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Abstract— With the proliferation of short form high quality
video content, it has become increasing important to find light
weight and efficient edge caching algorithms that can quickly
adapt to changing trends. In this context we study an online
caching problem where a set of users are connected to a set
of caches. The users request files from these caches over a
time horizon. These requests arrive sequentially, the sequence
of requests are divided into tasks that have a certain degree of
similarity. This similarity is leveraged so that we may learn the
best policy for a new task using a very small number of sequential
requests. We characterize the task averaged regret incurred in
this setting, showing an improvement of D/D∗ where D is the
diameter of the set of cache configurations and D∗ is a measure of
task similarity. We provide the same theoretical guarantees under
both a distributed and smoothed setting. Further, we validate our
algorithm on trace based data as well as on synthetic data sets.
In the trace based data sets we do not assume any inherent task
structure or estimate of D∗. These simulations show not only fast
adaptation to new incoming tasks but also improved performance
in highly non-stationary request settings.

Index Terms— Communication systems, communication net-
works, content distribution, caching, online convex optimization
(OCO), online learning, transfer learning.

I. INTRODUCTION

AS PHONES have grown smarter, the data consumed by
the average phone user has grown exponentially. While

the set of all files (the library) may be very large, the request
for files at a particular time are typically drawn from a
much smaller set. For example, the demand for YouTube
videos often show strong correlations among users in a certain
proximity to each other [1]. This setting is most appropriately
modeled using edge caching where we have large central
repositories but much smaller file servers at different locations.
A user arrives to these locations to request files sequentially.
These file requests are highly dynamic and hence, require
adaptive policies to serve these requests. Policies such as Least
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frequently used (LFU) and Least recently used (LRU) often
fail to keep up with demand and as a result encounter huge
miss rates.

The need for adaptability motivates the creation of policies
that can quickly change as the underlying request distribu-
tion changes. One perspective that has recently gained much
attention is the online convex optimization (OCO) approach
to learning what to cache [2], [3], [4]. Here, system is framed
as a bipartite caching problem where the users and caches are
sets of nodes in a graph. The users do not interact with each
other and the caches (representing the smaller file servers) are
only connected to the main library of files. An incoming user
request is served by all file servers that she can locally connect
with to the best of their ability, any request that isn’t served by
the local servers is served by the central library garnering no
reward in the process. In the coded cache setting, the utility is
then proportional to the (weighted) fraction of the file received
by the user from the local file servers.

While the OCO approach is consistent with an arbitrary
popularity model, it often takes a large set of requests in
order to adapt to changes. Periodic changes over batches of
requests are fairly common in streaming services such as
YouTube, which sees daily popularity upswings that can drop
down soon afterwards as other items become popular [1]. The
gradient ascent approach typically used in OCO would result
in a “sluggish” response to such shifts, causing many cache
misses as the algorithms learns the appropriate items to cache
starting from its current state. Essentially, naïve OCO ignores
the relationships between batches of requests over time, and
so does not initialize the cache periodically to a good initial
configuration that positions it to quickly learn the optimal
cache configuration to support requests in the current batch.

The fundamental question that drives our work is whether it
is possible to choose an initialization such that for a new batch
of requests, a cache may learn the best caching configuration
in a short amount of time (using few samples)? Effectively,
the goal would be to extract information from the batches
of requests that have arrived previously to learn a good
initialization from which to learn the best cache configuration
for a new batch in a “few-shot learning” manner over only a
small set of requests.

The general approach on “learning to learn” falls under the
framework of “meta” learning [5], [6], under which a good
initialization is learned, from which learning for the current
problem may be achieved efficiently. In the caching context,
the set of requests is divided up into batches referred to as
“tasks,” i.e., each task consists of a sequence of requests. The
objective of “meta” learning is to learn the best initialization
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over multiple tasks, so that our learner may use a very small
set of samples to quickly arrive at the optimal policy for a new
task. As is typical in the online convex optimization setting,
we will primarily be interested in the performance of our
algorithm with respect to the best policy in hindsight. How-
ever, when this setting is specialized to the “meta” problem,
we must simultaneously learn both the best policy and the best
initialization in hindsight.

A. Main Results
Our main contributions are as follows: We frame the online

learning problem of caching as a meta learning problem where
a fixed sequence of requests of size T belong to a task and
we consider M tasks arriving in a sequential fashion. This
formulation allows us to re-frame the problem of learning the
best cache configuration as a problem of learning the best
configuration using a relatively small number of samples. The
task based framework requires us to minimize a notion of
the so-called “task averaged regret” instead of the traditional
notion of regret, which compares the cost suffered at each
time with that of the optimal cache configuration. We provide
a complete characterization of the task averaged regret in the
bipartite setting. Our results recover an order O(

√
T ) regret

with an additional O
(

log M
M

)
term in the case when our

tasks are completely dissimilar. On the other hand, if D is
the diameter of the set of cache configurations and D∗ is a
measure of task similarity, then we show an improvement of
order D∗/D in the case when the previous tasks help us learn
the new task.

We use the meta framework to prove the efficacy of our
algorithm under two variants of the bipartite caching problem.
Our first setting is the distributed setting where each of the
edge caches can be updated individually, and the second is
the “smoothed” setting where we constrain the permissible
changes in our cache configuration between updates, so as to
not allow large changes in the caches at any one time. In both
of these cases, we are able to show the same regret scaling
improvements under the meta learning framework.

We test our algorithm using large trace based simulations,
as well as over synthetic data sets. Crucially, we demonstrate
that even simply by segmenting the data set into batches of
equal size i.e, when the algorithm is neither aware of some
inherent task structure or possible similarities between the
incoming requests, we are able to outperform both traditional
algorithms like LRU and LFU, as well as the naive online
gradient ascent algorithms considered in earlier work. While
our analysis uses a known value of task similarity in our
computation, our simulation results makes no such assump-
tion, instead we estimate a value for task similarity while
sequentially learning the optimal configuration.

B. Related Work
Caching as a problem was first studied in the context of

paging. The question was: which files must one store in fast
memory locations in a computer under a variety of assump-
tions on the request distribution. One of the first algorithms
in this domain was Belady’s algorithm [7]. The algorithm
assumes that all future requests are known (this is termed the

“offline setting”) and chooses to evict the item in the cache
which is furthest in the future. Belady’s algorithm is optimal
in the offline finite time horizon setting. Several modifications
to Belady’s algorithm have been made for the case when the
future of incoming requests is unknown. Two such algorithms
of note which have been widely used are LFU and LRU.
LFU is a policy which evicts the least frequently used cache
item, where the frequency is calculated over all past requests.
Under the assumption of stationary request distributions, the
LFU policy is known to be the optimal stationary policy [8].
Similarly, the LRU policy evicts the item in the cache which
was least recently used.

Over the years, various further variants of both LFU and
LRU policies have been proposed. For instance, variants of
LFU and LRU including CLIMB, TTL approximations and
RANDOM [9], [10], [11], [12], have been studied. There has
also been work on studying caching performance under the
model of requests being generated by a stationary process that
can change from time to time [8], [13]. While many of these
policies are more adaptable, since the choice of parameters
are fixed apriori, they suffer from poor adversarial guarantees
under non-stationary request distributions.

With the advent of content distribution networks for video
streaming and a host of other data intensive services, partic-
ularly in the wireless network setting the problem of caching
has gained renewed significance. The problem under these
settings is typically modeled as a bipartite caching problem
where the nodes from one of the disconnected sets belong
to the set of caches and the other set of nodes is the set
of users [14], [15]. Since the demands of the users can be
arbitrary, we frame this problem in an adversarial framework.
This setting was considered with coded caching as an online
convex learning problem to minimize the regret over a time
horizon [2], [16]. Under such a setting, it is known that the
online gradient ascent to achieve a regret of O(

√
T ) regret.

Several variants of the algorithm, including using mirror
descent [17], regret guarantees under prediction [3], [4] and a
stronger characterization of regret in the bipartite setting [18]
have emerged since.

There has also been work on caching in the “dynamic”
regret setting, such as [19]. It is well known that under such
a setting it is impossible to achieve an adversarial regret
better than O(T ). Hence, the paper employs a constraint on
how much the tasks can vary over time in order to compute
a sub-linear regret algorithm. This constraint means that,
on average, the variation of the tasks tends to 0. We do not
wish to limit our requests in this manner and hence do not
employ this approach.

In this paper, we return to the bipartite caching network
but we frame the problem in a meta setting [5], [6]. In the
meta framework, we have a sequential arrival of requests from
users that are divided into tasks (batches of requests). If one
considers the requests in a task, one may compute the best
static configuration in hindsight. This leads us to a problem
in two parts, with the first being to minimize the regret by
achieving the optimal cache configuration within a given task.
In the second part (the “meta” portion) we are required to
learn the right initialization of a cache at the beginning of any
task that allows us to quickly arrive at the best configuration.
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We show that, if our tasks are similar in terms of the optimal
configuration for each of them being near each other, then we
can use the previous tasks to learn an initialization that allows
us to learn the new task much faster than a naïve approach that
views the set of all requests as a single giant task. To this end,
we show an improvement of regret by a factor of D∗/D, where
D is the maximum distance of possible cache configurations
while D∗ is a task similarity distance that will be formalized
in future sections. These improvements are similar to those
seen in other meta learning settings [5], [6].

A different notion of “meta” algorithms comes from [3]
and [4] where they assume the system has access to a
prediction oracle with some known accuracy. The main result
of these works is the improvement in regret going so far as to
beat the best in hindsight policy under these prediction models.
The “meta” aspect of the algorithm is used when there are
many prediction oracles and one must assign weights to them
based on their quality of predictions. In contrast to their work,
we do not assume access to such an oracle.

II. PROBLEM FORMULATION

Network: We consider a caching network where a set of
users, denoted as I := {1, 2, . . . I}, is connected to a set
of caches, denoted as J := {1, 2, . . . J}. Each user can be
thought of as a mobile edge device and each cache can be
thought of as a small-cell base station serving the users nearby.
Each user i ∈ I is connected to a set of neighbouring caches
Ji ⊂ J . We focus on a bipartite caching network, where I
and J form the (left and right) set of vertices of the graph
and (i, j) is an edge in this graph if and only if j ∈ Ji. The
library of files are denoted by N := {1, 2 . . . N}. In order to
efficiently serve the users with data intensive requests (such as
streaming videos), the base stations maintain a cache with files
that are most likely to be requested by the nearby devices. For
the sake of simplicity, we assume that each file occupies one
unit of cache and each cache has a capacity C which is much
smaller than N . If a file requested by a user is not available
with the local caches connected to that user, then that file has
to be fetched from a central server. This server can be thought
to be located at a macro-cell base station. We denoted this
central server with index 0.

File requests: We assume that the file requests arrive sequen-
tially, one at a time, at discrete intervals of time. We also
assume that requests are grouped into M batches, where
each batch consists of T requests. In the following, we call
each batch a “task”, a terminology that is consistent with the
meta-learning literature. When the context is clear, we will
abbreviate time slot t of task m as (t, m). As mentioned in
the introduction, the idea of dividing requests into batches
aims at exploiting possible correlations across batches, and
is fundamental to the “meta” formulation. We will make this
explicit later in this section. At each time slot t of task m,
exactly one user, it,m, generates a request for exactly one file.
We denote this file request as ri

t,m = e(n) for file n. Here,
e(n) is a vector of dimension N whose nth entry is 1 and
the other entries are 0. Note that, for any ĩ ̸= it,m, rĩ

t,m = 0.
In what follows, we will assume that the requests are generated
adversarially much like in [2]. This implies that our results
hold even in the worst case.

Fig. 1. A simple illustration of the bipartite caching problem.

Caching: We assume that the caching is performed using
maximum distance separable codes, i.e., the files are broken
up into chunks. The coding scheme allows the user to decode a
file as long as it gets a certain number of chunks (say F ), with
high probability. This means that a cache may store a fraction
of the chunks allowing the user to partially recover the file,
and the user can then query only the remaining chunks instead
of the whole file. Therefore, this form of coding scheme, for
sufficiently large F , allows us to assume that a cache stores a
fraction of a file instead of a binary value. To this end, we will
use yn,j

t,m ∈ [0, 1] to denote the fraction of file n ∈ N stored
in cache j at time t for task m. Due to the cache capacity
constraints, we have

∑
n∈N yn,j

t,m ≤ C. For cache j, we use the
following N dimensional vector to denote the configuration at
time t for task m, yj

t,m := {y1,j
t,m, y2,j

t,m, . . . yN,j
t,m}.

Routing: If user i requests file n at time t for task m,
then we must decide how much of this request is fulfilled
by the neighboring caches Ji. We denote the vector cor-
responding to this routing scheme for cache j ∈ Ji by
zj
t,m = {z1,j

t,m, z2,j
t,m . . . zN,j

t,m}. A feasible routing vector zj
t,m

must satisfy basic restrictions: we cannot route more from
the cache than is available, i.e, zn,j

t,m ≤ yn,j
t,m for all j and n.

Also,
∑

j∈Ji∪{0} zn,j
t,m = 1, implying that the files that are

not available in the neighbouring caches are procured from
the central server denoted as 0. If i is the only user that
makes the request, then for any j /∈ Ji, we set zj

t,m to 0.
Note that our routing vector corresponds to the amount of a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Texas A M University. Downloaded on January 29,2025 at 05:51:17 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

file served by a given cache for a request and is indexed in
terms of the cache and not the user. Finally, we will use zt,m =
{z1

t,m, z2
t,m . . . z|J |

t,m} to denote our routing vector at (t, m). The
set of feasible routing vectors is denoted as Z(yt,m). Note, this
set depends explicitly on the cache configuration at (t, m).

When the network is only tasked with providing a single
file and gains no additional benefit by providing more than the
requisite F chunks is known as the inelastic setting, see [18]
and the references therein for more context. In later sections
in the paper we will encounter the elastic setting where a user
benefits proportional to the number of chunks received, hence,
one may set zn,j

t,m = yn,j
t,m.

Utility: For a given cache configuration yt,m and a feasible
routing vector zt,m, we define the utility of serving user
request(s) at (t, m) as

∑|I|
i=1

∑|J |
j=1

∑|N |
n=1 wi,jri,n

t,mzn,j
t,m, where

wi,j is the weight associated with the edge (i, j). Note, the
devices always have direct access to the file server, however,
the weight associated with any connection to the file server is
always 0, we denote all such edges with a universal w0 = 0
(see fig 1 for example). The edge weights depend on a variety
of factors such as the latency, connection consistency, and the
number of other users connected to a given cache. At each
(t, m), for a given yt,m, the instantaneous utility ft,m(yt,m)
is then defined by selecting the best routing,

ft,m(yt,m) ≜ max
zt,m∈Z(yt,m)

|I|∑
i=1

|J |∑
j=1

|N |∑
n=1

ri,n
t,mwi,jzn,j

t,m. (1)

Figure (1) illustrates the system model described so far in
this section. The first figure is a sketch of a four user three
base station network with a file hosting server at the back
end. The second figure is a bipartite representation of the
sketch in the first figure. It should be noted that our results
carry over unchanged if the weights are time varying as well
as item dependent. The former is pertinent if the user is
moving and hence, changing the underlying connection graph
(the graph still remains bipartite). The latter corresponds to
weights associated with different cache requests from different
applications. Henceforth, we will not specify such weights,
since the notation becomes extremely cumbersome otherwise.

Cache placement: First, at (t, m), an adversary picks
our request vector rt,m. Next, given our cache configuration
yt,m, the request generates a utility to our network through
equation (1). Finally, based on the utility received, the cache
may now update its configuration yt+1,m := {yj

t+1,m}j∈J .
We do not restrict the update vector to the missing file, nor
do we restrict the size of the update i.e, ∥yt+1,m − yt,m∥ (we
will address this in a later section). In order to compute an
update, it may use the history of requests up to and including
time slot (t, m).

Role of meta learning: We will now take a moment
to distinguish between the conventional online convex
optimization approach and the “meta” approach. Let us
consider the problem at the end of m− 1 tasks, the following
information is available to us; we have the history of all
file configurations chosen by our caches, J , as well as
the history of all requests made to this point, Hm−1 :=
{y1,1, y2,1 . . . yT,1, y1,2, y2,2 . . . yT,2 . . . yT,m−1} ∪ {r1,1,
r2,1 . . . rT,1, r1,2, r2,2 . . . rT,2 . . . yT,m−1}. Further, using this

history, for each task m̂ ∈ {1, 2, . . . m − 1} we know the
corresponding best static configuration in hindsight y∗m̂.
Therefore, we wish to use {Hm−1, {y∗

m̂}
m−1
m̂=1} to find an

initialization y1,m so that we may learn, y∗m, using a relatively
small number of samples. To this end, the previous tasks will
provide no benefit to us if they provide no new information
to us over the previous m − 1 rounds. We therefore define a
notion of task similarity as follows:

Definition 1: Let there exists a convex subset Y∗ ⊂ Y from
which the best configuration in hindsight, y∗m, are drawn. Ȳ∗

is the closure of this set. Then,

D∗ = sup
x∗,y∗∈Ȳ∗

∥x∗ − y∗∥2 (2)

is the maximum distance between any two points in Ȳ∗.
In the worst case, if D := supx,y∈Y ∥x−y∥2 is the diameter

of the set of configurations, then, we will have D∗ = D.
However, in the case when D∗ < D, we will demonstrate a
benefit proportional to the reduction in distance due to task
similarity with an additional vanishing term in M . Note, here,
∥ · ∥2 refers to the L2 norm i.e. for any d dimensional vector
x, the L2 norm of x given by ∥x∥2 :=

√
x2

1 + x2
2 + . . . x2

d.
We may now define the regret in accordance with [5], which

we call task averaged regret:
Definition 2: Task averaged regret, denoted by R̄, is the

average regret incurred by a file configuration over a set of
tasks M when each task has T sequential samples i.e.,

R̄(T ×M) :=
1
M

( M∑
m=1

T∑
t=1

[
ft,m(y∗m)− ft,m(yt,m)

])
(3)

where y∗m is the best configuration for a task in hindsight
i.e, the single configuration that incurs the most utility in
hindsight.

Note, this notion of regret dominates the best configuration
in hindsight where we treat the T × M total slots as one
giant task with y∗ being the best task in hindsight over the
entire time horizon. Further, this provides a major point of
distinction between the previous online caching problems such
as [2], [4], and [17] and our own caching problem. Instead
of having one adversary over a large time horizon, one may
view this problem as a series of distinct adversaries (under
suitable constraints) with relatively small time horizons for
us to specialize our cache configuration. Finally, we note that
the meta regret differs from the dynamic regret. The dynamic
regret compares yt,m with y∗

t,m an omniscient adversary who
knew of all incoming functions before hand and individually
picks the best policy for each function. It is not hard to see
that such an adversary would generate O(T ) regret without
any restrictions. Here, we restrict ourselves to an adversary
who can only pick one configuration for a task of T requests
instead.

Concretely, we may summarize our overall objective into
two parts for an incoming task. First, we would like to learn
the best initial configuration that allows us to learn the best
configuration for this task using the fewest requests. Second,
we would like to choose a sequence of configurations that
minimizes the regret incurred from this task. We will look
to minimize the task averaged regret R̄(T ×M) in order to
achieve the objectives described above. The remainder of this
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section will be spent on a few definitions that will feature in
our main results.

To this end, for task m, we would like to choose our
initialization Φm such that, ∥y∗m−Φm∥22 is as small as possible
in order to minimize the regret.

The average distance over M sequential tasks is then given
by:

1
M

( M∑
m=1

∥y∗
m − Φm∥22

)
The meta problem of finding the best initialization in

hindsight that minimizes this error over the tasks. Let Φ∗

denote this value i.e,

Φ∗ := arg min
Φ∈Y

1
M

( M∑
m=1

∥y∗
m − Φ∥22

)
(4)

Formulating this problem as an online convex learning
problem of computing the best initialization in hindsight,
we may now define our meta regret for M tasks as follows:

Rmeta(M) :=
1
M

M∑
t=1

[
∥Φm − y∗

m∥22 − ∥y∗
m − Φ∗∥22

]
(5)

With the problem setup firmly in mind, the following section
will describe the main results for our paper.

III. META LEARNING FOR A BIPARTITE
CACHING NETWORK

This section highlights our main results on meta learning for
caching. We will begin with a reformulation of the bipartite
caching problem and a brief summary of the results from [2]
and [16]. We will then quickly move on to our main results
and their consequences.

At time (t, m) a user i = it,m generates a request vector, for
a file n can be written as, ri

t,m := e(n) ∈ {0, 1}N where e(n)
is the vector that is 1 at location n and 0 in all other locations.
Further, the full request vector rt,m = {ri

t,m}Ii=1 is the I×N
dimensional vector created by stacking the vectors together.
Note, since we have exactly one user making a request for
one file at a time, rî

t,m = 0 the zero vector for any î ̸= i
Next, we can similarly describe the caching vector at time t

for task m; yj
t,m = [0, 1]N is the vector containing the fraction

of files from the library such that it satisfies the capacity
constraints ∥yj

t,m∥1 ≤ C. Then, yt,m := {yj
t,m}Jj=1 is the

J × N dimensional vector associated with stacking the set
of J cache configurations at time slot t. Recall, we assign
weights wi,j to the connection between users i and cache j.
For a fixed i and j,

let Wi,j = wi,j⊮N×N where ⊮N×N is the N dimensional
identity matrix. Further, let W be the (I×N)×(J×N) block
matrix whose elements are comprised of Wij i.e,

W :=


W11 W12 . . . W1J

W21 W22 . . . W2J

...
... . . .

...
WI1 WI2 . . . WIJ


Using this new notation, for an incoming request from user

i, with feasible routing vector zt,m := z(yt,m, {wi,j}) ∈

[0, 1]J×N being the quantity of file n taken from cache j to
service a request ri

t,m we get,

ft,m(yt,m) =
(
rt,m

)T Wzt,m =: ⟨rt,m, z(yt,m, {wi,j})⟩W
(6)

It is not hard to show, given a request ri
t,m = e(n)

the optimal routing vector zt,m({yj
t,m}j∈Ji , {wi,j}i,j) can be

found as follows: for each j attached to i, order the weights
wi,j in decreasing order, denoted by θ. So we have, wi,θ(1) ≥
wi,θ(2) · · · ≥ wi,θ(|Ji|). Now, the routing vector for the K th

cache in the set of ordered caches, θ(K) is set to

zθ(K),n̂ =

min{yθ(K),n̂
t,m , 1−

K−1∑
k=1

yθ(k),n̂
t,m } for n̂ = n

0 otherwise

(7)

and the 0 vector for all other caches that are not directly
connected to the user i. Intuitively, we try to route the file from
the cache with the most value to fulfill an incoming request.
If the most valuable cache is unable to completely fulfill this
request we move on to the next most valuable cache and try to
fulfill the remaining request and so on until the file request is
completed to the best of the network’s ability. Since this is
the minimum of two linear functions, the routing function
is concave. Hence, a linear combination of these functions
must also be concave. Thus, even though the routing maybe
non-differentiable in y; it is possible to compute the super
gradient. The following lemma [lemma 1, [2]] states this result
concretely.

Lemma 1: The utility at slot t for task m, ft,m(y) for the
set Y , is concave in y. Hence, a super gradient exists for all
y ∈ Y .

We may now directly compute the super gradient gt,m =
∂ft,m(yt,m) in order to bound it. Note, zn,θ(K)(yt,m) = 1 −∑K−1

k=1 yn,θ(k)
t,m > 0 if and only if the K th most valuable is the

last cache to serve a request rt,m. If zn,θ(K)(yt,m, {wi,j}) =
yθ(K),n

t,m , then the K th cache completes as much of the file
as it can serve and zn,θ(K) = 0 otherwise. We will denote
the case where every cache attached to i, i.e, j ∈ Ji tries its
best to serve the request, zn,θ(k)(yt,m, {wi,j}) = yθ(k),n̂

t,m , k ∈
{1, 2 . . . |Ji} by Case I. When the cache configuration is
unable to serve the request, that is, for any K ≤ |Ji|,
zn,θ(K) = 1−

∑K−1
k=1 yn,θ(k)

t,m > 0 by Case II. For Case II, let
Kt,m denote the least valuable cache that serves the request
at time (t, m). Using (6) and (7), the supergradient can be
written as:

g
n,θ(k)
t,m =


wi,θ(k) for Case I
wi,θ(k) − wi,θ(Kt,m) for Case II
0 otherwise

(8)

By (8) the gradient can be bounded for any j ∈ Ji by,

|gn,j
t,m| ≤ wi,j ≤ ∥w∥∞
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Algorithm 1 Meta Updated Online Bipartite Caching
1: Input: sequential requests of size M starting from 1 to

T , {{r1,1, . . . rT,1}, {r1,2, . . . rT,2} . . . {r1,M . . . rT,M}},
Bipartite Network with users I and cache J , similarity
distance D∗

2: Let Φ1 be an arbitrary configuration, η = D∗
√

T∥w∥∞
√

dmax

3: repeat
4: initialize y1,m ← Φm

5: repeat
6: compute z(yt,m) using (7)
7: compute gt,m using rt,m and (8)
8: yt+1,m := ΠY(yt,m + ηgt,m)
9: Increment t by 1

10: until t > T
11: y∗m ← arg miny∈Y

∑T
t=1 ft,m

12: Φm+1 = ΠY(Φm − αm(Φm − y∗
m))

13: Increment m by 1
14: until m > M
15: return

So, computing the L2 norm for gt,m will now give us:√√√√ Ji∑
k=1

|gn,θ(k)
t,m |2 ≤

√
∥w∥2∞|Ji| ≤ ∥w∥∞

√
|Ji|

∥gt,m∥2 ≤ ∥w∥∞
√

dmax

where dmax is the maximum number of caches a user, i is
attached to i.e, dmax = maxi∈I |Ji|.

The bipartite meta caching algorithm is presented in
Algorithm (1). Our algorithm has an inner loop minimizes
the in-task regret (line 7 and 8) using regular gradient ascent
(specifically projected gradient ascent ) while an outer loop
finds the best initialization, Φm for each task (line 11 and 12).
Note, in line 8, ΠY refers to the projection to the convex set
Y . By computing an appropriate initialization we reduce the
distance between the initialization picked by the algorithm and
the best cache configuration for any given task, which in turn
reduces the number of samples taken to find the optimal cache
configuration.

Before describing our first result, we will state a useful
result first proposed by [20].

Lemma 2: [Theorem 3.3, [21]] Given the regret formula-
tion (5), using Algorithm 1 with step size αm = 1

κm , for some
constant κ > 0 achieves,

Rmeta(M) ≤ (D∗)2
M∑

m=1

αm = (D∗)2
M∑

m=1

1
κm

(9)

where due to task similarity we know D∗ is an upper bound
on ∥Φm − y∗m∥.
We leverage the lemma above in the following theorem to
show that the regret for the meta bipartite caching problem
yields an order O(

√
T ) regret, indicating that as T grows

large, the cache configuration converges to the optimal single
configuration in hindsight.

Theorem 1: Suppose D∗ is the task similarity distance
described in Definition 1; then, Algorithm 1 gives a task

averaged regret (recall Definition 2) bounded above as:

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M
+ D∗∥w∥∞

√
Tdmax

where κ is as defined in Lemma 2.
Proof: We begin by writing out the Task averaged regret,

R̄(T ×M) :=
1
M

M∑
m=1

T∑
t=1

(
ft,m(y∗

m)− ft,m(yt,m)
)

.

Now, rewriting the regret for task, m we get

Rm(T ) =
T∑

t=1

(
ft,m(y∗

m)− ft,m(yt,m)
)

.

From the concavity of ft,m, we have,

Rm(T ) ≤
T∑

t=1

⟨gt,m, (y∗
m − yt,m)⟩.

From the contractive property of projection operators we have,

∥yt+1,m − y∗
m∥22 = ∥ΠY(yt,m + ηgt,m)− y∗m∥22
≤ ∥yt,m + ηgt,m − y∗

m∥22.

Expanding the L2 norm gives us,

∥yt,m + ηgt,m − y∗m∥22 ≤ ∥yt,m − y∗
m∥22

+ 2η⟨gt,m, (yt,m − y∗
m)⟩+ η2∥gt,m∥22.

Rearranging we get,

∥yt+1,m − y∗
m∥22 − ∥yt,m − y∗

m∥22
≤ 2η⟨gt,m, (yt,m − y∗m)⟩+ η2∥gt,m∥22.

Summing the terms telescopically from t = 1 to T we get,

∥yT+1,m − y∗m∥22 − ∥y1,m − y∗
m∥22

≤ 2η
T∑

t=1

⟨gt,m, (yt,m − y∗m)⟩+ η2
T∑

t=1

∥gt,m∥22.

Rearranging the terms and substituting our bounds for the
gradient gives us,

2η
T∑

t=1

⟨gt,m, (y∗
m − yt,m)⟩ ≤ ∥y1,m − y∗m∥22 − ∥yT+1,m

− y∗
m∥22 + η2T∥w∥2∞dmax.

Since, ∥yT+1,m − y∗
m∥22 > 0 we get,

T∑
t=1

⟨gt,m, (y∗
m − yt,m)⟩

≤
∥y1,m − y∗m∥22

2η
+

ηT∥w∥2∞
√

dmax

2
.

Finally, we have:

Rm(T ) ≤
T∑

t=1

⟨gt,m, (y∗
m − yt,m)⟩

≤
∥y1,m − y∗

m∥22
2η

+
ηT∥w∥2∞dmax

2
.
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Now substituting our bound into the task averaged, we have,

R̄(M × T ) ≤ 1
M

M∑
m=1

∥y1,m − y∗m∥22
2η

+
ηT∥w∥2∞dmax

2
.

Let Φ∗ be the quantity defined in (4), then the RHS can be
rewritten as follows,

R̄(T ×M) ≤ 1
2ηM

M∑
m=1

(
∥y1,m − y∗m∥22 − ∥y∗

m − Φ∗∥22
)

+
1

2ηM

(
M∑

m=1

∥y∗m−Φ∗∥22+η2T∥w∥2∞dmax

)
.

Concretely, one may now decompose the task averaged regret
R̄(T ×M) in terms of the meta regret (5) and per task regret.

R̄(T ×M) ≤ 1
2η

Rmeta(M)

+
1

2ηM

(
M∑

m=1

∥y∗
m−Φ∗∥22+η2T∥w∥2∞dmax

)
Finally, updating our initialization for each task m using OGA
with step size, ηαm from Lemma (2), we get:

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M
+

1
2ηM

×
( M∑

m=1

∥y∗m − Φ∗∥22 + η2T∥w∥2∞dmax

)
Substituting our task similarity distance D∗ into the second
term in the equation above,

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M
+

(D∗)2

2η
+

ηT∥w∥2∞dmax

2

Now letting η = D∗
√

T∥w∥∞
√

dmax
gives us:

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M
+ D∗∥w∥∞

√
Tdmax

A few remarks are now in order for our formulation and
solution for the meta bipartite caching problem.

Remarks: We note that there are two reasons the meta
algorithm is advantageous in the bipartite setting but may
not be so helpful in the single cache setting. Firstly, note,
the naïve algorithm uses a step size of order D√

T
where

D =
√

2|J |C. In the single cache setting, J is 1, hence,
unless the request distribution varies greatly, we do not expect
D∗ to be very different from the D. However, in the Bipartite
setting J can grow very large and hence, we find that D∗

can be significantly smaller than D, especially in cases where
there are similarities between tasks across different caches.
Secondly, note the multiplicative factor of ∥w∥∞

√
dmax. This

value is 1 in the single cache setting but can grow large
depending on the topology of the bipartite graph. Hence, even
small improvements in the value of D∗ over D get amplified
by this factor.

The cases highlighted in (8) imply that the gradient changes
discontinuously when moving from one case to another. As a
result our objective function is not differentiable everywhere

and it is more appropriate to write that the values described
in (8) belong to the super gradient. For clarity of presentation
we do not make the distinction, further, the bounds on the
gradient and thus, the bounds on the regret still hold true.
In principle one can replace the simple OGA algorithm in the
inner loop with any other algorithm that minimizes regret. This
can include algorithms such as mirror ascent or “follow the
perturbed leader”. In all these cases, it is not hard to see that
our “meta” approach will provide a similar improvement in
performance.
Finally, the inner product formulation for our utility allows
us to immediately see how to handle multiple requests from
multiple users. The routing problem for multiple requests
devolves into a routing problem for each user which can
be handled using (7). While the bound on our gradient will
change by the number of requests, it is not hard to see that
the inner product formulation of (6) does not change at all.

IV. SMOOTHED PROBLEM

Throughout the paper, we have considered the bipartite
caching problem when there is no replacement cost. This
means that a cache can potentially change its entire config-
uration between the arrival of two consecutive requests. This
is an impractical assumption although it was very useful in
setting up the regret bounds for out meta bipartite caching
problem. We now turn to a more practical consideration where
we attach a cost for changes in cache configuration. We modify
the utility for our cache as follows:

f̃t,m(yt,m) = ⟨rt,m, z(yt,m, {wi,j})⟩W − β∥yt,m − yt−1,m∥

Note, due to the equivalence of norms, we are free to choose
norms depending on the context. More importantly we need to
distinguish between the smooth problem during the T sequen-
tial samples in a task and the cost during M initializations as
part of the meta problem. We assume that at the beginning of
a new task, the initialization can be arbitrary and incurs no
additional cost.

Remark: The notion of smoothing relates to a trade-off
between a dynamic notion of regret and a static notion of
regret. When β is low, the best dynamic policy in hindsight
over a time horizon will vary greatly over time; since, there is
relatively little incentive to stick to the current action. When β
tends to infinity, changes in the policy result in a heavy price,
hence, we prefer a static policy in hindsight in keeping with the
idea of regret used in this paper. A more detailed discussion
on this topic can be found in [22]. In this section we are
primarily looking at the problem from the latter perspective
where changing cache configuration often is not a preferable
outcome.

Theorem 2: The meta OGA algorithm 1 for the smoothed
problem with η equals D∗√

T (1+β∥w∥∞
√

dmaxL2)
gives us a task

averaged regret of

R̄(T ×M) ≤ D∗
√

T (1 + β∥w∥∞L2

√
dmax)

+
(D∗)2

κ

1 + log M

M
Proof: We will restrict ourselves to the

∑T
t=1 ∥yt,m −

yt−1,m∥ smoothing terms for our task since we have already
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shown in the proof of 1 that the in task regret for task m
denoted by Rm with step size η; is bounded above by

Rm(T ) :=
T∑

t=1

ft,m(y∗
m)−ft,m(yt,m)≤

∥y1,m − y∗
m∥22

2η
+

ηT

2

Recall, the bound on the supergradient is ∥gt,m∥2 ≤
∥w∥∞

√
dmax. Next, recall for a single task m by Algorithm 1,

we have yt+1,m = yt,m + ηgt,m. Therefore, we have,

T∑
t=1

∥yt,m − yt−1,m∥ ≤ η
T∑

t=1

∥gt,m∥

Due to the equivalence of any two norms ∥ · ∥a, ∥ · ∥b, there
exist L1, L2 such that L1∥x∥a ≤ ∥x∥b ≤ L2∥x∥a. Hence, for
an arbitrary norm ∥.∥, we may bound the term above by,

T∑
t=1

∥yt,m − yt−1,m∥ ≤ ∥w∥∞
√

dmaxL2Tη

Adding the two bounds together for each task one obtains,
T∑

t=1

f̃t,m(y∗
m)− f̃t,m(yt,m) ≤

∥y1,m − y∗m∥22
2η

+
ηT

2

+ β∥w∥∞
√

dmaxL2Tη

Now, we can once again take a closer look at the task
averaged regret,

R̄(T ×M) ≤ 1
M

M∑
m=1

∥y1,m − y∗m∥22
2η

+
ηT

2
(1 + β∥w∥∞

√
dmaxL2)

As before, we introduce the best initialization in hindsight Φ∗

to decompose the problem into the problem of computing the
meta regret and the additional per task regret mediated by the
task similarity. This yields,

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M

+
ηT

2
(1 + β∥w∥∞

√
dmaxL2) +

(D∗)2

2η

Setting η to D∗√
T (1+β∥w∥∞

√
dmaxL2)

we have:

R̄(T ×M) ≤ (D∗)2

κ

1 + log M

M

+ D∗
√

T (1 + β∥w∥∞
√

dmaxL2)

Remark: Once again we see a benefit of
√

2|J |C/D∗

compared to an off the shelf algorithm. This factor plays an
even more significant role in this context because not only
do we reduce the scaling factor due to the number of caches
|J | but in general the factor L2 depends on the dimension of
our problem. In our case, the dimension of our problem is the
library size N . This means that the smoothed problem using
the “off the shelf” strategy amplifies the effect of the number
of caches by a factor that scales with the library size.

For completeness we include the following corollary of the
theorem, note when we have a single task it is straightforward

to extrapolate this result, similar results have been previously
observed in [23] and [24].

Corollary 1: Algorithm 1 with a single task M = 1 incurs
a O(

√
T ) regret for the smoothed problem.

V. ELASTIC BIPARTITE CACHING AND A DISTRIBUTED
ALGORITHM

The bipartite caching problem that we have described so far
has what we call inelastic file demand, see [18]. A user request
in this case is satisfied so long as she receives one file form
the network. We now turn to the elastic case. Recall, from
Section II an elastic request gains additional utility by gaining
a bigger fraction of the file. Examples of such file requests can
be found in streaming applications where a greater fraction of
file chunks enable end users to see smoother videos. The utility
becomes directly proportional to the number of file chunks
received by the user. The routing vector in this setting is no
longer constrained by

∑
j∈Ji

zj,n
t,m ≤ 1 where we explicitly

avoid using {0} to indicate the total requests from the network
but not the main file server. The utility function remains the
same, however, the lack of the constraints means we may set
zj,n
t,m = yj,n

t,m for any cache in the neighborhood of the user i,
j ∈ Ji making the request at time t for task m.
The following result can be considered as a corollary to our
main result. We remove the routing constraint

∑
j∈Ji

zn,j
t,m ≤

1 from the inelastic setting. If n = nt,m is the file request at
time slot t for task m, then, it is straightforward to find the
routing policy zt,m :

zj,n
t,m =

{
yj,n

t,m when n = nt,m and j ∈ Ji

0 otherwise
(10)

This means that the utility function can now be written as,

ft,m(yt,m) = ⟨rt,m, z(yt,m, {wi,j})⟩W = ⟨rt,m, yt,m⟩W

Note, even though zj is not equal to yj for all caches j, since
r is only non zero for those caches in the neighborhood of i
i.e, Ji, it is not hard to see that the two quantities are equal.
This observation makes the routing as well as the gradient
computation simpler than the inelastic setting. It is not hard
to see that such a result is true even under replacement costs.

The form described above is differentiable in the domain Y
and concave. With a slight abuse of notation, let ∂ft,m = gt,m

be the gradient at time slot t for task m. Then, if n = nt,m

is the file requested at time t for task m, we can explicitly
characterize the gradient as follows:

gn̂,j
t,m =

{
wi,j for j ∈ Ji

0 otherwise

The OGA update follows as:

yt+1,m := ΠY
(
yt,m + ηgt,m

)
Now, it is important to note that the derivative gn̂,j

t,m is indepen-
dent of gn̂,j̃

t,m for any two j, j̃ in J . Further, the projection for
each cache can also be distributed across each cache, giving
us the following update to any cache j:

yj
t+1,m := ΠYj

(
yj

t,m + ηgj
t,m

)
(11)
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Hence, the OGA update for each cache is simply gj,n
t,m =

wn
i,j for j ∈ Ji and 0 otherwise. Further, note that the

bounds on the gradient remain unchanged. This leads us to
the following corollary

Corollary 2: Algorithm 1 with the distributed updates given
by (11) gives a task averaged regret is bounded above as:

R̄(T ×M) ≤ κ
1 + log M

M
+ D∗∥w∥∞

√
Tdmax

Remark: This is in contrast to the inelastic bipartite caching
problem described above. Recall, Kt,m was the least valuable
cache that served an incoming request at (t, m). This cache
either completes the request (described by Case II) or it offers
all its chunks to fulfill as much of the request as possible.
However, if each cache is given the weight of the least
valuable cache for a file request, each cache may compute
wi,θ(k) according to Equation (8). This enables a distributed
computation of the gradients under minimal central control.

VI. SIMULATIONS

We broadly break our simulations into four categories:
Bipartite caching, Single cache setting, Synthetic data traces
and Real world data traces. The first two settings pertain to
the system model while the next two pertain to the user request
generation. We will combine them and compare policies that
are appropriate for these settings in order to highlight our
algorithm. Before we proceed we briefly describe the data sets
below.

Trace data set: For the purposes of making a fair compari-
son, we set our cache size similar to those of [2] with a single
cache of size 900 with a library size of 3000, hence, we have
a cache that is 30% of the library size. We use average hit rate
as our metric of comparison since this is our primary interest.
We use a window of 100 samples to smooth the data curves.
We evaluate our policies on a number of data sets; YouTube
request data [25], Movie lens data set for Movie ratings and
IBM web search data requests. Note, we perform the meta
initialization step once every 100 requests. This means that
the algorithm is unaware of any inherent “task” structure in
the data set and simply uses a partition of the data set in order
to perform meta caching for the purposes of the trace based
simulation. Further, we make no attempt to estimate the task
similarity prior to the simulation, all estimates are made during
the simulation run.

Synthetic data set: In this setting the data is generated
using a zipf distribution with parameter α = 2.5 + W . Here
W is a uniform random variable between [−d, d]. By choosing
an appropriate d we can control the similarity between our
tasks. We set d to 1.25 to ensure that our sipf distribution does
not diverge but can occasionally have a very high variance.
Note, in the synthetic setting, the naïve OGD algorithm is
also aware of the task structure and chooses its step-size to
find the best policy in hindsight per task. In the following
subsections simulation results for the two systems are shown.

Through our simulations we would like to answer the
following questions:

1) So far, we assumed that D∗ was a known quantity
and the task structure was well defined. Can we simply
divide the incoming requests into tasks and estimate the
value of D∗ using these tasks?

2) In a single cache setting, the value of D is relatively
small. Hence, unless the user requests vary dramatically,
the value of D/D∗ is close to one in this setting; is there
any benefit thatcomes from using our approach over a
more naïve gradient ascent approach? We denote this
approach throughout by the naïve OCO.

3) While Meta caching might lower meta regret, does this
indeed translate to an improvement in the weighted hit
rates of the caches? Further does this advantage remain
if the task size is increased while keeping the number
of tasks the same?

4) As a designer of an edge caching system, what practical
considerations can we take based on the results we have
obtained? Given the cache size is there an optimal way
to divide the incoming tasks? How does cache size
influence our performance?

Single Cache setting:

In the single cache setting we compare the following
algorithms,

1) Meta OCO: This is the algorithm presented in the paper,
we convert the problem of conventional online learning
into a meta learning problem simply by dividing the data
sets into batches of approximate size 100. Since we do
not have access to D∗ apriori in our Meta algorithm we
begin with an estimate for D∗ = 2. Next, we increase
this estimate by multiplying a factor γ = 1.05 each time
it fails to bound the difference between the best policy
in hindsight for a given task and the initialization.

2) naïve OCO: We use conventional online gradient ascent
(OGD) without assumptions on the underlying data
structure [2] as a benchmark for performance in the
coded caching setting.

3) LFU: The least frequently used policy evicts items in the
cache that have been used the least so far. It is a well
known algorithm that can be shown to be optimal when
the distribution is stationary throughout a given trace.
We use this benchmark to firstly show the efficacy of
OCO policies to adapt to stationary request distributions
over time. Secondly, a poor performance of an LFU
policy indicates that the distribution of trace requests
is non stationary.

4) LRU: The least recently used policy is popular policy
that evicts the cache item which was used least recently.
This policy performs is known to have excellent perfor-
mance on real world data even though it suffers from
poor adversarial guarantee.

Trace data set:
In the movie lens case and the web browsing case, LRU ,

naïve OCO and the meta algorithm all perform nearly identi-
cally however, the LFU policy performs poorly. This indicates
that the distribution is highly non-stationary and it is optimal
to simply discard all previous requests for a set of new
requests. In the YouTube request setting we see that the meta
algorithm dominates all the other algorithms while the naïve
policy eventually reaches the performance of the LRU policy.
We investigate the YouTube request set further in the single
cache setting at the end of the simulation section.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Texas A M University. Downloaded on January 29,2025 at 05:51:17 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Single cache movie lens rating.

Fig. 3. Single cache IBM web browsing.

Fig. 4. Single cache YouTube data trace.

Synthetic data set: Our synthetic data results in
fig (5a and 5) show the variation of performance in the single
cache setting with respect to both the number of requests and
the number of tasks.

Unsurprisingly, all the algorithms perform relatively well
in this setting. Note, for a fixed set of requests, the meta
algorithm performs slightly poorer than the naïve algorithm,
possibly due to the extra log M

M term. As M grows large this
difference fades away and both caches encounter the same hit-
rate. In the single cache setting, we should note that our value
of cache size is small and the weight is set to 1. This in turn
means that unless the underlying distribution is varied wildly,
the relative value of D/D∗ will be close to 1. This explains not
only the comparable performance of both the online learning
algorithms but also the more conventional algorithms (LFU
and LRU ).

Bipartite Caching:

To begin with, we fix the bipartite graph as follows. We have
3 caches and 4 users. The weights for the three caches are
[1, 2, 100], this means that every item sourced from the third
cache gives a utility of 100, similarly items sourced from the
second cache give utility 2 and 1 for items from the first cache.
Here we are trying to obtain the exact same setting as the one
used in [2] so that we have a one to one comparison of our
policies,

1) Meta OCO: Once again, the meta algorithm suggested
in this paper is run without prior knowledge of the task
similarity.

2) Naïve OCO: As before we simulate the online gradient
ascent algorithm to maximize utility unaware of the task
structure. We treat the sequential requests as a single
long sequence.

3) LRU: We use an LRU policy to select which item
to evict in our caches. Since, conventional mLRU [26]
does not specify how to handle weights, we select the
adjacent cache for eviction in proportion to its weights in
the event of a miss. As mentioned previously, the LRU
policy suffer from poor adverserial guarantees which
might explain its relatively poor performance in this
setting.

4) LFU: As stated above, we modify the LFU policy in the
single cache setting to the Bipartite setting by selecting
adjacent caches proportional to the weights in the event
of a cache miss.

Trace Data: The trace data in figures 6, 7 and 8 was
generated for a single cache setting, in order to convert the
problem into the bipartite setting, we assign requests among
the 4 users uniformly at random.

Comparing the results from the single caching setting, it is
clear that both the online gradient algorithms perform far better
than the more conventional counterparts. Further, one can look
at the IBM web search results and the movie ratings data and
see that unlike in the single caching setting, the meta algorithm
has a noticeable improvement in performance compared to the
naïve algorithm. This fact is largely explained by the increased
value of D which makes the similarity between the tasks far
more relevant.

Synthetic Data: The synthetic results for the bipartite
caching are shown in figure 9a and 9b. Here we set the number
of tasks to 100 and vary the number of requests per task for
figure 9a and fix the number of requests to 20 and vary the
number of tasks for figure 9b.

We compare our results to M-LRU and the best policy in
hindsight. As can be seen, the meta algorithm quickly learns a
good policy while the naïve OCO algorithm takes a relatively
large number of requests for each task to catch up to the meta
algorithm.

Practical Considerations:

In this final subsection, we provide some heuristics that
might be helpful for cache design. As the real world trace
data shows us, one may obtain superior performance simply
by dividing the data into batches of equal size and running the
meta algorithm. In a practical scenario, as seen in our trace
simulations, one is able to control the task size easily. What is
the best task size to select to see the greatest improvement in
the performance? Another parameter we might be interested
in is the cache size in terms of the library size. We show
the variation of performance with changing task size for the
Youtube data set in the single cache setting. We measure the
average hit rate over all samples for a given tasks size. As seen
in figure 10a, our X axis in this case is the number of tasks,
since data length is fixed, our task size is inversely proportional
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Fig. 5. Synthetic data simulation for the single cache problem.

Fig. 6. Bipartite Caching - Movie ratings.

Fig. 7. Bipartite Caching Web browsing.

Fig. 8. Bipartite Caching YouTube traces.

to the number of tasks. Our data length is of the order of
105 samples. This means that when the number of samples
per task is close to the cache size we see a sharp increase
in performance followed by a slight decrease as we continue
to decrease the task size. As the task size becomes smaller,
the best in hindsight policy simply becomes the set of unique
requests within a task. The slight decrease in performance may
be explained by poor meta initialization updates combining the
previous initialization with a configuration with a drastically
different L1 norms. Finally, note, when the number of tasks is
set to 1, our algorithm is indistinguishable from the naïve OCO
algorithm. Next, we show the performance of our algorithm as
a function of the cache size. The X axis in figure 10b indicates

the cache size as a fraction of the library size. Starting at
about 10% of the library size we increase the fraction all
the way to 90%. As expected, all the caching algorithms
improve as we increase the cache size, however, it is worth
noting that for relatively small cache sizes, the meta algorithm
far outperforms both the naïve OCO algorithm and the LFU
policy. This benefit is most felt between 10−30% of the library
size and gradually decreases as we reach the 80− 90% range.

Further examination of the YouTube simulation results
(Figure:4)

Finally, we end this section by investigating the results from
the trace simulations seen in Figure 4 more closely.

Varying Step-size in the Naive case: The YouTube dataset
was collected in a university campus setting [25] around
specific dates of college events. Hence, the value of D∗ was
relatively low across tasks due to highly correlated requests
around the time frame. We believe that such trends in requests
will become more significant with the rise in popularity of
short form video content. This rapidly changing request pattern
may also explain the performance of LRU close to the naïve
OCO approach.

To substantiate this claim, in figure 11 we vary the step size
of the naïve OCO algorithm under a variety of different condi-
tions and compare it to the “meta” algorithm. We measure the
average performance of all our variants for the complete data
set for comparison. The “blue” line corresponds to a Naïve
OCO algorithm with c

M×T step-size, here we vary the constant
till the step size approaches 1. The “green” line corresponds
to a naïve OCO algorithm with step-size 1

t0.25 , which is the
optimal step-size to achieve sub-linear regret in the setting
of [19]. We refer the reader to our remark in the section I
on why we believe this step-size is unable to compete with
our meta-algorithm. Finally the “cyan” line corresponds to
a step-size 1

t0.33 which was added as an additional point of
comparison for a naïve OCO algorithm with time varying step
size.

As seen in the figure, the meta-learning algorithm performs
better than all these variants of the OGD algorithm. We believe
that in this case, the “meta” initialization of our algorithm
allows the cache to “reset” at regular intervals, which is
not available to the other OCO algorithms. As stated in the
description of our algorithm in the beginning of this section,
we estimate the value of D∗ over the tasks by multiplying
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Fig. 9. Synthetic data simulation for bipartite caching problem.

Fig. 10. Simulation figures for a few different design choices.

Fig. 11. Trace results for single cache YouTube data set with variations on
step-size.

our previous estimate by γ = 1.05 every time our previous
distance estimate falls short. For the trace data above, we are
able to estimate a distance value of D∗ = 21.78. Note, the
value of D =

√
2C ≈ 42.42. Hence, in this case D∗/D is

roughly 0.5.
Resetting in meta initialization : We examine the effect

of meta-initialization on the configuration. While our library
contains 3000 files, we examine the file configuration of the
first 50 files to make the change in configuration more legible
to the reader. We also restrict our snapshot to the first few tasks

Fig. 12. Configuration of the first 50 files in cache. Top left: Naïve OCO
algorithm, Top right: Task best in hindsight, Bottom left: Meta algorithm
before initialization, Bottom Right: Meta algorithm after initialization.

so that our new initialization changes dramatically, recall, our
step size αm ∝ 1

m for the meta initialization process.
Figure 12 shows, the meta initialization in action. The meta

policy chooses to “reset” its configuration by combining its
configuration from the previous task with the best in hindsight
policy. This allows it to adapt to adversarial requests when the
next task changes the request sequence dramatically while the
naive algorithm changes its own configuration “sluggishly”
due to much smaller step size and lack of resets. Note, the
many additional files that the naïve algorithm holds on to while
the best in hindsight configuration completely discards them.

VII. CONCLUSION

In this paper, we propose a meta algorithm for caching.
The algorithm uses the task structure in order to use a small
number of samples to quickly adapt to a new incoming task.
As we demonstrate in the simulations, this task structure need
not be explicitly specified in the data set. Naïvely dividing the
data set into batches is sufficient to apply our meta algorithm.
While our paper thoroughly explores the idea of meta learning
using task averaged regret in a variety of settings, it remains
an open question how other ideas of task similarity can be
used to improve caching performance. Of particular interest
is [27] which explicitly looks at the problem of learning lower
dimensional representations in the linear setting.
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