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Abstract
Tooth cracks, one of the most common dental diseases, can result in the tooth falling apart without prompt treatment; dentists 
also have difficulty locating cracks, even with X-ray imaging. Indocyanine green (ICG) assisted near-infrared fluorescence 
(NIRF) dental imaging technique can solve this problem due to the deep penetration of NIR light and the excellent fluores-
cence characteristics of ICG. This study extracted 593 human cracked tooth images and 601 non-cracked tooth images from 
NIR imaging videos. Multiple imaging analysis methods such as classification, object detection, and super-resolution were 
applied to the dataset for cracked image analysis. Our results showed that machine learning methods could help analyze 
tooth crack efficiently: the tooth images with cracks and without cracks could be well classified with the pre-trained residual 
network and squeezenet1_1 models, with a classification accuracy of 88.2% and 94.25%, respectively; the single shot multi-
box detector (SSD) was able to recognize cracks, even if the input image was at a different size from the original cracked 
image; the super-resolution (SR) model, SR-generative adversarial network demonstrated enhanced resolution of crack 
images using high-resolution concrete crack images as the training dataset. Overall, deep learning model-assisted human 
crack analysis improves crack identification; the combination of our NIR dental imaging system and deep learning models 
has the potential to assist dentists in crack diagnosis.
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Introduction

Dental health has drawn significant attention nowadays 
since dental disorders, such as caries (decay), fractures, and 
impacted wisdom teeth make a massive number population 
suffer pain and uncomfortable. Caries lesions and decays 
affect most of the population; wisdom teeth influence up to 
half population [1]. Craze line, fractured cusp, vertical root 
fracture, cracked tooth, and split tooth are the five common 
types of tooth fractures [2]; the craze line is a fracture that 
happens only outside the crown (enamel), which is currently 
deemed not harmful to dental health [3]. However, these 
small cracks may lead to pulp necrosis if they grow larger 
[4]. In addition, 34% − 74% of adults suffer sound tooth 
structure loss caused by their cracked teeth [5]. Periodic 
examination and early detection of cracked teeth are there-
fore essential to decrease the possibility of crack growth and 
consequential deterioration of the teeth. The most common 
dental imaging method is X-ray imaging, such as 2D radio-
graph and 3D cone beam computed tomography (CBCT) 
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[6]. However, X-ray dental imaging has its disadvantages: 
(1) it generates ionizing radiation, which may be harmful 
to human health (e.g., low birth weight baby, and induc-
tion of cancer) [7]; and (2) the crack on the enamel cannot 
be identified by micro-computerized tomography (micro-
CT) [1]. Other modern imaging techniques, such as opti-
cal coherence tomography (OCT) and ultrasound, are also 
employed in dental imaging research but are less efficient 
[8, 9]. Though the swept-source OCT can demonstrate the 
tomography between tooth enamel and dentin, several disad-
vantages limit its application: (1) the patients are required to 
be in the same position to achieve good imaging quality for 
a full mouth lesion detection, which is insufficient; (2) the 
shallow penetration of current swept source OCT is ~ 3 mm, 
which needs to be improved for deep crack detection [10]. 
Few studies of ultrasound have been investigated for tooth 
crack detection because of the low resolution; the new ultra-
sonic technology, laser ultrasound, can detect tooth crack 
while the laser radiation may damage oral tissue [11, 12]. 
Magnetic resonance imaging (MRI) can identify tooth caries 
and cracks but is normally expensive and requires massive 
scanning time [13].

Infrared imaging, especially near-infrared (NIR) atten-
tion in the tooth imaging field recently [14]. Indocyanine 
green (ICG), the U.S. Food and Drug Administration (FDA) 
approved medical imaging dye, assisted-NIR imaging is an 
efficient and safe method in dental disease diagnosis; this 
system is also capable of capturing cracks on the enamel 
[15, 16]. NIR imaging can be separated into two categories 
regarding wavelength: NIR-I (wavelength between 700 nm 
to 950 nm) and NIR-II (wavelength between 1000 nm to 
1700 nm) [17, 18]. Although our NIRF imaging scheme 
has demonstrated superior imaging of cracks, including 
those often missed by the current dental X-ray/CT, it is 
time-consuming for dentists to manually read each frame 
of video to find all important cracks [14, 17, 19, 20]. Nowa-
days, the main method of crack detection in dentistry is vis-
ible light reflection/transmission with dentists’ naked eyes. 
Some researchers stated that dental X-ray/CT, particularly 
CBCT, is the gold standard method for dental imaging [21]. 
However, cracks can only be detected when it is larger than 
100 µm, as shown in our previous studies and other litera-
ture [1, 22, 23]. In addition, the micro-CT is not clinically 
reasonable because of the high radiation. The NIR dental 
image and video enhancement and analysis are needed to 
improve the efficiency of the process and make it practical 
for dentists.

Machine learning-aided biomedical image processing has 
been fast developing since the improvement of computation 
in recent years [24]. Kist and Döllinger implemented an edge 
tensor processing units (TPUs) based biomedical imaging 
segmentation approach, which shortened the waiting time 
for patients [25]. Brattain et  al. summarized the status, 

approaches, and future of machine learning-assisted medi-
cal ultrasound (US) techniques [26]. Bloice et al. reported 
the Augmentor package (designed to assist the image aug-
mentation and generation for machine learning tasks) of 
python for biomedical image augmentation purposes [27]. 
Deep learning methods could help in reconstructions and 
enhancements of the optical microscopy images for opti-
mizing disease diagnosis, such as reducing imaging system 
cost (e.g., super-resolution) and improving accuracy (e.g., 
virtual staining) [28, 29]. On the other hand, biomedical 
signal classification and prediction play a significant role in 
diagnosing diseases [30]. In addition, object detection can 
locate damaged structures and cell nuclei after training [31, 
32]. Single-shot multi-box detection (SSD) is a popular and 
accurate object detection model. Rashid et al. applied the 
SSD and level set segmentation method to segment mela-
noma lesions [33]. The super-resolution (SR) technique 
becomes necessary since the resolution of many medical 
images is quite low [34]. Chen and colleagues applied deep 
connected neural networks (NN) for brain magnetic reso-
nance imaging (MRI) SR images, their results outperformed 
other existing deep learning algorithms due to the densely 
connected NN [35].

Most of the current deep learning-aided dental analy-
ses use radiographs, such as those produced by computed 
tomography (CT). Lee et al. applied a U-shaped based con-
volutional neural network (CNN) for caries detection on the 
bitewing radiograph dataset, which improved the dentist’s 
diagnostic performance [36]. Choi’s group collected 3000 
premolar and molar periapical radiographs and implemented 
a binary CNN model to classify caries images and non-car-
ies images, achieving an average accuracy of ~ 85% from 
three different molar models [37]. Jaskari and colleagues 
developed a machine-learning model for automatically 
locating the mandibular canal based on the CBCT volume 
data [38]. To the best of our knowledge, no deep-learning-
based NIR-assisted dental imaging technique for cracked and 
non-cracked tooth image analysis has been reported to this 
date. In our previous studies, we demonstrated that ICG-
assisted NIRF dental imaging was capable of identifying 
dental diseases, such as caries and cracks; the system had the 
potential to be an efficient and safe tool for dental examina-
tions [22, 39, 40]. In this work, we first built a human tooth 
image dataset that included tooth images with and without 
cracks from NIR tooth videos. This dataset is also innova-
tively analyzed with multiple machine learning methods for 
accurate diagnosis of tooth cracks, including cracked and 
non-cracked images classification, crack identification, and 
high-resolution crack images.
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Materials and Methods

Crack Tooth Image Collection with NIRF Dental 
Imaging System

The human teeth were from Louisiana State University 
Health Science Center (LSUHSC) (Baton Rouge, USA); 
a dentist with more than 10 years of experience and his 
residents helped collect the teeth and confirm the cracks 
using visible light with their naked eyes. Tooth videos 
were taken by the NIR imaging system (Fig. 1a); the imag-
ing setup could be found in our previous studies [19, 22]. 
Briefly, the light from the 785 nm laser (Turkey Raman 
Lasers 785, Ocean Optics) went through a 785 nm band 
pass filter (Thorlabs) by an optical fiber; the extracted 
human teeth were immersed in ICG solution (concentra-
tion: 50 µM; duration of immersion: 1 min, 10 min, 4 h, 
24 h), then shined with NIR light (both transillumination 
and reflection), and recorded by NIR cameras (NIR-I cam-
era, Mako U130B, Allied Vision; NIR-II camera, Goldeye 
G008, Allied Vision); the cracks on the tooth could be 
found and collected in the videos. Figure 1b showed an 
original frame of the video (image size: 1729 × 844, all 
the units are pixels); the images without a crack (Fig. 1c) 
and with a crack (Fig. 1d) were trimmed to the size of 
400 × 600 from the original image by a lab-developed 

software (MATLAB, R2019a; MathWorks Inc, Natick, 
Mass). In this tool, we could select the crack in any size 
and generate the 400 × 600 image by interpolation. The 
dataset contained 593 crack tooth images and 601 non-
crack tooth images. The Institutional Review Board of 
Louisiana State University approved the experimental 
procedures (IRB#E11061).

Classification of Tooth Images With Crack 
and Without Crack

Two deep neural networks were implemented and compared 
for cracked image and non-cracked image classification. The 
first network was the ImageNet pre-trained residual neural 
network (ResNet50) model (Fig. 2a). This model included 
five stages: stage1 consisted of a convolutional layer, a batch 
normalization layer, a ReLU layer, and a max-pooling layer; 
stage2 and stage5 had one convolutional block (each block 
contained three convolutional layers) and two identity blocks 
(each block also contained three convolutional layers); stage3 
had one convolutional block and three identity blocks; stage4 
had one convolutional block and five identity blocks; all the 
weights were frozen. Two fully connected layers were added: 
the first one had 128 neurons, and the second layer had two 
neurons for the classification [41, 42]. 80% of the tooth image 
data (~ 474 cracked tooth images and 480 non-cracked tooth 
images) were used for training and 20% (~ 119 cracked tooth 

Fig. 1   Tooth image with crack 
and without crack collection 
from NIRF dental imaging 
system
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images and 121 non-cracked tooth images) for testing. The 
other network was squeezenet1_1 (Fig. 2b), which was also a 
pre-trained model based on ImageNet; this net consisted of two 
convolutional layers, 8 fire layers, and a final classifier layer 
[43]. ~ 83% of the data (1000 tooth images) were used for train-
ing and validation, and ~ 17% (193 tooth images) for testing.

Crack Detection of the Tooth Crack Image

Object detection was an excellent tool to locate the target in 
the image or video. In this study, we used the SSD model to 
detect and locate the tooth crack from the crack images. The 
SSD model was based on VGG16, which had 16 parameter-
ized layers (13 convolutional layers and 3 fully connected 
layers) [44]. We created and labeled 378 tooth crack images 
as a new class since there was no crack label in the existing 
dataset; the labeled crack images were trained together with 
the Microsoft common objects in context (COCO) dataset 
and the PASCAL visual object classes challenge (VOC2007) 
dataset [45, 46]. The cracks were labeled by the labelImg 
[47].

Tooth Crack Super‑Resolution with Concrete Crack 
Images

Super-resolution ResNet (SRResNet) and super-reso-
lution generative adversarial network (SRGAN) were 

implemented for improving the resolution of the tooth 
crack images. The SRResNet contained one convolutional 
module, 16 residual modules, one convolutional module, 
two sub-pixel convolutional modules, and one convolu-
tional module, sequentially [48]. The SRGAN included 
a Generator and a Discriminator: the Generator was the 
same network structure as SRResNet; the Discriminator 
was a classification model to identify whether the image 
was the generated image or the original image, which 
contained a convolutional layer, Leaky ReLU layer, seven 
convolutional modules, dense layer, Leaky ReLU layer, 
and Sigmoid layer [48]. In this work, we used high-res-
olution concrete crack images as the training dataset to 
mimic high-resolution tooth crack images. In addition, 
the concrete images were large and distinct. The concrete 
crack dataset had 20,000 cracked images and 20,000 non-
cracked images; each image size was 227 × 227 [49]. The 
test image was a low-resolution tooth crack image. The 
SRResNet model was trained for 100 epochs; the SRGAN 
model was trained for 50 epochs.

The machine learning workstation is based on an HP 
Z2620 computer (CPU: Intel Xeon processor E5-1600 
product family; Memory: 16  GB) with an additional 
NVIDIA K80 GPU. All the machine-learning approaches 
were implemented in Python and PyTorch.

Fig. 2   The network architecture of classification models. a ResNet50; b squeezenet1_1
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Results

Classification Performances of Tooth Images With 
and Without Crack

The classification accuracy of the pre-trained ResNet50 
model was 88.2%. The training and test accuracy became 
stable at ~ 6 epochs; the training and test loss was stable 
at ~ 5 epochs (Fig. 3a).

The classification performances of squeezenet1_1 outper-
formed ResNet50, with an accuracy of 94.25%, a sensitivity 
of 95.0%, and a specificity of 93.49%; the correct predictions 
of 10 runs were 94.95% for positive images and 93.48% for 
negative images. The training and test accuracies were stable 
after 10 epochs; the training loss and test loss became stable 
after 4 epochs (Fig. 3b).

Crack Identification of the Tooth Crack Image

Three images (one was from the training dataset, and 
the other two were new images) were tested for crack 

identification with the SSD model. Figure 4b–d demon-
strated the typical results: Fig. 4a is a ground truth image 
(the blue box was the manually labeled crack) and this image 
was also tested as the input to the SSD model (Fig. 4b), 
the slot captured most of the crack compared to the ground 
truth; Fig. 4c showed a random crop image from the video 
frame in Fig. 1 (207 × 245), the crack was captured suc-
cessfully; the crack in the original video frame image was 
also identified (Fig. 4d), only with a larger detector box. 
The teethcrack value is the IoU (intersection over union), 
which is a metric of object detection; all the IoU values 
were beyond 0.9, indicating cracks could be well identified.

Tooth crack super‑resolution analysis

The loss function of SRResNet was the mean square error 
(MSELoss), which became stable at ~ 30 epochs (Fig. 5).

The SRGAN had three losses illustrated in Fig. 6: loss 
(c), loss (a), and loss (d), which were content loss, genera-
tor loss, and discriminator loss, respectively. The losses in 
SRGAN were not stable since the generator and discrimina-
tor were against each other.

Fig. 3   Accuracy and loss to 
epochs curve of the ResNet (a) 
and squeezenet1_1 (b)
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Figure 7 illustrates the concrete crack super-resolution 
images of SRResNet (epoch 100) and SRGAN (epoch 50) 
during the training: the first row presents the low-resolu-
tion images; the second row presents the super-resolution 
images; the last row presents the ground truth images. 
SRGAN images were closer to the ground truth than the 
SRResNet, which were smoother and more detailed.

We tested our tooth crack images in the SRResNet and 
SRGAN models to get super-resolution crack images. Fig-
ure 8a (400 × 600, resolution in pixels) was the original 
crack image; Fig. 8b (6400 × 9600) was the image generated 

Fig. 4   Tooth crack identifica-
tion with SSD. a ground truth; 
b crack identification of ground 
truth (a); c identification of ran-
dom size cropped image of the 
video frame in Fig. 1; d crack 
identification of the video frame 
in Fig. 1. The X–Y axis of b-d 
demonstrated the image size

Fig. 5   Loss to epoch curve of 
SRResNet
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by the SRResNet model, which was darker than Fig. 8a, but 
the crack line was identifiable as a clear and black line. Fig-
ure 8c (1600 × 2400) was generated by the SRGAN model; 

Fig. 8d (6400 × 9600) was generated by the SRGAN model 
from Fig. 8c, with a higher resolution.

Fig. 6   Loss to epoch curves 
of SRGAN. Loss c represents 
contest loss; loss a represents 
generator loss; loss d represents 
discriminator loss

Fig. 7   Concrete super-resolution images with or without cracks in SRResNet and SRGAN models
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Discussions

The human tooth enamel is composed of carbonated apa-
tite. Although the enamel is the hardest part of the human 
body, craze lines may occur because of age, trauma, and 
grinding. Detecting the small cracks, especially the early-
stage craze line, is challenging in dentistry. Our NIR 
dental imaging system demonstrated that cracks could be 
detected while X-raying imaging failed. When the NIR 
light shone on the tooth from different angles, the enamel 
was bright while the crack was dark according to NIR 
videos and images. The gap of cracks prevented light from 
going through, which formed the dark line.

In this work, 593 cracked and 601 non-cracked human 
tooth images were collected from NIR imaging videos; 
these images were analyzed with multiple modern machine 
learning models, such as classification, crack identifica-
tion, and super-resolution. Our previous studies demon-
strated that human tooth cracks on the enamel-dentin can 
be captured by the NIR dental imaging system, but not by 
the more commonly utilized micro-CT data. Because some 
of these cracks were challenging to find and locate, further 
image and video processing were necessary to optimize 
our dental imaging system for the dental crack diagnosis.

Binary classification with a pre-trained model was 
applied to differentiate the images with crack and with-
out crack. One advantage of transfer learning is time 
efficiency. The parameter and model can be used directly 
with minor modifications. Both the ResNet50 model and 
squeezenet model could finish training and testing in a 
very short time (~ 8 min for ResNet50) and small epochs 
(20 epochs). In addition, these models successfully clas-
sified the cracked and no cracked images with accuracies 
of over 88% (ResNet50 model) and over 93% (squeezenet 
model).

For human tooth crack identification, we used an SSD 
model to locate the cracks. The COCO and VOC2007 data-
sets were applied as the training data. However, current data-
sets did not contain tooth crack images, so we collected 378 
self-labeled crack images and added them to the dataset as 
a new class. The results demonstrated cracks could be rec-
ognized: one ground truth image was tested and recognized 
(Fig. 4a and 4b). Most of the ground truth crack was in the 
detect box; the upper part was out of the slot might due to 
the middle gap, which made the detector recognize them as 
two cracks since our detector could only detect one object. 
In addition, the cracks of new images of different sizes were 
also recognized, which indicated our tooth crack detector 
could assist the dentist in the crack diagnosis in vitro.

Modern imaging techniques, such as Ultrasound, MRI, 
and NIR imaging, play a vital role in disease diagnosis. 
However, the low-resolution images are considered a huge 
disadvantage of these methods, which may limit their 
applications. Super-resolution using the SRGAN model 
aims to improve the resolution and quality of the low-
resolution image, which would be helpful for biomedical 
image analysis. Using the SRGAN model requires high-
resolution images as the training dataset. In our tooth crack 
experiment, we trained the model with only COCO2014, 
the tooth crack remained the same without any enhance-
ment because there were no high-resolution tooth crack 
images in the dataset. On the contrary, we used high-reso-
lution concrete crack images as the training data because 
the resolution of our NIR tooth images is relatively low 
and the concrete crack image has the same main feature as 
the tooth crack image. The SR-enhanced tooth crack image 
became distinct and the crack turned dark from bright 
(Fig. 8d). When NIR light shone on the ICG-immersed 
human-extracted tooth from various directions, the crack 
could be bright instead of dark. The advantage of SRGAN 

Fig. 8   Tooth crack super-resolution images generated by SRResNet and SRGAN. a original image; b SRResNet generated crack image; c 
SRGAN generated image; d SRGAN generated image from (c)
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over SRResNet is the Discriminator, which could make the 
generated crack image closer to the original image.

Although modern imaging techniques have been well 
developed in recent decades, the resolution is still a limita-
tion. More efforts need to be made for bio-medical image 
collection and classification, especially for high-resolution 
images. In addition, this work only detected the extracted 
human tooth. However, it would be more difficult to apply 
in vivo in clinical practice since teeth are next to each 
other. Our next step is to make a panoramic oral image/
video using other machine-learning techniques that may 
solve the problem.

Conclusions

In this work, we build a human tooth crack dataset from 
NIR dental imaging videos for the first time. This dataset 
includes 593 cracked images and 601 non-cracked images; 
all the images are self-generated to a size of 400 × 600 
by interpolation. Multiple deep learning-assisted models 
are innovatively implemented for tooth crack analysis. 
Two pre-trained classification models (ResNet50 model 
and squeezenet1_1 model) had excellent classification 
performances, demonstrating that images with or without 
cracks can be well classified. Cracks are also recognized 
and located in the SSD model after training with the added 
tooth crack label in the COCO dataset. A high-resolution 
concrete crack image-based dataset can improve the reso-
lution of tooth crack images by the SRGAN model. Our 
work represents the first effort to use machine-learning-
aided NIRF dental imaging for automated dental disease 
identification, as compared to the previous studies of den-
tal radiography. Overall, deep learning combined NIRF 
imaging system provides a novel tool for efficient and 
dependable human tooth crack diagnosis.
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