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Abstract

Structural collapse in steel frames under extreme hazards (earthquake, blast etc.) can often be
attributed to loss of load carrying capacity of the individual members. Dominant failure modes in
structural steel members include interactions between inelastic lateral torsional buckling, global
buckling, and local buckling (referred to as Interactive Buckling). Accurate performance
assessment of steel moment frames highly relies on the accuracy of the model-based simulations
of such limit states. Commonly used concentrated hinge and fiber-based models fail to address the
physics of this response leading to inaccurate performance assessment of structures. A nonlinear
displacement-based fiber element [named Torsional Fiber Element (TFE)] to simulate monotonic
and cyclic interactive buckling in steel members is proposed and implemented on OpenSees (an
open-source finite element software). The element includes St. Venant as well as warping torsion
response that are essential for lateral torsional buckling response in a wide-flange I-section,
through enriched displacement fields and strain interpolation. Response of local buckling is
represented in a quantitative manner using a novel multi-axial constitutive relationship with
calibration of an effective softening behavior in the post-buckling response. Mesh dependency
issue related to the softening material model is also discussed and addressed through a proposed
non-local strain measure. The efficacy of the model is assessed through several continuum finite
element simulations and experimental data.

1. Introduction
The performance assessment of structures under extreme loading (e.g.- earthquakes) increasingly
rely on the accuracy of the model-based simulations, especially nonlinear time history analyses.
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In this context, sophisticated and robust models are required to simulate such nonlinear behavior
of the structure till collapse. In steel frames, structural collapse is usually due to the loss in load
carrying capacity of individual members combined with the second-order effects due to gravity.
As a result, the individual member models should be capable of simulating such failure modes for
an accurate assessment of the structure. One of the common failure modes in steel members is
nonlinear interaction of local buckling and Lateral Torsional Buckling (LTB), usually called the
Interactive Buckling (IB). One form of buckling may precede and trigger the other one and the
coupled buckling facilitates a progressive failure of the structure; Fig. 1(a-d) provide an illustration
of IB. Numerous experimental (e.g.- Chansuk et al. 2021) and numerical (e.g.- Elkady and Lignos
2015, 2018) studies were conducted on IB; Maity et al. (2023) provides an overview of these. As
a result, IB is a well-understood concept. However, well-established simulation models are either
numerically expensive (e.g.- Continuum Finite Elements (CFE)) or too simple to include necessary
physics behind IB (e.g.- concentrated hinge or spring models). While conventional fiber elements
(e.g.- Kolwankar et al. 2018, 2020) show promise by including P-M interactions and spread of
plasticity, it still cannot simulate inelastic torsion in I-sections which is relevant to IB. Specifically,
they only include direct stress in fibers while shear-axial stress interactions are important in IB and
assume Plane Section Remains Plane (PSRP) theory which does not allow simulation of torsional
warping. Against this backdrop, two novel formulations are discussed: (1) The Torsional Fiber
Element (TFE) which includes shear stresses in fiber as well as torsional warping in the section
enabling it to accurately simulate inelastic torsion and hence LTB and IB, and (2) Plate Local
Buckling (PLB) multiaxial constitutive model that complements the TFE model by including the
effects of local buckling.

Lateral load (V)

Figure 1: Interactive buckling from representative experiment (Elkady 2016) (W24X146, P/P, = 0.2): major axis
views for (a) 2% drift (Instant 1), and (b) 4% drift (Instant 2) and magnified view of local buckling; (c¢) load-
deformation curve marking drift instants 1 and 2; (d) minor axis view showing LTB at 4% drift.

2. Torsional Fiber Element (TFE)
This section presents discussion on the 3d displacement based TFE element construct and
numerical implementation. This includes an enriched displacement and strain interpolation in a



wide-flange I-section with the effects of inelastic St. Venant and Warping Torsion along with
geometric nonlinear effects.
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Figure 2: Features of TFE: (a) degrees of freedom including warping, (b) schematic strain distribution in torsion at a
typical TFE section, and (c) schematic representation of Updated Lagrangian (UL) geometric nonlinear system.

2.1 Element Construct, Section Kinematics and Strain Interpolation

Fig. 2(a) presents the TFE element and its 14 degrees of freedom (dofs) in contrast with a standard
3d frame element having only 12 dofs. Of these, the two dofs u; and u; correspond to axial
deformation, while eight dofs (v;, w;, 6, 93’1” vj, wj, 0, i and Hy].) correspond to flexural and shear

deformations; this representation is similar to a standard 3d frame element. However, the torsional
deformations are defined using 4 dofs: twist angles (6, and ij) and twist rates (8, and 9,@}.) at

each node. Notably, the twist rate dofs introduces the effects of torsional warping (refer to Maity
et al. (2023) for details) in the section and are not present in the conventional Plane Section
Remains Plane (PSRP) element; 6, and 9,’C]. are considered to be the warping dofs. The work-

conjugate for twist rate is the bimoment (B,,) while that of the other displacements are conventional
forces and moments (see Fig. 2(a)). This construct is similar to the well-established warping
torsion element proposed by Bathe and Wiener (1983). As per the TFE construct, the centerline
displacements (u, v, w and 6,) at any cross-section (at longitudinal location x) can be interpolated
as shown in Eq. (1)-(4):

u(x) = N, (0w + Ni, () (1)

v(x) = Ney (0)v; + N, ()6, + Ney(x)v; + N, (x)6; )
w(x) = Ncl(x)wi - ch(x)gyl- + N(:3(x)wj - N(:4,(x)9yj 3)
0,(6) = Ney (06, + Nop (0% + Noy(0)6y, + Ney (0L, @



In the above equations, N;, and N;, are standard linear interpolation functions while N, , N,

N, and N, represents cubic Hermite interpolation functions (details in Maity et al. (2023)),
subscript i and j represent the node numbers. As discussed in the next subsection, these
displacement interpolations are applied for incremental displacements as part of the Updated
Lagrangian (UL) geometric nonlinearity framework. From the centerline displacements, the
continuum displacement field (or fiber displacements) can be found as shown in Eq. (5)-(7):

u(x,y,2) = ulx) — y8,(x) + 20, (x) — yz6y(x) (5)
ve(x,y,2) = v(x) — 20, (x) (6)
we(x,y,2) = w(x) + y0,(x) (7

The above equations follow a Plane Part Remains Plane (PPRP) assumption (instead of PSRP)
where individual flanges and web remain plane after bending; detailed description can be found in
Maity et al. (2023). Referring to Eq. (5), the first three terms are the standard PSRP terms found
in the conventional 3d frame element while the term yz6, (x) introduces the torsional warping
component and determined only in flanges. This continuum displacement field can be used to
interpolate continuum strains. The axial strain component can be obtained by simply
differentiating Eq. (5):

Exx(X,¥,2) = u'(x) — y6,(x) + 20y (x) — yz6y (x) ®)

In the above equation, the axial strain consists of the deformation variables: axial deformation (u'),
curvature (6, and 6;)) and the torsional warping deformation (6;'). However, such direct estimate
is not available for shear strain in cross-sectional plane (yy, and yy,) in an open section.
Consequently, a thin-wall idealization was adopted for individual parts (web and flanges) of the
section and the shear strains from the St. Venant torsion were obtained (adopting Prandtl stress
functions) as:

ny(x»ylz) = _ZZHJIC(X) (9)
Yaz(X,Y,2) = _nylangee;c(x) (10)

where, Yfiange = ¥ + h/2 depending on whether the flange is located at +h/2 or —h/2. Notably,
Eq. (9)-(10) creates a shear flow parallel to the longer edge of the any part of the section. The other
strain components (&, €,, and y,,,) are set zero implying there is no distortion in the section,
which is supported by the Continuum Finite Element (CFE) outcome. Fig. 2(b)) illustrates the
combined strain field in an I-section due to an applied torsion. For details of this strain formulation,
refer to Maity et al. (2023). Once the strain field is obtained, a suitable multiaxial material model
(discussed in the next section) is used to convert them into stress components (0yy, Txy and Ty;)
and fed in the global force recovery algorithm (discussed in the next subsection).

2.2 Geometric Nonlinearity and Geometric Implementation

The element construct for TFE is supported by nonlinear geometric effects through an Updated
Lagrangian (UL) formulation. This UL formulation includes updating the reference state at the
end of every converged step as schematically illustrated in Fig. 2(c). The UL geometric nonlinear
system introduces: (1) accurate transformation of load and displacement vectors between local and



global reference by updating the geometry every step, and (2) finite Green-Lagrange strain
measure for axial strain (&, ) which incorporates the axial force-bending-torsion interactions in
the formulation (refer to Maity et al. (2023)). The TFE element along with the UL nonlinear
geometry formulation were implemented within OpenSees 3.3.0 which has a standard iterative
global solution algorithm as shown in Fig. 3. This involves an input of trial global displacement
vector (u9) obtained using the applied loads (P.,;) and tangent stiffness (K7) in each iteration,
followed by a standard force recovery process. The output includes an element force vector (Py,;)
and tangent stiffness (K7) of the element. P;;,; can be obtained from the interpolated strain and
stresses using the virtual work statement. Following the updated reference state, the virtual work
statement (for converged state) can be written as a volume integral:

11
SeU.Poyy = f TitAt 5t A% (x, y, z) dV, (1)
Vi
where TtH4¢ is the 2™ Piola-Kirchhoff stress tensor and 84t ¢ is the virtual strain tensor for the
time increment from ¢ to t + At (corresponding to step I and I+1, respectively); everything being
calculated considering the converged shape at time 7 as the reference configuration (UL). Through
substitutions and simplifications, the internal force can be recovered as:

Pint = jBTO' dv (12)

where, B is the derived virtual strain interpolation matrix such that §& = Bdu. Note that this force
recovery was performed based on the incremental input displacements following the UL geometric
nonlinearity. Detailed derivation for the force recovery process can be obtained from Maity et al.
(2023). Once the internal force is found, the residual R = (Pgy; — Pine) 18 minimized over
multiple iterations until found negligible when the system has converged. The other output
parameter tangent stiffness (Kr) was also obtained in a similar manner as force-recovery such that
the j-th column of K7y can be expressed as:

F/ = jBTadv= JBTkmEdv (13)
v

4

where, k,,, is the material stiffness matrix and F/ is the incremental force vector for infinitesimal
incremental strain (€) for infinitesimal incremental displacement (W) such that:

_,-_{1, i=j (14)

One important aspect of the TFE formulation is that it requires a multiaxial material model to
convert strain to stress (see Fig. 3) and return a material stiffness matrix (k,,) in the solution
algorithm. While this introduces the potential to have a highly interactive nonlinear effects of shear
and axial stresses, its efficiency remains highly dependent on a suitable material model.
Specifically, a multiaxial model with softening response due to local buckling is necessary to
include effects of local buckling while simulating IB. The next section talks about a recently
developed material model for local buckling which was adopted for this study.
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Figure 3: Schematic flow diagram of force recovery with TFE and PLB

3. Plate Local Buckling (PLB) Material

As shown in Fig. 3, the PLB material model was adopted to supplement the TFE in the global
analysis scheme. The PLB model developed by the authors (Heredia Rosa et al. 2024) provides a
phenomenological representation of an effective softening response due to local buckling through
a multiaxial constitutive model. The term ‘effective’ indicates that the softening is observed only
at the member cross-sectional level, not at the continuum level. The popular J,-plasticity model
could not address distinct behaviors in tension and compression due to local buckling as the
material should soften only in compression. PLB model addresses this issue by introducing an
asymmetric yield surface in tension and compression for local buckling (see Fig. 4(a-c)). Fig. 4(a)
illustrates a cylindrical yield surface as observed in J,-plasticity when the material hardens (see
Fig. 4(b)) before local buckling. However, as a result of local buckling, the yield surface on the
compression side shrinks into an ellipsoid due to softening (see Fig. 4(c)) while the tension side
continues to harden. The yield surface is defined by the following yield function (¢):

(15)

= ¢"M:3J, —0y <0  foroy =0; oy <0ando, = o0,
@3], + xR — 02 <0 for oy < 0 and o, < 0,

where, ¢ and ¢'? denote the two parts of the yield surface corresponding to tensile and
. . . i 1 .
compressive loading. Note that a positive hydrostatic stress (oy = 511 = 0) represents tension

while a negative one represents compression. The terms I;and J, are the first invariant of stress
tensor and second invariant of deviatoric stress tensor respectively while gy, is the current yield
stress. The terms related to softening are: (1) y;. which controls shrinking ellipsoidal yield surface
and is dependent on the stress-state, (2) capping stress (o.,) representing uniaxial stress at the
initiation of local buckling. The parameter y,. is embedded in the material formulation by Heredia
Rosa et al. (2024) while o, can be calibrated as described in Section 5. Referring to Eq. (15) the
PLB constitutive model is derived from the Updated Voce-Chaboche (UVC) material law
(Hartloper et al. 2021) which is a generalization of J,-plasticity model with combined isotropic-
kinematic hardening. The yield surface expansion due to isotropic hardening is defined by the
evolution of yield stress (o;,) with equivalent plastic strain (efq):

0y = 0y + Qu(1— exp(—bsfq)) — Do, (1 — exp(—agg,)) (16)



where 0, is the initial yield stress and Qq, b, Dwand a are the isotropic the hardening parameters
discussed in detail by Hartloper et al. (2021). A 2-backstress (&) kinematic hardening is controlled
by the hardening moduli (Cy, C,) and recall terms (y4, y5); details are presented by Hartloper et al.
(2021). Note that the PLB model shows hardening response (see ¢"™) identical to the UVC
material in tension. However, in compression, the PLB hardens only until local buckling occurs
i.e., when oy < 0 and g, < ;. After this point, the yield surface becomes a shrinking ellipsoid
(see $pLB) due to softening. This softening is introduced in the yield function by ;. (see Eq. (15))

. . . b . . .
which is controlled by the section geometry (#,tﬁ), regularizing parameter (@.4) and capping
f tw

stress (0.o). The material parameters and their calibration are discussed in detail in the Section 5.
The PLB model was implemented on OpenSees 3.3.0 by the authors; details of this numerical
implementation along with a return mapping algorithm can be found in Heredia Rosa et al.
(2024)As shown in Fig. 3, the PLB model takes fiber strain (&, Vxy, and yy,) as input while it
returns the fiber stress (0yy, Ty, and Ty,) and material tangent stiffness (k,,) as output which are
used for force recovery as described in the previous section. Note that, the PLB model parameters
are calibrated based on Continuum Finite Element (CFE) simulation outcomes for IB; the next
section provides details about the CFE modeling.
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Figure 4: Features of PLB material: (a) cylindrical yield surface in tension and compression before local buckling,
(b) corresponding schematic uniaxial stress-strain plot, and (c) yield surface in compression after local buckling.

4. Continuum Finite Element (CFE) Simulations

Benchmark data for verification of TFE model in simulating IB was developed from Continuum
Finite Element (CFE) simulations. As a part of this study, the role of CFE simulations include: (1)
developing guidelines to calibrate PLB material parameters (discussed in next section), and (2)
examination of the efficacy of TFE-PLB combined model in simulating IB response. Table 1
provides a summary of these CFE models. Referring to Table 1, a wide range of parameters were
investigated which includes a wide range of cross-sectional (b/2ts, h/t,,) and global slenderness
(L/7y), length (L) and axial load ratio (P/P,). Two different boundary conditions were also
investigated: (1) Fx-Fr: loading end is completely free while other end is fixed, and (2) Fx-Fx:
loading end has restrained rotation while the other end is fixed; warping was fixed in both the ends
for all the cases. Fig. 5(a-e) provides a representative CFE model (W24X103, Fx-Fx, L = 5400
mm, P/P, = 0.2) including deformed shape in IB. The CFE models were developed using the
commercial Finite Element Analysis software ABAQUS (2020) following best practices outlined



in Elkady and Lignos (2015). Kolwankar et al. (2018) and Maity et al. (2023) provide a
comprehensive overview of the CFE models including material parameter selection and meshing.
The key features of CFE models are as follows: (1) Members were discretized into 3d shell
elements (S4R on ABAQUS) with element size ~25mm X 25mm which is sufficiently small
compared to cross-sectional dimensions as well as length of the member. (2) Initial imperfections
were introduced both at cross-sectional as well as global level. (3) The Updated Voce-Chaboche
(UVC) material constitutive model was adopted with isotropic-kinematic combined hardening; a
calibrated set of parameters for ASTM A992 Gr. 50 steel was adopted from Hartloper et al. (2021).
Once the IB simulations were conducted, load-deformation as well as spatial distribution of stress-
strain were recovered from the CFE models. These results were used to calibrate the PLB material
as well as to validate the fully calibrated TFE-PLB combined model. These are discussed in
Section 5 and 6 respectively.

Table 1: Simulation set

Specimen by /2t h/t, L P/P, Boundary
(mm)

W24X146 5.92 332 5400,4500 0,0.2,03  Fx-Fx!, Fx-Fr?

W24X131 6.7 35.6 5400,4500 0,0.2,0.3 Fx-Fx, Fx-Fr

W24X103 4.59 39.2 5400,4500 0,0.2,0.3 Fx-Fx, Fx-Fr

W24X84 5.86 45.9 5400,4500 0,0.2,0.3  Fx-Fx, Fx-Fr

W21X101 7.68 37.5 5400,4500 0,0.2,0.3  Fx-Fx, Fx-Fr

1. Fixed base, loading end with rotational constraints.
2. Fixed base, loading end entirely free.

Local View X-X
buckling Lateral twisting

Figure 5: Representative CFE model (W24X103, Fx-Fx, L = 5400 mm, P/P, = 0.2): (a) undeformed mesh, (b)
interactive buckling at 4% drift, (c) corresponding load-deformation plot, (d) magnified view of local buckling, and
(e) sectional view and illustration of twist due to LTB.

5. PLB Material Calibration

The PLB parameters requires calibration before used with TFE to simulate IB response. The entire
parameter set can be categorized into three categories and their calibration guidelines are provided
in this section.



5.1 Elastic Parameters

These parameters include the fundamental mechanical properties of steel and consist of elastic
modulus (E), Poisson’s ratio (v) and initial yield stress (agy4). These properties can either be
directly calibrated from material tests or can be obtained as prescriptive values from established
literatures. In this study, parameters for ASTM A992 Gr. 50 steel were adopted from Hartloper et
al. (2021).

5.2 Isotropic and Kinematic Hardening Parameters

As discussed earlier, the post-yield response is an isotropic-kinematic combined hardening
following UVC material law. Parameters defining such response (Q, b, D, a, C;,C,, 71 and y5)
usually cannot be directly obtained from standard monotonic tests unlike the elastic parameters.
These need to be calibrated from specialized coupon tests with monotonic as well as cyclic loading.
Calibrated parameters by Hartloper et al. (2021) were adopted in this study. Note that these
hardening parameters are identical to the parameters used in CFE simulations.

5.3 Softening Parameters

The post-local buckling softening response is controlled by two softening parameters (a;4 and
0¢o) along with the cross-sectional geometry (by, tf, h and t,,); Heredia Rosa et al. (2024) provides
a detailed discussion on these parameters. As mentioned earlier, this softening response is
‘effective’ and does not imply the actual physical response at the continua. As a result, these cannot
be obtained from material tests and need to be calibrated based on CFE results. CFE results suggest

that softening response for local buckling in web and flanges can be different and require separate

calibration. The regularization parameters (aﬂfgb and afégng %), which control the softening slope

based on element size, can be calibrated following guidelines by Heredia Rosa et al. (2024).

However, the capping stress (6 %¢? and acfolang ) which marks the initiation of local buckling

required a separate calibration for IB. This is because the empirical estimates of g,y by Heredia
Rosa et al. (2024) were based on isolated plate buckling which could not incorporate complex

interactions observed in IB. For calibration purpose, a suite of TFE simulations were conducted

with trial o%¢? and acfol “"9¢ values and the load-deformation response were compared with CFE

results. Following rigorous observation of the results, it was concluded that the capping stress

depends primarily on the flange and web slenderness ratio (:Tf, ti) and could be regressed as:
f w

b h
0/} = 620.31 — 24.191 (—f> —1.503 (—) (in MPa) (17)
2tf tw
) by hy
oleb = 470.81 — 7.2541 | — ) — 1.1806 (—) (in MPa) (18)
2tf tw

The PLB parameters were calibrated for all the test cases in Table 1 and used with TFE for IB
simulations. The results and their comparison with CFE are presented in the next section.

6. Result and Discussions
The efficacy of the TFE model largely depends on its ability to simulate inelastic torsion
accurately; Maity et al. (2023) provided the validation against experimental result (Farwell Jr and



Galambos 1969). To further verify its effectiveness in simulating LTB strength, two beam bending
problems (W24X131 and W24X84, L = 4500 mm, simply supported, See Fig. 6(a-¢)) were
simulated with applied major axis moment (M) at both ends, i.e., C;, = 1.0. Both the models were
built on OpenSees 3.3.0 with 38 TFE elements (each containing 5 Gauss points) including
imperfections (see Fig. 7, discussed later). UVC hardening material was adopted with parameters
by Hartloper et al. (2021).
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Figure 6: LTB simulations for simply supported beams (L = 4500 mm): (a) Applied end moments for C;, = 1.0;
Moment response (M) for (b) W24X131 and (c) W24X84; Twist response (6x) for (d) W24X131 and (e) W24X84.

Fig. 6(a) provides the schematic details of the simulation model while Fig. 6(b-e) provides the
outcomes. Referring to Fig. 6(b), the TFE outcome provides a strikingly accurate nominal LTB
strength (M,,) prediction (error = ~2%) for W24X131 with €, = 1.0; Fig. 6(d) illustrates an
increasing twist response indicating a fully developed LTB. Similar results are presented in Fig.
6(c and e) for the W24X84 beam with €}, = 1.0. Referring to Fig. 6(c), TFE slightly overpredicts
(~6%) the nominal LTB strength. This was observed because of the relatively slender W24X84
section showing LTB response before yielding in steel. As a result, highly complex buckling
modes may appear which the TFE cannot include with the limited degrees of freedom. Considering
these, the TFE prediction can be considered a reasonably accurate one.

While Fig. 6(a-e) establish the ability of TFE to predict the LTB strength, to further investigate its
ability to predict accurate IB response, the test cases summarized in Table 1 were also simulated
using TFE models on OpenSees 3.3.0. Referring to Table 1, a wide range of slenderness (b/2t,

h/t,, L/1y), boundary conditions (Fx-Fx and Fx-Fr) and loads (P/P,) were investigated as they
commonly represent members in steel frames. Note that the lengths of the members are relatively

10



large compared to the plastic LTB length (L/1, > L, /1, = 42, for Gr. 50 steel). This implies the
members are susceptible to lateral torsional modes which are relevant in IB. Fig. 7(a) schematically
represents one representative TFE model. Referring to Fig. 7(a-b), 38 TFE elements were used
(typ.), each having 5 Gauss-points. This fine discretization was necessary to accurately simulate
the buckled shape and aid the UL nonlinear geometric effects efficiently; details can be found in
Maity et al. (2023). Initial imperfections were provided in two forms: (1) initial minor axis
displacements (&) to initiate global instabilities (see Fig. 7(c)), and (2) reduced flange thickness
(~5%) at potential plastic hinge regions (see Fig. 7(a-b)) to initiate local buckling. Fig. 7(a-b) also
schematically illustrate the load and end conditions (Fx-Fr and Fx-Fx respectively).

by
P Thk.
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Figure 7: TFE modelling features: schematic meshed model with end conditions and cross-sectional imperfections
for (a) Fx-Fr and (b) Fx-Fx end conditions, (c) schematic illustration of global imperfection.

A fully calibrated PLB softening material model for ASTM A992 Gr. 50 steel was used as
discussed in the previous section. Notably a softening material model can lead to severe mesh
dependency as the strain starts to localize at one element (Wu and Wang 2010) introducing an
artificial length scale. An accurate solution relies on either an accurate length scale in elements
(e.g.- Maity et al. 2023) or a nonlocal strain formulation at the fibers (e.g.- Kolwankar et al. 2018).
In this study a pre-selected the mesh size of 1.5b; were used near potential plastic hinge regions
where localization was expected (see Fig. 7(a-b)), following recommendations by Kolwankar et
al. (2018). All the models were applied with a displacement controlled transverse load (Ay)
following an axial preload (P). Load-displacement as well as spatial distribution of displacement
variables were recovered from every simulation. On careful inspection of simulation results, two
different buckling response were observed: (1) Buckling is initiated by local buckling while loss
in lateral resistance because of plasticity at higher drifts triggers LTB; this was observed in cases
with Fx-Fx boundary conditions (see Table 1), and (2) LTB dominates the buckling response as
observed in Fx-Fr boundary cases (see Table 1). For brevity, the former is termed as IB dominated
response while the latter is called LTB dominated response. Outcomes from one representative
example for each type of response are presented as follows.
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6.1 Example #1: IB Dominated Response

Fig. 8(a-c) provides the outcome from one representative simulation with TFE model (W24X146,
L = 5400 mm, P/P, = 0.3, Fx-Fx end condition) showing IB dominated response. Fig. 8(a)
presents the load-chord rotation response while Fig. 8(b-c) presents the profile of transverse
displacement (Ay) and twist angle (8x) along length at 3% drift. Fig. 8(a-c) also overlays the
analysis outcome from CFE results. Referring to Fig. 8(a-b), TFE predicted load-deformation
response and Ay profile are strikingly similar to the CFE response. However, the 6y profile
suggests a different magnitude of twist occurring in TFE and CFE (see Fig. 8(c)). This can be
attributed to the fact that the length scale chosen for this model is specifically for local buckling
while the twisted response can localize over a different length. The TFE is still able to capture a
qualitatively similar twisted response in IB as observed by CFE. The above-mentioned
observations suggest that TFE is capable to simulate IB response in an accurate manner.
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Figure 8: Comparison of TFE vs CFE for (a) load-deformation, (b) lateral displacement profile (4y) and (¢) twist
angle profile (6x) at 4% drift for representative IB dominated response (W24X146, L = 5400 mm, P/P, = 0.3,
Fx-Fx end condition).
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Figure 9: Comparison of TFE vs CFE for (a) load-deformation, (b) lateral displacement profile (4y) and (¢) twist
angle profile (fy) at 4% drift for representative IB dominated response (W24X131 member, L = 4500 mm,
P/P, = 0.3 and Fx-Fr end condition).

6.2 Example #2: LTB Dominated Response

Fig. 9(a-c) provides the similar plots for a representative LTB dominated response featuring
W24X131 member, L = 4500 mm, P/P, = 0.3 and Fx-Fr end condition. Referring to Fig. 9(a)
the CFE predicted load-displacement response shows a steeper softening slope compared to the
TFE counterpart. This can be attributed to (1) material calibration in TFE-PLB model for local
buckling only, (2) limited degrees of freedom in TFE to simulate a complex response with cross-
sectional distortions as compared to CFE, and (3) a simplified geometric nonlinearity (UL) as
compared to a computationally expensive geometrically exact nonlinear system in CFE. Even with
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these limitations, TFE shows a reasonable agreement with CFE simulating LTB dominated
response. Fig. 9(b-c) also show close agreements between TFE and CFE for the spatial distribution
of transverse displacement (Ay) and twist ().

7. Summary and Conclusions

Interactive Buckling (IB) is a common failure mode in steel frames especially under earthquakes.
Currently available finite element models are either too simple to include necessary physics
observed in IB or numerically expensive and impractical for frame analysis. A recently developed
displacement-based Torsional Fiber Element (TFE) along with a multiaxial Plate Local Buckling
(PLB) material model addresses this issue; both the models were implemented on OpenSees 3.3.0,
an open-source finite element software. While the developed model shows potential in capturing
accurate response in IB, it still has its own limitations and further scope of research. For example,
the model still needs to be verified and upgraded for cyclic loading. Furthermore, the model is still
mesh dependent and as per previous studies a nonlocal strain formulation shows promise to
eradicate the mesh dependency. These studies are underway by the authors. Once these issues are
be addressed, the TFE-PLB combined model can become a robust tool for simulation of steel
frames under earthquakes.
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