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Side-channel vulnerability detection has gained prominence recently due to Spectre and Meltdown attacks.
Techniques for side-channel detection range from fuzz testing to program analysis and program composition.
Existing side-channel mitigation techniques repair the vulnerability at the IR/binary level or use runtime moni-
toring solutions. In both cases, the source code itself is not modified, can evolve while keeping the vulnerability,
and the developer would get no feedback on how to develop secure applications in the first place. Thus, these
solutions do not help the developer understand the side-channel risks in her code and do not provide guidance
to avoid code patterns with side-channel risks. In this article, we present Pendulum, the first approach for
automatically locating and repairing side-channel vulnerabilities in the source code, specifically for timing
side channels. Our approach uses a quantitative estimation of found vulnerabilities to guide the fix localization,
which goes hand-in-hand with a pattern-guided repair. Our evaluation shows that Pendulum can repair
a large number of side-channel vulnerabilities in real-world applications. Overall, our approach integrates
vulnerability detection, quantization, localization, and repair into one unified process. This also enhances the
possibility of our side-channel mitigation approach being adopted into programming environments.
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1 Introduction
Programs often handle confidential data such as passwords, social security numbers, and medical
records. While programmers take precautions such as encryption against data leaks, an attacker
may still compromise the secret via a side-channel (SC), i.e., observations about a non-functional
property such as execution time and memory consumption. Studies show that the SC attack is
practical [15, 19, 32] and imposes significant security threats. A well-known recent SC attack is
Spectre [31], which exploits the speculative execution feature of microprocessors to infer confiden-
tial information. SC attacks have also been reported against the RSA algorithm [15] and Google’s
Keyczar library [36].

Detecting SC vulnerabilities is a challenging problem. As opposed to a functionality property,
e.g., a linear-time temporal logic property, which is often interpreted over a single execution trace,
the presence of SCs is a hyper-property, whose reasoning involves multiple traces. For detecting
SCs, both static-analysis-based techniques [5, 18] and dynamic testing techniques [43] have been
proposed. They can prove the absence of vulnerability or find a specific vulnerability. However, they
do not reveal the severity of the vulnerability. This information can be derived via quantification
[45, 46], which computes the potential amount of information leakage in bits, e.g., via counting
the possible different SC observations (aka SC partitions) and using the min-entropy notion of
quantitative information flow [54].

Once such SC vulnerabilities are detected and quantified, the next step is to develop a repair. The
current automated SC mitigation techniques mainly focus on the runtime protection of software.
They either use some monitoring solution to mask the vulnerability (e.g., see [30, 55]) or fix the
vulnerabilities on IR or in the binary levels (e.g., see [58, 59, 61]). Neither helps the developer
understand the SC risks in their software. Existing works have proposed different strategies to
address SC vulnerabilities. In some domains like compression algorithms, a common approach is to
simply disable compression when it is appropriate [47]. Another strategy is to entirely eliminate
the SC vulnerability by removing all secret-dependent control locations [37, 61]. Such strategies
are often limited to a specific application domain and significantly degrade performance.

In this work, we focus on fixing timing SCs, i.e., vulnerabilities that are exposed via observing
execution times. We propose our approach Pendulum,1 which uses a quantitative estimation of SC
vulnerabilities to drive a fix localization. It then uses a pattern-based program repair technique
to mitigate the identified vulnerability in the source code and ultimately reduces the amount of
information leaks in terms of SC partitions. In our approach, the detection, localization, and repair
of SC vulnerabilities are integrated as one joint process to automate an efficient development of
secure software. It allows for user involvement (e.g., prioritizing fix locations that likely eliminate
specific partitions or guiding the repair by providing loop bounds). At the same time, it can also
operate in a fully automated fashion and present the final fix suggestions to the users.

In our evaluation, we apply Pendulum to existing subjects of SC vulnerabilities [43, 45] as well as
new subjects. We show that Pendulum can mitigate the information leakage for 33 of 42 vulnerable
programs, while for 26, it can entirely eliminate them. Moreover, only 5 of these 33 mitigating
repairs introduce functional side effects. The repairs lead to a performance slowdown of 43.0%
(average) or 2.6% (median).

In summary, our work makes the following contributions:

— the mitigation of timing SC vulnerabilities in the source code, driven by vulnerability quantifi-
cation results, and hence, the combination of SC vulnerability detection and repair in a joint
framework,

1After being repaired with our approach, a program that had a timing vulnerability can execute in constant time, regardless
of the input, which is analogous to a pendulum’s isochronism.
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— focused vulnerability repairs in the source code (instead of any monitoring or intermediate
representation (IR)-level solutions), which helps the developer to understand SC risks arising
from code patterns, and

— the implementation of Pendulum and its evaluation in terms of vulnerability mitigation,
performance degradation, and potential side-effect introduction.

2 Overview
2.1 Problem Statement

Threat Model. We adapt our threat model from a chosen-message attack [33] where an adversary
picks an ideal public input to compromise secret inputs in one trial. The adversary, who has access
to the source code, can sample secret and public inputs on their local machine arbitrarily many
times and construct an ideal public input that partitions the secret into many classes of timing
observations. In the online mode, the attacker queries the target application with the best guess,
observes SCs, and maps the observation to a partition of secret inputs. Based on this threat model,
we define the following cost model to characterize the SC observations made by an attacker:

Definition 2.1 (Cost Model). The cost model of a deterministic program P is a tuple (-,., Σ, 2)
where - = {G1, . . . , G=} is the set of secret inputs, . = {~1, . . . , ~<} is the set of public inputs,
Σ ⊆ R= is a finite set of secrets, and 2 : R= × R< → N>0 is the cost function of the program over
the secret and public inputs.

Cost Function. In this work, our cost function counts the number of executed bytecode instruc-
tions, assuming each bytecode has equal weight. Since our goal is to assess, localize, and repair
timing SC vulnerabilities in the source code, we assume that the number of executed Java bytecodes
is a reasonable abstraction to capture variations in the execution times, similar to existing work in
this domain [5, 18, 43–46]. It is possible to have more refined cost functions that, e.g., assign different
weights to different bytecode instructions according to their actual execution time. However, we
opted to reuse the existing cost model from the previous work instead of studying a new one, which
we will leave for future work.

Vulnerability Quantification. Our threat model requires a quantitative analysis of SCs to char-
acterize the number of partitions. In particular, min entropy [54] uses the number of partitions
to quantify immediate threats from SC adversaries. Formally, let Σ.=? = 〈(1, (2, . . . , (:〉 be the
quotient space of Σ characterized by the cost observations under the public input ? such that
B, B′ ∈ (8 =⇒ |2 (B, ?) − 2 (B′, ?) | ≤ n . Given that . = ?∗ is the single public input that gives the
maximum partitions : , the leakage !P (measured in bits) can be computed as log2 : based on min
entropy. A program with more than one partition is considered vulnerable because an attacker
who knows about the partitions and the characteristics of the corresponding secrets can infer
information about the secrets via SC observations. Therefore, the attacker would be able to infer
the subset (8 (1 ≤ 8 ≤ :) of secrets to which the actual secret input B belongs by executing the
program P with the public input ? and observing the cost 2 (B, ?). If there were only one partition,
there would be no possibility to distinguish secrets via this SC.

Definition 2.2 (Problem Statement). Given a vulnerable program P with disjoint public and secret
input variables, our goal is (1) to search for a set of secret values {B1, . . . , B@} and a single public
input ? that characterizes the maximum partitions : (with : ≤ @) in terms of SC observations. Then,
(2) to identify a set of program locations Ψ : {q1, . . . , q; } that are the root causes of SCs. Finally, (3)
to transform the program P at the locations Ψ into a semantically equivalent program P′ such
that the search of maximum SC partitions of P′ leads to : ′ with : ′ < : , i.e., a reduced number of
partitions, and hence, to a mitigation of the SC vulnerability.
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Fig. 1. Overall workflow of Pendulum.

2.2 Pendulum Overview
Input and Output. As input, Pendulum takes the vulnerable program and a fuzz driver that parses

the input and feeds it to the program. As in previous works [43, 45], the driver is provided by a
human who can distinguish public and secret inputs. The driver does not need to call the (possibly
unknown) vulnerable method directly. Its implementation can follow a given template [43, 45] and
be aided by driver generation tools [29, 63], which can identify entry points to vulnerable program
behavior and synthesize their parameters. As output, Pendulum produces a repaired program with
mitigated vulnerability.

Step 1—Vulnerability Quantification. As shown in Figure 1, Pendulum first detects and quantifies
SCs, for which it uses QFuzz [45]. Inspired by DifFuzz [43] and AFL [62], QFuzz fuzzes the program
to maximize the number of observed partitions. It randomly generates a public value and a set of
secret values by mutating initial seed values. QFuzz then executes the program with the public
value and each secret value, observing the corresponding cost. If the values result in more partitions
than all previously generated values, QFuzz would keep them as seeds for future mutation. As
output, QFuzz provides a public value and a set of secret values that lead to the most partitions.
Pendulum retrieves the set of secret values that expose the most partitions and uses them for fix
localization.

Step 2—Fix Localization. Pendulum compares the execution traces of the secrets pairwise to
identify vulnerable basic blocks, which are then mapped to source locations. A subset of the
locations are selected for repair.

Step 3—Repair. At every selected fix location, according to the program construct that causes the
vulnerability, Pendulum transforms the program with a particular fix pattern. For example, the &&
operator is substituted with a wrapper of &.

Step 4, 5—Validation. The repair is validated from two aspects. First, QFuzz is re-run to check if
the repaired program shows reduced SC partitions (step 4). If this fuzz campaign shows that there
are still too many partitions, the fuzzer input from this campaign can be used to drive yet another
round of localization and repair (steps 2 and 3). This validation–repair loop can iterate until the
vulnerability is reduced to an acceptable level. Secondly, the repair is checked for (the absence of)
any change in functionality (step 5). In our experiments, we manually examined every repair and
also performed regression testing using EvoSuite [24] and formal verification using SymDiff [35].

Envisioned Usage. We envision that Pendulum will help developers discover, understand, and
mitigate timing SC vulnerabilities, by localizing potential vulnerabilities and proposing the corre-
sponding patches. While the patch generation can be fully automated, aiming to fix all detected
issues, the developer can also select repair locations from the vulnerability locations identified by
Pendulum. This allows the developer to balance security improvements and performance degrada-
tions, which usually represents a trade-off in security patching. Once Pendulum generates a patch,
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1 modPow(base , exponent , modulus , width) {
2 BigInteger r0, r1 = BigInteger.ONE , base;
3 for (int i = 0; i < width; i++) {
4 if (!exponent.testBit(width - i - 1)) {
5 r1 = fastMultiply(r0, r1).mod(modulus);
6 r0 = r0.multiply(r0).mod(modulus);
7 } else {
8 r0 = fastMultiply(r0, r1).mod(modulus);
9 r1 = r1.multiply(r1).mod(modulus);

10 }
11 }
12 return r0;
13 }
14 fastMultiply(x, y) {
15 ...
16 if (y.equals(BigInteger.ONE)) {
17 return x;
18 }
19 BigInteger z = ...;
20 return z;
21 }

Listing 1. Unsafe Exponentiation (Vulnerabilities Marked in Red).

the developer can inspect, test, and modify it to ensure the program semantics remain unchanged
before finally applying the patch.

2.3 Illustrative Example
We explain how Pendulum works on a method computing modular exponentiation, which is
common in public-key cryptography and is critical to security. The method originates from one
of our experimental subjects, blazer_modpow2 [5]. In Listing 1, the method modPow computes the
remainder when base (public) is raised to the power of exponent (secret) and divided by modulus
(public). Two intermediate values, r0 and r1, are updated iteratively for width times, where width
is the bit length of exponent and also public.

Suppose a QFuzz run gives the public input base=8, modulus=35, width=4, and two different
secret exponents, exp1=8 (1000 in bits) and exp2=12 (1100 in bits), which expose two different SC
partitions. Pendulum would compare the execution traces of the two secrets; the locations where
they diverge are considered the fix locations. There are two divergences in this case. One occurs in
the second iteration, in line 4, when exp1 and exp2 test differently for their second highest bits.
The two traces do not rejoin until the third iteration, when the third highest bits of both exponents
test false. Thus they enter the true branch in line 5 and call fastMultiply(r0,r1). At the point,
exp1 has r0=29,r1=22 and takes the false branch in line 16, while exp2 has r0=22,r1=1 and takes
the true branch. Therefore, line 16 sees another divergence. Afterward, the two traces rejoin at the
fourth iteration and diverge no more.

To mitigate the vulnerability, Pendulum applies fix patterns at the two locations, as in Listing
2. At the first fix location, starting from line 4, the original if statement is replaced with a series
of conditional assignments to r0 and r1, where we have introduced two utility methods, not and
ite, which perform logical negation and if-then-else respectively. The two utility methods are
constructed in such a way that they execute in constant time, regardless of the arguments. At the
second fix location, starting from line 15, the originally early-returned value x is conditionally
stored in a new variable result, and the return is postponed to the end of the method. For this
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1 modPow(base , exponent , modulus , width) {
2 BigInteger r0, r1 = BigInteger.ONE , base;
3 for (int i = 0; i < width; i++) {
4 boolean b = not(exponent.testBit(width - i - 1));
5 r1 = ite(b, fastMultiply(r0, r1).mod(modulus), r1);
6 r0 = ite(b, r0.multiply(r0).mod(modulus), r0);
7
8 r0 = ite(b, r0, fastMultiply(r0, r1).mod(modulus));
9 r1 = ite(b, r1, r1.multiply(r1).mod(modulus));

10 }
11 return r0;
12 }
13 fastMultiply(x, y) {
14 ...
15 BigInteger result = null;
16 boolean yIsOne = y.equals(BigInteger.ONE);
17 result = ite(yIsOne, x, result);
18 BigInteger z = ...;
19 return ite(yIsOne, result, z);
20 }

Listing 2. Safe Exponentiation (Repairs Marked in Green).

example, our experiment shows that the fix patterns eliminate the vulnerability while preserving
the program functionality.

In the rest of this article, we describe the fix localization algorithm in Section 3 and the fix
patterns in Section 4.

3 Fix Localization
Fix localization helps achieve maximal vulnerability mitigation with minimal program change.
Given a set of secret values that reveal SC partitions, our fix localization works in two steps. First,
execution traces of the secrets are compared pairwise to find partition-inducing basic blocks, called
leaky blocks. Then, the leaky blocks are mapped to the source level.

3.1 Fix Localization at Bytecode Level
Algorithm 1 shows how to identify leaky blocks. For each pair of secrets B8 and B 9 representing two
different partitions, we first run the program P with the secrets to get their respective execution
traces C8 and C 9 , where a trace is a sequence of basic blocks. Then, C8 and C 9 are compared to identify
the set �8, 9 of blocks where the traces diverge. These are leaky blocks. The final set � of leaky blocks
is the union of all such �8, 9 .

At the core of Algorithm 1 is the trace comparison function, diffTraces. The two input traces,
C1 and C2, are expected to start from the same basic block, which is the first block of the method
that is used as the entry point in the fuzz driver. From there, the comparison goes along block by
block (line 11–16) until the two traces diverge. The last basic block, last, where C1 and C2 coincide,
is identified as leaky (line 18–19).

After they diverge at last, C1 and C2 may or may not rejoin each other. To determine this, we
take the control flow graph of the method where last resides, insert an exit block as the successor
of all blocks ending with a return instruction, and then compute the post-dominator tree of this
graph. It is worth noting that, in constructing the control flow graph, we take care to end a basic
block at any method invocation instruction, e.g., invokespecial, regardless of whether it returns.
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Algorithm 1: Determining Fix Locations at Bytecode Level by Comparing Traces Pairwise
Input :Program P, public value ~, secret values B1, B2, · · · , B:
Output :Set � of basic blocks to fix

1 � ← ∅
2 for 8 ← 1 to : do
3 for 9 ← 8 + 1 to : do
4 C8 ← P(~, B8 ), C 9 ← P(~, B 9 )
5 �8, 9 ← diffTraces(C8 , C 9 )
6 � ← � ∪ �8, 9

7 return �

8 Function diffTraces(C1, C2):
9 � ← ∅, 8 ← 0, 9 ← 0, stack← empty stack

10 while CAD4 do
11 if C1 [8] = C2 [ 9] then
12 if C1 [8] ends with method invocation then
13 stack.push(8)

14 else if C1 [8] ends with return instruction then
15 stack.pop()
16 8 ← 8 + 1, 9 ← 9 + 1
17 else
18 last← C1 [8 − 1]
19 � ← � ∪ { last }
20 next← postDominator(last)
21 if next = EXIT then
22 if stack.empty() then
23 break
24 else
25 ; ← stack.?>? ()
26 callSite← C1 [;]
27 next← postDominator(callSite)

28 while C1 [8] ≠ next do
29 8 ← 8 + 1
30 while C2 [ 9] ≠ next do
31 9 ← 9 + 1

32 return D

This facilitates maintaining a call stack as we follow the traces, which is of use later. Depending on
the post-dominator of last, three cases may follow:

Case 1. In the simple scenario, the post-dominator of last is a “normal” block that is not the exit
block (line 20). It follows that C1 and C2 will join again at this post-dominator designated as
next. Therefore, we find next in the rest of both traces (line 28–31) and resume comparison
from there.
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Algorithm 2: Mapping a Leaky Block to a Source Element Chain
Input :1;>2: : An identified leaky block to fix

� : A list of bytecode instructions in the method of 1;>2:
;8=4_C01;4 : � → N+: Line number table of the method that maps each bytecode instruction to
source line number �() : Abstract syntax tree of the method

Output :The source element chain corresponding to the block

1 1A0=2ℎ ← the last instruction of 1;>2: // must be a conditional branch

2 ;8=4_=> ← ;8=4_C01;4 (1A0=2ℎ)
3 8=BCAD2C8>=B ← 〈8=BCAD2C8>= ∈ � | ;8=4_C01;4 (8=BCAD2C8>=) = ;8=4_=>〉
4 BC0C4<4=CB ← 〈=>34 ∈ �() | =>34 is a statement in line ;8=4_=>〉
5 2ℎ08=B ← 〈〉 // “< >” for empty list

6 for B in BC0C4<4=CB do
7 2ℎ08=B ← 2ℎ08=B + parse_statement(s) // “+” for list concatenation; see

Algorithm 3 for parsing

8 : ← index of 1A0=2ℎ in 8=BCAD2C8>=B

9 return the :-th item of 2ℎ08=B

Case 2. The post-dominator is the exit block, i.e., C1 and C2 will not join again before returning from
the method where last resides. We now check the call stack maintained along the way
(line 11–15): if this method was invoked by some other method, i.e., it is not the entry
method, C1 and C2 will join at the block immediately after the call site (line 25–27), where
we resume comparison.

Case 3. The post-dominator is the exit block, as in the previous case, but the call stack is now
empty (line 22), meaning that C1 and C2 will exit the entry method without ever joining
again. Thus, we terminate the comparison (line 23).

3.2 Fix Localization at Source Level
Source-level localization involves mapping leaky blocks, or rather, their ending instructions, to the
source code. Such instructions that allow more than one successor (remember that a leaky block
causes execution divergence) include conditional branch instructions (e.g., ifne), tableswitch,
and lookupswitch. As switch statements can be converted to if statements in principle, we
consider only conditional branch instructions.

Program constructs involving conditional branches include

— logical and comparison operators, including the not operator (!), binary comparison operators
(>, <, >=, <=, !=, ==), binary logical operators (&&, ||), and the ternary operator (?:);

—if statements;
— loop statements, including for, while, and do-while.

We note that for one conditional branch in the bytecode, there is possibly a chain of responsible
source code elements, instead of a single one. This has to do with how the Java compiler generates
instructions. As an example, in the statement if(!b)foo();, if and ! jointly produce an ifne
instruction, which would persist unless both elements are gone; for example, if(b)foo(); still
has one ifeq instruction. In this case, we have a chain of two elements to be fixed.

We show our overall source-level fix localization algorithm in Algorithm 2. It maps a leaky block
to its corresponding source element chain. If multiple blocks are identified as leaky, the mapping
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algorithm can be applied to each block individually. In addition to the leaky block, the algorithm
also takes as input all the bytecode instructions of the method where the block is located, as well
as the line number table and abstract syntax tree (AST) of the method. The line number table can
be found in the class file. It maps each instruction to a line number =, which means the instruction
is compiled from source code in line =.

Algorithm 2 starts by analyzing the bytecode. It first retrieves the last instruction of the leaky
block and looks up the line number of the instruction from the line number table (lines 1—2). Note
that in the source line indicated by this number, there may be multiple chains, thus leading to
multiple conditional branch instructions. To decide which chain corresponds to the instruction we
focus on, we first get the list of instructions in the line in the order they appear in the class file
(line 3). We then parse the program statements in that line (usually a single statement) sequentially
to obtain the list of all chains in the line (lines 4—7). These chains are arranged in the same order
they are compiled to bytecode. This is a property maintained by our customized parsing algorithm
(Algorithm 3, discussed in the next paragraphs). Therefore, if the instruction we focus on is the :th
of the list of instructions, it would correspond to the :th chain (lines 8–9 of Algorithm 2).

An important step in the algorithm is to parse a statement for the chains of potentially leaky
elements. By examining the bytecode of programs that contain conditional branches, we have
extracted rules about what source elements compile to conditional jump instructions, in what order,
and how the elements are chained. Following the observed rules, we propose an algorithm for
finding the chains in a statement, shown in Algorithm 3.

In Algorithm 3, each source element, or location, is represented by a Loc object (line 1). A Loc
object has a type, e.g., do-while statement or a ternary operator. The type determines how the
location should be repaired. Each chain is represented by a linked list of Loc. A Loc also has a
next pointer that points to another Loc. When next is not null, it means the current element
is chained with the next element. To illustrate, the chain in the if(!b)foo() example would be
Loc(NEGATION, next), where next refers to Loc(IF, null).

The main body of Algorithm 3 is the parse function. It recursively searches for all chains under
an AST node. It also takes a next parameter, which (if not null) represents a chain discovered in
the previous search. Depending on the current node’s type, the parse function may extend the
next chain and create new chains. Algorithm 3 also defines the function parse_statement used
in Algorithm 2, which simply calls parse with the next parameter being null.

Source elements that can become the next include if statements, loop statements, conditional
and/or operators, and the ternary operator. For example, lines 5–10 in Algorithm 3 parse a while
statement. The while statement is represented by here in line 6. In line 7, the condition cond of the
while statement is parsed recursively, with here as the next parameter. If there is a conditional jump
in cond, then that conditional jump (e.g., a negation expression, see line 12) may be chained with
this while statement and added to the result list (line 8). On the other hand, if no conditional jump
is found in cond (e.g., when the condition is a single Boolean variable), then the while statement
itself would be added to the result list as a single-node chain. Finally, the statements enclosed in
the while statement are parsed recursively (lines 9—10). Other types of elements, including the
not operator (line 11) and binary comparison operators (line 21), are not passed down the AST as
the next parameter but can be appended to an existing next chain or form a chain on their own.

As an example of the overall source-level fix localization process, we explain our fix localization
for the openmrs subject taken from the benchmark of QFuzz [45], as shown in Listing 3. Our
bytecode-level localization indicates a single leaky block, which ends at instruction 30, a conditional
jump. According to the line number table shown in Listing 4, this instruction, as well as two other
conditional jumps (instructions 41 and 52), belongs to line 65. In Figure 2, we highlight the three
instructions in the control flow graph of the method. We then parse line 65 to find the source
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Algorithm 3: Finding Potential Fix Location Chains in a Program Statement at Source
Level
Input : statement: AST node that represents a statement
Output :List of source element chains

1 return parse(statement, null) Function Loc(type, next):
2 return a source location of type C~?4 that is chained with =4GC

3 Function parse(node, next):
4 list← 〈〉 // “< >” for empty list

5 if node ∼ while(2>=3) {1;>2: } then // similar for do/for/if statement
6 ℎ4A4 ← Loc(,��!�, null)
7 ;>20C8>=B ← parse(cond , ℎ4A4) ≠ 〈〉 ? parse(cond, ℎ4A4) : 〈ℎ4A4〉
8 list← list + ;>20C8>=B // “+” for list concatenation

9 for statement in block do
10 list← list + parse(BC0C4<4=C, null)
11 else if node ∼ !2>=3 then
12 ℎ4A4 ← Loc(#$),=4GC)
13 ;>20C8>=B ← parse(2>=3, =4GC) ≠ 〈〉 ? parse(2>=3, =4GC) : 〈ℎ4A4〉
14 list← list + ;>20C8>=B
15 else if node ∼ ;ℎB && AℎB then // similar for ||
16 ℎ4A4 ← Loc(�#�, null)
17 ;ℎB_;>20C8>=B ← parse(;ℎB, ℎ4A4) ≠ 〈〉 ? parse(;ℎB, ℎ4A4) : 〈ℎ4A4〉
18 ℎ4A4 ← Loc(�#�,=4GC)
19 AℎB_;>20C8>=B ← parse(AℎB, ℎ4A4) ≠ 〈〉 ? parse(AℎB, ℎ4A4) : 〈ℎ4A4〉
20 list← list + ;ℎB_;>20C8>=B + AℎB_;>20C8>=B
21 else if node ∼ ;ℎB > AℎB then // similar for <, >=, <=, ==, !=
22 list← list + parse(;ℎB, null) + parse(AℎB, null) + 〈Loc(�'��)�'_)��#,=4GC)〉
23 else if node ∼ 2>=3 ? ;ℎB : AℎB then
24 ℎ4A4 ← Loc()�'#�'., null)
25 list← list + parse(2>=3, ℎ4A4) ≠ 〈〉 ? parse(2>=3, ℎ4A4) : 〈ℎ4A4〉
26 list← list + parse(;ℎB, =4GC) ≠ 〈〉 ? parse(;ℎB, =4GC) : 〈=4GC〉
27 list← list + parse(AℎB, ℎ4A4) ≠ 〈〉 ? parse(AℎB, =4GC) : 〈=4GC〉
28 else if node ∼ (4G?A ) then
29 list← list + parse(4G?A, next)
30 else
31 for 2ℎ8;3 in child nodes of node do
32 list← list + parse(2ℎ8;3, null)

33 return list

34 Function parse_statement(statement):
35 return parse(statement, null)

elements that compile to the three instructions. The two || operators would respectively lead to
instructions 30 and 41, deciding which ones of the three Boolean expressions are executed. There
would also be a third conditional jump (instruction 52), deciding whether true or false is the
return value. This instruction results from both || operators because it would persist if either
operator remains. Finally, since the leaky block ends with instruction 30, we can decide to fix the
first || operator. The parsing rule of other types of elements are also listed in the parse function.
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60 public static boolean hashMatches(String hashedPassword , String passwordToHash) {
61 if (hashedPassword == null || passwordToHash == null) {
62 throw new APIException("password.cannot.be.null", (Object []) null);
63 }
64
65 return hashedPassword.equals(encodeString(passwordToHash)) || hashedPassword.equals(

encodeStringSHA1(passwordToHash)) || hashedPassword.equals(incorrectlyEncodeString
(passwordToHash));

66 }

Listing 3. Vulnerable Method in org.openmrs.util.Security (with Original Line Number).

line 61: 0
line 62: 8
line 65: 22

Listing 4. Line Number Table of the Method in Listing 3.

Fig. 2. Control flow graph of line 65 of the method in Listing 3 (conditional jumps highlighted in gray).

We denote this bytecode-to-source mapping with B!>2 : for a basic block 1 ending in a conditional
branch instruction, B!>2 (1) is the chain of source code elements it corresponds to. Let !8, 9 =

{B!>2 (1) | 1 ∈ �8, 9 } and ! =
⋃

!8, 9 .

3.3 Fix Location Selection
After identifying the vulnerable locations, it remains to select one or more of them for repair. The
selection can be either automated or manual. For example, the manual selection could be driven
by the trade-off between vulnerability mitigation and performance degradation. In this work, we
propose an automated selection procedure giving the top-= fix locations that lead to the greatest
vulnerability mitigation (i.e., partition reduction).

Algorithm 4 shows the selection algorithm.The core of the algorithm is the remainingPartitions
function, which computes the number of partitions that remain after the set � of fix locations are
fixed. For two different partitions represented by secrets B8 and B 9 , !8, 9 is the set of fix locations
identified by comparing the execution traces of the two secrets. If these locations are repaired, B8
and B 9 are expected to have the same execution time, i.e., their respective partitions are merged
into one. With this, remainingPartitions checks, for each pair of B8 and B 9 , if !8, 9 is subsumed by
� . If so, B8 and B 9 can be merged. After all merges, the number of remaining partitions is returned.
The main body of Algorithm 4 leverages this function and searches for an =-element subset of
fix locations that minimizes the number of partitions left. Note that this strategy may not lead to
an optimal solution, but we found that this approach works efficiently and generates semantic
preserving repairs in most cases.
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Algorithm 4: Selecting Fix Locations
Precondition :B1, · · · , B: represent : different secret partitions
Input :!8, 9 for all 1 ≤ 8 < 9 ≤ : shows set of fix locations obtained by comparing the traces of

B8 and B 9
= is the number of locations to fix

Output :Set � ∗= of fix locations leading to the fewest remaining partitions, where |� ∗= | = =

1 ! ← ⋃
!8, 9

2 ( ←
{
� ∈ 2!

�� |� | = =
}

3 � ∗= ← argmin� ∈( remainingPartitions(F)
4 return � ∗=

5 Function remainingPartitions(�):
6 for 8 ← 1 to : do
7 ?0A4=C8 ← 8

8 for 8 ← 1 to : do
9 for 9 ← 8 + 1 to : do
10 if !8, 9 ⊆ � then
11 ?0A4=C 9 ← ?0A4=C8

12 % ← { ?0A4=C8 | 1 ≤ 8 ≤ : }
13 :′ ← |% |
14 return k’

4 Fix Patterns
We design fix patterns to repair the vulnerable program at the selected fix locations. We attempt to
retain the program logic while executing a constant number of instructions.

4.1 Fix Pattern 1: Logical and Comparison Operators
We design constant-time utilities to substitute unsafe operators, as exemplified in Listing 5. For the
not, binary comparison, and ternary operators, the safe utility contains two if statements with
opposite conditions; their functionalities depend on the argument, but their costs always offset each
other. For example, line 3 in Listing 5 compiles into an ifeq instruction followed by a fall-through
block that does the assignment. The assignment is executed if b is true and skipped otherwise.
Line 4 compiles alike, but the assignment is executed precisely when the assignment in line 3 is
skipped. Thus, the original operation is fulfilled with a constant number of executions. Note that
the two if’s cannot be replaced with an if-else statement, which appears “balanced” but would
have an extra goto instruction in the then-branch. For the logical operators && and ||, the utility
methods are a wrapper for & and | respectively. For one thing, this gets rid of conditional branch
instructions. For another, the second operand, which may be short-circuited [10], i.e., skipped,
depending on the value of the first operand (which may in turn depend on a secret), now becomes
an argument of the utility and thus is always evaluated.

Note that these repairs are for the operator ; operands are another matter. Should the operands be
vulnerable, they would undergo separate repair. For example, if an operand is a secret-dependent
method call, the body of the method would be identified as vulnerable by the localization and
repaired.
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1 public static boolean not(boolean b) {
2 boolean t = false;
3 if (b) t = false;
4 if (!b) t = true;
5 return t;
6 }
7
8 public static <T> T ite(boolean cond , T t1, T t2) {
9 /* substitute for ternary operator (?:) */

10 T t = null;
11 if (cond) t = t1;
12 if (!cond) t = t2;
13 return t;
14 }

Listing 5. Constant-Time Utility Method Examples.

+ boolean earlyReturn = false;
+ RT returnValue = DEFAULT_VALUE;

...
if (condExp) {

...
- return x;
+ returnValue = x;
+ earlyReturn = true;

}
...

- return y;
+ return ite(earlyReturn, returnValue, y);

Listing 6. Eliminate Conditional Return.

4.2 Fix Pattern 2: IF Statement
The if statement is fixed in two passes. In the first pass, any return, break, or continue within
the if statement is transformed into a series of new variable declarations and variable assignments.
The second pass then rewrites the assignments and eliminates the if keyword altogether. Below,
we only describe the fix pattern for early return; the patterns for break and continue are similar.

Pass 1—Fixing Early Return. As shown in Listing 6, we first declare two new variables at the
beginning of the method. One is earlyReturn, a flag of whether an early return has occurred. The
other is returnValue, holding the return value in case of an early return. Second, we replace the
return statement with assignments that set the flag and store the early-returned value. Finally,
for every other return statement, we make their return value a choice that is dependent on the
earlyReturn flag. This is accomplished via the constant-time ite utility (see Listing 5). We note
that this repair pattern also works if the early return is within the else-branch.

Pass 2—Fixing if. In the second pass, all assignment statements within both branches are made
conditional via the ite utility, as shown in Listing 7. In the then-branch, when the guarding
condition is false, an assignment is reduced to a no-op; the original assignment is executed only
when the guarding condition is true. The reverse is true for assignments in the else-branch. After
this, the if and else keywords can be safely removed.
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+ boolean cond = condExp;
- if (condExp) {

...
- var1 = exp1;
+ var1 = ite(cond, exp1, var1);

...
- } else {

...
- var2 = exp2;
+ var2 = ite(cond, var2, exp2);

...
- }

Listing 7. Eliminate if Statement with Conditional Move.

+ int ub = estimatedLoopBound;
- for (...; condExp; ...) {
+ for (...; --ub > 0; ...) {
+ if (!condExp) {
+ break;
+ }

...
}

Listing 8. Pass 1 of Loop Repair: Fix Number of Iterations w.r.t Upper Bound.

4.3 Fix Pattern 3: Loop Statements
A loop statement causes timing vulnerabilities when it iterates for a number of times that varies
with the secret input values. As such, the repair is to fix the number of iterations to a secret-
independent value. This value should be an upper bound of the number of loop iterations to
preserve its functionality. It follows that, after repair, the loop may have some extra iterations
compared to before. We thenmake these extra iterations futile by means of a conditional assignment,
thus ensuring an unchanged functionality. Our fix pattern consists of two passes. As shown in
Listing 8, the first pass uses a loop counter based on the upper bound ub. This bound can be given
by the user or derived with automatic program analysis [27, 53]. Meanwhile, the original loop
guard, condExp, is moved into the loop body to guard a newly added break statement. At this
point, the number of iterations remains unchanged because the conditional break would always
take place before ub reaches zero. But we have transferred the uncertainty from the loop guard
to the conditional break, for which we have a fix already. Hence, in the second pass, we fix the
added if statement as in Section 4.2. This allows the loop to execute some futile iterations to
reach the estimated loop bound, making the loop safe. Note that while and do-while loops can be
transformed similarly.

4.4 Discussion of Repair Technique
Reason for Pattern-Based Repair. We adopt pattern-based repair because timing SC vulnerability

has relatively few types of root causes (as listed in Section 3.2), each of which can be tackled with
a definite pattern. In this case, pattern-based repair is far more efficient and reliable than other
approaches, e.g., search-based repair.

Side Effect. We try to design fix patterns that are free of side-effects, i.e., preserving the semantics
of the program-to-fix. This is the case for a wide range of, albeit not all, real-world programs, as
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shown by our evaluation in Section 5. Here, we delineate a sufficient condition for our fix patterns
to be side-effect-free, which most of the programs in our evaluation satisfy. Because our fix patterns
can change the number of times a code snippet is executed (e.g., when repairing a loop), it is
desirable if the snippet either does not change the value of existing variables (so it can repeatedly
execute without having an effect), or only assigns to variables explicitly (so our fix pattern can
guard the assignment with a condition when needed). Such a property is captured by the concept of
purity. Purity has varied definitions [40, 51, 52]. For our purpose, we say that an expression is pure if
it does not mutate any object or variable existing before its execution. A statement is pure if it is an
assignment statement with a pure expression on the right-hand side. Note, however, that a pure ex-
pression is allowed to create new objects, making this definition rather flexible. With this definition
of purity, we state the following sufficient conditions for our fix patterns to be side-effect-free:

Pattern 1. the expression is pure;

Pattern 2. (a) the if condition is a pure expression;
(b) the branches of the if statement consist only of pure statements (except the ending

return/break/continue statement, if existent);
(c) these statements do not throw an exception;
(d) if an ending return statement exists and returns an expression, the returned expres-

sion is pure;

Pattern 3. (a) the loop condition is a pure expression;
(b) the loop body consists only of pure statements;
(c) these statements do not throw an exception.

We have formally verified that, given these conditions, applying our fix patterns does not change
program semantics. The verification is via translating the pre- and post-repair code (e.g., Listing 7)
into BoogiePL [20], specifying the purity of relevant expressions and statements, and checking
their equivalence with SymDiff [35]. The proof script can be found in our replication package.
Note that side effects may occur when these conditions do not hold. For example, after the snippet
if(o!=null)x+=o.size(); is transformed to cond=neq(o,null);x=ite(cond,x+o.size(),x),
a null pointer exception may arise because the o.size() would be executed even if o is null. To
mitigate the problem, purity analysis [40, 51, 52] can be performed to warn about the dissatisfac-
tion of these conditions. Also, more sophisticated fix patterns can be designed, which we leave
to future work.

Moreover, we emphasize that a developer can investigate the side effects of a generated patch
before applying it. A fully automatic and effective way to detect side effects is to perform regression
testingwith test generation tools, e.g., EvoSuite [24].The developer can also perform formal verifica-
tion, e.g., with SymDiff [35], to rigorously verify that the patched program is equivalent to the origi-
nal program. Finally, the developer canmanually inspect the patch. In our experiment, we performed
both regression testing and formal verification on the patches generated by Pendulum. The detec-
tion results agree with our manual inspection, demonstrating the feasibility of the two approaches.

Necessity of Fix Localization. As our repair is based on patterns, it may seem that our fix lo-
calization can be replaced with a plain search for anti-patterns in the source code, e.g., if state-
ments. Nevertheless, such an approach would be prone to false-positives due to the great abun-
dance of the anti-patterns, which are no more than basic program constructs. In contrast, our
localization algorithm essentially performs a dynamic dependence analysis and thus gives more
accurate fix locations.
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5 Evaluation
We explore the following research questions.

RQ1 (Fix localization), Can Pendulum find the correct fix locations for the SC vulnerabilities?
RQ2 (Vulnerability mitigation), To what extent does Pendulum mitigate the SC vulnerabilities?
RQ3 (Side effect), Does Pendulum preserve the functionality of the program-to-fix?
RQ4 (Time and space impact), How do the generated patches influence the execution time of the

programs? How large are the patches?

For RQ1–3, we also evaluate DifFuzzAR [37] as a baseline. DifFuzzAR is the state-of-the-art
source-level timing SC repair tool for Java that uses the bytecode to detect the vulnerability.
Therefore, it is the closest work to ours. Other related work include Debreach [47], Raccoon [49],
and SC-Eliminator [61]. We do not compare with Debreach because it works only for compressor
programs. We do not compare with Raccoon and SC-Eliminator, either, because they operate
on LLVM IR rather than Java bytecode. To use Raccoon or SC-Eliminator for Java bytecode,
one would need to translate bytecode into LLVM IR, apply the repair tool, and then translate the
repaired LLVM IR back into bytecode. To the best of our knowledge, there is no tool that performs
the translations reliably, thus precluding the comparison against Raccoon and SC-Eliminator.
Moreover, note that we do not compare Pendulum with SC detection techniques like Antonopoulos
et al. [5], Chen et al. [18], and Bang et al. [7] because Pendulum focuses on the localization and
repair of vulnerabilities. For vulnerability detection and quantification, we choose QFuzz [45]
because it represents the state of the art and is aligned with our threat model in contrast to the
adaptive threat model targeted by Bang et al. [7].

Our tool, all subjects, and experimental results are available at:

https://doi.org/10.6084/m9.figshare.20731846

5.1 Implementation Details
For vulnerability detection, we use QFuzz [45]. We replace its instrumentation with Javassist [11],
which computes a more accurate control flow graph. For fix localization, Javassist is used to do
the instrumentation required for collecting execution traces. The map from leaky blocks to the
source code is derived by analyzing the line number table of the class file and the AST of the source
code using TBar [38]. Finally, the fix patterns are implemented as transformations of the AST.

5.2 Evaluation Methodology
Subject Programs. For our evaluation benchmark, we use all subjects from QFuzz [45] that have

timing SC vulnerabilities; those with no or other types of vulnerabilities are excluded. We also
exclude the Leak Set subjects, as they are not real-world programs but show their results in our
artifact. Additionally, we extend the benchmark with four vulnerable programs from well-known
Java security projects.

SC Types. We have manually examined the subjects for their vulnerability types (Table 1, Column
Type). According to Section 3.2, we look for secret-dependent unsafe operators, if statements, and
loop statements. We also indicate whether the if statements contain a return, break, or continue.

Evaluation Metrics. For RQ1, we compare the identified fix locations with that of the developer fix.
For RQ2, we compare the number of SC partitions between the original program, the Pendulum-
fixed program, and the developer fix. For RQ3, we first perform regression testing with EvoSuite
[24] to detect changed functionality. For patches that pass this step, we additional perform a formal

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 8, Article 206. Publication date: November 2024.

https://doi.org/10.6084/m9.figshare.20731846


Timing Side-Channel Mitigation via Automated Program Repair 206:17

Table 1. Results for the Fix Localization, the Vulnerability Mitigation, and the Side-Effect Testing

Subject Typea Fix Locationsb Side-Channel Partitionsc Regression Test Failuree

Op If Ret Cont Brk Lop Pdl Dfz Orig Pdl Dfz Devd Pdl Dfz Total
apache_ftpserver_clear 3 3 3 1 ⊥ ID 17 1 ID 1 0 ID 17
apache_wss4j 3 3 3 1 − ID 17 1 ID - 0 ID 10
blazer_array 3 3 1 = 1 = 2 1 1 2 0 0 17
blazer_login 3 3 3 1 ⊂ 4 � 17 1 1 1 0 1 7
blazer_modpow1 3 3 1 = 1 = 20 1 12 12 0 0 29
blazer_modpow2 3 3 3 3 ⊥ 1 ⊥ 53 1 45 14 0 0 34
blazer_passwordEq 3 3 3 1 = 2 ⊃ 17 1 9 9 0 0 6
blazer_straightline 3 3 1 ⊥ 1 ⊥ 2 1 1 1 0 0 23
cryptomator_authfile 3 3 3 1 = ID 3 1 ID 1 - - -
Eclipse_jetty_1 3 3 3 1 − 1 − 17 1 8 - 0 0 7
Eclipse_jetty_2 3 1 − 3 − 8 1 8 - 0 3 8
Eclipse_jetty_4 3 2 − 2 − 9 1 9 - 0 2 7
example_PWCheck 3 3 3 1 ⊂ 2 = 10 1 8 1 0 0 13
github_authmreloaded 3 3 3 1 ⊥ 4 ⊥ 5 1 11 1 0 0 26
jasypt_digestEquals 3 3 3 1 = 2 � 3 1 CE 1 0 CE 60
rsa_modpow_1717 3 3 3 3 − ID 49 1 ID - 0 ID 6
rsa_modpow_1964903306 3 3 3 3 − ID 71 2 ID - 0 ID 7
rsa_modpow_834443 3 3 3 3 − ID 69 2 ID - 0 ID 6
shiro_hashEquals 3 3 3 1 = 2 � 5 1 5 1 0 6 53
stac_ibasys 3 3 3 2 − 1 − 9 9 9 - 0 0 6
themis_boot-stateless-auth 3 3 3 1 = 1 � 33 2 15 2 0 0 20
themis_jdk 3 3 3 1 ⊥ 2 ⊥ 2 1 1 1 0 0 6
themis_oacc 3 3 3 1 − 2 − 12 1 17 - 0 2 13
themis_openmrs-core 3 1 − ID 2 1 ID - 0 ID 25
themis_orientdb 3 3 3 1 ⊥ 3 ⊥ 17 1 17 1 0 0 51
themis_picketbox 3 3 3 1 ⊥ 1 ⊥ 17 1 17 1 0 2 10
themis_spring-security 3 3 3 1 ⊂ 2 = 2 1 16 1 0 2 5
tink_multiply 3 1 = ID 2 1 ID 1 0 ID 10
apache_ftpserver_md5 3 3 3 2 ⊥ ID 7 6 ID 1 0 ID 21
apache_ftpserver_salted_encrypt 3 3 1 ⊥ ID 74 1 ID 76 - - -
apache_ftpserver_salted 3 3 3 3 ⊥ ID 58 1 ID 60 - - -
blazer_gpt14 3 3 3 4 ⊥ 1 ⊥ 69 13 63 25 4 0 15
blazer_k96 3 3 3 3 ⊃ 1 = 84 9 77 11 1 0 12
blazer_unixlogin 3 1 = ID 2 2 ID 2 1 ID 8
Eclipse_jetty_3 3 3 3 3 − 3 − 24 2 23 - 1 3 7
themis_jetty 3 3 3 2 ⊥ 4 ⊥ 14 17 20 39 1 0 8
themis_tomcat 3 3 3 3 ⊃ 3 ⊃ 2 2 2 2 - - -
apache_ftpserver_stringutils 3 3 3 3 2 = 4 ⊃ 17 CE 9 9 CE 0 38
blazer_loopandbranch 3 3 1 = 4 ⊃ 2 IL CE 2 IL CE 17
blazer_sanity 3 3 3 1 = 3 ⊃ 2 IL 1 1 IL 1 24
themis_pac4j 3 3 1 = ID 2 CE ID 2 CE ID 20
themis_pac4j_ext 3 3 1 = 1 = 2 CE 2 2 CE 0 21

aOp=unsafe operator; If=if statement; Ret/Cont/Brk=if statement also has early return/continue/break; Lop=loop state-
ments.
b⊂: fix locations are a subset of the developer’s. ⊃, superset; =, equal; � , intersecting; � , disjoint; −, dev fix not available;
⊥, dev fix alters semantics.
cID=the repaired program is identical with the original program; CE=repair causes compilation error; IL=repair causes an
infinite loop.
dDash (-) indicates that a developer fix is not available.
eDash (-) indicates that EvoSuite failed to generate a test suite that the original program can pass.

verification using SymDiff [35]. Finally, all patches are manually examined to not miss any side
effects. For RQ1–3, the same evaluation is performed for DifFuzzAR. For RQ4, the time impact,
we compare the execution time of the original program, the Pendulum-fixed program, and the
developer fix, on the EvoSuite-generated test suite. For space impact, we count the number of lines
of the patches. Note that we have chosen to compare with real-world developer fixes because they
represent howwell humans can repair vulnerabilities in a practical setting. Although these fixes may
not be the only possible fix, the fact that they have been merged into real-world programs has shown
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their acceptance in practice. Particularly, they show what amount of mitigation, corresponding
performance degradation, and code change is acceptable for software developers.

Evaluation Setup. We first describe the setup for Pendulum. For RQ1, as fuzzing is random, we
run QFuzz for three rounds, each 30 minutes long, for each program. Of all three runs, the set of
secret values that reveal the most partitions is used to drive fix localization. For RQ2, for the repair
of subjects with a loop statement, we provide the required loop bounds manually. The repaired
programs are fuzzed with the same configuration as in RQ1; we report the greatest number of
partitions throughout all rounds. With regard to DifFuzzAR, we provide it with a required DifFuzz
driver. The very drivers in its replication package are used whenever available; we make minimal
modifications, if necessary, so that DifFuzzAR has the same entry functions in the drivers as
Pendulum. For RQ4, to measure time impact, the test suite is executed with the JUnit runner. Only
the runtime spent in the program-to-fix counts; the runtime of JUnit is excluded. Each execution
is repeated 100 times, with just-in-time compilation disabled to capture the performance of the
bytecode as it is. The average runtime and the standard deviation are reported. To measure patch
size, the number of lines is counted for each file after they have been purged of all comments and
reformatted with google-java-format; only non-blank lines count.

Environment and Configurations. We conducted all experiments on Ubuntu 16.04 LTS on an Intel
Xeon E5-2660 v4 @ 2.00GHz machine with 62GB of memory. We use OpenJDK 1.8.0_292, GCC 5.5.0,
EvoSuite 1.2.0, JUnit 4.12, and google-java-format 1.7. For QFuzz, we use the same parameters
as the original QFuzz experiments.

5.3 Fix Localization (RQ1)
Table 1, Fix Locations column shows the number of fix locations identified as well as how they
compare with the developer fix. For all subjects, Pendulum (Pdl) can identify at least one fix
location. Exactly one fix location is identified for 28 out of 42 subjects, and at most four locations
are identified for the others. In contrast, DifFuzzAR (Dfz) fails to identify any fix location for 13
subjects. This is mainly because it tries to fix the entry method used by the fuzz driver, which is
not always vulnerable. This leads it to produce “repairs” that are identical to the original programs
(marked ID in Table 1), which retain all vulnerabilities.

A developer fix is available for 31 subjects. For 14 subjects, Pendulum identifies the same
locations as the developer fix. For three subjects, Pendulum identifies a subset of the developer’s fix
locations but still achieves the same vulnerability mitigation. For two subjects, Pendulum identifies
a superset of fix locations. For the remaining 12 subjects, the developer fix changes the program
logic altogether, e.g., changing string comparison to string hash comparison (themis_picketbox).
This renders a comparison meaningless, as Pendulum does not attempt logical changes.

The quality of our fix locations is further measured by Pendulum’s ability to mitigate the
vulnerabilities at these locations. And indeed, the fix locations lead to significant mitigation of the
vulnerabilities (as discussed in Section 5.4), indicating that our localization algorithm provides a
solid basis for mitigating vulnerabilities.

RQ1—Fix Localization:
Pendulum can perform fix localization successfully for all 42 subjects, while DifFuzzAR fails for
13 subjects.

5.4 Vulnerability Mitigation (RQ2)
Table 1, SC Partitions column shows the number of partitions for the original program (Orig), the
Pendulum-generated fix (Pdl), the DifFuzzAR-generated fix (Dfz), and the developer fix (Dev).
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Note that in our evaluation, we attempt to repair all identified locations without any selection
or ranking. This is because, for most subjects (28 out of 42), there is only one identified location.
Also, by attempting to repair all locations, we can observe the maximum possible vulnerability
mitigation by Pendulum.

After being repaired by Pendulum, 33 of the 42 subjects show a reduced number of partitions.
Among the 33 subjects, 26 end up with a single partition, i.e., the vulnerability has been eliminated.
For four subjects, two partitions are found after the fix. For Eclipse_jetty_3, this is due to an out-of-
bound access introduced by our repair. The other three subjects could have been completely fixed
with the fix patterns; however, the relevant locations were not revealed by the set of secrets that
led to the most partitions in the localization step. Still, as the major vulnerabilities are detected
and addressed, the vulnerabilities in these three subjects are significantly mitigated. For complete
vulnerability elimination, a user can apply Pendulum iteratively. In fact, it only takes QFuzz a few
seconds to reveal the residual vulnerability in these three subjects. Another noteworthy subject is
themis_jetty. Our repair seems to have increased the number of observed partitions from 14 to 17,
but the original program also has 17 partitions, as presented in the results of QFuzz [45]. It is only
due to the incompleteness of fuzzing that fewer partitions were revealed for the original program.
Still, Pendulum fails to mitigate the vulnerability here, as the repair introduces out-of-bound string
accesses. Such shortcomings can be tackled by, e.g., adding a safe utility method for array access.

In contrast, DifFuzzAR mitigates the vulnerability for only 15 subjects. Five of these are left with
one partition, while the others are often left with a considerable number of partitions. Moreover, it
fails to modify the programs of 13 subjects and exacerbates the vulnerability for four subjects.

RQ2—Vulnerability Mitigation:
Pendulum is able to mitigate the vulnerability effectively for 33 of 42 subjects. For 26 of these
33 subjects, Pendulum can entirely eliminate the SC vulnerability. In contrast, DifFuzzAR can
mitigate the vulnerability for only 15 subjects.

5.5 Side Effect (RQ3)
We have performed both regression testing and formal verification to check the Pendulum-
generated repairs for any side effect, i.e., change to the original program semantics. In Table 1, SC
Partitions column, light shade indicates the presence of side effects, while dark shade indicates
that the repair does not change the original program at all or prevents normal execution. Of the
42 repairs generated by Pendulum, 28 are free of side effects, among which 27 repairs reduce the
number of partitions (to either one or two).

We have performed regression testing with EvoSuite, the state-of-the-art regression testing
tool for Java. In Table 1, Regression Test Failure column shows the number of generated tests (Total
column) and of failing tests. For those subjects for which EvoSuite was unable to find a failing
regression test, we additionally performed a formal verification. We first used jar2bpl, a component
of the Bixie [39] code checker, to translate the class files of the program before and after repair
into BoogiePL [20], an intermediate verification language. We then verify the equivalence of the
two program versions with SymDiff [35], an equivalence-checking tool. We have chosen this
approach because BoogiePL is a widely used, well-established verification language. Also, the
other state-of-the-art equivalence checking tools either lack support for Java [23, 25, 41, 57] or
can only handle relatively simple program differences [6]. To perform the verification, we have
written stubs for methods that jar2bpl does not model. For example, while jar2bpl models the
primitive int type, it does not model the Integer wrapper class. Therefore, we write a stub for
Integer, implementing its methods that are involved in the benchmark using the subset of Java
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that is modeled by jar2bpl. We also modify SymDiff with regard to heap comparison. Originally,
SymDiff considers two methods equivalent only if they allocate exactly the same objects on the
heap. We have modified SymDiff to allow for a more relaxed sense of equivalence. We consider
two methods equivalent as long as all the objects allocated in the pre-repair version remain the
same in the post-repair version. This definition allows that the post-repair method allocates some
additional objects. This modification is made mainly with the ite utility method (see Listing 5) in
mind. Since the ite method is generic, variables of primitive types (e.g., int and boolean) would
be autoboxed into objects of the corresponding wrapper classes, so additional objects are allocated
on the heap. However, the additional allocation does not change program semantics.

The main cause of changed semantics is impure method calls, within which object states are
altered. Our fix pattern omits them and only takes care of explicit assignments, thus changing the
semantics. In principle, though, as long as the program does not interact with the environment (e.g.,
database), impurity largely comes down to variable assignment, which can be made time-constant
with our conditional assignment construct. Another cause is object access guarded by a null check,
where our fix pattern can lead to a null pointer exception. Other failures include infinite loops
(marked IL in Table 1) and out-of-bound array access, which may result when statements inside a
loop are modified.

The DifFuzzAR-generated repairs are also subjected to examination and regression testing. It is
shown that only 11 repairs from DifFuzzAR mitigate the vulnerability without side effect. Also,
note that the mitigation is often minor, as in, e.g., blazer_gpt14 and blazer_k96.

RQ3—Side Effect :
28 out of 33 mitigating repairs from Pendulum are also side-effect-free, while DifFuzzAR can
only generate 11 such repairs, often providing minor vulnerability mitigation.

5.6 Time and Space Impact (RQ4)
For RQ4, we include only subjects that have a regression test suite as well as a side-effect-free,
mitigating repair from Pendulum. We do not compare with DifFuzzAR because it generates few
such repairs.

Table 2, Average Execution Time column compares the runtime of the regression test suite
between the original program, the developer fix, and the Pendulum-fixed program. Column ΔOrig
shows the percentage difference to the original program, which is 43.0% on average. The slowdown
is more significant where a loop is repaired (e.g., blazer_modpow2) and modest elsewhere; the
median is thus only 2.6%. Column ΔDev shows an average slowdown of 0.4% compared with the
developer fix. Furthermore, wewant to emphasize that we are evaluating themaximum performance
impact the repair has on the program because we repair all fix locations in our evaluation, as
mentioned in Section 5.4. In practice, however, which and how many locations to repair remains a
trade-off between security and performance that needs to be decided by the developer because it
depends on the specific situation. Completely eliminating all SC partitions can potentially have
a significant impact on the performance. Pendulum can be adjusted to mitigate only a subset of
the identified locations, and the user can also explore different configurations to decide which
amount of mitigation is suitable for their specific case. To illustrate this tradeoff, we selected four
subjects from our benchmark, for which Pendulum identified multiple fix locations and successfully
mitigated the vulnerability. We then use Pendulum to partially fix these subjects and measure the
vulnerability reduction and the performance. The results are shown in Table 3. As more locations
are fixed, these four subjects gradually have fewer SC partitions, while their execution time can
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Table 2. Results for the Performance and Patch Size Comparison

Subject Average Execution Time (msec) Lines of Code
Orig Dev Pdl Δ Orig

(%)
Δ Dev
(%)

Orig Dev Pdl Δ Orig Δ Dev

apache_ftpserver_clear 38 ± 9 51 ± 8 39 ± 10 2.6 -23.5 61 54 66 5 12
apache_wss4j 45 ± 11 - 46 ± 11 2.2 - 31 - 36 5 -
blazer_array 101 ± 13 101 ± 13 103 ± 16 2.0 2.0 61 63 60 -1 -3
blazer_login 16 ± 7 15 ± 6 15 ± 7 -6.3 0.0 21 28 28 7 0
blazer_modpow1 293 ± 17 358 ± 19 361 ± 19 23.2 0.8 128 130 128 0 -2
blazer_modpow2 23,941 ± 392 168,891 ± 80,126 174,218 ± 83,028 627.7 3.2 92 92 100 8 8
blazer_passwordEq 13 ± 7 13 ± 6 14 ± 4 7.7 7.7 20 20 26 6 6
blazer_straightline 174 ± 17 176 ± 16 182 ± 15 4.6 3.4 323 112 322 -1 210
Eclipse_jetty_1 16 ± 5 - 18 ± 10 12.5 - 8 - 15 7 -
Eclipse_jetty_2 17 ± 5 - 18 ± 5 5.9 - 9 - 10 1 -
Eclipse_jetty_4 17 ± 8 - 16 ± 6 -5.9 - 11 - 12 1 -
example_PWCheck 28 ± 9 28 ± 7 27 ± 7 -3.6 -3.6 35 41 42 7 1
github_authmreloaded 196 ± 17 196 ± 16 200 ± 17 2.0 2.0 65 54 70 5 16
rsa_modpow_1717 14 ± 6 - 20 ± 5 42.9 - 25 - 27 2 -
rsa_modpow_1964903306 16 ± 6 - 22 ± 7 37.5 - 26 - 28 2 -
rsa_modpow_834443 14 ± 7 - 18 ± 7 28.6 - 26 - 28 2 -
stac_ibasys 99 ± 12 - 98 ± 9 -1.0 - 62 - 63 1 -
themis_boot-stateless-auth 2,060 ± 36 2,058 ± 46 2,078 ± 50 0.9 1.0 87 89 94 7 5
themis_jdk 13 ± 7 13 ± 6 13 ± 5 0.0 0.0 12 13 19 7 6
themis_oacc 34 ± 8 - 35 ± 10 2.9 - 41 - 48 7 -
themis_openmrs-core 248 ± 16 - 250 ± 16 0.8 - 174 - 175 1 -
themis_orientdb 22,484 ± 58 111,166 ± 13,218 105,329 ± 6,218 368.5 -5.3 210 211 215 5 4
themis_picketbox 22 ± 11 21 ± 6 22 ± 6 0.0 4.8 23 18 30 7 12
themis_spring-security 12 ± 9 11 ± 3 11 ± 4 -8.3 0.0 28 25 33 5 8
jasypt_digestEquals 545 ± 37 545 ± 36 589 ± 38 8.1 8.1 359 365 366 7 1
shiro_hashEquals 940 ± 35 955 ± 32 944 ± 32 0.4 -1.2 148 146 153 5 7
tink_multiply 64 ± 12 62 ± 9 67 ± 11 4.7 8.1 19 19 22 3 3
Average - - - 43.0 0.4 - - - 4.2 16.9
Median - - - 2.6 1.0 - - - 5.0 6.0

The time measurement is performed on the regression tests.

Table 3. The Change of SC Partitions and Execution Time
as More Locations Are Fixed

Subject Side-Channel Partitions Average Execution Time (msec)
Orig Pdl-1 Pdl-2 Pdl-3 Orig Pdl-1 Pdl-2 Pdl-3

Eclipse_jetty_4 9 2 1 - 17 ± 8 16 ± 4 16 ± 6 -
rsa_modpow_1717 49 39 21 1 14 ± 6 14 ± 3 14 ± 4 20 ± 5
rsa_modpow_1964903306 71 39 12 2 14 ± 7 14 ± 4 14 ± 3 18 ± 7
rsa_modpow_834443 69 62 15 2 16 ± 6 17 ± 3 17 ± 4 22 ± 5

Pdl-1 refers to repairing 1 location using Pendulum; similar for Pdl-2 and Pdl-3. Note that
Eclipse_jetty_4 has only two fix locations and thus does not have Pdl-3.

increase. Deciding on such a trade-off is eventually up to the user; Pendulum produces source-level
repairs, providing them with the means to make an informed decision.

In terms of space, or file size, Pendulum implements the utility methods in 105 lines. Apart
from this, Pendulum increases the size of the file-to-fix. Table 2, Lines of Code column shows that
Pendulum’s repair is on average 4.2 lines larger than the original program and 16.9 lines larger
than the developer fix. Excluding blazer_straightline, where the developer fix completely changes
the program semantics, Pendulum’s repair is on average six lines larger than the developer fix.
Developer fixes can be small due to the use of additional library methods and occasional changes
in the program semantics.
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RQ4—Time and Space Impact :
The Pendulum-generated repairs have an average slowdown of 43.0% and a median slowdown
of 2.6%. This performance is close to that of the developer fixes. Our median repairs are five lines
larger than the original code and six lines larger than the developer fixes.

6 Threats to Validity
External Validity. To mitigate the threat that our approach may not generalize, we use a wide

range of micro-benchmarks and real-world Java programs for our experimental subjects. Specifically,
they are an extended version of QFuzz’s benchmark [45], which is the state-of-the-art SC detection
benchmark for Java. Additionally, there is a threat that our source-level repair gets subsumed
by compiler optimizations [21], and further, that the compiler or interpreter itself introduces
SC vulnerabilities [13]. However, our experiments show that the vulnerabilities are mitigated.
Further, we intentionally target the source code to aid the developer’s comprehension and fix the
vulnerability where it is introduced, if it can be fixed in the source code at all.

Internal Validity. Our approach uses a fuzzing-based tool, QFuzz [45]. To counter the randomness
and incompleteness of fuzzing and obtain an accurate quantification of SC vulnerabilities, we
repeat every fuzz campaign for three times, with the same (validated) setup reported in QFuzz. The
data obtained for the original programs are consistent with those reported in QFuzz. To assess
the possible side effects of the generated repairs, we corroborate our manual examination with a
regression test performed with EvoSuite [24]. While testing is incomplete, EvoSuite is one of the
state-of-the-art Java test case generation techniques and achieves high code coverage. For all repairs
that pass the regression tests, we formally verified that they are semantically equivalent to the
original program using SymDiff [35]. We also open-source our tool and all subjects, experimental
setups, and repairs for public scrutiny.

Iterative Repair. In our experiments, we do not perform an iterative repair (as shown by the
back edge from step four to step two in Figure 1) for ease of presentation. In practice, iterative
detection and repair can help counter the incompleteness of fuzzing and incrementally reduce
residual vulnerability. For example, the vulnerability of the subjects rsa_modpow_834443 and
stac_ibasys can be eliminated with one more iteration.

7 Related Work
Refactoring. Program refactoring transforms the code to improve the system design while pre-

serving the functionality [1]. While we also attempt to preserve the functionality, we aim to change
the program’s non-functional behavior, i.e., timing, to mitigate the SC vulnerability. Therefore, we
regard our approach as program repair rather than program refactoring.

Synthesis. FaCT [16] is a cryptographic domain-specific language that can be transformed into
constant-time LLVM bitcode. Rather than synthesize new programs, we aim to repair existing Java
programs.

Verification and Testing. Approaches have been proposed to verify the absence of timing SC
vulnerability at source code level [4, 42, 48], intermediate representation (IR) level [3, 5, 18, 50],
assembly level [2, 12] and binary level [22, 34]. There is also an approach for proving that the
cryptographic constant-time property of a program is preserved during compilation [8]. Testing
approaches generate concrete input to expose the presence of timing SC vulnerabilities. The input
is generated with fuzz testing [9, 28, 43, 45] or symbolic execution [14, 17, 46]. The verification
and testing approaches do not aim to mitigate the vulnerability but provide a basis for doing so. In
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particular, our approach obtains a quantification of the vulnerability with QFuzz [45], which is
then used to drive the fix localization.

Localization. CacheD [60] and SymSC [26] use symbolic execution and constraint solving to
localize timing SCs, which are expensive computations. SC-Eliminator [61] uses static taint
analysis to find secret-dependent instructions, which has a high false-positive rate because of
overtainting. Fuchsia [56] uses a decision tree (DT) to explain SC partitions and takes the
discriminants as leaky blocks. The DT cannot handle branch-induced SCs properly because it
always blames some block in either branch rather than the branching block; in other words, it
locates the effect rather than the cause. It also cannot distinguish between multiple blocks that
always have the same execution counts. Besides, it is unclear how many discriminants to take
from the DT as fix locations. Different from these works, our localization is computationally cheap,
accurate, and handles different program constructs properly.

Repair. Debreach [47] mitigates timing SCs exclusively for compressor programs. Raccoon [49]
and SC-Eliminator [61] repair timing SCs in LLVM IR, and hence, follow a different strategy than
Pendulum. Our repair happens from the developer’s perspective, providing them with fine-grained
control to review fixes and trade between performance and security by carefully prioritizing the
fixes. IR-based repair techniques are orthogonal to our approach and can be used if a source code-
based repair is not feasible. DifFuzzAR [37] is the closest to our work, which mitigates timing SCs
for Java programs at the source level. It assumes that the vulnerable method is known, which may
not be the case. Even when it works on the correct method, its fix patterns are far less effective
than ours, as shown by our experiment.

8 Conclusion
In this article, we present a first approach for localizing timing SC vulnerabilities and mitigating
them at source code automatically via program repair. Our tool Pendulum integrates a quantitative
fuzzing technique with fault localization to transform SC vulnerable programs into safe ones using
a set of repair patterns. We found that Pendulum can effectively mitigate SC vulnerabilities in a
large set of real-world Java applications with minimal side effects and performance degradation. As
a future direction, our approach of dynamic fix localization combined with pattern-based repair may
be extended to other SC vulnerability types, e.g., cache-related timing vulnerabilities. Furthermore,
the incompleteness of our dynamic analysis for SC detection can be mitigated by combining it with
a more conservative static analysis, e.g., based on anti-patterns. We imagine that such a hybrid
detection combined with our repair approach can achieve an even better overall framework.
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