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Characterization of Capacity and Outage of
RIS-aided Downlink Systems under Rician Fading

Kali Krishna Kota, Praful D. Mankar, and Harpreet S. Dhillon

Abstract—This letter presents optimal beamforming and out-
age analysis for a Reconfigurable Intelligent Surface (RIS)-aided
multiple input single output downlink system under Rician fading
along both the direct and the RIS-assisted indirect links. We focus
on maximizing the capacity for two transmitter architectures:
fully digital (FD) and fully analog (FA). This capacity maximiza-
tion problem with optimally configured RIS is shown to be L1

norm-maximization with respect to the transmit beamformer. To
obtain the optimal FD beamformer, we propose a complex L1-
principal component analysis (PCA)-based algorithm which has
low computational complexity. We also propose a low-complexity
optimal beamforming algorithm to obtain the FA beamforming
solution. Further, we derive analytical upper bounds on the
SNR achievable by the proposed algorithms and utilize them
to characterize the lower bounds on outage probabilities. The
derived bounds are numerically shown to closely match the
achievable performance for a low-rank channel matrix and are
shown to be exact for a unit-rank channel matrix.

Index Terms—Reconfigurable intelligent surfaces, beamform-
ing, outage probability, capacity, L1 norm.

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs) have at-
tracted significant attention in recent years because of

their ability to partially control the propagation environment
and hence improve the performance of communications sys-
tems [1]–[4]. An extensive literature survey on the design
of beamformers/precoders for RIS-aided multiple input single
output/multiple input multiple output (MISO/MIMO) commu-
nication systems maximizing capacity is available in [5]–[7].
A key shortcoming of the prior art in this direction is the
lack of analytical performance characterization of the proposed
solutions, especially for multi antenna systems, which is the
main inspiration behind this paper. There are just a handful
of works focusing on the characterization of capacity and
outage performance, albeit under simplistic settings, which we
discuss below. For RIS-aided single input single output (SISO)
systems, the authors of [8]–[14] analyze the outage probability
with/without the presence of a direct link (DL) between
the transmitter and receiver in various fading environments.
In particular, asymptotic outage probability is derived for
Rayleigh fading in [8] and [9] and for Rician fading in [10] in
the presence of only the RIS-assisted indirect link (IL), which
is further used to analyze the diversity order and asymptotic
symbol error rate. The authors of [11] derived a closed-form
expression for the outage with Rayleigh fading along both
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DL and IL. Next, [12] extended the result presented in [11]
for Rician fading along IL. For similar settings, [13], [14]
derived upper bounds on the outage, and [14] obtained the
asymptotically exact outage in closed form. Furthermore, [15]
have derived outage for RIS-aided fluid antenna systems.

In addition, few works focused on outage analysis for RIS-
aided MISO systems. For example, [16] and [17] derived
outage probabilities under various channel models for a max-
imum ratio transmission (MRT)-based transmit beamformer
and optimally configured RIS phase shifts. The authors of [16]
considered the line-of-sight (LoS)-Rayleigh channel model
along IL, whereas [17] considered LoS-Rician channel along
IL and Rician channel along DL. On the other hand, [18]
analyzed the capacity of the MRT-based transmit beamformer
and optimally configured discrete RIS phase shifts for a
millimeter wave channel. Next, [19] presented statistically
optimal beamforming for maximizing the ergodic capacity
upper bound under Rician fading along both DL and IL
and also characterized its outage performance. Finally, the
ergodic capacity performance of a RIS-aided MIMO system
with no DL is investigated in [20]. Particularly, they derived a
closed-form expression of the channel gain distribution under
Rayleigh-Rician fading along IL under full-rank and low-rank
channel scenarios and utilized it to obtain ergodic capacity.

The above-mentioned works conventionally consider sim-
plistic scenarios like SISO, Rayleigh channel, absence of a
DL, LoS channel for BS-RIS link, etc. to facilitate tractable
outage analysis. However, one of the main reasons to employ
RIS is to provide an alternate BS-user link that includes strong
LoS components for enhancing network coverage. Thus, it
is more meaningful to consider Rician fading for outage
analysis of RIS-aided networks, which is the main focus of this
letter. A key challenge in analyzing the outage performance
of RIS-aided multi-antenna systems is to accurately account
for the impact of optimally configured RIS phase shifts and
the transmit beamformer. In such a system, the optimal beam-
forming solution is usually obtained through complex iterative
algorithms, which complicates further analysis. To handle this
issue and obtain insights into the outage performance, we have
obtained an upper bound on maximum SNR (or capacity) after
optimal RIS configuration for a MISO system with two types
of transmitter architectures, namely fully analog (FA) and fully
digital (FD). Next, we derive the moment generating function
(MGF) of this upper bounded SNR, which is then utilized to
determine the outage probability lower bound. Interestingly,
for an optimally configured RIS, we demonstrate that the
SNR maximization with respect to the FD beamformer can be
formulated as a complex L1-norm PCA problem. Leveraging
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this, we present a low-complexity optimal digital beamforming
algorithm for RIS-aided MISO systems.

II. SYSTEM MODEL

This letter considers a RIS-aided MISO system with a single
antenna user, wherein the transmitter is equipped with M an-
tennas, and RIS comprises N reflecting elements. We consider
two types of transmitter configurations: 1) FD architecture,
where each antenna is connected to the baseband processing
unit (BBU) via a dedicated radio frequency (RF) chain, and 2)
FA architecture, where all the antennas are connected to the
BBU via a single RF chain. We consider Rician faded DL and
IL, and thus model BS-RIS, RIS-user, and BS-user links as

H = κl1H̄+κn1H̃, h = κl2h̄+κn2h̃ and g = κl0ḡ+κn0g̃,

respectively, where κli =
√

Ki

1+Ki
and κni =

√
1

1+Ki
. More-

over, the tuple {K0, ḡ, g̃}, {K1, H̄, H̃}, {K2, h̄, h̃} consist
of the Rice fading factor, LoS component, and multipath
component associated with the BS-user, BS-RIS, and RIS-user
links, respectively. We assume all fading factors are identical
and therefore omit the subscript i from Ki, κli, and κni from
this point onward. Further, we model the LoS components as

ḡ = aM (θdbd), h̄ = aN (θrd), and H̄ = aN (θra)aM (θibd)
T ,

where aL(θ) = [1, e
−jπd cos(θ)

λ , · · · , e
−jπd cos(θ)

λ (L−1)]T is the
array response of length L, and θdbd, θibd, θrd are the angles of
departure of the LoS components along the BS-user, BS-RIS,
and RIS-user links, respectively, and θra is the arrival angle at
the RIS from BS. The multipath components are modeled as
g̃ ∼ CN (0, IM ), h̃ ∼ CN (0, IN ), and H̃:,i ∼ CN (0, IN ).

The received signal at the user is

y = l(d1, d2)h
TΦHfx+ l(d0)g

T fx+ n, (1)

where x ∈ C is the transmit symbol with E[xx∗] = Ps. Here,
Ps is the total power available at the transmitter, f ∈ CM is the
transmit beamforming vector, Φ = diag(ψ) is the RIS phase
shift matrix, l(d1, d2) = (d1d2)

−α/2, l(d0) = d
−α/2
0 are the

path loss models along IL and DL, respectively, d0, d1, d2 are
the distances between BS-user, BS-RIS, and RIS-user, respec-
tively, α is the path loss exponent, and n ∼ CN (0, σ2

n) is the
complex Gaussian noise. Further, the transmit beamforming
vector belongs to 1) B = {f ∈ CM : ∥f∥2 = 1} under
FD architecture to limit power consumption beyond the total
available power and 2) L = {f ∈ CM : |fm| = 1/

√
M} under

the FA architecture, implying the unit modulus constraint.
Next, ψ ∈ CN is the RIS phase shift vector with a unit
amplitude constraint, i.e., |ψk| = 1, to satisfy the passive RIS
assumption. For given f and ψ, received SNR is

Γ(f ,ψ) = γ|ψTdiag(h)Hf + µgT f |2, (2)

where γ = Ps(d1d2)
−α

σ2
n

and µ = ( d0

d1d2
)−α/2 is the path loss

ratio. The capacity maximization problem to obtain the jointly
optimal transmit beamformer f and RIS phase shifts ψ is

max
f ,ψ

log2(1 + Γ(f ,ψ)), (3a)

s.t. f ∈

{
B ; FD architecture

L ; FA architecture
, (3b)

|ψk| = 1; ∀k = 1, . . . , N, (3c)

where (3b) and (3c) represent the constraints on the transmit
beamforming (FA/FD) and RIS phase shift vector, respectively.
To evaluate the performance of the joint beamforming and
RIS phase shift solution under both the architectures, we
evaluate the outage probability defined as the probability that
the received SNR is below threshold β and is given by

Pout = P[Γ(fopt,ψopt) < β]. (4)

III. OPTIMAL BEAMFORMING

This section presents joint transmit beamformer and RIS
phase shift solution to problem (3). Specifically, we aim to find
maximum SNR in closed form for perfect CSI assumption.

A. Optimal RIS phase shifts

In this subsection, we obtain the optimal RIS phase shift
matrix that maximizes the capacity (3a) for a given transmit
beamforming vector f . Since logarithm is a monotonically
increasing function, maximizing capacity is equivalent to
maximizing the SNR. For this, we rewrite (2) as

Γ(f ,ψ) = γ|ψTEf + µgT f |2, (5)

where E = diag(h)H. The received SNR can be maximized
by co-phasing the fading coefficients using ψ to maximize the
magnitude. Thus, for a given f , the optimal RIS phase shift
vector is

ψopt = exp(−∠Ef + ∠gTf). (6)

B. Optimal Transmit Beamforming

In the following subsections, we solve the optimal transmit
beamforming problem under FD and FA architectures.

1) Digital Beamformer: For a given RIS phase shift vector
ψ, we can employ the MRT beamformer to maximize the
SNR given in (5). However, the MRT beamformer and RIS
phase shifts given in (6) need to be solved iteratively to arrive
at the jointly optimal beamforming solution because of the
coupled nature of these variables. On the contrary, in the
following, we provide a novel approach to decouple these
variables and provide a jointly optimal solution. Let fD = f

and G =
[
E µgT

]T
be a matrix concatenated with DL and

IL channel matrices. Substituting (6), we can rewrite (5) as

Γ(fD,ψ
opt) = (∥EfD∥1 + µ∥gfD∥1)2 = ∥GfD∥21. (7)

It can be seen from (7) that the capacity maximization
problem (3) with optimal ψopt reduces to the selection of the
transmit beamforming vector fD that maximizes the L1 norm
of GfD. The L1 norm maximization problem (7) to obtain the
optimal transmit beamformer for FD architecture is defined as

max
∥fD∥2=1

∥GfD∥1. (8)

In essence, the transmit beamformer problem has now effec-
tively reduced to estimating L1 principal components of the
concatenated channel matrix G = [(diag(h)H)Tµg]T . To
solve this, we employ a novel approach proposed in [21] that
breaks such a complex L1 PCA problem into two independent
tractable optimization problems that can be solved iteratively.
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The L1 norm of GfD can be represented from [21] as

∥GfD∥1 = maxu∈UN+1 Re{uHGfD},

where UN+1 ∆
= {u ∈ CN+1 : |ui| = 1; ∀i} is a unimodular

vector space and uopt = exp(−∠GfD). Thus, (8) becomes

max
∥fD∥2=1

∥GfD∥1 = max
∥fD∥2=1

max
u∈UN+1

Re{uHGfD},

(a)
= max

u∈UN+1
max

∥fD∥2=1
Re{uHGfD}, (9)

where Step (a) follows from the fact that the maximization
operators can be exchanged for the linear objective. For a fixed
u, the optimal transmit beamformer becomes

foptD = GHu/∥GHu∥. (10)

Thus, RHS of (9) becomes maxu∈UN+1 Re{uHGfopt} which
is maximized by u as

uopt = exp
(
−∠GfoptD

)
. (11)

Finally, the optimal beamformer foptD can be obtained by eval-
uating (10) and (11) iteratively untill (8) converges as shown
in Algorithm 1. In summary, the algorithm first maximizes the
SNR (expressed in L1 norm) by employing complex L1-PCA-
based method to obtain the optimal beamformer foptD . Recall
that this form of SNR is obtained after maximizing SNR w.r.t.
ψ for a given fD. Thus, we update ψ for optimal beamformer
foptD to obtain a jointly optimal solution. Algorithm 1 has
a complexity of O(NM) per iteration and is guaranteed to
converge to optimal solution; please refer to [21] for details.
Further, it can be seen numerically that Algorithm 1 converges
faster than the widely used MRT-based solution.

Algorithm 1: Digital Beamforming Algorithm

Input: g, E and G.
Initialization: u, fD

1 Repeat
2 fD = GHu

∥GHu∥ ,
3 u = exp(−∠GfD),
4 Untill: Re{uHGfD} converges;
5 foptD = fD and ψopt = exp(−∠EfoptD + ∠gTfoptD ).

2) Analog Beamformer: The transmit beamformer under
FA architecture is obtained by maximizing SNR as

max
|fA,m|= 1√

M

|(ψTE+ µgT )fA|2, (12)

where fA,m is the m−th element of analog beamformer fA.
Consequently, fA that maximizes (12) for a given ψ is

foptA = e−j(∠ψTE−∠g)/
√
M. (13)

However, the obtained closed-form expressions for fA and ψ
in (13) and (6) (where f = fA), depend on each other. Hence,
these solutions are iteratively evaluated until (12) converges
as summarized in Algorithm 2. Algorithm 2 has a complexity
of O(MN) per iteration, arising due to matrix multiplication
in Steps 1 and 2. The performance characterization of
such a RIS-aided system with FA architecture has not been
investigated so far. Motivated by this, we study the capacity

Algorithm 2: Analog Beamforming Algorithm

Input: g and E.
Initialization: u, fA

1 Repeat
2 ψ = e−j(∠EfA−∠g),
3 fA = 1√

M
e−j(∠ψTE−∠g),

4 Untill: Γ(f ,Φ) converges;
5 foptA = fA and ψopt = ψ.

and outage performance as follows. We begin by simplifying
the maximum achievable SNR for FA design using (7) as

max
|fA,m|= 1√

M

∥GfA∥21. (14)

The above objective function can be upper-bounded as

∥GfA∥1 =
N∑

n=1

∣∣∣∣∣
M∑

m=1

GnmfA,m

∣∣∣∣∣ (a)

≤
N∑

n=1

M∑
m=1

|Gnm|√
M

=
∥G∥1,1√

M
,

where ∥ · ∥1,1 denotes the L1,1 norm. Here, Step (a) follows
from the triangle inequality (|a+b| ≤ |a|+ |b|) and the analog
beamforming constraint |fA,m| = 1√

M
. We summarize this

upper bound in the following theorem.

Theorem 1. The maximum capacity of a RIS-aided MISO
communication system with FA architecture is upper bounded
by log2(1 + ΓUB) = log2(1 +

γ
M ∥G∥21,1).

Corollary 1.1. The maximum capacity upper bound of the
RIS-aided MISO downlink given in Theorem 1 under both
FA and FD architectures reduces to log2(1 + γ

M ∥Ḡ∥21,1) =
log2(1 + (N + µ)2Mγ) for an LoS-channel.

Proof: In the presence of an LoS channel, we have g =
κlḡ, h = κlh̄, and H = κlH̄, corresponding to K = ∞ in the
Rician channel model discussed in Section II. Thus, matrix G
becomes equal to Ḡ = [(diag(h̄)H̄)T µḡ]T. For such a case,
the channel envelope with optimal RIS phase shift ψopt (7),
and a given FA beamformer fA becomes

∥ḠfA∥1 =
∑N+1

n=1

∣∣∑M

m=1
ḠnmfA,m

∣∣,
(a)
=

∑N+1

n=1

∣∣∑M

m=1
Ḡn1cmfA,m

∣∣,
(b)
=

1√
M

∑N+1

n=1

∑M

m=1
|Ḡn1|,

(c)
= (N + µ)

√
M, (15)

where Step (a) follows from the fact that the columns of
matrix Ḡ are linearly dependent, Step (b) follows from the
unit modulus constraint on the analog beamformer fA such
that it maximizes the sum by setting fA,m = 1√

M
cHm and the

fact that |cm| = 1, and Step (c) follows from |Ḡn1| = 1.
Moreover, the equality presented in (15) also holds for

digital beamforming. This is because the inner summation
given in Step (b) is also maximized for the digital beamformer
fD,m = 1√

M
cHm such that ∥fD∥2 = 1.

Corollary 1.2. The upper bound given in Corollary 1.1 is
achievable by both FD and FA architectures in the absence of
DL under dominant LoS and is given by log2(1 + γN2M).
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Proof. Let Ē = diag(h̄)H̄. Thus, the SNR given in (7) in the
absence of DL under dominant LoS channel becomes

γ∥Ēf∥21 = γ∥diag(aN (θrd))aN (θra)∥21|aM (θibd)
T f |2.

The optimal choice of f under the FA and FD architectures
is f opt

A = e−j∠aM (θi
bd)/

√
M and f opt

D = aHM (θibd)/∥aHM (θibd)∥,
respectively. For these optimal choices, the SNR becomes

γ∥Ēf
opt∥21 = γN2M, for f opt ∈ {f opt

A , f opt
D }.

Thus, it can be seen that the upper bound proposed in
Corollary 1.1 is achievable by both the architectures in a LoS
dominated scenario without DL.

Remark 1. From Corollary 1.2, it can be safely deduced that
the capacity upper bound presented in Theorem 1 becomes
tight in the absence of DL (i.e., G = E) under scenarios
including strong LoS components (i.e., for a large K). In other
words, the capacity upper bound in the absence of DL becomes
tighter as the rank of E becomes low, which further reduces to
equality when E becomes unit rank, i.e., K → ∞. Moreover,
the capacity upper bound in the presence of DL can also be
achieved when the angle between DL and IL is very small and
K is large (in which case G becomes unit rank).

IV. OUTAGE PROBABILITY ANALYSIS

The outage performance characterization of RIS-aided
FD/FA systems in the absence of DL is as follows. The outage
probability defined in (4) is lower bounded as

Pout ≥ PLB
out = P

[
ΓUB ≤ β

]
. (16)

Using Theorem 1, the SNR upper bound in the absence of DL
becomes ΓUB = γ∥E∥21,1. Thus, we can write

PLB
out = P

[
∥E∥1,1 ≤

√
β/γ

]
. (17)

Recall that the above lower bound becomes tighter for a low-
rank channel matrix E, which further reduces to equality for
E with rank 1 as highlighted in Remark 1. Note that ∥E∥1,1
is the sum-of-product of Rician random variables, making it
difficult to derive outage probability directly. Thus, we first
obtain its MGF and then use it to determine PLB

out.

Theorem 2. The MGF of ∥E∥1,1 is

M(−s) = sMN

[∫ ∞

0

g(h)Mf|hn|(h)dh

]N
, (18)

where g(h) = L
(
1−Q1

(
κl

κn
, x
|hn|κn

))
, Q1(·) is the

Marcum-Q function, L(·) is Laplace transform (LT), and f(·)
is Rician density function.

Proof: Let Yn = |hn|
∑M

m=1 |Hnm| and let us define

Y = ∥E∥1,1 =
∑N

n=1
Yn. (19)

We begin by writing the MGF of the channel gain |Hnm|
by using the differentiation property of LT as

M|Hnm|(−s) = sL(F|Hnm|(x)),

where L(·) represents LT and F|Hnm|(x) = 1 − Q1(
κl

κn
, x
κn

)
is the cumulative distribution function (CDF) of |Hnm|. Let

Xn =
∑M

m=1 |Hnm|. The n-th term of Y given in (19)
becomes Yn = |hn|Xn and thus its CDF is determined as

FYn(y) =

∫ ∞

0

∫ y
|hn|

0

f|hn|(h)fXn(x)dxdh,

=

∫ ∞

0

f|hn|(h)FXn(y/h)dh. (20)

Thus, the MGF of Yn can be obtained as

MYn
(−s) = sL (FYn

(y)) ,

(a)
=

∫ ∞

0

f|hn|(h)sL(FXn
(y/h))dh,

(b)
=

∫ ∞

0

f|hn|(h) [sL (1−Q1(κl/κn, y/(hκn)))]
M

dh.

where Step (a) follows from using (20) and the fact that
LT is a linear operator, Step (b) follows from MXn

(−s) =
sL(FXn

(x)) and using the fact that Hnm are independent and
identically distributed (i.i.d.) random variables. Since Yn; ∀n
are i.i.d. random variables, we can obtain the MGF of Y as
MY (s) =MYn(s)

N . This completes the proof.
Finally, we evaluate the lower bound on the outage probabil-

ity as PLB
out = L−1

{
M(−s)

s

}
, where M(s) is MGF of ∥E∥1,1

and is given in Theorem 2. For inverting the MGF, we employ
a widely used numerical inversion technique given in [22].

V. NUMERICAL RESULTS AND DISCUSSION

This section presents the numerical analysis of capacity
and outage obtained by the proposed algorithms for FD/FA
architectures and compares them with the upper bound derived
in Theorem 1. For numerical analysis, we assume the number
of BS antennas M = 4, the number of RIS elements N = 64,
path loss ratio µ = 5 dB, and γ = 1. Figure 1 (a) shows
the capacity as a function of N under both FD and FA
architectures. It can be observed that the capacity increases
with N as well as with the Rician factor K. This is expected
as larger N provides larger array gains and larger K provides
stronger LoS paths, ensuring better capacities. Further, it can
be seen that the capacity is close to the derived upper bound
for reasonable values of K which further becomes tight with
increasing K. This is because the LoS component dominates
the channel for very large K, and the upper bound reduces to
equality for the LoS channel as mentioned in Corollary 1.1.
Besides, we can also observe that the AB and DB perform
almost equally as K becomes larger.

Figure 1 (b) shows the comparison of achievable capac-
ity under three schemes, namely 1) the absence of DL at
µ = −∞, 2) the presence of DL at µ = 10 and 20 dB,
and 3) absence of RIS, i.e., IL. We first observe that the
derived upper bound is tight in all the schemes, especially
when K is large. Next, we see that the capacity improves with
µ, which strengthens DL, which in turn provides additional
spatial diversity to achieve a higher capacity. However, it is
noteworthy that the capacity improves slowly with an increase
in N when µ is large. This is because, in the presence of strong
DL, the improvement in receive SNR due to RIS is not signif-
icant. Thus, as capacity is a logarithmic function of SNR, we
observe a saturation in capacity with N . Another interesting
observation at large µ and increasing N shows the proposed
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(a) (b) (c)
Fig. 1: Capacity vs. N without DL (a), with DL or IL (b, bottom), and with both DL and IL (b, top). Outage probability (c).

capacity upper bound becoming loose. This is because, the
concatenated matrix G = [ETµgT ]T becomes rank 2 at large
values of µ, even in a dominant LoS propagation scenario. In
summary, this figure verifies that the upper bound derived in
Corollary 1.1 becomes achievable and reduces to as given in
Corollary 1.2 when µ decreases and K increases (i.e., when
DL is weak and IL contains strong LoS).

Figure 1 (c) shows the outage performance of the proposed
beamforming schemes under FA and FD architectures in the
absence of DL at various values of K. We first observe that
the outage performance of both architectures is very close.
As K increases, these performances increasingly approach
the derived outage lower bound presented in Section IV. It
can also be observed that the distributions of exact SNR
under both the architectures and the SNR upper bound con-
verge to the deterministic value derived in Corollary 1.2, i.e.
Γ(f opt, ψopt) = ΓUB = γMN2 as K → ∞.

VI. CONCLUSION
This letter investigated optimal beamforming for maximiz-

ing the capacity of RIS-aided downlink systems with FD and
FA architectures in the presence of Rician faded DL and
IL. We first showed that the capacity maximization problem
reduces to an L1-norm maximization problem with respect to
the transmit beamformer after optimally configuring the RIS.
We proposed a complex L1-PCA-based algorithm to obtain
the optimal FD beamformer. We proposed another algorithm
to obtain the optimal FA beamformer with low complexity.
Both the proposed algorithms iterate over two closed-form
expressions. To characterize the performance of the proposed
algorithms, we derived an upper bound on the capacity and
analyzed its corresponding outage performance. Specifically,
we derived the MGF of the envelope of the SNR upper bound,
which we then numerically inverted to obtain the outage
probability lower bound. Moreover, we analytically established
that the proposed bounds on capacity and outage become
exact when the channel matrix becomes unit rank, i.e., LoS
components of DL and IL are strong and aligned.
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