dataset and hyperparameters where the red

line shows 0.997-quantile (99.7% of data is below the red line), (b) the density plot for GEV of Logistic Regression, (c) quantile plot for execution

time of Logistic Regression, (d) m-return level plot for Logistic with expected values and their 95% CI.

location, scale, and shape of GEV are 10.8, 0.49, and 0.9, respectively.
Figure 2c shows the QQ plot.

Usefulness. The return levels are shown in Figure 2d. For 500, 1K,
2K, 5K, and 10K queries, the predicted return levels are 11.0 (s) [10.9,
11.4], 11.4 (s) [10.9, 11.8], 12.6 (s) [11.4, 13.7], 15.9 (s) [11.9, 19.9],
and 20.4 (s) [10.6, 30.2], respectively. The actual observed times are
14.8 (s), 26.8 (s), 26.8 (s), 26.8 (s), and 26.8 (s), respectively, for 500
to 10K queries. While the 95% confidence range predictions do not
include the actual WCCT up to 5K queries; the actual WCCT of 10K
queries are within the range of predicted WCCT. Based on the GEV
distributions, we expected to observe an extreme convergence time
of 11.0 (s) in every 793 queries and the likelihood of observing such
event next is 0.12%.

Decision Tree. The decision tree classifier is a popular white-
box classifier that partitions the space of training data into hyper-
rectangular sub-spaces to learn predicates for each class label. We
analyze its implementations in scikit-learn library [31].

Test Cases. Similar to the previous case studies, we train 9, 348

models within 4 hours, and our goal is to estimate the worst-case
training convergence time via EVT.

Feasibility and Scalability. Figure 3a shows the recorded execution
times of training and the threshold for extreme training computa-
tion times, which is set to 48.7 (s). Figure 3b shows the empirical
vs. modeled probability density functions. The location, scale, and
shape of GEV are 49.1, 0.77, and 0.16, respectively. Figure 2c shows
the QQ plot that is near-linear.

Usefulness. Figure 3d shows the return levels and its 95% confidence
intervals. For 500, 1K, 2K, 5K, and 10K return periods, the return
levels are 50.3 (s) [49.2, 51.7], 51.4 (s) [50.1, 52.8], 53.3 (s) [51.8, 54.7],
54.9 (s) [53.4, 56.4], and 55.8 (s) [54.1, 57.4], respectively. The actual
WCCTs for 500, 1K, 2K, 5K, and 9,348 are 51.4, 51.4, 54.9, 56.9, and
56.9. All the actual WCCTs are within 95% confidence intervals of
GEV-based predictions. Through GEV analysis, we also expect to
observe an extreme training convergence time of 50.3 (s) one in
every 850 queries, and the likelihood of observing such an extreme
training time is 0.1%.

Linear Discriminant Analysis. The goal of LDA is to find a linear
combination of features that maximally separates or discriminates
between different classes. We analyze its implementations in scikit-
learn library [31].

Test Cases. Similar to the previous case studies, we train 3, 900

models within 4 hours, and our goal is to estimate the worst-case
training convergence time via EVT.

Feasibility and Scalability. Figure 4a shows the computation costs
for LDA. We set the threshold for extreme training computation
times to 2.8 (s). The location, scale, and shape of GEV are 2.8, 0.1,
and 0.25, respectively (see Figure 4b). The QQ plot (see Figure 4c)
showed that the validity is up to 3.0 (s).

Usefulness. For 500, 1K, and 2K return periods, the return levels are
2.9 (s) [2.8, 3.0], 2.9 (s) [2.8, 3.0], 3.0 (s) [2.9, 3.1], and 3.1 (s) [2.8, 3.3],
respectively (see Figure 4d). The corresponding WCCTs remain at
3.2 (s) for all these periods. Thus, the actual WCCT of 2K queries is
the only one that resides within the confidence range of predicted
WCCT. Based on the characteristics of EVT, we expect to observe
an extreme convergence time of 2.9 (s) one in every 650 queries,
and the likelihood of observing such an extreme training time is
0.2%.

Gaussian Process. Gaussian process is a Bayesian classifier that
infers posterior over linear classifier parameters using a Gaussian
prior and observed data. We analyze its implementations in scikit-
learn library [31].

Test Cases. Similar to the previous case studies, within 4 hours,
we train 506 models and seek to estimate the worst-case training
convergence time via EVT.

Feasibility and Scalability.We set the threshold for extreme training
computation times to 26.6 (s). The location, scale, and shape of GEV
are 43.0, 1.6, and -0.72, respectively.

Usefulness. For the 500 return period, the return level is 43.6 (s)
[42.0, 45.5]. The actual WCCT of 500 queries is 44.6 (s). We expect to
observe an extreme training to converge of 44.0 (s) one in every 253
queries, and the likelihood of observing such an extreme training
time is 0.4%.

Answer RQ2: We found that GEV is a scalable method to in-
fer the WCCT of ML training algorithms. In all 4 case studies,
GEV predicts the worst-case convergence times accurately in the
longest horizon (i.e., 10K). However, in 2 cases, the GEV predic-
tions were not accurate for a shorter period of time (i.e., for the
next 500, 1K, and 2K queries). Overall, GEV predicts the WCCT
accurately in 57% of cases.

216

WCCT of ML algorithms via EVT CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

(a) (b) (c) (d)

Figure 3: Decision Tree. (a) the computation times of training Decision Tree varying input dataset and hyperparameters with a threshold sets to

48.7 (s), (b) the density plot for GEV of Decision Tree, (c) quantile Plot for execution time of Decision Tree, (d) m-return level plot for Decision

Tree with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 4: Linear Discriminant Analysis. (a) the computation times of training Linear Discriminant Analysis varying input dataset and

hyperparameters with a threshold set to 2.8 (s), (b) the density plot for GEV of Linear Discriminant, (c) quantile Plot for the execution time of

Linear Discriminant, (d) m-return level plot for Linear Discriminant with expected values and their 95% CI.

RQ3: GEV predictions of WCCT for DNN
Inference.

Our next goal is to evaluate the convergence times based on the
inference of deep neural networks. We are given a set of pre-trained
deep neural networks with ReLU units that control different cyber-
physical systems (CPS). We used CPS rather than image classifi-
cations (MNIST, CIFAR, etc.) since in CPS applications, multiple
DNN-based inferences are required to infer a decision while DNN-
based image classifications are often one-step fast process.

In each of the benchmarks below, we have a deep neural network
that takes the state of a system as the input and infers the next
control value to move toward an equilibrium state. We measure the
convergence time of DNN to stabilize the system. In doing so, our
goal is to model and analyze the extreme convergence times: the
worst-case time taken by the DNN controller to enter a small set
containing the stable state, starting from a randomly chosen initial
state.

Similar to the convergence of training algorithms, we set the
threshold of extreme values to the range from the mean of observed
execution times plus one standard deviation to the mean plus two
standard deviations. We measure the accuracy by comparing the
actual convergence times to the GEV-based prediction.

Ball and Beam: Figure 5 (a) shows the setup for a ball-and-beam
system with a beam whose tilt can be controlled by a motor and a
ball which is to be brought to rest at the center of the beam. The
CPS system has 6 variables: 𝑥 denotes the displacement of the ball

from the center of the beam; 𝑣 shows the velocity; 𝜃 is the angle of
the beam;𝜔 denotes the angular velocity of the beam;𝑢 denotes the
torque delivered by the motor; and 𝑑 denotes a random disturbance
force chosen uniformly at random from the range [−0.05, 0.05] ev-
ery 0.1 seconds. Given (𝑥, 𝑣, 𝜃, 𝜔) as the inputs, the control variable
𝑢 is inferred by a ReLU neural network with 5 hidden layers and
106 neurons in total. The differential equation model for (𝑥, 𝑣, 𝜃, 𝜔),
the DNNmodel, and the synthesis methodology of łregion stabilityž
are discussed in [16].

Test Case. We simulate the DNN controller and generate 10,000
random test cases. These are i.i.d. random initial states drawn from
the range: 𝑥 ∈ [−1, 1], 𝑣 ∈ [−1, 1], 𝜃 ∈ [−0.2, 0.2], 𝜔 ∈ [−0.1, 0.1]

and disturbance input as described above. Our goal is to measure
how long the system takes to settle and remain inside the region
(𝑥, 𝑣, 𝜃, 𝜔) ∈ [−0.05, 0.05]4. The total time taken for 10,000 simula-
tions is 11 mins 33 seconds (each run simulates the system for 30
time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 6a shows the recorded settling
times as well as the threshold of 17.5 for extreme values. It takes 2
seconds to infer GEV distributions. Figure 6b shows the empirical
vs. modeled probability density functions. The location, scale, and
shape of GEV are 17.1, 0.5, and 0.0, respectively. The shape shows
that GEV is type I, and the density of tail distribution is infinite,
but decaying exponentially. Figure 6c shows the QQ plot which is
used to find the bounds on the extrapolations.

Usefulness. Figure 6d shows the return levels and their 95% confi-
dence intervals. For 1K, 2K, 5K, and 10K return periods, the return

217

CAIN 2024, April 14ś15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

(a) Ball and Beam (b) Inverted Pendulum (c) Tora

Figure 5: Schematic diagrams for the neural-network controlled physical systems.

levels are 17.4 (s) [17.1, 17.7], 17.8 (s) [17.5, 18.2], 18.3 (s) [17.7,
18.8], and 18.6 [17.9, 19.3], respectively. The actual WCCTs are 17.8,
17.8, 19.3, and 19.3, for 1K, 2K, 5K, and 10K simulations. Those,
predictions for 2K and 10K simulations are predicted accurately.
The expected likelihood of observing the settling times above 17.4
(s) and 17.8 (s) after 100th queries are 10.4% and 6.0%, respectively.

Inverted PendulumWe consider the control of an inverted pendu-
lum on a cart (see Figure 5 (b)) using a neural networked controlled
system. The key idea is to stabilize an inverted pendulum by mov-
ing the cart back and forth so that the entire system comes to rest
with the pendulum pointing directly upwards. This is a very com-
monly studied control problem with numerous applications such
as segway scooters. We consider a reduced nonlinear model with
two state-variables: 𝜃 denoting the angle of the pendulum wherein
0 radians denote an upright pendulum and 𝜔 denotes the angular
velocity.

¤𝜃 = 𝜔, ¤𝜔 = sin(𝜃) − (𝑢 + 𝑑) cos(𝜃) .

Here 𝑢 is the control input and 𝑑 is a random disturbance chosen
every 0.1 seconds uniformly from the range [−0.1, 0.1]. Starting
from initial conditions (𝜃, 𝜔) ∈ [−1, 1]2, we are interested in the
time taken by a neural network controller to settle and remain in
the range [−0.05, 0.05]2. The neural network controller has two
hidden layers with a total of 20 neurons.

Test Case. We interact with DNN controller and generate 10,000
random test cases with initial states and disturbance inputs drawn
uniformly from the ranges described above. The total time taken for
10,000 simulations is 2 minutes and 35 seconds (each run simulates
the system for 30 time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 7a shows the recorded settling
times as well as the threshold of 2.9 for extreme values. It takes 2
seconds to infer GEV distributions. Figure 7b shows the empirical
vs. modeled probability density functions. The location, scale, and
shape of GEV are 2.9, 0.1, and 0.0, respectively. The shape shows
that GEV is type I, and the density of tail distribution is infinite, but
decaying exponentially. Figure 7c shows the QQ plot which might
be valid up to 3.3 (s).

Usefulness. Figure 7d shows the return level plots and its 95% confi-
dence intervals. For 1K, 2K, 5K, and 10K return periods, the return
levels are 3.0 (s) [2.9, 3.1], 3.1 (s) [3.0, 3.2], 3.2 (s) [3.1, 3.4], and 3.3
(s) [3.1 3.5], respectively. The actual WCCTs are 3.0 (s), 3.0 (s), 3.3
(s), and 3.4 (s) for 1K, 2K, 5K, and 10K simulations, respectively. The

predictions include the actual WCCT for all the simulation queries.
The expected likelihood of observing the computation times above
3.0 (s) after 100th queries is 12.2%.

Tora: Figure 5 (c) shows the TORA (Translational Oscillator with
Rotational Actuator), a widely studied nonlinear control model [34].
Its simplified model involves 4 state variables (𝑥1, . . . , 𝑥4) whose
dynamics are given by:

¤𝑥0 = 𝑥1, ¤𝑥1 = −𝑥0 + 0.1 sin(𝑥2) + 𝑑, ¤𝑥2 = 𝑥3, ¤𝑥3 = 𝑢 .

The initial states are drawn from ranges (𝑥1, 𝑥2) ∈ [−1, 1]2 and
(𝑥3, 𝑥4) ∈ [−0.5, 0.5]2 with the disturbance inputs𝑑 drawn from the
range [−0.01, 0.01]. The settling region is taken to be [−0.1, 0.1]4.
The neural network has a single hidden layer with just one neuron.

Test Case. We perform 10, 000 random simulations of the system,
requiring a total of 40 minutes and 50 seconds (each run simulates
the system for 300 time units with a time step of 0.02 time units).

Feasibility and Scalability. Figure 8a shows the recorded computa-
tion times as well as the threshold of 105.1 for extreme values. It
takes 2 seconds to infer GEV distributions. Figure 8b shows the
empirical vs. modeled probability density functions. The location,
scale, and shape of GEV are 110.2, 1.5, and 0.0, respectively. The
shape shows that GEV is type I and the density of tail distribution
is finite. Figure 8c shows the QQ plot.

Usefulness. Figure 8d shows the return levels and their 95% confi-
dence intervals. For 1K, 2K, 5K, and 10K return periods, the return
level is 111.6 (s) [110.8, 113.3], 112.4 (s) [111.5, 113.3], 113.3 (s) [112.1,
114.5], and 113.9 [112.5, 115.3], respectively. The actualWCCTs have
remained 113.5 (s). Therefore, the predictions up to 5K and 10K
simulations are accurate. The expected likelihood to observe the
computation times above 111.3 (s) after 100th interaction is 8.4%.

Answer RQ3: We found that GEV is a feasible and scalable
method to infer the WCCT of DNN inferences for cyber-physical
systems. In all 3 case studies, GEV predicts the worst-case con-
vergence times accurately in the longest horizon (i.e., 5K and
10K), similar to the case studies for the ML training algorithm.
Consider all 12 predictions, we observe that GEV predictions are
accurate for 9 cases, with an overall accuracy of 75%.

218

WCCT of ML algorithms via EVT CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

(a) (b) (c) (d)

Figure 6: Ball-beam. (a) the converge times of Ball-Beam on the randomly generated inputs, (b) quantile Plot for the execution time of Ball-Beam,

(c) the density plot for GEV of Ball-Beam, (d) m-return level plot for Ball-Beam with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 7: Inverted Pendulum. (a) the converge times of Pendulum on the randomly generated inputs, (b) quantile Plot for the execution time of

Pendulum, (c) the density plot for GEV of Pendulum, (d) m-return level plot for Pendulum with expected values and their 95% CI.

(a) (b) (c) (d)

Figure 8: Tora. (a) the converge times of Tora on the randomly generated inputs, (b) quantile Plot for the execution time of Tora, (c) the density

plot for GEV of Tora, (d) m-return level plot for Tora with expected values and their 95% CI.

6 DISCUSSIONS

EVT only considers the external manifestations of a system and
does not provide information on how the input observations are
made. To ensure the theory applies, it is necessary to understand the
execution conditions that programs may experience at deployment
time and control the execution conditions during analysis time to
ensure they are representative. In addition, EVT does not guarantee
the representativeness of the data, which depends on the quality of
test cases and the state of the environment. The WCCT estimates
obtained with EVT are only valid for the data population sampled
or the observed operating conditions. If representativeness is low,
the WCCT bounds may not be a reliable prediction.
Internal Validity. The EVT applies when the observations are inde-
pendent and identically distributed. While leveraging DPFuzz, we

mitigate the dependency between inputs by randomizing observa-
tions and controlling the size of inputs. In addition, the threshold
of EVT should be chosen judiciously, otherwise the GEV distribu-
tions might include non-tail samples (mixture distributions) or a
few tail samples that cast doubts on the confidence. While we used
the characteristics and confidence of EVT to choose a threshold;
more research is needed to find principles for picking the threshold
values for the WCCT analysis of ML-based software to achieve a
higher accuracy/precision in the analysis. Moreover, the number of
samples to fit into the EVT engine is also important for a precise
analysis. While we used the Bayes factor to decide on the number
of samples for EVT analysis, it requires further research.
External Validity. To ensure that the results are generalizable, we
consider multiple case studies for both training and inference of
ML algorithms. While we consider deep neural networks, we only

219

CAIN 2024, April 14ś15, 2024, Lisbon, Portugal Saeid Tizpaz-Niari and Sriram Sankaranarayanan

consider the pre-trained DNNs as CPS controllers. We left studying
the worst-case convergence of training DNNs for future work.

7 RELATEDWORK

Extreme Value Theory for Probabilistic WCET. Extreme value
theory has been significantly adapted to provide probabilistic guar-
antees on the worst-case execution times in the real-time and em-
bedded systems [11, 18, 29]. Lima et al. [28] studied the applicabil-
ity of extreme value theory for estimating worst-case execution
times in an embedded platform equipped with a random cache of
configurable sizes. Similar to us, they found that the worst-case
execution times can be modeled as one of the three extreme value
distributions (Weibull, Gumbel or Frechet), and thus restricting the
analysis to one distribution can lead to poor or even unsafe WCET
estimates. They extensively studied the effects of cache over the
timing observations of embedded systems, while we focused on
varying the inputs to the training process and inference models
of machine learning software. Santinelli et al. [36] studied the im-
pacts of relaxing i.i.d. assumptions in the EVT modeling of WCET.
They offered various tests to understand whether samples are inde-
pendent and identical. They show the limitations of EVT in such
cases and propose techniques such as bootstrapping to convey
independence. Lima and Bate [27] tackle the inherent problems
of time measurements over modern hardware for the EVT analy-
sis. They proposed indirect estimation in statistical time analysis
(IESTA), which is based on randomizing the data to untangle the
dependency on the hardware. The effectiveness of IESTA is demon-
strated through experiments on two real case studies involving
execution time measurements from an embedded platform and a
Rolls-Royce Full Authority Digital Engine Controller. Cazorla et
al. [5] presents a framework to discuss the limitation of EVT in
computing upper bounds on the execution time of programs. Specif-
ically, they consider the problem of sufficiency of observational
data to infer extreme value distributions. Their recommendations
include controlling the execution conditions at analysis time and un-
derstanding the representativeness of the analysis-time execution
conditions with respect to those that may occur during operation.
They identify various sources of variability of execution times and
propose a framework to sample inputs randomly while ensuring
representative maxima samples from those sources of variability.
Since identifying all of the sources of variability in our applications
is hard, we are required to develop new techniques to understand
the representativeness of data. Overall, all previous work focused
on real-time and embedded systems, while we measured the con-
vergence time of ML algorithms.

Extreme Value Theory for Detecting Rare Bugs in Circuit

Design. Statistical blockage [39] used EVT to block unwanted rare
events to improve circuit reliability. In particular, the authors found
standard MCMC techniques such as importance sampling are inef-
ficient in modeling unlikely rare events. Instead, they used MCMC
sampling to infer the parameters of EVT distributions. Antoniadis
et al. [3] adapted EVT to estimate the worst-case delay of VLSI cir-
cuits under variations in gate/interconnect parameters. Cooley et
al. [10] used the generalized Pareto distribution to predict flooding
based on daily precipitations above a high threshold. A similar anal-
ysis has proposed to study how a slowly changing climate would

possibly lead to more frequent extreme events [9]. EVT tools have
been also used to answer hypothetical questions about physical
endurance [1]. We refer interested readers to classic EVT books to
see other examples and applications [8, 12, 13].

Characterization of WCET through program analysis. At
a high-level, there are two major approaches to estimating the
worst-case execution times in software: static analysis and dynamic
analysis. Here, we discuss these techniques as well as those that
combine these two techniques.
Static Analysis. SAFER [6] combines taint analysis with control
dependency analysis to identify high-complexity control structures
whose execution can lead to resource exhaustion such as CPU
clocks and stack space. While these techniques can detect infinite
executions, they rely on expensive taint analysis that might not
be feasible for some real-world applications (e.g., Java programs)
with dynamic features such as reflections [23]. In addition, SAFER
only detects DoS vulnerabilities, not super-linear computational
complexities.
Dynamic Analysis. Search-based software testing has been signifi-
cantly used to model the execution times [25, 30, 33, 40, 41, 43]. For
example, PerfFuzz [25] adapts evolutionary algorithms to maxi-
mize the cost of different entities in the control-flow graph (such
as the number of times to take an edge) that lead to precise charac-
terization of WCET in large-scale systems. These techniques often
discover a single input that characterizes WCET whereas EVT tech-
niques provide rich statistical information such as the expected
worst-case execution times, the return levels of WCET, and their
likelihood. We adapted DPFuzz [44], a similar ML-oriented fuzz
testing, to generate test cases.
Hybrid Analysis.GameTime [38] combines basis path analysis through
SMT solvers with random suite test generations to predict various
timing properties of software including WCET. In particular, they
use CFG paths with total execution times to infer the computation
times of each element in the CFG.

8 CONCLUSION AND FUTUREWORK

Timing analysis is a crucial non-functional property of ML-based
software systems but poses significant challenges to traditional
static and dynamic program analysis methods. We proposed a tool
and a technique based on the statistics of extreme value theory
to model the worst-case convergence time of ML algorithms. Our
experiments showed that EVT-based WCCT analysis is feasible,
scalable, and accurate for the timing analysis of ML algorithms.

Our observations include that i) EVT becomes more accurate in
the longer horizon than the shorter period of time and ii) EVT was
more accurate in predicting the DNN inference than predicting the
ML training convergence times. There are also multiple other excit-
ing future directions. One direction is to infer classifiers from the
characteristics of inputs (and their features) that might manifest the
worst-case convergence times as a filtering mechanism, especially
for ML-as-service frameworks. Another direction is to incorporate
EVT to validate the efficacy of repair (mitigation) applied to fix a
performance bug or improve efficiency.

Acknowledgement. The authors thank the anonymous CAIN
reviewers for their comments to improve this paper. Tizpaz-Niari
partially supported by the NSF under grants CNS-2230060.

220

WCCT of ML algorithms via EVT CAIN 2024, April 14ś15, 2024, Lisbon, Portugal

REFERENCES
[1] Ahmed, H.: Extreme value theory in a nutshell with various applications

(2021), https://towardsdatascience.com/extreme-value-theory-in-a-nutshell-
with-various-applications-3260b6a84316

[2] Amodei, D., Hernandez., D.: Ai and compute (2018), https://openai.com/research/
ai-and-compute

[3] Antoniadis, C., Garyfallou, D., Evmorfopoulos, N., Stamoulis, G.: Evt-based
worst case delay estimation under process variation. In: 2018 Design, Au-
tomation Test in Europe Conference Exhibition (DATE). pp. 1333ś1338 (2018).
https://doi.org/10.23919/DATE.2018.8342220

[4] Apogee-Research: Snapbuddy application (2016), https://github.com/Apogee-
Research/STAC/tree/master/Engagement_Challenges/Engagement_2/
snapbuddy_1

[5] Cazorla, F.J., Vardanega, T., Quiñones, E., Abella, J.: Upper-bounding program
execution time with extreme value theory. In: 13th International Workshop on
Worst-Case Execution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2013)

[6] Chang, R., Jiang, G., Ivancic, F., Sankaranarayanan, S., Shmatikov, V.: Inputs of
coma: Static detection of denial-of-service vulnerabilities. In: Computer Security
Foundations (CSF). pp. 186ś199. IEEE Press (2009)

[7] Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J.: Deep neural networks
segment neuronal membranes in electron microscopy images. Advances in neural
information processing systems 25 (2012)

[8] Coles, S., Bawa, J., Trenner, L., Dorazio, P.: An introduction to statistical modeling
of extreme values, vol. 208. Springer (2001)

[9] Cooley, D.: Extreme value analysis and the study of climate change. Climatic
change 97(1), 77ś83 (2009)

[10] Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precip-
itation return levels. Journal of the American Statistical Association 102(479),
824ś840 (2007). https://doi.org/10.1198/016214506000000780, https://doi.org/10.
1198/016214506000000780

[11] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L.,
Abella, J., Mezzetti, E., Quinones, E., Cazorla, F.J.: Measurement-based probabilis-
tic timing analysis for multi-path programs. In: 2012 24th euromicro conference
on real-time systems. pp. 91ś101. IEEE (2012)

[12] Davison, A.C.: Modelling Excesses over High Thresholds, with an Application,
pp. 461ś482. Springer Netherlands, Dordrecht (1984)

[13] De Haan, L., Ferreira, A., Ferreira, A.: Extreme value theory: an introduction,
vol. 21. Springer (2006)

[14] Dua, D., Graff, C.: UCI machine learning repository (2017), https://archive.ics.uci.
edu/ml/datasets/census+income

[15] Dua, D., Graff, C.: UCI machine learning repository (2017), https://archive.ics.uci.
edu/ml/datasets/bank+marketing

[16] Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. In: IFAC Confer-
ence on Analysis and Design of Hybrid Systems (ADHS). vol. 51, pp. 151ś156.
IFAC-PapersOnline (2018)

[17] Gilleland, E., Ribatet, M., Stephenson, A.G.: A software review for extreme value
analysis. Extremes 16(1), 103ś119 (2013)

[18] Hansen, J., Hissam, S., Moreno, G.A.: Statistical-based wcet estimation and val-
idation. In: 9th international workshop on worst-case execution time analysis
(WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

[19] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian
approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.)
Computational Methods in Systems Biology. pp. 218ś234. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2009)

[20] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian
approach to model checking biological systems. In: CMSB. pp. 218ś234. Springer
(2009)

[21] Jovanovic, B.D., Levy, P.S.: A look at the rule of three. The American Statistician
51(2), 137ś139 (1997)

[22] Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compres-
sion for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC). pp. 1ś10. IEEE (2016)

[23] Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of java
reflection-literature review and empirical study. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE). pp. 507ś518. IEEE (2017)

[24] Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and related properties of
random sequences and processes. Springer Science & Business Media (2012)

[25] Lemieux, C., Padhye, R., Sen, K., Song, D.: Perffuzz: Automatically generating
pathological inputs. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. pp. 254ś265 (2018)

[26] Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z.,
Langer, D., Pink, O., Pratt, V., et al.: Towards fully autonomous driving: Systems
and algorithms. In: 2011 IEEE intelligent vehicles symposium (IV). pp. 163ś168.
IEEE (2011)

[27] Lima, G., Bate, I.: Valid application of evt in timing analysis by randomising exe-
cution time measurements. In: 2017 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). pp. 187ś198. IEEE (2017)

[28] Lima, G., Dias, D., Barros, E.: Extreme value theory for estimating task execution
time bounds: A careful look. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). pp. 200ś211 (2016). https://doi.org/10.1109/ECRTS.2016.20

[29] Lu, Y., Nolte, T., Bate, I., Cucu-Grosjean, L.: A new way about using statistical
analysis of worst-case execution times. ACM SIGBED Review 8(3), 11ś14 (2011)

[30] Noller, Y., Tizpaz-Niari, S.: Qfuzz: Quantitative fuzzing for side channels. In:
Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. pp. 257ś269 (2021)

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825ś2830 (2011)

[32] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Make multilabel classifi-
cation in scikit-learn. https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_multilabel_classification.html (2022)

[33] Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Proceedings
of the 2017 ACMSIGSACConference on Computer and Communications Security.
pp. 2155ś2168. CCS’17 (2017)

[34] Robert, T.B., Bernstein, D.S., Coppola, V.T.: A benchmark problem for nonlinear
control design. International Journal of Robust and Nonlinear Control 8, 307ś310
(1998)

[35] Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: PLDI.
pp. 447ś458 (2013)

[36] Santinelli, L., Morio, J., Dufour, G., Jacquemart, D.: On the sustainability of the
extreme value theory for wcet estimation. In: 14th International Workshop on
Worst-Case Execution Time Analysis. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2014)

[37] Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai. Communications of
the ACM 63(12), 54ś63 (2020)

[38] Seshia, S.A., Kotker, J.: Gametime: A toolkit for timing analysis of software. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 388ś392. Springer (2011)

[39] Singhee, A., Rutenbar, R.A.: Statistical blockade: a novel method for very fast
monte carlo simulation of rare circuit events, and its application. In: 2007 Design,
Automation & Test in Europe Conference & Exhibition. pp. 1ś6. IEEE (2007)

[40] Tizpaz-Niari, S., Černỳ, P., Chang, B.Y.E., Sankaranarayanan, S., Trivedi, A.:
Discriminating traces with time. In: Tools and Algorithms for the Construction
and Analysis of Systems: 23rd International Conference, TACAS 2017. pp. 21ś37.
Springer (2017)

[41] Tizpaz-Niari, S., Cerny, P., Chang, B.Y.E., Trivedi, A.: Differential performance
debugging with discriminant regression trees. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 32 (2018). https://doi.org/10.1609/aaai.v32i1.11875,
https://ojs.aaai.org/index.php/AAAI/article/view/11875

[42] Tizpaz-Niari, S., Černỳ, P., Sankaranarayanan, S., Trivedi, A.: Efficient detection
and quantification of timing leaks with neural networks. In: Runtime Verification:
19th International Conference, RV 2019, Porto, Portugal, October 8ś11, 2019,
Proceedings 19. pp. 329ś348. Springer (2019)

[43] Tizpaz-Niari, S., Černỳ, P., Trivedi, A.: Detecting and understanding real-world
differential performance bugs in machine learning libraries. In: Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 189ś199. ISSTA’20 (2020)

[44] Tizpaz-Niari, S., Černý, P., Trivedi, A.: Dpfuzz: Fuzzing and debugging for differ-
ential performance bugs in machine learning libraries (2020), https://doi.org/10.
1145/3406882

[45] Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware
detection. In: Proceedings of the 2014 ACM conference on SIGCOMM. pp. 371ś
372 (2014)

221

