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ABSTRACT Optical tweezer (OT) single molecule force spectroscopy is a powerful method to map out the
energy landscape of biological complexes and has found increasing applications in academic and pharmaceutical
research. The dominant method to extract molecular conformation transitions from the thermal diffusion-broadened
trajectories of the microscopic OT probes attached to the single molecule of interest is through hidden Markov
models (HMM). In standard applications, the HMMs assume a white noise spectrum of the probes superimposed
onto the molecular signal.Here, we demonstrate, through theoretical derivation, computer modeling and experimental
measurements that this standard white noise HMM (wnHMM) misses key features of real OT data. The deviation
is most pronounced at higher frequencies because the white noise model does not account for the over-damped
nature of particle diffusion in an OT harmonic potential in aqueous environments. To address this, we derive how to
incorporate autoregression (ar) between consecutive data points into an HMM, and demonstrate through modeling
and experiment that such an arHMM captures real OT data behavior across all frequency ranges. Through analysis
of real OT data we recorded on a single DNA hairpin undergoing folding and unfolding transitions, we show that the
wnHMM extracts lifetimes that are at least a factor of 2 faster and less consistent than the arHMM results which
match expectations and prior measurements. Overall, our work suggests that arHMM should be the default model
choice for analysis OT single molecule transitions and that its use will improve the fidelity and accuracy of single
molecule force spectroscopy measurements.

SIGNIFICANCE This work derives and experimentally validates an improved Bayesian inference method for
fitting and interpreting single molecule force spectroscopy data. The impact of this work will be to substantially
improve accuracy and reliability of single molecule measurements using optical tweezers, which are becoming
wide-spread in biophysical studies of living systems. The method we derive works on data collected using
the simplest passive mode of the OT, requiring no feedback, and can serve to make OT measurements and
analysis accessible to new users.

INTRODUCTION

Single molecule force spectroscopy using optical tweezers
(OT) is a powerful method for uncovering molecular mech-
anisms at the root of biological phenomena by tracking dy-

conformation and dynamics. In recent years, state-of-the-art
OT instruments have been made available commercially and
are increasingly relied on by users in academics, industry and
pharmaceuticals with no specialized prior training.

namics of molecular processes in real time. Recognized by
the Nobel prize in physics in 2018, the technique allows real-
time monitoring of a single biological complex (1, 2). Unlike
ensemble measurements which average over a macroscopic
number of unsynchronized molecules stochastically evolving
in a thermal bath, single molecule measurements with OT track
a single complex to yield insights on the molecule’s structural

A typical OT experiment takes place at the focus of an
optical microscope. Two probe particles are tethered together
by the molecule of interest using biochemical linkages and
suspended in solution. Two trapping lasers focused into the
microscope create harmonic potentials that localize each probe
away from each other to extend the tether, generating tension
(2, 3). Translation of the trapping lasers moves the probes and
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extends (contracts) the tether, increasing (decreasing) tension.
The force applied by the trap, and thus the tension in the
tether, can be measured by observing the deflection of the
trapping laser, typically at ~ kHz rates. Any conformational
transition of the biological complex causes a measurable
change in the probe positions. By correctly identifying these
molecular transitions and the time at which they occur in
the probe movement OT signal, researchers can measure the
rates at which biologically-relevant transformations take place
(4-6). Additionally, the energy landscape of the transition
can be extracted from the force dependence of the transition
rates (5—7). Using OTs, kinetics and energetics of biological
transitions can be mapped out, including in the presence of
biologically important perturbations such as binding partners
or ligands (7, 8).

However, the task of mapping OT measurements of probe
positions to the internal states of the molecule is complicated
by the thermal motion of the probe due to Brownian motion.
The confining potential of the trap is never sufficiently strong
to completely cancel this nanoscale fluctuation of microsphere
probe particles in aqueous ambient conditions. Any molec-
ular signal is recorded on top of this noisy background (4).
Real-time feedback mechanisms can help filter this noise
by maintaining the molecular construct at a constant force,
but the bandwidth of the experiment will be fundamentally
limited by the feedback bandwidth (9). Implementing a high
bandwidth feedback system is non-trivial and sometimes im-
possible on commercial OTs. Measurements in passive OT
mode, where the trapping laser beams are held at a fixed
location with no feedback, and monitoring the motion of the
probe beads while the molecule undergoes transitions, is a
much simpler approaches that simplifies and extends to reach
of OT measurements to a greater number of users.

A common approach to analyze passive data and filter
out the fluctuations of the bead particles due to Brownian
motion is to use unsupervised learning algorithms to help
infer the hidden molecular states from the measured probe
positions (10—12). If the molecular transitions follow simple
chemical kinetics with a single transition state, a well-founded
assumption for many biological systems, the time series can
be described by a hidden Markov model (HMM). The HMM
framework can be used to estimate the properties of the
underlying molecular states and assign the state to the bead
position measured at each time point (13, 14). HMMs have
become a go-to method for analyzing single molecule force
measurements and are often assumed to be the gold standard in
interpreting OT data (2, 15). However, additional assumptions
must be made in an HMM as shown in fig. 1A (left): one
needs to specify the emission model which quantifies the
probabilistic distribution of x; given the hidden molecular
state s; (14). The emission model must be chosen to properly
represent the statistical properties of the thermal background.
Most prior OT HMM analyses have assumed this background
is uncorrelated white noise, meaning that subsequent bead
positions depend only on the hidden state as indicated (10, 12,
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14, 15). We denote this model here as the white noise HMM
(wnHMM) model.

The assumptions of the wnHMM, however, are known to
deviate significantly from the physical system of micron-sized
probes in an OT liquid environment. For example, it is well
known that OT data has a Lorentzian power spectral density
(PSD), where it is white at low frequencies but transitions to
1/ f? Brown noise at higher frequencies. In fact, the frequency
at which this transition occurs is a signature of the damped
harmonic potential experienced by the probes due to the OT
confinement in water and is often used for OT calibration
(16, 17). The implications of this non-white noise for analysis
of time series data of bead forces or positions has not been
thoroughly explored. Significantly, these considerations imply
that wnHMM is insufficient to accurately extract molecu-
lar transitions occurring at time scales comparable to bead
diffusion dynamics.

Here, we derive and experimentally validate an improved
HMM model and fitting procedure for extracting molecular
transitions from OT single molecule measurements. First,
we demonstrate analytically and with experimental and com-
putational data that position time-series as measured in OT
experiments deviate significantly from a white noise signal
due to bead diffusion in the trap. Specifically, we show that
OT data is autocorrelated, contrary to the assumptions of
the wnHMM. Next, we integrate autocorrelation analytically
into the emission model of an HMM to generate an improved
model for OT data interpretation which we term auto regres-
sive HMM (arHMM). Finally, we demonstrate an improved
fitting protocol to generate initial parameters for seeding both
HMMs and use them to analyze real OT measurements of DNA
hairpin transitions we record. By comparing the distribution
of molecular state life-times identified with both models with
expected Markovian results, we determine that the wnHMM
incorrectly classifies a fraction of bead fluctuation events as
molecular state transitions. This results in non-exponentially
distributed lifetimes, which violates the predictions for a two
state system like our hairpin. Overall, the wnHMM-extracted
molecular state transition rates are typically a factor of at least
2 faster than the parameters estimated via arHMM and contain
significant variability. Analysis of the force dependence of
the arHMM transition rates agrees with previous literature
which the wnHMM rates fail to replicate without filtering data
to remove outliers. Our results suggest that arHMM models
should be the default choice of model for assigning OT force
transitions in single molecule measurements.

MATERIALS AND METHODS
OT measurement overview

A schematic of an OT experiment in a Lumicks C-Trap, used
to examine here the folding dynamics of a DNA hairpin, is
shown in fig. 1B. This dual-beam setup containing two optical
traps is a common geometry in the field (2). The molecule of
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Figure 1: Diagrams of the HMM schema and a typical dual-
trap OT experiment. (A) A standard wnHMM (left) consists
of a sequence of hidden states s; and a sequence of observed
emissions x;. The likelihood of observing x; is a Gaussian
with mean and standard deviation u,, o, which depend on
the state. An arHMM (right) has a similar structure but the
emission likelihood also depends on the previous emission
via an autoregressive coefficient a. (B) Two optically trapped
beads are connected via a single molecule tether and the
trapping force F is recorded. The tether depicted has two
dsDNA handles (orange) and a region of interest (purple)
with a folded structure. Unfolding of the region of interest
increases the tether contour length and decreases F.

OT arHMM

interest (purple) is tethered between two microscopic glass
or plastic beads often using double-stranded DNA (dsDNA)
handles (orange). The beads are trapped in aqueous solution
using a focused laser beam which creates a harmonic potential
which localizes the bead at the focus of an optical microcsope.
The trapping force on the bead F is linearly related to the
displacement of the bead from the trap center x by a Hookean
stiffness « that depends on experimental conditions. The
deflection of the trapping laser by the bead is measured
using back-focal plane interferometry at kHz rates and is
experimentally calibrated against Brownian fluctuations into
either force F, or equivalently position x (16). By manipulating
the position of the lasers, a force is applied to the beads and
they can be tweezed—moved apart—to exert tension on the
molecule.

A common and easily accessible approach to measuring
single molecule dynamics is to simply watch the real-time
fluctuations of the molecular conformation while keeping
the trap fixed in passive mode with no feedback applied
(18, 19). In this technique, the two beads are positioned a
certain distance apart such that some tension is applied to the
tethered molecule. Under this force, the molecule undergoes
transitions which change the overall contour length of the
construct and appear as jumps in bead displacement or force.
This technique has the advantage of not requiring feedback
to maintain a constant force and is well-suited for studying
molecular dynamics which occur faster than the ~10 ms time
scale of most feedback systems. It is also simple to implement
by non-experts and requires the least technical expertise and
no extra instrumentation beyond a standard OT. However,
HMM methods or other analysis tools to locate molecular
transitions in thermally broadened OT data are required.

For details about sample preparation, experimental passive
mode expeirmental protocols and data analysis procedures,
please see the SI.

RESULTS AND DISCUSSION

OT data is described by an autoregressive
model

We first focus on only one trap with a single probe particle, for
example trap 1 in fig. 1B. In this situation, no molecular tether
is attached to the bead and no net tension is exerted that can
pull it out of the trap. A trapped probe particle experiences
stochastic Brownian fluctuations, viscous drag, and a linear
restoring force from the trap. The particle’s position x(t) obeys
a harmonic Langevin equation (16):

mi(t) = N2Dyn(t) — yx — k[x(1) = xeq] (1)

where vy is the drag coefficient of the solvent, 7 is an uncorre-
lated white noise term with O mean and unit variance, D is
the diffusion coeflicient, « is the trap stiffness, and x.q is the
equilibrium position.

As the probe is overdamped in typical OT experiments,
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this can be simplified to the Ornstein-Uhlenbeck form by
dropping the inertial term (16, 20):

(1) = V2Dn(1) - §[x<t> ~ Xeg] ®)

If the continuous signal x(¢) is sampled at rate f;, the
discrete signal is described by the discretized version of
eq. (2):

xi=xi+ (1= a)(teqg = xim)) + (1 —=Don (3)
- D
a = exp( K ), 0'2 = 7_
vfs K

where 7; are independent normally distributed values with
0 mean and unit variance. The second term in eq. (3) is the
motion towards the trap center which is controlled by . The
final term represents the stochastic fluctuations and is scaled
so that Var(x;) = o2. In statistics, this model is known as
AR(1), an autoregressive model of order 1, as each value
depends explicitly on 1 previous value. Each data point has a
correlation of a with the previous data point, which gives rise
to an exponentially decaying autocorrelation function (ACF):

Rex(1) = 0%~ ™ = o exp(-1«/7) 4)

Sample position measurements of a single bead localized
at the focus of one optical trap potential with no tethered
molecules attached, as described above, is shown in fig. 2A

(top). The ACF of this time series is plotted in black in fig. 2B.

We observe an exponential decay of the ACF in agreement
with eq. (4).

We fit the time series to the AR(1) model via analytical
MLE to extract xegq, o2, a. Feeding these into eq. (3) above, we
generate artificial AR(1) data to compare to our experimental
result. The resulting time-series is shown in blue in fig. 2A
(middle) and is qualitatively similar to the real data plotted in
black. Importantly, the calculated ACF of the AR(1) model is
in good agreement with experiment.

Interestingly, over a time span much greater than the
autocorrelation time, the histogram of OT data is Gaussian
as seen in the histogram in fig. 2A (top). These Gaussian
histograms can be generated as well by a simpler white noise
process:

Xi = Xeq+ 0N )

However, this model does not accurately replicate the original
data, which we show by generating a white noise time-series
using eq. (5), plotted in green in fig. 2A (bottom). As expected,
the histograms of forces for the real, AR(1) and white noise
data are indistinguishable, characterized by the same mean and
width 0. However, by inspection of the time-series, we observe
that the dynamics of bead motion predicted by the white noise
at short time-scales are distinct from the real and AR(1)
time-series, indicating that autocorrelations are important for
accurately capturing the dynamics of the diffusive motion of
the bead in an OT experiment.
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The failure of the white noise model at high frequencies
is especially clear when the three time-series are plotted in
the frequency domain in fig. 2C. While the power spectral
density (PSD) of white noise is flat (orange), it is well known
that OT data has a Lorentzian PSD (16):

D 2rk

Self)= sy 7 ©)
The PSD of our real OT data and of the AR(1), shown in black
and blue respectively, are well described by eq. (6). Below the
corner frequency f. we observe that the PSD is approximately
white but above f.. the PSD falls off as 1/ f2. In fact, we can
derive that f.. and « are interrelated:

27Tfs)
Jfe

where f; is the data sampling rate. Overall, the white noise
underestimates (overestimates) the power at low (high) fre-
quencies, resulting in the faster fluctuations seen in the time
series.

A critical difference between models is that the real and
AR(1) data contain many extended excursions to regions far
from the mean, as observed in the time series in fig. 2A
(top and middle). These fluctuations are significant, as they
may appear as transitions to a different hidden state of the
molecule in a dual-beam OT measurement shown in fig. 1B.
To quantify this difference between the white noise and the
real or AR(1) data, we plot in fig. 2D the frequency of bead
excursions beyond 2 standard deviations away from the mean
for a given number of data points. While the chance of seeing
a run of several outliers is vanishingly small for the white
noise data, both real and AR(1) data contain many runs of
several outliers, reflecting the finite speed of bead diffusion
back towards the mean. These outlier runs can be particularly
troublesome for an HMM which may falsely infer that the
molecule is transitioning rapidly between two states.

a =exp (— @)

arHMM accurately extracts molecular
transitions in dual-beam OT data

‘We now turn to analysis of a typical dual-beam OT experiment,
shown in fig. 1B, which uses two trapped probes connected by
a tether containing a central molecule of interest which has a
folded and unfolded state. The average force on the probes is
sampled at a rate f;, yielding a sequence of experimental data
x; as in the single probe case. The state of the molecule at each
timepoint s; exists but is not known by the experimentalist
and must be inferred from the experimental signal, i.e., s; is
a hidden parameter. If there is only a single transition path
between the folded and unfolded states, which is common
in biomolecules studied by OT, the transitions obey first-
order chemical kinetics or equivalently Markovian dynamics
and can be described by a transition matrix 7 (2). This
framework containing a hidden state s; (the conformation of
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Figure 2: Comparison of optical tweezer force data for a single bead (black) with the AR(1) (blue) and white noise (orange)
models. AR(1) and white noise data were generated using parameters obtained from fitting the real data with MLE. Each dataset
is 20 s long and sampled at 39.0625 kHz. (A) Representative 15 ms time traces from the three datasets. The real and AR(1)
data are much smoother than the white noise data. (B) Normalized autocorrelation functions of the three datasets. The white
noise model displays no autocorrelation while the real and AR(1) data show an exponential decay. (C) The power spectral
densities of the three datasets. The real and AR(1) data display similar Lorentzian spectra unlike the flat white noise spectrum.
(D) Histogram of observed runs of data points above 2 standard deviations from the mean by run length. Only runs of the exact
length are counted, i.e., subsequences of longer runs are not counted. Both the real and AR(1) data display extended runs in the
outlier region that are not present in the white noise data.
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Figure 3: Results of fitting 21 s of molecular transitions with
arHMM and wnHMM. (A) A 4s subset of the measured
force vs time. Data is sampled at 39.0625 kHz and colored by
density to resolve overplotting. The histogram on the right is
generated from the full 21 s. (B) 300 ms of data from the above
time series. Both arHMM and wnHMM were used to predict
the most likely state at each timepoint, folded (F) or unfolded
(UF). The wnHMM erroneously predicts two short unfolding
and refolding events. (C) In black, the PSD of the time series
from A. Parameters from the HMM fitting were used to
generate PSDs for the arHMM (blue) and wnHMM (orange)
models. The arHMM properly models the high frequency
falloff due to the OT.
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the molecule) evolving based on a transition matrix 7 (the
chemical rate constants) and a signal dependent on the state
x; (the experimentally determined probe displacement/force
signal) is known as a hidden Markov model (HMM). An
HMM can be fit to learn the transition matrix 7', providing
thermodynamic information about the molecular transitions
(11, 12). Additionally, an HMM can also be smoothed to
estimate the molecular state at each timepoint to pinpoint
when molecular transitions occur.

The evolution of the observed data based off the molecular
state is encoded by the emission model of the HMM which
typically assumes that the observed values are independent of
each other and normally distributed based on the molecular
state:

Xi = Xeq,s; T Os;Mi (®

where Xeq 5; and o, are the equilibrium position and standard
deviation of the probe when the molecule is in a state s; and
n; is an independent random value drawn from the standard
normal distribution. This is analogous to the single-probe
white noise model in eq. (5) but includes the dependence of
bead positions x; on the hidden state as shown in Figure 1A
(left). Thus we term it the white noise HMM (wnHMM).
Figure |

However, as demonstrated above, the white noise model
does not accurately capture background fluctuations in OT
data. Instead, we propose using an emission model based on
the AR(1) model of eq. (3) which properly incorporates the
autocorrelation of the measurements:

xi=xi1+(1- a')(xeq,s,- —xi-1)+ (1 - az)o'sini ©))

We call this the auto-regressive HMM (arHMM) (21, 22).
Figure 1A (right) shows a schematic for the arHMM. To
summarize, the arHMM has a modified emission probability
which takes into account the correlation of displacement
between time points in addition to the hidden state s;. As a
result, the likelihood of assigning a molecular state transition
at any time point depends not only on the present molecular
state, but also on the previous bead displacement. /stThis
parameter allows the model to account for excursions of the
beads far from equilibrium due to stochastic diffusion which
commonly occur in OT data, as we have previously shown.

We test both models on real force data collected on a
hairpin construct shown in fig. S1 in a dual-beam OT setup,
as shown in fig. 3A. In this case, a DNA hairpin is tethered
between two beads and the trap positions are fixed as described
in the methods. The higher and lower force states centered
around 12 and 10 pN correspond to the hairpin in a folded or
unfolded state respectively. The probability density of forces,
plotted in the right inset, is a mixture of two Gaussians. A fit
of these Gaussians is shown in fig. S3A.

The PSD of this signal, shown in fig. 3B, displays a
double-Lorentzian distribution, in contrast to the spectrum of
a single diffusing bead in the trap in fig. 2C (black). Fitting
the double Lorentzian to the data (shown in fig. S3B), we



extract two characteristic time scales. At higher frequency, we
obtain the f; of the optical trap as discussed previously and
in eq. (6). As shown in eq. (7), this parameter is equivalent to
the autoregressive parameter @ which is only accounted for
by the arHMM.

Turning to the lower frequency component, we observe
that it is absent from the single-probe data in fig. 2 as it
originates from the Markov switching of the molecule as
derived in the supplemental. The corner frequency of this
molecular process f;, can be written as:

_k1+k2

fm=——

(10)
where k1, ko are the forward and backward transitions from
hidden states s and s;. In our case, these rates correspond to
the folding and unfolding rates of the hairpin kr, kyp. This
signal is present in both the wnHMM and arHMM; however,
only the arHMM generates the second Lorentzian peak.

To fit both models to the data we use standard iterative
methods to find the MLE parameters that maximize the likeli-
hood.(12, 21, 22) Since a a poor choice of initial parameter
guesses can cause the fitting procedure to converge to an
inaccurate estimate, we developed a novel methodology to
help automate this procedure and generate more robust initial-
izations for both the wnHMM and arHMM. The details are
provided in the supplement. In brief, we use the parameters
extracted from the double Gaussian fit to the force histogram
in fig. S3A and the estimate of f,, obtained from fitting the
PSD in fig S3B to provide initial guess to both models. The &
parameter for the arHMM is also provided from the higher
frequency Lorentzian PSD fit.

Tables S2 and S3 show the resulting transition rates and
Bayesian information criteria (BIC) for all 8 datasets for the
arHMM and wnHMM. Table S4 shows a comparison between
the arHMM and wnHMM fits. In each dataset, the BIC for the
arHMM fit is lower, indicating that the arHMM fits the data
better and that this is not a result of overfitting by introducing
extra parameters. In fig. 3B, dashed lines, we also observe
that the parameters output by the arHMM fit replicate the
measured PSD while the wnHMM parameters cannot replicate
the higher frequency falloff. To compensate, the predicted f;,,
of the wnHMM is shifted to higher frequencies, indicating
that the wnHMM is overestimating the transition rates. This
is significant as estimating the transition rates is often the end
goal of single molecule biophysics measurements.

We find that this overestimation of transition rates also
results in misclassification of molecular states.The resulting
assignment of a small subsection of the data is plotted for
arHMM and wnHMM in blue and orange respectively in
fig. 3C. Both models identified the distinct probe displace-
ments in the real data, plotted in black, as corresponding to two
molecular states at ~10 and ~12 pN. However, the wnHMM
was significantly more likely to assign fast transitions when
probes strayed far from either equilibrium. In contrast, the

OT arHMM

arHMM assigned these to rare bead diffusion events rather
than to a change of the hidden state.

The distribution of folded and unfolded state lifetimes as
extracted by the wnHMM and arHMM models are plotted
in fig. 4A in orange and blue, respectively. As expected, the
wnHMM shows much shorter lifetimes. For a two-state system,
the survival plots should show an exponential decay (plotted
in grey and black dashes) with rate constants set by the molec-
ular unfolding and folding rates, kg and kyg. The lifetimes
measured by the arHMM model follow this prediction. In
contrast, the assignment by the wnHMM model results in very
clear and drastic deviations from single exponential behavior,
with a large excess of very short lifetimes. This deviation is
particularly evident for the less stable state, which corresponds
to the unfolded state in this particular example. We conclude
that these fast events are due to erroneous assignment of
long-lived bead fluctuations to state transitions, such as the
one plotted in fig. 3C.

We perform similar measurements at a range of forces and
repeat the analysis to measure transition rates as a function of
force. The resulting rates for folding and unfolding as estimated
by the wnHMM and arHMM are plotted in fig. 4B in orange
and blue respectively. According to Arrhenius kinetics, the
transition rates should follow (23):

FAx*
k(F) = kgexp (J_r T ) (11)

where ko is the zero force rate and Ax¥ is the distance to the
transition state. Dashed lines in fig. 4B show the exponential
fits to the rates produced by the arHMM. In contrast, the
wnHMM-derived rates have a wider distribution, with several
outliers from the predicted exponential relationship. The ex-
tracted wnHMM rates are consistently faster than the arHMM
as already discussed.

Fitting eq. (11) to the arHMM rates, the transition state is
estimated to be 3.9 nm from the unfolded state which can be
identified with the GC basepair just before the hairpin loop
in fig. S1. This is consistent with previous measurements of
hairpin unfolding dynamics which show the transition state
often occurs near the hairpin loop (24). Removing the outliers
from the wnHMM-determined rates in fig. 4B, we extract a
transition state to be 6.6 nm from the unfolded state, much
further from the loop.

Additionally, we can calculate the Gibb’s free energy
difference between the two states at 0 force as (23):

AG = FipAxor (12)

where Fy; is the force at which kg = kyr and Axy is the
total length change between the states. Using 0.44 nm/nt
and accounting for the 2nm width of the helix, we esti-
mate Axy = 18.2nm. For the arHMM, Fj, = 10.5pN
and AG = 46.6 kgT. For the wnHMM, Fy;, = 10.1pN
and AG = 44.8 kpT. In comparison, the MFOLD webserver
predicts AG = 44 kpT for our sequence and experimental
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Figure 4: Folding and unfolding rates predicted by arHMM
and wnHMM. (A) Survival fraction of the unfolded (left) and
folded (right) states, resulting from the folding and unfolding
rates respectively, as predicted by arHMM and wnHMM. Rate
constants were extracted from fitting the HMMSs, from which
an exponential decay can be predicted (dashed lines). The
HMMs were then smoothed to predict the most likely state
at each timepoint, from which a histogram of state lifetimes
can be obtained (solid lines). The arHMM predicts longer

survival times and thus slower folding and unfolding rates.

(B) Folding (diamonds) and unfolding (xs) rates obtained
by holding at different trap distances. Rates are obtained by
fitting the arHMM (blue) or wnHMM (orange). Data are from

two replicates which were each held at 4 different distances.
Dashed lines indicate an exponential fit to the arHMM rates.

wnHMM consistently predicts faster transition rates.
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conditions (25). While these wnHMM and arHMM results are
comparable for AG, this interpretation of the wnHMM was
only possible after removal of the outliers in fig. 4B. Overall,
these measurements demonstrate the enhanced performance
of the arHMM in extracting realistic molecular parameters,
including the transition state and free-energy state difference,
from OT experimental data.

CONCLUSION

In conclusion, we show that wnHMM models, often used
for OT data analysis, consistently overestimate molecular
transition rates in single molecule OT measurements. We
derive analytically how to modify wnHMM models to incor-
porate the autocorrelation inherent to OT data series which
we demonstrate here. The resulting arHMM model captures
critical features of real data which wnHMM does not. Im-
portantly, we show that an arHMM produces accurate and
consistent measurements of molecular reaction rates when
applied to real OT time-series data of a known DNA hairpin
construct. Our results suggest that arHMM is a significant
improvement over standard wnHMM approaches and should
be the default analysis technique of OT data series for single
molecule kinetic rate measurements. The method we develop
is freely available as an annotated Python code on Github. We
emphasize that our work here not only improves the reliability
of molecular parameters extracted from single molecule force
spectroscopy measurements, but also extends the reach of
these methods to new users who can now use the simple
passive mode technique in combination with arHMM analysis
code to perform state-of-the-art measurements.
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