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Abstract

Industrial Control Systems (ICS) manage several critical infrastruc-
tures such as the electrical grid and water treatment plants. ICS
have been the target of cyberattacks designed to disrupt the op-
eration of critical infrastructure, risking the safety of the system.
Honeypots and honeynets are used to gather intelligence on novel
threats against ICS and to help us prepare for future attacks. In
this paper, we introduce ICSNet, a hybrid-interaction honeynet that
improves on the state of the art of ICS honeynets by developing
a new modular architecture that integrates high-fidelity physical
process simulations, more industrial protocols, and high-fidelity
device fingerprints. We evaluate ICSNet using multiple physical
process scenarios and reconnaissance tools like Nmap and Nikto.
We show that ICSNet can successfully represent different ICS envi-
ronments while interacting with the industrial assets in the physical
simulation, giving attackers a convincing view of an ICS.
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1 Introduction

Industrial Control Systems (ICSs) consist of a combination of com-
ponents (e.g., electrical, mechanical) that work together to achieve
an industrial objective, such as manufacturing, energy management,
water treatment, etc. [37]. ICSs underpin many Critical Infrastruc-
tures (CI) so vital to society that their incapacitation or destruction
would have considerable economic and health consequences [4].

In recent years, cyberattacks against ICSs have increased. For
instance, in 2022, a new version of the Industroyer malware was
discovered. Its purpose was to attempt, yet again, to target Ukraine’s
power grid by attacking circuit breakers automatically [33].

In order to gather information about novel threats to ICS, honey-
pots can be used to identify new attack patterns to help us prepare
better protections. Early ICS honeypots, such as the SCADA Hon-
eyNet Project [1], were initial efforts to provide low-interaction
simulations limited to one or two network protocols commonly
used in Industrial Control. Newer ICS honeypots such as Honey-
PLC [19] extended previous work to provide a high-interaction
environment and support for more ICS protocols and devices.

The design of general-purpose ICS honeynets has many chal-
lenges, including the diversity of vendors, industrial protocols,
physical processes, control devices, and functionalities. Previous
work has faced challenges when trying to replicate the diversity
of these systems while ensuring a high-fidelity environment. In
this paper we introduce ICSNet, a hybrid-interaction honeynet that
improves on the state of the art of ICS honeynets by developing
a new modular architecture that integrates high-fidelity physical
process simulations, more industrial protocols, and high-fidelity
device fingerprints.

Our contributions are as follows:

(1) We design ICSNet, the first hybrid-interaction honeynet, which
solves many of the limitations of related approaches.

(2) We integrate our implementation with Factory IO, a high-
fidelity physical process simulation that allows ICSNet to
interact with the industrial assets, which provides the most
sophisticated physical simulation in any honeypot in the
literature.

(3) Our implementation supports more ICS network protocols,
ICS manufacturers, ICS devices, and physical processes than
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previous work. In addition, we make our implementation
open source to help increase the fidelity of future ICS hon-
eynets. ICSNet is available online!.

(4) We provide experimental evidence that shows ICSNet suc-
cessfully interacts and deceives well-known tools for net-
work reconnaissance.

2 Background

ICS is a term that encompasses multiple types of control systems,
including supervisory control and data acquisition (SCADA) sys-
tems, distributed control systems (DCS), and other control system
devices such as Programmable Logic Controllers (PLC) [36]. ICS
networks support the infrastructure of many of the basic services
that we rely upon. For instance, energy transportation, communi-
cations, and clean water. In the United States, Presidential Policy
Directive 21 defines sixteen critical infrastructure sectors, including
communications, manufacturing, emergency services, and energy,
among others [11].

2.1 Honeypots and Honeynets

Honeypots. A honeypot is a computer system that aims to be
probed, attacked, or compromised. The value of a honeypot lies in
the data it obtains from attackers. These data can be later analyzed
to detect existing and new adversaries’ techniques [29].

Honeynets. A honeynet is a network of at least two intercon-
nected honeypots. This architecture provides a controlled network
in which adversaries’ interactions are monitored and recorded.

Low-Interaction. Low-interaction honeypots provide the least
amount of functionality to adversaries. They are usually imple-
mented via simple scripts. They have two main advantages. Low-
interaction honeypots are more accessible to develop and maintain,
and due to their limited functionality, they pose a low risk of an ad-
versary taking over them. Their main drawback is that adversaries
may not complete their attack and realize they are interacting with
a decoy.

High-Interaction High-interaction honeypots provide interac-
tions equal to or close to the same level as the natural system [7].
They are implemented using real devices or via software emulation,
e.g., virtualization. In the context of ICS, high-interaction honeypots
can simulate attacks in a more realistic setting than low-interaction
honeypots thanks to a higher fidelity of the physical process simu-
lation. High-interaction honeypots have two main disadvantages.
First, they are very costly to deploy and maintain. Second, they
pose a high risk of adversary takeover. High-interaction honeypots
may provide too much freedom, which an adversary could exploit
to take over the honeypot, lock out the honeypot administrator, and
use the honeypot to establish a foothold in the network [43]. Even
though high-interaction honeypots provide the best interaction
capabilities, they should not always be used if they pose a high risk
of an adversary takeover.

Hybrid-Interaction Hybrid-interaction honeynets [13, 14] com-
bine low and high-interaction honeypots to take advantage of their
combined benefits, thus getting the best of both worlds. One of the
advantages of hybrid-interaction honeynets is their flexibility. They
allow multiple types of honeypots to be integrated with the same

!https://anonymous.4open.science/r/ics-virtual-testbed-766D
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honeynet. In essence, they can be mixed 'n matched to satisfy the
honeynet requirements. Additionally, hybrid-interaction honeynets
allow the honeynet administrator to control the amount of adver-
sary takeover risk they are willing to take. If they want to reduce
the takeover risk, they can replace high-interaction honeypots with
low-interaction ones. RIoTPot is a hybrid-interaction honeypot ca-
pable of switching between low and high-interaction modes [35].
To the best of our knowledge, ICSNet is the first hybrid-interaction
honeynet in the literature.

2.2 Evolution of ICS Honeypots

We now state and discuss the stages of evolution of ICS honeypots
that we identified during our literature review.

1. Basic ICS Protocol Simulations.

The first generation of ICS honeypots is characterized by lim-
ited simulation of ICS devices and protocols. For example, the
SCADA Honeynet Project [1], developed by Cisco Inc., is one of
the very first ICS honeypots. It simulates a basic PLC with a Mod-
bus TCP server with hardcoded registers. Future approaches such
as S7commTrace [44], Conpot [41], and the Digital Bond’s Hon-
eynet [42] expanded the number of ICS devices and protocols, how-
ever, keeping with the basic simulation design. For example, Conpot
allows users to customize their honeypots by using templates and
S7commTrace provides basic simulation of the S7comm Siemens
proprietary protocol. These ICS honeypots do not have any physical
processes simulation capabilities.

2. Basic ICS Protocol and Physical Simulations

The second generation of ICS honeypots is characterized by
the incorporation of basic physical simulation features. The work
by Antonioli et al. [7] is one of the first examples of this trend.
Their approach simulates the Ethernet/IP ICS protocol along with
multiple PLCs and HMIs. Most importantly, they integrate MiniCPS
with their honeypot which allows it to simulaute a water treatment
physical process where each water tank has an inflow pipe, and an
outflow pipe, that simulate hydraulics equations. HoneyPhy [18] is
another example which simulates a thermostat physical process.

3. Adavanced ICS Protocol Simulations

The third generation is characterized by the improvement of
the simulated ICS devices and network protocols, which opened
the door for previously unavailable interaction opportunities. Hon-
eyPLC [19] introduced an advanced simulation of the S7comm
protocol that not only responds to basic network queries but can
interact with advanced tools such as PLCScan, Nmap and the real
Step7 Manager used to configure real PLCs. Additonal examples
include the work by Grigoriou eta. [15] and HoneyVP [45] which
also include advances simulations of other ICS protocols such as
IEC-104.

Eventhough this generation saw the development of more ad-
vanced ICS device and protocol simulations, the advancement of
the physical process simulations remained largely stagnant.

4. Advanced ICS Simulations with Basic Physical Processes
Simulation. This current generation of ICS honeypots is character-
ized by advanced simulations of ICS devices and network protocols
and basic simulations of physical processes as seen in Gen 2. For
example, ICSpot [10] builds on top of HoneyPLC[19] and adds a
physical process simulation based on the SWaT water treatment
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Table 1: Comparison of Existing Honeypots/Honeynets and
ICSNet.

[1][44][42][41][35][10][19][20]  ICSNet
Supported ICS devices 11 1 2 ® 2 5 7 12
Interaction level LHHULYHHH Y
Network protocols 31 1 3 4 4 3 2 5
Physical process simulation O O O O O @ O @ [ )
Modularity / Extensibility OO0 OC @ o 0 0 [ J
Honeynet 0O € OO OO e [ J
Supported manufacturers 111 2 ® 3 3 3 6

O: Not supported @: Supported &: Not specified L: Low H: High Y: Hybrid

process. This simulation leverages Industrial Hacking Simulator
(THS) is a repository with ICS scenarios which is based on MiniCPS.
Another example is HoneyICS[20], which also builds on top of Hon-
eyPLC and integrates multiple functionalities including a simplified
version of the Secure Water Treatment system (SWaT) implemented
using Simulink.

We aim to push the state of the art by introducing ICSNet and
a new generation of ICS honeypots that include both advanced
ICS device and protocol simulations and advanced physical processes
simulations.

Despite the benefits of the previously discussed honeypots, the
present solutions fail to provide the necessary features to simulate
ICS networks so that the latest and most sophisticated attacks can
be understood. Specifically, their limitations are:

Limited ICS Device Support. Existing approaches provide
shallow PLC simulations that do not account for the difference
between PLC manufacturers and models. This limitation stops cur-
rent approaches from extracting data from adversarial interactions
and malware that varies depending on the PLC. MiniCPS, for exam-
ple, simulates PLCs using Python scripts [8]. ICSNet addresses this
limitation by providing support for 10 PLC models implemented
using a high-fidelity fingerprint of ICS devices.

Limited ICS Network Protocol Support. Current approaches
provide limited support for ICS network protocols. This limitation
prevents other virtual testbeds from simulating different types of
ICS networks. Most testbeds support only one protocol, namely,
Modbus TCP.

Limited Interaction Support. Current honeynets do not use
the hybrid-interaction model to provide low and high-interaction
simulations. This limitation prevents other honeynets from simu-
lating different types of ICS networks.

Limited Physical World Simulation Support. Most of the
current solutions do not include support or consideration of the ICS
physical simulation. This limitation hinders the ability of any ICS
honeypot or honeynet to provide responsive and believable interac-
tions to an attacker. As discussed in Sec.3.7, ICSNet addresses this
limitation by introducing a high-fidelity physical process simulation
that can simulate multiple physical processes, not just one.

We summarize these limitations in Table 1. The table shows
that our solution supports more devices, vendors, protocols, and
potentially more physical process simulations than other work.
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3 ICSNet’s Design
3.1 Threat Model

1) We assume that the attacker already has access to our honeynet.
This could be achieved by scanning for ICS network protocol ports
over the Internet or using a search engine such as Shodan[25]. 2)
After selecting their target, the attacker starts a reconnaissance
using port scan tools such as Nmap. The attacker’s goal is to find
and enumerate the number of hosts in the network (honeynet) and
what are the exposed services, e.g., Modbus TCP port 502. 3) After
mapping out the honeynet and finding target services, the attacker
probes each service to obtain more information. For example, they
could use Nmap’s Modbus discovery scripts mentioned in Sec.5 to
get device information, such as the device model and firmware ver-
sion. 4) Finally, the attacker can send a malicious Modbus command
to the PLC to change one of the registers. This would damage the
industrial control system operation.

We design ICSNet to log all the attacker’s interactions with the
honeypots in the honeynet so that they can be later analyzed.

Based on the current state and limitations of existing solutions,
we identified the following primary characteristics guiding the
design of ICSNet: (1) Modular Architecture (Sec.3.2), (2) Hybrid-
Interaction Architecture (Sec.3.3), (3) High fidelity ICS Device Pro-
files (Sec.3.4), (4) Support of representative ICS protocols (Sec.3.6),
(5) High fidelity physical process simulations (Sec.3.7).

3.2 Modular Architecture

We leveraged and integrated two existing frameworks to implement
the modular part of ICSNet: Honeyd and Mininet.

Honeyd. Honeyd is a virtual honeypot framework that simu-
lates [29] virtual computer systems at the network level. Honeyd
simulates the TCP/IP stack of different operating systems and de-
vices to deceive network fingerprinting tools. It leverages a finger-
print database to store and match hundreds of devices, e.g., PLCs.
Honeyd can be extended to include protocol simulations using
scripts. For example, it can simulate a telnet server using a Python
script. Additionally, Honeyd can be configured as a proxy to route
a particular port to a different host. For example, it can send HTTP
traffic to a web server. Honeyd is classified as a low-interaction
honeypot as the simulations are limited to scripts and do not pro-
vide advanced simulations. We selected Honeyd because of two
reasons. First, it is highly customizable, allowing new fingerprints
for ICS devices. Second, its proxy capabilities allow low and high-
interaction honeypot implementations to be routed to the correct
TCP and UDP ports.

Mininet. Mininet [27] creates realistic virtual networks by tak-
ing advantage of Linux’s kernel namespaces, similar to some con-
tainer solutions. By leveraging this feature, it can simulate several
hosts with “independent” kernels communicating with each other
via virtual switches. Mininet uses the facilities provided by Open
vSwitch [28] to create and manage the different virtual switches and
any corresponding association with the virtual interfaces handled
by each kernel namespace. Furthermore, since Mininet is ultimately
a Software-Defined Network (SDN), it also supports adding an
external SDN controller to handle and manage the network traffic.

The primary design goal of our solution, shown in Figure 1a, is to
present the attacker with an entire virtual network through a single
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Figure 1: Extensible hybrid-interaction architecture.

network interface (D. We make no assumptions about the nature of
the communications channel between this network interface and
the attacker. In this network, the attacker must be able to interact
with any simulation nodes they can reach, and this interaction must
be convincing enough that the attacker believes it to be a legitimate
industrial control network.

To that end, we attach the network interface of a simulation
host, which the attacker can access, to a virtual switch ). This
interconnection allows the attacker to interact with any simulated
hosts attached to this virtual switch. Each of these simulated hosts
is, in the sense of the simulation, a node that carries out a specific
role in the simulation, be it a PLC, an HMI, a node simulating
a physical process, or any other relevant node in the simulated
scenario.

The overall design principle of our solution is focused on flexibil-
ity; each simulated node instantiates a device handler, managing the
device module and the industrial protocol listeners (3. The device
module provides the specific control logic for the scenario, a mem-
ory mapping resembling an actual device, and a synchronization
mechanism used to interact with the physical process simulation (@.
The handler bridges this device simulation with the industrial con-
trol protocol modules, allowing any actor within the same network
to interact with the simulated device via the appropriate proto-
cols (5.

Our solution enables the simulation of various industrial control
scenarios. Each scenario uses a configuration file specifying the net-
work topology, device information, and appropriate modules. For
each device, it is necessary to define 1) network links, 2) the virtual
device information (e.g., manufacturer, model, device name), 3) the
industrial control module it will instantiate, and 4) the industrial
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control protocols it will support. The downside of this scheme is
that if a malicious actor performs any reconnaissance activities over
the simulated network, they would still recognize the simulated
devices as the host operating system.

3.3 Hybrid-Interaction Architecture

ICSNet’s modular design also allows us to mix low and high-interaction

honeypots in our honeynet and achieve a hybrid-interaction ar-
chitecture. We decided to have a hybrid-interaction architecture
because it allows ICSNet to incorporate multiple honeypots with-
out the need to limit ICSNet to be either low or high-interaction.
As discussed in Sec. 2.2, this freedom allows us to reduce the risk
of adversarial takeover when a high-interaction implementation
is not required. For example, a hybrid-interaction architecture is
ideal for ICS networks. This is because ICS networks are made of
multiple heterogeneous devices and protocols. Developing high-
interaction honeypots for all ICS devices in an ICS honeynet might
be impossible.

3.4 Personality Engine

To fool an attacker and overcome Nmap’s OS detection discussed
in Section 5, we must first create a suitable network profile for any
device we intend to simulate. There are two primary aspects to these
device profiles: the open ports with their corresponding protocols,
e.g., HTTP’s TCP port 80, and the overall network behavior of the
device, e.g., TCP options. We introduce a fingerprint proxy (Figure
1b) to present these aspects of the simulated devices to the attacker.

This proxy mimics the network stack behavior of a specified
device as long as its fingerprint is in the database and acts as a
barrier between the attacker and the simulated devices. We also
configure the proxy to redirect any incoming connections to specific
industrial control ports toward the appropriate emulated device,
providing a reasonable interaction with the simulated physical
process.

To generate the fingerprints, we use Nmap, which offers a scan
option that enables a fingerprinting process for any given host. A
host scan with NMap reveals which ports a particular device opens
for any communication with the SCADA servers, most of which
are well-known and standardized (e.g., Modbus’ TCP port 502 or
IEC104’s TCP port 2404).

The second aspect, however, has a caveat regarding how Nmap
performs its detection. Nmap uses several techniques to measure
specific TCP/IP parameters and behaviors to determine the overall
network fingerprint of a given device. NMap then compares these
results with its internal database to estimate the operating system
running in the targeted device.

We performed several Nmap scans on the same device and no-
ticed that some parameters within the fingerprint vary between
scans, specifically what Nmap calls the “SP” and the “ISR” values [5].
Fingerprint 1 depicts an example with these single values.

After several scans, we noticed that these values, while not fixed,
were always within a specific range for a given device. To methodi-
cally acquire the proper fingerprints, we used python-nmap [2] to
write a script to systematically scan a given target and determine
the range for these varying values. After a reasonable number of
scans (in our case, we noticed that after 20 scans, the results were



ICSNet: A Hybrid-Interaction Honeynet for Industrial Control Systems

Fingerprint (1) Sample fingerprint with single values.

SEQ(SP=9A%GCD=1%ISR=9F%TI=1%CI=I%TS=1)

OPS (01=M5B4NWONNT11%02=M5B4NWONNT11%03=M5B4NWONNT11%
04=M5B4NWONNT11%05=M5B4NWONNT11%06=M5B4NNT11)
WIN(W1=2000%W2=2000%W3=2000%W4=2000%W5=2000%W6=2000)
ECN(R=Y%DF=Y%T=40%W=2000%0=M5B4NWO%CC=N%Q=)
T1(R=Y%DF=Y%T=40%S=0%A=S+%F=AS%RD=0%Q=)

T2(R=N)

T3(R=N)

T4 (R=Y%4DF=N%T=40%W=2000%S=A%A=Z%F=R%0=%RD=0%Q=)
T5(R=Y%4DF=N%T=40%W=0%S=2%A=S+%F=AR%0=%RD=0%Q=)

T6 (R=Y%DF=N%T=40%W=0%S=A%A=Z%F =R%0=%RD=0%Q=)
T7(R=Y%DF=N%T=40%W=0%S=2%A=S%F=AR%0=%RD=0%Q=)

U1 (R=Y%DF=N%T=40%IPL=38%UN=0%RIPL=G%RID=G%RIPCK=Z%RU
CK=0%RUD=G)

IE (R=N)

Fingerprint (2) Sample fingerprint with relevant ranges.

SEQ(SP=98-9C%GCD=1%ISR=9F-A1%TI=I1%CI=I1%TS=1)

OPS (01=M5B4NWONNT11%02=M5B4NWONNT11%03=M5B4NWONNT11%
04=M5B4NWONNT11%05=M5B4NWONNT11%06=M5B4NNT11)
WIN(W1=2000%W2=2000%W3=2000%W4=2000%W5=2000%W6=2000)
ECN(R=Y%DF=Y%T=40%W=2000%0=M5B4NWO%CC=N%Q=)
T1(R=Y%DF=Y%T=40%S=0%A=S+%F=AS%RD=0%Q=)

T2(R=N)

T3(R=N)

T4 (R=Y%DF=N%T=40%W=2000%S=A%A=Z%F=R%0=%RD=0%Q=)
T5(R=Y%4DF=N%T=40%W=0%S=2%A=S+%F=AR%0=%RD=0%Q=)

T6 (R=Y%DF=N%T=40%W=0%S=A%A=Z%F =R%0=%RD=0%Q=)
T7(R=Y%DF=N%T=40%W=0%S=2%A=S%F=AR%0=%RD=0%Q=)

U1 (R=Y%DF=N%T=40%IPL=38%UN=0%RIPL=G%RID=G%RIPCK=Z%RU
CK=0%RUD=G)

IE (R=N)

always the same), we determined the appropriate fingerprint for
each device we needed to simulate. By using ranges as the val-
ues for these parameters (Fingerprint 2), the fingerprints capture
the overall behavior of the device, thus providing a more reliable
fingerprint for it.

Aside from the industrial control protocols, some devices offer a
web interface to present diagnostics information or an application
with some configuration options. In the case of PLCs, these web
interfaces usually show information about the overall device, such
as the network interface information, system uptime, device model,
version, and firmware revision. In this sense, the web interface is
another way to acquire the same information available via other
industrial control protocols such as Modbus. In other cases, the
manufacturer allows the administrator to upload custom web pages
that may interact with the inputs and outputs of the device, offering
the possibility of creating crude HMI web pages displaying the
current state of the physical system. In these instances, the device
presents the administrator with a web application in which a login
is necessary to make any changes. These functionalities usually
depend on the licensing scheme purchased with the device.

To emulate the internal web server of the devices that provide
this capability, e.g., PLCs, we need to offer a similar functionality
within our simulated device. We first mirror the devices’ websites
into static files using wget [31]. We then implement a simple HTTP
server with configurable headers that serve the static files to any
incoming connection. Figure 3 shows an example front page of one
of the devices offered by this simulated web server.

3.5 Devices Supported in ICSNet

Besides the granularity addressed by a device fingerprint and its
Web Page extraction, we went further and included a variety of
models from three vendors; also, to add more realistic features, we
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explored an industrial networking switch and a security appliance.
The total number of ICS device models is twelve, listed below:

e Siemens Simatic ET 200SP: This model, in Figure 5a, comes
from a line of devices that include distributed CPU, inter-
face modules, and signal models, all of which can support
dynamic industrial settings and include multiple protocols.

e Siemens ET 200s: This device, shown on Figure 5b, is a
solution for a distributed I/O system. The vendor optimized
it for a ProfiNet Bus on a Decentralized Periphery Master-
Slave architecture.

e Siemens Simatic §7-1200: These devices are listed as low
to medium-power applications and are part of a line that
includes central processing, interface modules, and signal
modules. Figure 5¢ shows this model.

e Siemens Simatic S7-1500: This is a high-end line of devices.
Figure 5d shows that it has a built-in display, and the vendor
also highlights safety and security integration and enhanced
processing.

e Siemens S$7-300: This device was available officially until
October 2023, although support will continue for ten more
years. With newer models, its use is reserved for low-power
activities. Figure 5e is a photo of this device.

e Allen-Bradley 1756 Enbt/A: This Allen-Bradley module,
in Figure 5j it is integrated to a chassis. This module supports
EtherNet/IP communication.

e Allen-Bradley Micrologix 1400: This Allen-Bradley con-
troller, pictured in Fig.5g, is a compact device with the option
to add expansion modules.
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e National Instruments cRIO-9024: The CompactRIO con-
troller has two ethernet ports, USB, and serial. It has an 800
MHz CPU, 512 MB RAM, and a 4 GB storage unit. Displayed
on Figure 5k

o National Instruments cRIO-9068: This device is an eight-
slot cRIO controller with a 667 MHz CPU, 512 MB RAM, and
1 GB storage unit. Displayed on Figure 51

o ABB PM554-TP-ETH: This PLC has eight digital inputs, six
digital outputs, Ethernet, and has the option of plugging in-
put/output terminal modules. We show this device in Figure
5f.

e Moxa EDS-405A Switch: Designed for industrial applica-
tions, it allows useful management functions, such as ring
coupling, port mirroring, and virtual local networks. It has
Ethernet I/P and Profinet standard implementations. This
device has a web interface for management. It is displayed
at the right of Figure 5h.

e Tofino Mguard RS4004: A security Router, its characteris-
tics include 10/100 Mbps, VPN, firewall, and four-port man-
aged switch, with DMZ and the possibility to be extensible.
Figure 5h at the left shows this device.

3.6

We must implement multiple network protocols commonly found
in ICS to support the protocol modules defined in Fig. 1a.

We considered two criteria to identify what ICS protocols should
be supported in our honeynet. First, we considered the protocols
for the physical ICS devices procured for this research. Second, we
considered ICS protocols based on their popularity.

To identify the protocols running on a particular device, we used
Nmap’s port scan. For example, to scan Allen -Bradley’s MicroLogix
1400 PLC shown in Fig. 5g, we used the command nmap™ -p 1-10000,
45000-55000 -oN micrologix1400 192.168.103.15. The output indicated
that this particular PLC was running three services. A web server
on TCP port 80, Modbus on TCP port 502, and EtherNet/IP on TCP
port 2222. We scanned all the devices and supported the following
five ICS network protocols: Modbus TCP, HTTP, IEC-104, SNMP,
and ENIP. We left out some ICS protocols, such as DNP3, because
they are not present in any of the ICS devices included in this work,
and our goal is to match devices with the associated protocols they
support.

Different ICS devices make use of a combination of the above
protocols. For example, a PLC might support Modbus TCP’s commu-
nication with other PLCs. It might support HTML to expose a web
server that shows diagnostics. It might support SNMP in exposing
an SNMP agent that shares information such as temperature. On
the other hand, ICS devices, such as industrial routers, only support
HTTP to expose a web configuration interface. Supporting these
protocols improves ICSNet’s fidelity when an attacker interacts
with it. To simulate IEC-104, we use the work by Salazar et al. [34].
We used their work because it is open-source and publicly available,
which allowed us to integrate it into ICSNet. To simulate Modbus
TCP, we implemented our simulation using Scapy [32]. Although
some Modbus implementations exist such as pymodbus [16], we
wrote our custom implementation because it was easier to integrate
into our honeynet. To simulate ENIP, we leveraged CPPPO [17],

Support of Representative ICS protocols
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Figure 5: (5a): Siemens ET 200. (5b): Siemens ET 200s. (5c):
Siemens S7-1200. (5g): Allen-Bradley Micrologix 1100. (5d):
Siemens S7-1500. (5¢): Siemens S$7-300. (5f): ABB PM554-
TP-ETH. (5h): Moxa EDS-405A Switch (left), Tofino Mguard
RS4004 (right). (5i): Allen-Bradley MicroLogix 1400. (5j):
Allen-Bradley ENBT. (5k): National Instruments cRIO-9024.
(51): National Instruments cRIO-9068.

which is publicly available and open-source. We use snmpsim [12],
also publicly available and open-source, to simulate SNMP.
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3.7 High Fidelity Physical Process Simulations

For the physical process simulation, we support two alternative
mechanisms. The first is to include a virtual device for this purpose
and configure the virtual network topology so that this node is
isolated from any possible interaction from the attacker. The second
one relies upon an external simulator and isolates a secondary
network interface in the host in place of the simulation node, a
network interface with access to the external simulator.

Since we already added a fingerprint proxy, we can either add
a physical simulation node to the network or link a secondary
network interface to the internal switch, to which the attacker has
no direct access.

As an external simulator we considered PLC trainers. These
systems provide pre-built scenarios that simulate the operation
of a PLC alongside a particular control logic program. This way,
field engineers can learn how to use control systems utilized in
the industry with just a PC, the PLC control logic, and an optional
input/output interface [3].

For instance, Factory I/O is a Next Generation PLC trainer and
provides industrial scenarios and customization capabilities [6].
EasyPLC is another tool that allows PLC interaction on a 3D cus-
tom environment [3]. Both 3D PLC trainers rely upon additional
software to establish the ladder logic to be implemented; those tools
can be open access and easily integrated.

We found that Factory I/O provides more extensive documenta-
tion than EasyPLC. We also could use Factory IO before committing
to a license purchase with full features during a one-month trial. For
those reasons, we decided to go further and use it as our physical
environment simulation software. Available industrial scenarios
relevant to this research include a water tank with sensors and
actuators to control liquid levels, conveyors with box detection
sensors, and an automated warehouse.

Factory I/O simulates a physical process configured in what
they define as a “scene”, and provides access to virtual sensors and
actuators that affect the simulation. To interface with this simulator,
we used its built-in Modbus support to acquire or set the sensor or
actuator values (Figure 4).

For the control logic of the different scenarios, we implemented
a configurable simulated PLC that interacts with Factory I/O via
Modbus. This simulated device constantly reads the current status of
the simulation and executes the appropriate control logic consistent
with the physics of the simulated system. The local state within the
device resides in a simulated memory mapping consistent with what
would be suitable for standard industrial control protocols: four 64K
addressable memory blocks comprised of pairs of boolean and 16-
bit data values organized in read-only and read-write blocks. That
is 64K read-only boolean values, 64K read-write boolean values,
64K read-only 16-bit data, and 64K read-write 16-bit data.

We designed this memory mapping to use standard industrial
control protocols seamlessly. For instance, if the PLC we want to
simulate uses Modbus, then the memory mapping would align with
Modbus’ Discrete Inputs (boolean read-only), Coils (boolean read-
write), Input Registers (16-bit read-only), and Holding Registers
(16-bit read-write). The exact mapping is also compatible with,
for instance, IEC-104. The difference is that instead of memory
addresses, IEC-104 uses Information Object Addresses (IOA), and
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(a) Factory I/O

(b) FUXA HMI

Figure 6: Water tank physical process and HMI.

the device determines the specific memory mapping it needs to
access by the given IEC-104 message and IOA. For instance, IEC-
104’s “Single/Double command” would access boolean read-write
memory regions, whereas “Single-point information” would access
either the read-only or read-write boolean mappings.

Aside from the physical simulation, we add another component
to the network in the shape of an HMI for each simulated scenario.
To deploy these HMIs, we use FUXA, an open-source HMI and
SCADA dashboard. This HMI communicates with our simulated
devices identically to how it would communicate with actual in-
dustrial control devices. With the HMI's added functionality, each
scenario provides a complete overview of the simulated process.

We first tested our simulation with a simple water tank as a
first physical process. Based on Factory I/O, this process provides
a fixed-volume tank with a water input controlled by a valve and
an output sink controlled by a valve. It also offers a single sensor
providing the liquid’s height within the tank (Figure 6a). The overall
idea of the control process is to maintain a constant flow of water
while keeping a specific height given by a set point.

Finally, we implemented a simple HMI using FUXA (Figure 6b).
This HMI presents a web interface in which an operator can monitor
the current state of the simulated PLC. It communicates with the
simulated PLC using Modbus and allows the operator to change
the process’ set point to any desired value.

As a second scenario, we tested an automated warehouse process
(Figure 7a). Unlike the water tank, a state machine defines the
control logic for this process instead of a physical model. Moreover,
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(b) FUXA HMI

Figure 7: Automated warehouse physical process and HMI.

the particularities of the scenario warrant the use of two control
devices.

The overall functionality of the process is to receive packages in
an input conveyor belt, handle them with a forklift crane, and store
them in a warehouse space organized into a defined grid. As for the
retrieval, an operator can input the numerical value corresponding
to a warehouse space in the grid, and the control system should
automatically operate the crane to retrieve the requested package
and deliver it to an output conveyor belt.

The crane offers a set of sensors that indicate its movement status
and the position of the forklift. Similarly, the conveyor belts offer

sensors that detect packages in both the input and output positions.

Thus, this scenario has two main functions: one is to operate the
conveyor belts, and another is to operate the cranes. Each function
is dependent on the current state of the components.

As long as the warehouse has available spots, the system will
automatically receive new packages and store them inside the first
available spot. If there are no available spaces in the warehouse, the
system will idle until the operator requests a package and empties
a spot. Any pending packages will remain in the input conveyor
belt until a free spot is available.

We also implemented another HMI using FUXA (Figure 7b) that
presents the system’s current state and enables an operator to issue
a retrieve command for any particular package spot stored within
the warehouse.
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Table 2: OS Detection comparison

Device % OS detection Real % OS detection ICSNet
Allen-Bradley enbt/a 100 40
Micrologix 1400 36 100
Mguard RS4004 100 100
MOXA EDS-405A 86 100
NI-Crio-9024 100 100
NI-Crio-9068 100 100
Siemens 200sp 10 80
Siemens S7-1500 100 100
Siemens S7-1200 100 100

4 Evaluation

4.1 Device Fingerprint evaluation

ICSNet’s simulation architecture, depicted in Fig 1a, includes a
TCP/IP stack simulation by leveraging Honeyd [29], discussed in
Sec.3.2. To evaluate our TCP/IP stack simulation, we use Nmap,
discussed in Sec. 5.

Experiment Environment. Our environment includes two
hosts running Ubuntu 20.04. The first host runs ICSNet, and the
second host runs Nmap. Both hosts are connected to the name
network without any router in between.

Experiment Data. The experiment data consists of multiple
Nmap OS detection scan reports for each ICS device listed in Fig. 5.
We use these to determine if a well-known scanning tool, i.e., Nmap,
can identify, with high confidence, ICS devices in cases where their
fingerprint profile is not part of released repositories. We aim to
extract high-quality fingerprints from the real ICS devices procured
for this study. We then included these fingerprints in the Nmap
fingerprint database and ran fifty scans for each ICS device and their
counterpart of the ICSNet approach. Since we added information
to the fingerprint database, we plan to submit that information to
NMAP.

Each scan output consists of a predicted Operative System and a
confidence percentage. Since there are fifty scans per device, we
also used the frequency for each pair (OS, Confidence) for both the
set of real devices and the devices from our ICSNet proposal. We
want to evaluate the accuracy of standard scan tools to identify
ICS devices given fingerprint extraction on our own; we used the
frequency of the correct OS detection per device and normalized it.

Table 2 summarizes our results. OS detection performs well for
the actual scanned devices, achieving high percentages in seven
of the nine ICS equipment evaluated; furthermore, performance
improves for our ICSNet, getting over 80% OS prediction for eight
of the nine devices. Our approach identifies Industrial Devices as
frequently as a person with access to the actual device would find
for all the studied real scanned ICS devices, except Allen-Bradley
enbt/a.

There are two real devices with low detection values: Siemens
200sp and Allen-Bradley Micrologix 1400; similarly, our simulated
Allen-Bradley enbt/a scan identification results are below 50%. In a
perfect world, scan fingerprinting would be a one-to-one function
allowing exact host identification; nonetheless, in practice, there
are multiple fingerprints mapping to a single device, or it could
be a single fingerprint that maps to numerous OS. Our central
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Figure 8: Nikto web scan.

hypothesis for the low identification of Siemens 200sp, Micrologix
1400, and virtual Allen-Bradley enbt/a is that the values that we
found in our extracted fingerprints are very close to the ones of
other OS; we are in the error scenario where one fingerprint maps
multiple devices, in practice Nmap bets high for the different devices
given the clashing fingerprints; in fact, embedded systems are prone
to have this type of error since third party vendors usually sell their
system architecture and firmware to various companies.

4.2 'Web Evaluation

Emulating a web page for any device is not limited to serving
duplicate files using the same protocol. Websites have additional
inherent information that complements the characterization of a
particular device or application, such as the actual web server and
any configured headers. Our simulation must provide matching
files and match the appropriate headers to fully mimic the original
device.

To test this, we veered off from using Nmap. We instead used
Nikto [38], which we discussed in Sec.5. We chose this tool not only
for its wide adoption but also due to its versatility and scan speed.
Nikto can perform generic and specific server software checks to
identify web technologies used and reveal any known vulnerabili-
ties in a web application.

We ran Nikto against the original device (Figure 8a) and our
simulated web server (Figure 8b) and compared the results. While
the exact number of requests varies, which is to be expected as
ICSNet cannot behave precisely as all the different web servers,
the actual header identification and web server fingerprinting that
Nikto executes concludes that our simulated device is running the
“same” web server and discloses the same known vulnerabilities as
the original devices.

The known vulnerabilities that the devices presented relate to
misconfigured HTTP headers in the responses provided by the
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Table 3: Nikto scan results

Device Requests Server  Vulnerable
real  simulated match headers
Allen-Bradley enbt/a 1451 1288 yes 2/2
Micrologix 1400 1435 1376 yes 2/2
Siemens S7-1500 1383 1245 yes 3/3
MOXA switch 1426 1335 yes 1/1
mGuard RS4004 1512 1368 yes 2/2

Table 4: ICS Protocol Evaluation Results

ICS Protocol  Implementation Evaluation tool  Result
Modbus ICSNet custom nmap script v
IEC-104 NEFICS nmap script v

ENIP cpppo nmap script v
SNMP snmpsim nmap script v
HTTP Python HTTPServer Nikto v

different devices. The vulnerabilities Nikto identified involve either
missing or improper configurations of the “cross-origin resource
sharing (CORS)” policies within the HTTP headers, which could
allow attacks such as cross-site request forgery or clickjacking.
Aside from this comparison, we also took note of the web server
Nikto designates for each device and matched it to the web server
detected in the simulation. We show these comparisons in Table 3.

As for the difference in the number of requests shown in Table
3, even though we do not notice any evident discrepancies in the
content presented by the device and the simulation, executing a
thorough web scan with a tool such as Nikto can reveal additional
resources or responses leading to further requests for any given
test. Since these behaviors are not easily predictable and can vary
between web server implementations, we expected to have a rea-
sonable amount of discrepancies between the scans of the actual
device and the simulation. Even though there are several discrepan-
cies with the simulations, the overall discrepancies do not exceed
20% of the total number of requests between the two samples.

Furthermore, the overall result provided by Nikto reaches the
same conclusion from the perspective of a potential attacker. As-
suming the attacker does not have a specific profile of the devices
s/he is attacking, which is a reasonable scenario, it is doubtful that
s/he would flag the simulation as a fake service, given the overall
similarities with the actual device.

4.3 ICS protocol evaluation

We use the publicly available Nmap scripts discussed in Sec. 3.6 to
evaluate the supported ICS protocols discussed in Sec. 5. Nmap is
a well-known reconnaissance tool, and if our honeynet is able to
deceive Nmap, then it means that our honeynet meets the High-
Fidelity design objective discussed in Sec. 3.4.

Experimental Environment. Our environment includes two
hosts running Ubuntu 20.04 and Python 3.10 and the required de-
pendencies, for example, mininet and scapy. The first host runs
ICSNet, and the second host runs a reconnaissance tool, in this case,
Nmap. Both hosts are connected to the name network without any
router in between.
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Experimental Methodology. We run ICSNet to simulate one
honeynet containing one device for each ICS protocol to be tested.
We then use Nmap’s scripting engine to test whether or not our ICS
protocol simulation can successfully interact with Nmap. Specifi-
cally, we use Nmap commands such as nmap -p 2404 -v-v-v-v-n
-Pn —script=iec-identify 10.0.0.10.

Experimental Results. Table 4 shows our experiment results.
Our ICS protocol simulations can respond to Nmap’s scripts suc-
cessfully and provide accurate data. Fig. 3 shows the IEC-104 script
output when ICSNet simulates a PLC running IEC-104.

Fingerprint 3: Nmap IEC-104 script output.

PORT
2404/tcp open

| iec-identify:
| ASDU address: 10

|- Information objects: 5

STATE SERVICE REASON
iec-104 syn-ack ttl 128

4.4 Physical process evaluation

Cyber attacks against industrial control systems fundamentally
differ from those against standard corporate information technol-
ogy. Since the primary goal of most of these attacks is to alter a
physical process or state, these attacks usually do not exploit a
coding vulnerability in some software but rather use legitimate
networking protocols to modify the behavior of the target. While
attackers may need to exploit vulnerabilities in the traditional sense
to gain access and privileges to tamper with the industrial control
network, the attack against the physical process seldom uses a par-
ticular vulnerability but instead takes advantage of any acquired
privileges.

As a result of these attacks, the attacker declares a successful
attack when s/he observes changes in the state of the physical
process. In an actual control system, the attacker uses industrial
control protocols to send specific commands to the devices handling
the process and retrieves sensor data to ascertain whether the attack
was successful.

Because ICSNet simulates not only the network interaction of
the devices but also the physical process behind them, any changes
to the read-write values of the industrial control devices will, in
turn, affect the physical simulation and present reasonable changes
consistent with the physical process, visible in the read-only values
of the simulated devices.

We evaluated this physical interaction by executing a plausible
attack against the simulated processes. To test the feasibility of
attacks against different control logic schemes, we devised the
two scenarios proposed in section 3.7; one has a physical model
controller, and the other has a state-based controller. From the
available personalities, we randomly chose the “Allen-Bradley 1756
ENBT/A” as the personality for the required PLC devices with
Modbus as the primary industrial control protocol.

We configured ICSNet with an appropriate network topology
to follow the defined threat model, in which the attacker can com-
municate with the target PLC devices via the fingerprint proxy.
This configuration lets the attacker interact with the simulated PLC
devices as if s/he were in the same virtual switch (Figure 9).

In both scenarios, the attack is quite similar. Since the attacker
can communicate with the simulated devices, s/he has to issue
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an appropriate command to modify the physical synchronization
component, constantly assert the sensor data from the physical
simulation, updating the memory map sensor values. The new
actuator values from the memory map are updated to the simulated
holding register, where the PLC stores the target value.

From the viewpoint of ICSNet’s implementation, the protocol
listener handles the Modbus connection, accepts the command if
the address is within the read-write memory mapping, and modifies
the value as requested. Concurrently, the control logic constantly
runs a control loop that reads the sensor data, runs the control logic,
and adjusts the actuator values as needed. In addition, the physical
synchronization component constantly reads the sensor data from
the physical simulation, updates the memory map sensor values,
asserts the new actuator values from the memory map, and updates
them within the physical simulation.

Figure 9 shows the attack flow. D The attacker sends the Modbus
command to the simulated PLC. %) The Protocol Listener receives
the command, updating the memory map and forcing the control
logic to make the necessary changes. 3 The Physical Synchroniza-
tion component reads the new actuator values due to the memory
map tampering and, subsequently, @ sends them to the physical
simulation, which is ultimately affected by the attack.

To corroborate whether the attack was successful, the attacker
must acquire some relevant sensor data from a physical source that
should be affected by the intended attack. Since sensor data in a
PLC is read-only, the attacker must send a command to retrieve
this information from either a discrete input, in the case of boolean
sensors, or an input register. Since the corresponding sensor values
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in our chosen scenarios are not discrete, the attacker sends the Mod-
bus command Read input register targeting the sensor address that
stores the relevant value. In this case, the Protocol Listener accepts
the command and returns the current values from the memory map
to the attacker.

Our first attack aims to disrupt the process that requires a spe-
cific water level in the tank by attempting to empty the tank. The
attacker must send a zero value to the holding register that stores
the set point to accomplish this goal. After executing the attack as
described above, we observed the behavior of the water level in the
tank, shown in Figure 10. Before the attack, the control logic was
kept stable, as the process required. When the malicious command
modifies the Set Point in the memory map, the level decreases to a
value close to zero, disrupting the process.

We now focus on attacking the warehouse model to test the
versatility of our interaction with different physical processes. In
this scenario, we are assuming that the attacker wants to retrieve a
package from the warehouse’s output without being able to interact
with the warehouse’s HMI. Suppose the attacker knows the ID of
the warehouse spot in which the desired package resides. In that
case, the attacker can send the Modbus command to the PLC, which
stores the retrieval position in a specific holding register. As a proof
of concept, we sent the command with an occupied position, which
caused the warehouse to retrieve the package and place it in the
output conveyor belt.

In summary, our high-fidelity physical process integration with
Factory I/O allows an attacker to see the changes to the physi-
cal system under control. Our modular design can enable future
researchers to extend our simulations to several other physical
processes. Factory I/O allows designers to create essentially digital
twins based on the sensors and actuators it supports.

5 Conclusions

As far as we know, our honeynet has the most extensive set of
simulated devices, protocols, and physical processes; however, they
still do not capture all possible configurations of ICS systems. While
extending our honeynet to model more devices is likely, we believe
these extensions are straightforward, given our modular design.
This also applies to any additional physical process simulations.

One open limitation is integrating with OpenPLC or CODESYS.
While ICSNet supports the most significant number of ICS devices
in the literature, it does not currently support virtualized PLCs such
as OpenPLC or CODESYS. These PLC frameworks have gained pop-
ularity in academic research [23, 30, 46] and industry. Integrating
them into ICSNet would add even more ICS device support and
increase our tool’s fidelity. Thanks to ICSNet’s modular design, it
would be possible to extend ICSNet to include one of the above
platforms.

Modern ICS Protocol Support. Although ICSNet already sup-
ports representative ICS protocols found in my many ICS, we
would explore the simulation of integration of additional protocols
in future work. Specifically, protocols such as OPC-UA [40] and
MQTT [26]. These protocols are becoming more common thanks
to their integration into new “IoT-ready” ICS devices [9, 24].
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Appendix
Reconnaissance Tools

Reconnaissance is a technique that involves actively or passively
gathering information that can be used to support targeting. Such
information may include details of the victim’s organization and
infrastructure [39]. In the context of ICS, the following tools help
implement this technique.

Nmap. Nmap is a free and open-source utility for network ex-
ploration and security auditing. Nmap uses raw IP packets to de-
termine what hosts are reachable over the network, what services
these hosts offer, e.g., telnet, and what operating systems they are
running. Nmap includes an extensive database to identify systems
based on their response to TCP/IP probes. Nmap allows users to
write scripts that extend Nmap’s features [21]. A diverse catalog
of scripts, including ICS-related scripts, is suited for different pur-
poses. For example, the modbus-discover script enumerates Modbus
devices and collects their device information [22].

Nikto. Nikto [38] is a command-line vulnerability scanner that
scans web servers for dangerous files. It is written in Perl using
LibWhisker to perform fast security or informational checks.


https://www.shodan.io/dashboard
https://mqtt.org/
http://mininet.org/
https://manpages.ubuntu.com/manpages/lunar/en/man1/wget.1.html
https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1109/SP54263.2024.00162
https://doi.org/10.1109/SP54263.2024.00162
https://doi.org/10.1145/3411498.3419969
https://doi.org/10.1145/3564625.3564645
https://doi.org/10.6028/NIST.SP.800-82r3
https://github.com/sullo/nikto
https://attack.mitre.org/tactics/TA0043/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://github.com/mushorg/conpot
https://doi.org/10.1109/INM.2011.5990710
https://doi.org/10.1109/ICC42927.2021.9500567
https://doi.org/10.1109/ICC42927.2021.9500567

	Abstract
	1 Introduction
	2 Background
	2.1 Honeypots and Honeynets
	2.2 Evolution of ICS Honeypots

	3 ICSNet's Design
	3.1 Threat Model
	3.2 Modular Architecture
	3.3 Hybrid-Interaction Architecture
	3.4 Personality Engine
	3.5 Devices Supported in ICSNet
	3.6 Support of Representative ICS protocols
	3.7 High Fidelity Physical Process Simulations

	4 Evaluation
	4.1 Device Fingerprint evaluation
	4.2 Web Evaluation
	4.3 ICS protocol evaluation
	4.4 Physical process evaluation

	5 Conclusions
	Acknowledgments
	References



