
Hardware Phi-1.5B: A Large Language Model Encodes Hardware Domain Specific Knowledge

Invited Paper

Weimin Fu∗, Shijie Li†, Yifang Zhao†, Haocheng Ma‖, Raj Dutta¶, Xuan Zhang§, Kaichen Yang‡, Yier Jin†, Xiaolong Guo∗
∗Kansas State University, {weiminf, guoxiaolong}@ksu.edu

†University of Science and Technology of China, {shijie li, zhaoyifang}@mail.ustc.edu.cn, jinyier@ustc.edu.cn
‡Michigan Technological University kaicheny@mtu.edu

§Washington University in St. Louis xuan.zhang@wustl.edu
¶Silicon Assurance rajgautamdutta@siliconassurance.com

‖Tianjin University, hc ma@tju.edu.cn

Abstract—In the rapidly evolving semiconductor industry, where
research, design, verification, and manufacturing are intricately linked,
the potential of Large Language Models to revolutionize hardware
design and security verification is immense. The primary challenge,
however, lies in the complexity of hardware-specific issues that are
not adequately addressed by the natural language or software code
knowledge typically acquired during the pretraining stage. Additionally,
the scarcity of datasets specific to the hardware domain poses a significant
hurdle in developing a foundational model. Addressing these challenges,
this paper introduces Hardware Phi-1.5B, an innovative large language
model specifically tailored for the hardware domain of the semiconductor
industry. We have developed a specialized, tiered dataset—comprising
small, medium, and large subsets—and focused our efforts on pre-
training using the medium dataset. This approach harnesses the compact
yet efficient architecture of the Phi-1.5B model. The creation of this first
pre-trained, hardware domain-specific large language model marks a
significant advancement, offering improved performance in hardware
design and verification tasks and illustrating a promising path forward
for AI applications in the semiconductor sector.

Index Terms—Large Language Model; Hardware Design; Hardware
Verification; Generative AI;

I. INTRODUCTION

Knowledge and language processing are crucial in multiple critical

aspects of the semiconductor industry, such as research, design,

verification, and manufacturing. These aspects involve complex in-

teractions among numerous entities, demanding high accuracy and

efficiency in information exchange. Artificial intelligence (AI) has

demonstrated significant potential in fields such as hardware design,

verification, and routing in recent years [1]–[5]. Nevertheless, it

should be noted that these AI applications do not yet fully exploit

the entirety of available knowledge or information, leading to errors

in their judgments based on partial data, relegating AI methodologies

to a supplementary role in the hardware domain. In contrast, Large

Language Models (LLMs) can extensively leverage the knowledge

conveyed and utilized through natural language and code during the

hardware design process. Given these capacities, LLMs possess the

potential to revolutionize the fields of hardware design and security

verification.

Fig. 1 illustrates the progression of stages in training LLMs

from raw datasets to assistants. In the hardware domain, research

endeavors are presently focused on In-Context Learning (ICL) strate-

gies, such as hardware bug fixing and verification assistant [6]–[8].

ICL does not alter parameters in LLMs; instead, it serves more

as a tactical approach than a fundamental solution for performance

enhancement. Consequently, irrespective of how the initial prompts

are optimized, the improvements in model performance cannot be

directly attributed to ICL. Supervised Finetuning (SFT) represents

another stage. Several groups attempted to employ SFT to address

hardware debugging and design challenges [9]–[11], but outcomes

often lack consistency. The primary challenge lies in the complexity

inherent to hardware-specific issues not adequately addressed by the

natural language or software knowledge acquired during the Pretrain

stage. Hence, developing a base model tailored to enhance robustness

Fig. 1. Four-Stage LLM-Based Assistant Development: Pretraining with
raw data for a base model; ideal response-driven supervised fine-tuning;
instruction-based reinforcement learning with few-shot examples for a de-
ployable model; culminating in user engagement via in-context learning. The
green cells highlight the contributions made in this paper.

in the hardware domain is in high demand and will significantly

strengthen the open-source hardware community.

However, the scarcity of datasets in the hardware domain presents

the initial challenge in Pretrain stage. This scarcity is not unique

to the hardware domain; datasets have become the most limited yet

critical resource in developing LLMs. Leading proprietary LLM GPT-

4 [12], as well as the most potent open-source LLM Llama2 [13],

do not furnish datasets. However, they share methodologies or

recipes for Pretrain dataset construction. Informed by the approaches

delineated in constructing open-source datasets RedPajama [14] and

the Stack [15], based on these recipes, we have crafted a Hardware

Domain-Specific Dataset. This dataset has been segmented into three

distinct tiers based on content volume: small, medium, and large.

In this study, we have adopted the Phi-1.5B model [16] architecture

and conducted pretraining of a hardware domain-specific LLM on

the medium dataset1. The Phi-1.5B model boasts performance that

rivals that of Llama2 7B despite being only a fifth of its size, an

attribute that underscores the model’s efficiency and effectiveness

in training. Moreover, the reduced scale of the model also implies

that the training costs for subsequent task-specific fine-tuning will

be significantly lower. We anticipate that this fully open-source

pretrained model will be a robust foundational support for a wide

array of tasks within the hardware domain, especially playing a

pivotal role in addressing hardware security challenges. Through

meticulously constructed hardware-specific datasets and customized

pre-trained LLMs, this paper aims to precisely address the unique

challenges in hardware domain tasks, achieving a deep understanding

and response to the needs of this field. Our contributions are mainly

reflected in the following aspects:

1) This paper conducted pretraining based on the Phi-1.5B model

structure, making it more closely aligned with the needs of the

hardware domain, enhancing the model’s performance and stabil-

1Our available computational resources informed this decision.

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

3E-5

349

20
24

 2
9t

h
A

si
a

an
d

So
ut

h
Pa

ci
fic

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

92
7

Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Tokenization example: transform all text to a list of integers.

ity in hardware design and verification tasks. To our knowledge,

it is the first pretrained hardware domain-specific LLM.

2) We created three differently sized datasets rigorously screened

and optimized them to guarantee content relevance and quality,

thus laying a strong foundation for model training.

3) The pre-trained model is offered openly to the community, thus

supporting ongoing research, development, and innovation in both

academic and industrial spheres.

II. BACKGROUND: FOUNDATIONAL CONCEPTS

LLMs are not inherently capable of directly processing raw knowl-

edge and information. To make the information intelligible to these

models, we must first transform it into a sequence of integers that the

model can directly interpret. This transformation process is known

as Tokenization. As illustrated in Fig. 2, we employ the CodeGen-

mono [17] tokenizer to segment the raw text into discrete units,

referred to as tokens. Note that although a tokenizer’s vocabulary may

contain a vast array of words, a token does not always correspond

directly to a single word. For instance, the proprietary term SoC
depicted in the figure is split into two separate tokens: So and C.

Each token is subsequently assigned a unique numerical identifier

correlating to an index in the vocabulary list, generating an extensive

sequence of integers. Upon analyzing our dataset, we observed that,

on average, each token is equivalent to 0.74 words.

Fig. 3. Matrix representation of the batch structure in Hardware Phi-1.5B.

In the initial data handling phase, we encounter data characterized

by elements of disparate lengths and a discrete nature. To method-

ologically address this heterogeneity, we used the batch structure as

depicted in Fig. 3, which is organized into a matrix with dimensions

(B, T). Here, B denotes the batch size—fixed at 125 for the

scope of our experimental analysis—and T encapsulates the maximal

context length that our model, designated as Phi-1.5B, is capable of

processing, the value of which is set at 2048 tokens.

Batch Size is the number of training examples utilized in one

iteration. A vast batch size may exceed the memory constraints,

precipitating out-of-memory errors. Conversely, an unduly small

batch size could result in excessively noisy gradient updates, thereby

detrimentally affecting model performance. For comparative context,

the Llama2 employs a batch size 64, correlating to a 64 × 4096
configuration. In contrast, the original MicroSoft Phi-1.5B utilizes a

batch set at 2048× 2048.

We employ a concatenation strategy to account for the inherent

variability in the lengths of data items within a dataset—which is

unlikely to match the specified value of T uniformly. This involves

unifying disparate data lengths and affixing an end-of-sequence

(EOS) token to the culmination of each data item. Subsequently, the

data undergoes a normalization process, uniformly resized to conform

to the dimensions (B, T). In our research, the EOS token is denoted

by the symbol <|endoftext|>.

Fig. 4. Token prediction probability distribution with preferences after
pretrain.

Fig. 4 illustrates the pretraining process of the LLMs, explicitly

highlighting their capability to predict the next token. Within each

cell of the training batch, the model is only privy to the data in

the cells to the left within the same row. During the pretraining, the

model learns to predict the content of the right-side cell by utilizing

the context provided by the cells on the left, a paradigm known

as a causal language model (CLM). The green cell represents a

randomly selected token awaiting processing, the yellow area denotes

the preceding text utilized for prediction, and the red cell signifies

the prediction target. Hardware Phi-1.5B would select from the entire

vocabulary list comprising 50, 257 options. Through training, the

model transitions from uniform probability distribution across all

possible outcomes to allocating probabilities with a clear preference

toward a handful of potential choices.

III. PRETRAIN DATASET

A. Dataset Overview

In this study, we have developed a hardware domain-specific

dataset derived from various publicly accessible sources and bifur-

cated it into two main categories: code and natural language. Table I

delineates the primary constituents of the dataset.

For the code segment, we leveraged Google BigQuery GitHub

Public Datasets [18] , selecting projects that encompass hardware

design source code. Our selection was concentrated on three piv-

otal hardware programming languages: SystemVerilog, Verilog, and

VHDL. This concentration facilitated the incorporation of entire

repositories containing pertinent code into our dataset. Additionally,

3E-5

350Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OVERVIEW OF DATASET COMPOSITION: CATEGORIES, LANGUAGES,

SOURCES, AND SELECTION METHODS

Data Category Languages Sources Methodology or Selection Criteria
Hardware Design

Code
SystemVerilog,
Verilog, VHDL

Google BigQuery Github,
the Stack

Filtering GitHub repositories
for hardware design code

Hardware Nature
Language Knowledge

English

RedPajama CommmolCrawl,
ArXiv, StackExange, Books,
C4, Wikipedia), TrustHub,

Cad4Assurances, CWE

Aggregating content from the
hardware domain

to ensure both legal compliance and open accessibility, we meticu-

lously selected projects under specific open-source licenses.

In parallel, we curated a comprehensive hardware security dataset,

amalgamating both code and natural language content from emi-

nent hardware security sources, including TrustHub [19], CAD for

Assurance of Electronic Systems [20] , and Common Weakness

Enumeration (CWE) [21] . This compilation enriches our dataset with

current and vital insights into hardware security, encompassing codes,

their descriptions, best practices, and security recommendations for

hardware design.

For practical applications in Code Language Models, integrating

natural language data is commonly recognized as beneficial for

enhancing model performance [22]. Hence, we adopted and modified

the Redpajama dataset construction methodology with a focused

segmentation due to the relative rarity of hardware-specific content.

The Redpajama dataset, an expansive corpus exceeding 1.2 trillion

tokens, was segmented to enhance hardware-related discourse. The

first segment includes data from specialized platforms such as Arxiv ,

Books, Wikipedia, and StackExchange; the second segment is derived

from broader internet content via CommonCrawl and C4.

Table II provides a comprehensive overview of the rigorous pro-

cesses applied to verify and cleanse our dataset, ensuring its quality

and integrity. These steps are crucial for maintaining the dataset’s

reliability and usability in research:

• Verification and Cleansing: This step involves identifying syntactic

errors and reviewing natural language descriptions to ensure data

accuracy. It combines automated scripts for efficiency and manual

reviews for precision, addressing the dual aspects of mechanical

accuracy and contextual relevance.

• Redpajama Dataset Filtering: Here, we filter hardware security

content using targeted keywords. This step is vital for maintaining

the dataset’s focus and relevance to the field of hardware security,

ensuring that the dataset remains aligned with its intended purpose.

• Text Processing: This phase includes several processes: NFC

normalization, short content filtering, and removing punctuation

and unnecessary spaces. The use of datasketch [23], a tool known

for its efficiency in handling large datasets, helps streamline this

process, improving data quality and consistency.

• De-duplication: To enhance the dataset’s utility, this step employs

indexing and the MinHash technique for de-duplication, again

utilizing datasketch. De-duplication is critical for eliminating re-

dundant data, enhancing overall quality, and making the dataset

more manageable and effective for users.

Each of these steps plays a vital role in refining the dataset. This

meticulous process ensures that the dataset is extensive but also

precise and reliable, catering to the nuanced needs of hardware

security research.

B. Visual and Quantitative Analysis

Fig. 5 visually represents our dataset’s construction and seg-

mentation. The smallest dataset comprises information related to

hardware security and the source code of hardware design. In this

dataset, the proportion of CWE is approximately 0.0014468%, yet its

significance is paramount. This CWE section contains over 70, 000
tokens. Although it represents a minor proportion of the dataset’s total

TABLE II
STEPS IN DATA VERIFICATION, CLEANSING, AND PROCESSING WITH

APPLIED TOOLS AND METHODS

Step Description Tools/Methods

Verification & Cleansing
Identifying syntactic errors;

Reviewing natural language descriptions.
Automated scripts,

Manual review

Redpajama Dataset Filtering
Filtering content related to
hardware using keywords

Keyword filtering

Text Processing
NFC normalization; Filtering short content;

Removing punctuation, spaces, etc.
datasketch

De-duplication
Indexing and de-duplication

using MinHash
datasketch

Fig. 5. Visual Representation of Dataset Construction and Segmentation

TABLE III
BREAKDOWN OF DATASETS BY SIZE IN TOKENS

Dataset Name Dataset Size (Tokens)
Smalt 4, 838, 384, 488

Medium 10, 382, 663, 651
Large 22, 616, 170, 041

volume, CWE information is crucial, offering critical insights into

security vulnerabilities and weaknesses relevant to hardware security.

While numerically limited, these data are of high quality and pro-

fessionalism, reflecting common security weaknesses and potential

risks in hardware design. Hence, despite their small percentage in the

overall dataset, the CWE elements are indispensable and significantly

contribute to in-depth hardware security research.

Expanding to the second dataset, the medium dataset evolves

from the smaller dataset and incorporates information from ArXiv,

StackExchange, Books, and Wikipedia sources. This dataset provides

a broader perspective and information base, supporting a more

comprehensive analysis.

Finally, the large dataset further extends the scope, encompassing

all contents of the medium dataset and a vast array of data from

C4 and CommonCrawl. The diversity and scale of this dataset offer

abundant resources.

To further quantify, Table III presents a detailed breakdown of

the three datasets in size, measured by token counts, facilitating a

direct comparison between the small, medium, and large datasets.

This information is critical for users in selecting the most appropriate

subset for their research needs. As an open-source dataset, this

flexibility empowers users to select a subset that aligns with their

computational resources and specific requirements.

IV. HARDWARE PHI-1.5B MODEL PRETRAIN

A. Model Architecture

The architecture of Hardware Phi-1.5B strictly adheres to the de-

sign principles of the original Phi-1.5B and its variants. It comprises a

Transformer structure [24] with 24 layers, 32 heads, and a dimension

of 64 for each head, resulting in a context length of 2, 048. We

incorporated the Flash Attention 2 [25] during the training phase to

3E-5

351Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

expedite the training process. To ensure optimal compatibility with

tools that utilize LLMs, we opted to follow the Phi-1.5B style and

employ the codegen-moni tokenizer.

B. Model Training Methodology

The key setups in pretraining Hardware Phi-1.5B are listed below.

1) Initialization Strategy: The model’s training is initiated with a

state of random weights. We meticulously initialized the weights of

the linear and embedding layers by employing a normal distribution

with a mean of 0 and a standard deviation of 0.02. This approach was

adopted to prevent the extremes of weight magnitude, thus averting

the well-known issues of gradient disappearance or explosion. Addi-

tionally, we set the biases in linear layers to zero, fostering a neutral

starting point that prevents any early bias toward specific outcomes.

2) Training Configurations: Our training configuration was stan-

dardized with a fixed learning rate of 2e − 4 and a weight decay

factor of 0.1, mirroring the training regimen of the Phi-1.5B model.

3) Optimizer Settings: The Adam optimizer [26], equipped with

beta momentum values of 0.9 and 0.98 and an epsilon value of 1e−7,

was the chosen algorithm for its reliable performance in similar tasks.

4) Efficiency Strategies: To optimize memory usage and training

efficiency, we adopted fp16 mixed precision training. Additionally,

we utilized the Fully Sharded Data Parallel [27], enabling the

distribution of the model’s parameters across all available GPU

resources. This was complemented by an effective communication

strategy aimed at reducing training overheads. For further mem-

ory optimization, the transformer blocks were integrated with the

auto_wrap_policy, and to strike a balance between memory

use and computation speed, we enabled activation checkpointing.

5) Evaluation Framework: Given the substantial size of our

dataset, we set a training termination criterion at 750, 000 iterations

and 30, 000 steps. To monitor the model’s performance progression

and mitigate the potential of overfitting, we instituted a checkpoint

mechanism that allowed the model’s state to be saved and evaluated

at every 1, 000 step, ensuring we could capture performance metrics

systematically throughout the training process.

V. EXPERIMENT AND RESULT

Our training platform is constructed on a server operating with

Ubuntu 20.04.6 LTS, equipped with an Intel(R) Xeon(R) Silver

4314 CPU (2.40 GHz, 64 cores), 251 GB of memory, and dual

NVIDIA A100 80 GB graphics processing cards. This configuration

not only provides substantial computational power but also ensures

ample memory when dealing with large models. The CUDA 12.2

and PyTorch 2.1.0 versions selected for our work fully exploit the

hardware potential, optimizing the model training process. Supported

by this high-performance hardware, our platform can achieve a

throughput of 1.07 batches per second while maintaining approxi-

mately 100T floating-point operations per second (flops/sec) and a

token processing speed of around 11k per second.

In this experiment, we have designated 30k training steps, culmi-

nating in a total training duration of 8 days, 2 hours, 43 minutes,

and 22 seconds. This training cycle was determined post-evaluation

of the anticipated model complexity and the requisite time for

convergence. Additionally, considering the power consumption of

GPU devices and based on previous studies [28] , we have computed

the energy efficiency during the training process. We estimate that

this training has produced approximately 90kg of carbon dioxide

equivalent greenhouse gas emissions.

Fig. 6 presents the variation in loss and perplexity on the validation

dataset. Loss is an indicator that measures the discrepancy between

model predictions and actual values, with Mean Squared Error (MSE)

and Cross-Entropy Loss being commonly used metrics [29]. A high

loss indicates a greater disparity between the model predictions and

Fig. 6. Validation Loss and Perplexity During Training

A System-On-a-Chip (SoC) has a lot of functionality, but it

may have a limited number of pins or pads. A pin can only

perform one function at a time. However, it can be configured

to perform multiple different functions. This technique is called

pin multiplexing.

Fig. 7. Training Data: CWE-1189: Improper Isolation of Shared Resources
on System-on-a-Chip (SoC)

actual values, hence a lower model performance. Perplexity [30],

particularly within natural language processing and language models,

indicates model performance. It is the exponentiation of the cross-

entropy loss and offers an average branching factor per word, that

is, the model’s uncertainty about the next word given the preceding

ones. In our training context, a lower perplexity suggests a more

precise understanding of the data by the model.

Initially, models exhibit high loss and perplexity, reflecting their

preliminary adaptation to the data during the learning process. As

training progresses, these metrics generally decrease, signifying the

model’s advancements in learning. As in Fig. 7, we have conducted

text continuation experiments on the CWE-1189 [31] security vul-

nerability description. In our experiments, we generated text using

models at different training stages—the initial model, the model after

10k steps, the model after 20k steps, and the final model at 30k steps

training.

In Fig. 8, the initial model’s generated text lacked coherence

and logic, indicating that at the onset of training, the model’s

understanding of language structure had yet to be established. This

stage’s model output is typically a meaningless string of words,

reflecting the model’s randomness and immaturity.

After 10k training steps, the model demonstrated correct word

spelling as in Fig. 9, signifying that it had begun to capture the

basic language rules, such as word boundaries and fundamental

grammatical structures. However, the generation of longer sentences

remained unnatural, suggesting an insufficient grasp of complex

structures.

Following 20k training steps, as shown in Fig. 10, the model’s

generated text began to show readability, albeit with occurrences of

looping and repetition. This may be attributed to the model finding a

”comfort zone” in certain local minima and tending to repeat patterns

discovered in the training data rather than generating novel content.

tributePAfort MoorFontSizeestone Karl Norris intens Norris

informative refinement kg 278 impulses Yugoslavinnamon

Buddha Performance Divine clinch interacts Performance Sci-

entology alertinsulaes inex Harding Gene oral Norris heinous

risk Kremlin Harding546 crossings

Fig. 8. Generated sample at initialization.

3E-5

352Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

if 0 = Pin multiplexing else do you need to change those pin

numbers to the least expensive chips? A: The pin number of

the SoC has to be the same in both the input and output pins,

with no extra pins on the chip connected directly. There are

several sources of noise, either from the FPGA or a FPGA or

other components like these may be bad quality.

Fig. 9. Generated sample at 10k step, 250k iterations of training.

On-board: I/O multiplexing I/O multiplexing For example: I/O

multiplexing I/O multiplexing I/O multiplexed in between As

mentioned in the link, a physical system-on-a-chip (SoC), also

known as a Chip-on-a-Chip (SoC), offers pinout, multiplexer

and multiplexer connected in a single interconnect.

Fig. 10. Generated sample at 20k steps, 500k iterations of training.

Finally, the model post 30k training steps exhibited a more mature

understanding of language, integrating natural language capabil-

ity and domain-specific knowledge in text generation in Fig. 11.

Nonetheless, due to the lack of task-specific fine-tuning, the model

might not adapt well to specific contexts or answer complex queries.

This highlights the model’s limitations as a base model: it is adept

at predicting the next token in text and, hence, tends to complete

a document, but for more advanced tasks, further optimization and

adaptation may be necessary.

Through these phases, we can observe the model’s progression in

understanding and generating language. Nevertheless, to become a

practical assistant, the model requires further training and customized

fine-tuning. Future work will focus on enhancing the model’s perfor-

mance while reducing its training process’s environmental impact.

VI. RELATED WORK

Compared to the singular pursuit of developing Large Language

Models for the goal of achieving General Artificial Intelligence, an

increasing body of research is focusing on constructing specialized,

domain-specific datasets and training LLMs to nurture systems that

demonstrate expert-level proficiency within specific domains.

In the medical field, due to the highly complex nature of the

expertise required and the constraints imposed by privacy regulations,

general LLM typically fails to provide sufficient comprehensive

coverage. As a result, researchers are turning to strategies involv-

ing complete pretraining, supervised finetuning, and reinforcement

learning approaches. K. Singhal has developed MultiMedQA, a com-

posite benchmark integrating six existing medical question-answering

datasets, and a new online search medical question dataset, Health-

SearchQA. Utilizing this benchmark, Google has further trained

PaLM and its variant, FLAN-PaLM [32]. L. Y. Jiang has adopted

In the context of embedded-edge technologies, in the proces-

sor, an edge device is an integrated hardware device. An edge

device is an embedded computation device that provides the

capability to operate at all the levels of the chip. In the context

of processors, it is more common that an embedded compu-

tation device is integrated and integrated into an embedded

system. In the above example, for an embedded computation

device, it is referred to the processor as computing core. It also

refers to the SoC device when it is the peripheral, embedded

system, or embedded system controller. On the other hand, an

embedded system is an embedded systems management device

that provides the capability to communicate with the

Fig. 11. Generated sample at 30k steps, 750k iterations of training.

a BERT-based pretraining and finetuning to develop NYUTron,

designed to offer guidance at clinical care points [33].

In the realm of hardware security, research approaches vary

depending on the perspectives of researchers. Some contend that

existing commercial general-purpose LLMs, such as ChatGPT, are

sufficient to support formal verification tasks, relying on OpenAI’s

continuous enhancements of ChatGPT to improve the performance of

their tools. For instance, M. Orenes-Vera has attempted to use Chat-

GPT for RTL formal verification [34]. M. Chen, on the other hand,

has employed codex, ChatGPT, and a Codegen variant fine-tuned

for Verilog [10] to generate assertions directly [35]. However, other

researchers argue that proprietary knowledge in the hardware domain

necessitates custom dataset training for models. They believe that

their research outcomes will be more pronounced as access to more

domain-specific data and computational resources becomes abundant.

For example, S. Thakur has finetuned for Verilog generation [10], and

W. Fu has also finetuned an LLM for hardware debugging based on

version control information [9].

On the other hand, there can be significant variances in the

usage of specialized terminology between different domains, even

evident in the software and hardware fields. For example, Port
typically refers to a communication interface in software engineering,

whereas it denotes a physical interface on electronic devices in

hardware design. Cache in software signifies a temporary storage

area to expedite data access. At the same time, in hardware, it

might refer to a small-capacity, high-speed storage located between

the CPU and main memory. Moreover, Pipeline can represent a

sequence of processing steps in software development, whereas, in

hardware design, it indicates a specific technique for parallel data

processing. Terms like Bus, Driver, Register, and Core also possess

dual meanings; their conflation can lead to confusion and impair the

model’s understanding and predictions.

In light of this, our research endeavors are concentrated on the

development and use of datasets tailored explicitly for the hardware

domain for pretraining, and aiming to construct a base model

that paves the way for breakthroughs in the meticulous finetuning

of domain-specific models. We anticipate that this approach will

significantly enhance the model’s performance in comprehending

and handling the aforementioned complex terminologies, surpassing

the capabilities of existing general code language models (such as

CodeLlama [22]) and natural language models (such as BERT [36]

and GPT-2 [37]).

VII. CONCLUSION AND FUTURE WORK

In this study, we have explored the potential of Large Language

Models advancing hardware design, Electronic Design Automation,

and hardware security. Recognizing that hardware design shares

certain formal similarities with natural language and software design

yet diverges fundamentally in its core complexities, we have focused

on developing a specialized LLM for the hardware domain, estab-

lishing a robust foundational dataset. This endeavor not only breaks

new ground in conventional approaches to the hardware domain but

also paves the way for novel perspectives in future research and

applications.

Moving forward, we aim to continue advancing this project,

focusing on pre-training the base model while maintaining and

updating our dataset to ensure its relevance and contemporaneity.

We eagerly anticipate the fine-tuning and application of this model

in specific areas within the hardware design domain, particularly in

addressing distinct design challenges and security issues. We believe

our work will offer new insights and solutions for research and

practice in hardware design, verification, and security, potentially

catalyzing transformative changes in these fields.

3E-5

353Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

Portions of this work were supported by the National Science

Foundation (CCF-2019310, First Award Program of ARISE in EP-

SCoR 2148878).

REFERENCES

[1] G. Hains, A. Jakobsson, and Y. Khmelevsky, “Towards formal methods
and software engineering for deep learning: security, safety and produc-
tivity for dl systems development,” in 2018 Annual IEEE international
systems conference (syscon). IEEE, 2018, pp. 1–5.

[2] Y. Lai, J. Liu, Z. Tang, B. Wang, J. Hao, and P. Luo, “Chipformer:
Transferable chip placement via offline decision transformer,” arXiv
preprint arXiv:2306.14744, 2023.

[3] R. Cheng and J. Yan, “On joint learning for solving placement and
routing in chip design,” Advances in Neural Information Processing
Systems, vol. 34, pp. 16 508–16 519, 2021.

[4] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi, J. Pak, A. Tong, K. Srinivasa,
W. Hang, E. Tuncer, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and
J. Dean, “A graph placement methodology for fast chip design,” Nature,
vol. 594, no. 7862, pp. 207–212, 2021.

[5] S. Guadarrama, S. Yue, T. Boyd, J. W. Jiang, E. Songhori, T. Tam,
and A. Mirhoseini, “Circuit Training: An open-source framework
for generating chip floor plans with distributed deep reinforce-
ment learning.” https://github.com/google research/circuit training,
2021, [Online; accessed 21-December-2021]. [Online]. Available:
https://github.com/google research/circuit training

[6] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing
hardware security bugs with large language models,” arXiv preprint
arXiv:2302.01215, 2023.

[7] Z. Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins, “Llm4dv:
Using large language models for hardware test stimuli generation,” arXiv
preprint arXiv:2310.04535, 2023.

[8] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” 2023.

[9] W. Fu, K. Yang, R. G. Dutta, X. Guo, and G. Qu, “LLM4SecHW: Lever-
aging domain-specific large language model for hardware debugging,”
Asian Hardware Oriented Security and Trust (AsianHOST), 2023.

[10] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-
Gavitt, and S. Garg, “Benchmarking large language models for auto-
mated verilog rtl code generation,” in 2023 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–6.

[11] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, “Verigen: A large language model for verilog code generation,”
arXiv e-prints, pp. arXiv–2308, 2023.

[12] OpenAI, “Gpt-4 technical report,” 2023.
[13] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[14] T. Computer, “Redpajama: an open dataset for training large
language models,” 2023. [Online]. Available: https://github.com/
togethercomputer/RedPajama-Data

[15] D. Kocetkov, R. Li, L. Ben Allal, J. Li, C. Mou, C. Muñoz Ferrandis,
Y. Jernite, M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau, L. von Werra,
and H. de Vries, “The stack: 3 tb of permissively licensed source code,”
Preprint, 2022.

[16] Y. Li, S. Bubeck, R. Eldan, A. Del Giorno, S. Gunasekar, and Y. T. Lee,
“Textbooks are all you need ii: phi-1.5 technical report,” arXiv preprint
arXiv:2309.05463, 2023.

[17] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[18] F. Hoffa. Github on bigquery: Analyze all the open
source code. [Online]. Available: https://cloud.google.com/blog/topics/
public-datasets/github-on-bigquery-analyze-all-the-open-source-code

[19] “Trust-hub: A resource for hardware security and trust.” [Online].
Available: https://trust-hub.org

[20] “Cad for assurance of electronic systems,” an initiative to assemble and
share information on CAD for trust/assurance activities in academia
and industry. [Online]. Available: https://cadforassurance.org

[21] “Common weakness enumeration,” 2022, https://cwe.mitre.org/.
[22] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,

J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[23] E. Zhu, “datasketch: Big data looks small,” GitHub, GitHub
repository: https://github.com/ekzhu/datasketch, 2023, a library
providing probabilistic data structures for processing and searching very
large amounts of data efficiently. Version 1.6.4. [Online]. Available:
https://ekzhu.github.io/datasketch

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[25] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and
memory-efficient exact attention with io-awareness,” Advances in Neural
Information Processing Systems, vol. 35, pp. 16 344–16 359, 2022.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] Y. Xu, H. Lee, D. Chen, H. Choi, B. Hechtman, and S. Wang, “Auto-
matic cross-replica sharding of weight update in data-parallel training,”
2020.

[28] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the dangers of stochastic parrots: Can language models be too big?” in
Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, 2021, pp. 610–623.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[30] C. Manning and H. Schutze, Foundations of statistical natural language
processing. MIT press, 1999.

[31] Common Weakness Enumeration (CWE). Cwe-1189: Improper isolation
of shared resources on system-on-a-chip (soc) (4.13). MITRE. [Online].
Available: https://cwe.mitre.org/data/definitions/1189.html

[32] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung,
N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl et al., “Large language
models encode clinical knowledge,” arXiv preprint arXiv:2212.13138,
2022.

[33] L. Y. Jiang, X. C. Liu, N. P. Nejatian, M. Nasir-Moin, D. Wang,
A. Abidin, K. Eaton, H. A. Riina, I. Laufer, P. Punjabi et al., “Health
system-scale language models are all-purpose prediction engines,”
Nature, pp. 1–6, 2023.

[34] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “From rtl to sva: Llm-
assisted generation of formal verification testbenches,” arXiv preprint
arXiv:2309.09437, 2023.

[35] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

3E-5

354Authorized licensed use limited to: Kansas State University. Downloaded on January 27,2025 at 22:38:29 UTC from IEEE Xplore. Restrictions apply.

