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Abstract

Tooth cracks, one of the most common dental diseases, can result in the tooth falling apart without prompt treatment; dentists
also have difficulty locating cracks, even with X-ray imaging. Indocyanine green (ICG) assisted near-infrared fluorescence
(NIRF) dental imaging technique can solve this problem due to the deep penetration of NIR light and the excellent fluores-
cence characteristics of ICG. This study extracted 593 human cracked tooth images and 601 non-cracked tooth images from
NIR imaging videos. Multiple imaging analysis methods such as classification, object detection, and super-resolution were
applied to the dataset for cracked image analysis. Our results showed that machine learning methods could help analyze
tooth crack efficiently: the tooth images with cracks and without cracks could be well classified with the pre-trained residual
network and squeezenet]_1 models, with a classification accuracy of 88.2% and 94.25%, respectively; the single shot multi-
box detector (SSD) was able to recognize cracks, even if the input image was at a different size from the original cracked
image; the super-resolution (SR) model, SR-generative adversarial network demonstrated enhanced resolution of crack
images using high-resolution concrete crack images as the training dataset. Overall, deep learning model-assisted human
crack analysis improves crack identification; the combination of our NIR dental imaging system and deep learning models
has the potential to assist dentists in crack diagnosis.
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Introduction

Dental health has drawn significant attention nowadays
since dental disorders, such as caries (decay), fractures, and
54 Jian Xu impacted wisdom teeth make a massive number population
suffer pain and uncomfortable. Caries lesions and decays
affect most of the population; wisdom teeth influence up to
half population [1]. Craze line, fractured cusp, vertical root
fracture, cracked tooth, and split tooth are the five common
types of tooth fractures [2]; the craze line is a fracture that
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happens only outside the crown (enamel), which is currently
deemed not harmful to dental health [3]. However, these
small cracks may lead to pulp necrosis if they grow larger
[4]. In addition, 34% — 74% of adults suffer sound tooth
structure loss caused by their cracked teeth [5]. Periodic
examination and early detection of cracked teeth are there-
fore essential to decrease the possibility of crack growth and
consequential deterioration of the teeth. The most common
dental imaging method is X-ray imaging, such as 2D radio-
graph and 3D cone beam computed tomography (CBCT)
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[6]. However, X-ray dental imaging has its disadvantages:
(1) it generates ionizing radiation, which may be harmful
to human health (e.g., low birth weight baby, and induc-
tion of cancer) [7]; and (2) the crack on the enamel cannot
be identified by micro-computerized tomography (micro-
CT) [1]. Other modern imaging techniques, such as opti-
cal coherence tomography (OCT) and ultrasound, are also
employed in dental imaging research but are less efficient
[8, 9]. Though the swept-source OCT can demonstrate the
tomography between tooth enamel and dentin, several disad-
vantages limit its application: (1) the patients are required to
be in the same position to achieve good imaging quality for
a full mouth lesion detection, which is insufficient; (2) the
shallow penetration of current swept source OCT is ~3 mm,
which needs to be improved for deep crack detection [10].
Few studies of ultrasound have been investigated for tooth
crack detection because of the low resolution; the new ultra-
sonic technology, laser ultrasound, can detect tooth crack
while the laser radiation may damage oral tissue [11, 12].
Magnetic resonance imaging (MRI) can identify tooth caries
and cracks but is normally expensive and requires massive
scanning time [13].

Infrared imaging, especially near-infrared (NIR) atten-
tion in the tooth imaging field recently [14]. Indocyanine
green (ICG), the U.S. Food and Drug Administration (FDA)
approved medical imaging dye, assisted-NIR imaging is an
efficient and safe method in dental disease diagnosis; this
system is also capable of capturing cracks on the enamel
[15, 16]. NIR imaging can be separated into two categories
regarding wavelength: NIR-I (wavelength between 700 nm
to 950 nm) and NIR-II (wavelength between 1000 nm to
1700 nm) [17, 18]. Although our NIRF imaging scheme
has demonstrated superior imaging of cracks, including
those often missed by the current dental X-ray/CT, it is
time-consuming for dentists to manually read each frame
of video to find all important cracks [14, 17, 19, 20]. Nowa-
days, the main method of crack detection in dentistry is vis-
ible light reflection/transmission with dentists’ naked eyes.
Some researchers stated that dental X-ray/CT, particularly
CBCT, is the gold standard method for dental imaging [21].
However, cracks can only be detected when it is larger than
100 um, as shown in our previous studies and other litera-
ture [1, 22, 23]. In addition, the micro-CT is not clinically
reasonable because of the high radiation. The NIR dental
image and video enhancement and analysis are needed to
improve the efficiency of the process and make it practical
for dentists.

Machine learning-aided biomedical image processing has
been fast developing since the improvement of computation
in recent years [24]. Kist and Déllinger implemented an edge
tensor processing units (TPUs) based biomedical imaging
segmentation approach, which shortened the waiting time
for patients [25]. Brattain et al. summarized the status,
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approaches, and future of machine learning-assisted medi-
cal ultrasound (US) techniques [26]. Bloice et al. reported
the Augmentor package (designed to assist the image aug-
mentation and generation for machine learning tasks) of
python for biomedical image augmentation purposes [27].
Deep learning methods could help in reconstructions and
enhancements of the optical microscopy images for opti-
mizing disease diagnosis, such as reducing imaging system
cost (e.g., super-resolution) and improving accuracy (e.g.,
virtual staining) [28, 29]. On the other hand, biomedical
signal classification and prediction play a significant role in
diagnosing diseases [30]. In addition, object detection can
locate damaged structures and cell nuclei after training [31,
32]. Single-shot multi-box detection (SSD) is a popular and
accurate object detection model. Rashid et al. applied the
SSD and level set segmentation method to segment mela-
noma lesions [33]. The super-resolution (SR) technique
becomes necessary since the resolution of many medical
images is quite low [34]. Chen and colleagues applied deep
connected neural networks (NN) for brain magnetic reso-
nance imaging (MRI) SR images, their results outperformed
other existing deep learning algorithms due to the densely
connected NN [35].

Most of the current deep learning-aided dental analy-
ses use radiographs, such as those produced by computed
tomography (CT). Lee et al. applied a U-shaped based con-
volutional neural network (CNN) for caries detection on the
bitewing radiograph dataset, which improved the dentist’s
diagnostic performance [36]. Choi’s group collected 3000
premolar and molar periapical radiographs and implemented
a binary CNN model to classify caries images and non-car-
ies images, achieving an average accuracy of ~85% from
three different molar models [37]. Jaskari and colleagues
developed a machine-learning model for automatically
locating the mandibular canal based on the CBCT volume
data [38]. To the best of our knowledge, no deep-learning-
based NIR-assisted dental imaging technique for cracked and
non-cracked tooth image analysis has been reported to this
date. In our previous studies, we demonstrated that ICG-
assisted NIRF dental imaging was capable of identifying
dental diseases, such as caries and cracks; the system had the
potential to be an efficient and safe tool for dental examina-
tions [22, 39, 40]. In this work, we first built a human tooth
image dataset that included tooth images with and without
cracks from NIR tooth videos. This dataset is also innova-
tively analyzed with multiple machine learning methods for
accurate diagnosis of tooth cracks, including cracked and
non-cracked images classification, crack identification, and
high-resolution crack images.
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Materials and Methods

Crack Tooth Image Collection with NIRF Dental
Imaging System

The human teeth were from Louisiana State University
Health Science Center (LSUHSC) (Baton Rouge, USA);
a dentist with more than 10 years of experience and his
residents helped collect the teeth and confirm the cracks
using visible light with their naked eyes. Tooth videos
were taken by the NIR imaging system (Fig. 1a); the imag-
ing setup could be found in our previous studies [19, 22].
Briefly, the light from the 785 nm laser (Turkey Raman
Lasers 785, Ocean Optics) went through a 785 nm band
pass filter (Thorlabs) by an optical fiber; the extracted
human teeth were immersed in ICG solution (concentra-
tion: 50 uM; duration of immersion: 1 min, 10 min, 4 h,
24 h), then shined with NIR light (both transillumination
and reflection), and recorded by NIR cameras (NIR-I cam-
era, Mako U130B, Allied Vision; NIR-II camera, Goldeye
G008, Allied Vision); the cracks on the tooth could be
found and collected in the videos. Figure 1b showed an
original frame of the video (image size: 1729 x 844, all
the units are pixels); the images without a crack (Fig. 1c)
and with a crack (Fig. 1d) were trimmed to the size of
400 x 600 from the original image by a lab-developed

software (MATLAB, R2019a; MathWorks Inc, Natick,
Mass). In this tool, we could select the crack in any size
and generate the 400 x 600 image by interpolation. The
dataset contained 593 crack tooth images and 601 non-
crack tooth images. The Institutional Review Board of
Louisiana State University approved the experimental
procedures (IRB#E11061).

Classification of Tooth Images With Crack
and Without Crack

Two deep neural networks were implemented and compared
for cracked image and non-cracked image classification. The
first network was the ImageNet pre-trained residual neural
network (ResNet50) model (Fig. 2a). This model included
five stages: stagel consisted of a convolutional layer, a batch
normalization layer, a ReLU layer, and a max-pooling layer;
stage2 and stage5 had one convolutional block (each block
contained three convolutional layers) and two identity blocks
(each block also contained three convolutional layers); stage3
had one convolutional block and three identity blocks; stage4
had one convolutional block and five identity blocks; all the
weights were frozen. Two fully connected layers were added:
the first one had 128 neurons, and the second layer had two
neurons for the classification [41, 42]. 80% of the tooth image
data (~474 cracked tooth images and 480 non-cracked tooth
images) were used for training and 20% (~ 119 cracked tooth

Fig. 1 Tooth image with crack
and without crack collection
from NIRF dental imaging
system
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Fig.2 The network architecture of classification models. a ResNet50; b squeezenet]_1

images and 121 non-cracked tooth images) for testing. The
other network was squeezenet]_1 (Fig. 2b), which was also a
pre-trained model based on ImageNet; this net consisted of two
convolutional layers, 8 fire layers, and a final classifier layer
[43].~83% of the data (1000 tooth images) were used for train-
ing and validation, and ~ 17% (193 tooth images) for testing.

Crack Detection of the Tooth Crack Image

Object detection was an excellent tool to locate the target in
the image or video. In this study, we used the SSD model to
detect and locate the tooth crack from the crack images. The
SSD model was based on VGG 16, which had 16 parameter-
ized layers (13 convolutional layers and 3 fully connected
layers) [44]. We created and labeled 378 tooth crack images
as a new class since there was no crack label in the existing
dataset; the labeled crack images were trained together with
the Microsoft common objects in context (COCO) dataset
and the PASCAL visual object classes challenge (VOC2007)
dataset [45, 46]. The cracks were labeled by the labellmg
[47].

Tooth Crack Super-Resolution with Concrete Crack
Images

Super-resolution ResNet (SRResNet) and super-reso-
lution generative adversarial network (SRGAN) were
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implemented for improving the resolution of the tooth
crack images. The SRResNet contained one convolutional
module, 16 residual modules, one convolutional module,
two sub-pixel convolutional modules, and one convolu-
tional module, sequentially [48]. The SRGAN included
a Generator and a Discriminator: the Generator was the
same network structure as SRResNet; the Discriminator
was a classification model to identify whether the image
was the generated image or the original image, which
contained a convolutional layer, Leaky ReLU layer, seven
convolutional modules, dense layer, Leaky ReLU layer,
and Sigmoid layer [48]. In this work, we used high-res-
olution concrete crack images as the training dataset to
mimic high-resolution tooth crack images. In addition,
the concrete images were large and distinct. The concrete
crack dataset had 20,000 cracked images and 20,000 non-
cracked images; each image size was 227 x 227 [49]. The
test image was a low-resolution tooth crack image. The
SRResNet model was trained for 100 epochs; the SRGAN
model was trained for 50 epochs.

The machine learning workstation is based on an HP
72620 computer (CPU: Intel Xeon processor E5-1600
product family; Memory: 16 GB) with an additional
NVIDIA K80 GPU. All the machine-learning approaches
were implemented in Python and PyTorch.
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Results

Classification Performances of Tooth Images With
and Without Crack

The classification accuracy of the pre-trained ResNet50
model was 88.2%. The training and test accuracy became
stable at~6 epochs; the training and test loss was stable
at~5 epochs (Fig. 3a).

The classification performances of squeezenetl_1 outper-
formed ResNet50, with an accuracy of 94.25%, a sensitivity
of 95.0%, and a specificity of 93.49%; the correct predictions
of 10 runs were 94.95% for positive images and 93.48% for
negative images. The training and test accuracies were stable
after 10 epochs; the training loss and test loss became stable
after 4 epochs (Fig. 3b).

Crack Identification of the Tooth Crack Image

Three images (one was from the training dataset, and
the other two were new images) were tested for crack

Fig.3 Accuracy and loss to

identification with the SSD model. Figure 4b—d demon-
strated the typical results: Fig. 4a is a ground truth image
(the blue box was the manually labeled crack) and this image
was also tested as the input to the SSD model (Fig. 4b),
the slot captured most of the crack compared to the ground
truth; Fig. 4c showed a random crop image from the video
frame in Fig. 1 (207 x 245), the crack was captured suc-
cessfully; the crack in the original video frame image was
also identified (Fig. 4d), only with a larger detector box.
The teethcrack value is the IoU (intersection over union),
which is a metric of object detection; all the IoU values
were beyond 0.9, indicating cracks could be well identified.

Tooth crack super-resolution analysis

The loss function of SRResNet was the mean square error
(MSELoss), which became stable at ~30 epochs (Fig. 5).

The SRGAN had three losses illustrated in Fig. 6: loss
(c), loss (a), and loss (d), which were content loss, genera-
tor loss, and discriminator loss, respectively. The losses in
SRGAN were not stable since the generator and discrimina-
tor were against each other.
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Fig.4 Tooth crack identifica-
tion with SSD. a ground truth;
b crack identification of ground
truth (a); ¢ identification of ran-
dom size cropped image of the
video frame in Fig. 1; d crack
identification of the video frame
in Fig. 1. The X-Y axis of b-d
demonstrated the image size

100 125 150 175 200

0 200 400 600 800 1000 1200 1400 1600

Fig.5 Loss to epoch curve of

SRResNet 0.01

0.008 ;

0.006 I

Loss

0.004 |

0.002 |

Figure 7 illustrates the concrete crack super-resolution
images of SRResNet (epoch 100) and SRGAN (epoch 50)
during the training: the first row presents the low-resolu-
tion images; the second row presents the super-resolution
images; the last row presents the ground truth images.
SRGAN images were closer to the ground truth than the
SRResNet, which were smoother and more detailed.
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SRResNet loss
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Epochs

We tested our tooth crack images in the SRResNet and
SRGAN models to get super-resolution crack images. Fig-
ure 8a (400 x 600, resolution in pixels) was the original
crack image; Fig. 8b (6400 x 9600) was the image generated
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Fig.6 Loss to epoch curves SRGAN Loss ¢
of SRGAN. Loss c represents 0.2 ‘ ! ‘ ! ! ‘ ! ! ‘ !
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Fig.7 Concrete super-resolution images with or without cracks in SRResNet and SRGAN models

by the SRResNet model, which was darker than Fig. 8a, but  Fig. 8d (6400 X 9600) was generated by the SRGAN model
the crack line was identifiable as a clear and black line. Fig- ~ from Fig. 8c, with a higher resolution.
ure 8c (1600 x 2400) was generated by the SRGAN model;
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Fig.8 Tooth crack super-resolution images generated by SRResNet and SRGAN. a original image; b SRResNet generated crack image; ¢

SRGAN generated image; d SRGAN generated image from (c)

Discussions

The human tooth enamel is composed of carbonated apa-
tite. Although the enamel is the hardest part of the human
body, craze lines may occur because of age, trauma, and
grinding. Detecting the small cracks, especially the early-
stage craze line, is challenging in dentistry. Our NIR
dental imaging system demonstrated that cracks could be
detected while X-raying imaging failed. When the NIR
light shone on the tooth from different angles, the enamel
was bright while the crack was dark according to NIR
videos and images. The gap of cracks prevented light from
going through, which formed the dark line.

In this work, 593 cracked and 601 non-cracked human
tooth images were collected from NIR imaging videos;
these images were analyzed with multiple modern machine
learning models, such as classification, crack identifica-
tion, and super-resolution. Our previous studies demon-
strated that human tooth cracks on the enamel-dentin can
be captured by the NIR dental imaging system, but not by
the more commonly utilized micro-CT data. Because some
of these cracks were challenging to find and locate, further
image and video processing were necessary to optimize
our dental imaging system for the dental crack diagnosis.

Binary classification with a pre-trained model was
applied to differentiate the images with crack and with-
out crack. One advantage of transfer learning is time
efficiency. The parameter and model can be used directly
with minor modifications. Both the ResNet50 model and
squeezenet model could finish training and testing in a
very short time (~8 min for ResNet50) and small epochs
(20 epochs). In addition, these models successfully clas-
sified the cracked and no cracked images with accuracies
of over 88% (ResNet50 model) and over 93% (squeezenet
model).

@ Springer

For human tooth crack identification, we used an SSD
model to locate the cracks. The COCO and VOC2007 data-
sets were applied as the training data. However, current data-
sets did not contain tooth crack images, so we collected 378
self-labeled crack images and added them to the dataset as
a new class. The results demonstrated cracks could be rec-
ognized: one ground truth image was tested and recognized
(Fig. 4a and 4b). Most of the ground truth crack was in the
detect box; the upper part was out of the slot might due to
the middle gap, which made the detector recognize them as
two cracks since our detector could only detect one object.
In addition, the cracks of new images of different sizes were
also recognized, which indicated our tooth crack detector
could assist the dentist in the crack diagnosis in vitro.

Modern imaging techniques, such as Ultrasound, MRI,
and NIR imaging, play a vital role in disease diagnosis.
However, the low-resolution images are considered a huge
disadvantage of these methods, which may limit their
applications. Super-resolution using the SRGAN model
aims to improve the resolution and quality of the low-
resolution image, which would be helpful for biomedical
image analysis. Using the SRGAN model requires high-
resolution images as the training dataset. In our tooth crack
experiment, we trained the model with only COCO2014,
the tooth crack remained the same without any enhance-
ment because there were no high-resolution tooth crack
images in the dataset. On the contrary, we used high-reso-
lution concrete crack images as the training data because
the resolution of our NIR tooth images is relatively low
and the concrete crack image has the same main feature as
the tooth crack image. The SR-enhanced tooth crack image
became distinct and the crack turned dark from bright
(Fig. 8d). When NIR light shone on the ICG-immersed
human-extracted tooth from various directions, the crack
could be bright instead of dark. The advantage of SRGAN
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over SRResNet is the Discriminator, which could make the
generated crack image closer to the original image.

Although modern imaging techniques have been well
developed in recent decades, the resolution is still a limita-
tion. More efforts need to be made for bio-medical image
collection and classification, especially for high-resolution
images. In addition, this work only detected the extracted
human tooth. However, it would be more difficult to apply
in vivo in clinical practice since teeth are next to each
other. Our next step is to make a panoramic oral image/
video using other machine-learning techniques that may
solve the problem.

Conclusions

In this work, we build a human tooth crack dataset from
NIR dental imaging videos for the first time. This dataset
includes 593 cracked images and 601 non-cracked images;
all the images are self-generated to a size of 400 X 600
by interpolation. Multiple deep learning-assisted models
are innovatively implemented for tooth crack analysis.
Two pre-trained classification models (ResNet50 model
and squeezenetl_1 model) had excellent classification
performances, demonstrating that images with or without
cracks can be well classified. Cracks are also recognized
and located in the SSD model after training with the added
tooth crack label in the COCO dataset. A high-resolution
concrete crack image-based dataset can improve the reso-
lution of tooth crack images by the SRGAN model. Our
work represents the first effort to use machine-learning-
aided NIRF dental imaging for automated dental disease
identification, as compared to the previous studies of den-
tal radiography. Overall, deep learning combined NIRF
imaging system provides a novel tool for efficient and
dependable human tooth crack diagnosis.
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