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Abstract—Distributed tracing has become a fundamental tool for
diagnosing performance issues in the cloud by recording causally
ordered, end-to-end workflows of request executions. However, tracing
workloads in production can introduce significant overheads due to
the extensive instrumentation needed for identifying performance
variations. This paper addresses the trade-off between the cost of
tracing and the utility of the “spans” within that trace through Astraea,
an online probabilistic distributed tracing system. Astraea is based on
our technique that combines online Bayesian learning and multi-armed
bandit frameworks. This formulation enables Astraea to effectively
steer tracing towards the useful instrumentation needed for accurate
performance diagnosis. Astraea localizes performance variations using
only 20-35% of available instrumentation, markedly reducing tracing
overhead, storage, compute costs, and trace analysis time.

Index Terms—Distributed Systems, Performance Diagnosis,
Microservices, Cloud Computing, online Bayesian learning.

I. INTRODUCTION

Performance variations constitute a common challenge in the
cloud, and diagnosing them can be a time-consuming process [1]–
[16]. For instance, diagnosing an unexpected slowdown in a
request can consume hours or even days [17]. Distributed tracing
has emerged as an essential tool for diagnosing performance
variations in the cloud [2], [4], [5], [9], [18]–[25]. Distributed tracing
enables tracking the journey of a request within a distributed cloud
application, as it moves through various services. A trace consists
of instrumentation choices known as spans, which capture causal
relationships and the propagation of latency from downstream to up-
stream operations. The end-to-end narrative of a request provided by
distributed tracing reveals what went wrong, making it easier to pin-
point and resolve the issues [2], [4]–[6], [8], [9], [18]–[24], [26], [27].

Tracing cost vs. utility trade-off. Predicting which code locations
to instrument to diagnose potential future problems is a challenging
task [19], [28]. Developers aim to trace all potential application
behaviors to enable diagnosis of new problems. However, recording,
processing, and storing traces from production workloads result in
significant overheads in terms of storage, computation, and network
usage [4], [29]. For instance, Facebook reported generating 1.16
GB/s of tracing data [4], necessitating substantial backend infras-
tructure and storage capacities [29]. Furthermore, the computational
overhead of tracing can lead to an increase in end-to-end request
latency, which is not tolerable for end users [30]. Fig. 1a shows the
response time overhead of tracing (i.e., Jaeger [25]) imposed on
the Train Ticket microservice application [17], revealing 180% and
16% overhead on the tail and average latency, respectively, observed
in our experiments. Similarly, Google reported an average response
time increase of 16.3% in their search engine due to tracing [24].

Distributed tracing often employs request-based sampling as
a means to mitigate costs, allowing for tracing only a subset of
requests [23], [25], [30]. While request-based sampling partially
addresses the overhead problem, when it comes to performance
diagnosis, the key insight is that majority of spans in a sampled
request are extraneous to explain performance variation under
investigation [4], [17], [19], [22], [28]. For instance, an analysis
of the Alibaba traces reveals that 90% of the spans provide no
useful information, with only 10% of spans being essential for
performance diagnosis [10]. Fig. 1b substantiates these observations
by illustrating the cumulative variance of spans from Train
Ticket [17], Social Network [31], and a large-scale Internet
application (denoted as Production in Fig. 1), showing that 15%
of spans account for over 80% of the total variance. Identifying this
“vital” set of instrumentation with the most utility is a challenge as
this information is unknown a priori or even changes over time. For
example, researchers revealed that 28K revisions in Hadoop, HBase,
and ZooKeeper applications were made only to insert or modify
instrumentation choices concerning cost vs. utility trade-off [32].

Automated control of instrumentation. To address the tracing cost
vs. utility trade-off, ideally, a tracing system should adaptively and
automatically control instrumentation choices to enable vital ones
needed to diagnose performance variations [19], [28]. The key re-
quirements of such a system are: (R1) correctly identifying the vital
instrumentation needed to explain on-going performance variations,
(R2) adapting to new sources of performance variations that might
evolve over time, (R3) providing a low-overhead and scalable mech-
anism to efficiently control instrumentation, and (R4) addressing all
requirements in a practical and developer-friendly manner.

Researchers have designed automated techniques to selectively
enable the instrumentation needed (§II). VAIF [19] and Log2 [28]
are two automated instrumentation systems that are tailored
for performance diagnosis. Log2 captures all logging records in
individual processes and persists ones that contribute to performance
variation. However, it inherently lacks the causal context provided
by distributed tracing, which captures latency propagation among
distributed services (✚✚R1 and✚✚R2). Its tail-based approach, focused
on persisting logging records post-execution, primarily reduces
storage overheads but neglects the computational overheads (✚✚R3).

VAIF [19], our previous work, is an automated tracing system
tailored for performance diagnosis in distributed cloud applications.
In an offline profiling phase, VAIF memorizes execution paths of
requests through exhaustive workloads [19]. When triggered by
developers at runtime, it enables spans within the region of code
that currently exhibits the highest variance. VAIF is effective in



(a) Tracing overhead on mean (∆µ) and tail (∆.99) latency (b) Cumulative latency variance of spans

Fig. 1: The practicality of tracing is limited by (a) overhead and (b) large portion of extraneous instrumentation. (a) Tracing overheads
can increase end-to-end request latency. Tracing in this experiment is conducted with a 100% sampling rate to emphasize the overhead.
(b) The majority of spans in a trace are extraneous to explain variation.

localizing sources of performance variations, however, considerable
developer effort is needed to run comprehensive workloads a
priori to collect representative traces for VAIF, which is further
exacerbated by the need for recurring developer-driven profiling
efforts for each new code delivery (✚✚R4). Second, VAIF’s span
decisions are binary, offering only options of enabling or disabling
spans. While this simplifies decision-making and implementation,
completely disabling spans may result in a loss of accuracy as no
new observations are captured for ongoing or new performance
variations, as shown in §IV-C (✚✚R1 and✚✚R2).

Our work. We present Astraea 1, a system backed by statistical
rigor to accurately and adaptively control instrumentation to address
the cost vs. utility trade-off of distributed tracing in performance
diagnosis. Astraea works on top of request-based sampling to further
reduce the size of individual traces utilizing span-level sampling
probability. Astraea operates online from the start, eliminating the
need for time-consuming offline phases. It begins with the same de-
fault level of instrumentation as current distributed tracing practices.
As Astraea learns, it gradually decreases the sampling probability
of unnecessary instrumentation, leading to continuous performance
improvement. Astraea employs a probabilistic approach, enabling
nuanced decision-making by sampling spans with varying prob-
abilities for efficient resource utilization, accurate coverage, and
adaptability to changing execution patterns or new issues.

Astraea formulates the cost vs. utility trade-off as an exploration
vs. exploitation problem [33]. It continuously learns spans that
explain performance variations (explore) and dynamically steers
tracing toward them (exploit). This formulation enables an online
learning setting tailored for automated control of instrumentation
to enhance tracing utility. The Bayesian framework of Astraea
enables space- and time-efficient computation by mapping large
trace data to a low-dimensional Bayesian belief representation,
gradually building beliefs of spans, thus eliminating the need for
extensive trace data storage (§III). Based on accumulated beliefs,
Astraea employs a probability matching decision strategy where
the sampling probability of a span is proportional to the fraction
of observations that a span emerges as a vital contributor to
variation, aiding in continuously exploring and resolving uncertainty
to identify vital spans [34].

1Astraea is accessible at https://github.com/ai4cloudops/Astraea.

Overall, Astraea enhances the accuracy and adaptability of
identifying spans required to explain both current and new
performance variations (addressing R1 and R2), while maintaining
low overheads and scaling effectively to handle large production
traces (addressing R3).Astraea eliminates the need for cumbersome
offline training or retraining phases (addressing R4). The primary
goal of Astraea is to elevate the practical utility of distributed tracing
to new heights. It empowers developers to instrument their source
code during the development phase without worrying about the costs
and manual analysis associated with managing a large number of
extraneous spans in response to performance variations at runtime.

Our contributions and highlights.
• We devise and formulate the tracing cost vs. utility trade-off as an

exploration vs. exploitation problem, enabling an online learning
setting. Building on our formulation, we design and implement
Astraea, which dynamically steers tracing toward vital regions.

• We show that Astraea accurately localizes injected performance
variations 92% of the time, using only 20-35% of instrumentation
in three widely used distributed cloud applications (Social
Network, Media, and Train Ticket) (§IV). In contrast, Log2 and
VAIF achieve 65% and 71% accuracy, enabling comparable or
larger instrumentation and incurring 3-24x more latency overhead.

• We demonstrate the efficacy of Astraea in diagnosing
performance variations in Social Network, Media, and Train
Ticket applications deployed on two public clouds, namely
CloudLab (on VMs) and New England Research Cloud’s (NERC)
OpenShift Container Platform. Astraea pinpoints sources of high
variance due to implementation bugs, resource-related issues,
network delays, deployments, and inefficient instrumentation,
enabling only 20-35% of available instrumentation (§V).

II. BACKGROUND AND RELATED WORK

This section provides a background on distributed tracing and
reviews prior work on tracing, instrumentation, and their automation.

A. Distributed tracing overview

Figure 3 shows how distributed tracing frameworks operate in
general [4], [25]. An instrumented service (e.g., Social Network
in Fig. 3) creates a span when receiving a new request and attaches
context information (e.g., traceId and spanId) to outgoing requests.
A span represents a logical unit of work with an operation name,



Fig. 2: A simplified trace from Social Network. Analysis on µ and
σ of span latency helps localize a performance issue.

start time, and duration. Spans are nested and ordered to model
causal relationships (i.e., parent/child relationships represent
caller/callee). The tracing backend collects, orders, and stitches
span records with the same traceId to create end-to-end traces. A
final trace is an execution path of a request through the system [19].

The causal ordering of spans enables composing a narrative
of a request’s execution, making it easier to pinpoint issues.
The following example illustrates how distributed tracing helps
diagnose a performance issue we found using Astraea (§V). Fig.
2 demonstrates a simplified trace, along with various statistics of
operation durations (mean (µ) and standard deviation (σ)) from
the Social Network application. The root cause of the issue is an
inefficient implementation that sends one request for each key to
Redis instead of querying with multiple keys [35], [36]. Analysis
via distributed tracing reveals that the Redis update operation shows
high variance and significantly contributes to response time.

Distributed tracing helps pinpoint the code regions that initiate per-
formance problems [5], [37]. However, there are challenges with effi-
cient and practical use of distributed tracing in production. Develop-
ers wish to comprehensively trace the source code to easily diagnose
new problems [19], [28]; however, they struggle with the cost vs. util-
ity trade-off [32]. Reducing latency is one of the primary concerns
that lead developers to use distributed tracing. However, overheads
of distributed tracing also contribute to latency, as shown in Fig. 1.
Understanding this impact is vital in choosing the right granularity
for tracing. We briefly describe overheads with respect to Fig. 3
(marked with circled numbers). 1 Spans are created on the critical
path of requests. This step incurs computational runtime overhead.
2 Tracing agents listen for spans from the application, receive, and

route them to the tracing backends. This step incurs network over-
heads. 3 Tracing backends persist the trace data, where they can
be later queried. This step incurs storage and compute overheads.

B. Related work

Distributed tracing & diagnostics. Past research has shown a
variety of use cases of distributed tracing in cloud [2], [4]–[6], [8],
[9], [20], [21], [23], [24], [26], [37]–[41]. Zeno [39] uses traces
to infer off-path root causes such as resource contentions. SAGE
[20] is a machine learning-based system that leverages tracing
to identify culprit services responsible for QoS violations. These
state-of-the-art systems aim to facilitate rich use cases but are not
geared towards resolving the cost vs. utility of the spans trade-off.
Request-based sampling. To help with various overheads of
distributed tracing, existing techniques include head- and tail-based

request sampling [23]–[25], [42]. Head-based method decides
whether to trace a request uniformly at random at the beginning
of a request, circumventing computational, network, and storage
overheads ( 1 , 2 , and 3 in Fig. 3). On the other hand, tail-based
methods capture traces for all requests and later decide whether to
persist a trace, circumventing only storage overheads ( 3 in Fig.
3). For example, Sifter [23] biases sampling decisions towards
outlier traces with respect to their frequency. While effective
at reducing various overheads, these techniques are orthogonal
to the cost vs. utility of the spans trade-off. That is, they don’t
control the instrumentation at the granularity of spans while
tracing; thus, resultant traces include a large portion of extraneous
spans that constitute the majority of costs. When diagnosing the
current performance variation, only a few spans are useful, as a
large portion of them are extraneous, constituting the majority of
cost [19], [22], [28]. For example, the Fig. 1b shows that 16% of
spans constitute more than 80% of the total variation.
Dynamic instrumentation. Some techniques allow inserting in-
strumentation at runtime in almost arbitrary locations in applications
[22]. These techniques provide crucial flexibility during perfor-
mance debugging. However, manual and iterative exploration of
potential instrumentation locations in source code is a labor-intensive
process, incurring prolonged diagnosis times [30]. Unlike dynamic
instrumentation, Astraea does not rely on end users to manually
explore data and identify problems but automates this process.
Automated control of instrumentation. To address cost vs. utility
trade-off, researchers have proposed automated techniques that
selectively enable instrumentation choices needed [19], [28], [32],
[43]. However, most focus on correctness (or failure) problems,
not performance variations. For example, Log20 [32] enables log
points to differentiate request workflows, aiming to help identify
faulty executions. However, they are not sufficient for performance
diagnosis because additional instrumentation may be needed to
identify where on a unique workflow a performance problem lies. In
contrast, Astraea focuses on identifying areas of the code that lead
to requests’ overall execution to be slow. For example, inefficient
implementation of a Redis update might not break functionality,
however, can cause a significant slowdown (Fig. 2). The systems
closest to our work are VAIF and Log2, tailored for performance
variations. We compare Astraea with these systems in §IV.

III. ASTRAEA

While an ideal tracing solution would focus effort on parts
of an application that are important for performance diagnosis,
this information is unknown a priori, hence the need for
learning at runtime. Astraea is an online, probabilistic tracing
system designed to combat this challenge. Fig 3 shows Astraea
components that implement the logic of effectively learning the
parts of an application that are needed for diagnosis (exploration)
and confidently steering tracing toward the most rewarding
instrumentation choices (exploitation). Astraea works in a
continuous loop. As the application receives user traffic, spans are
collected and stitched together by collector(Jaeger) and stored in a
database. Astraea periodically queries the tracing database to build
Bayesian belief distributions to estimate span sampling probabilities
which represents the usefulness of a span for performance diagnosis



Fig. 3: An overview of the distributed tracing architecture with Astraea on a cloud deployment. The bottom displays a simplified Social
Network application, with the top featuring Astraea components guiding tracing to rewarding spans. Tracing overheads are demonstrated
with circled numbers.

(§III-A); as more data is available, the belief distributions converge
to the true values of the utility (§III-B). It then publishes this
dictionary of spans (policy) to Object store. Astraea tracing agents
pull this policy periodically and updates their in memory dictionary.
Initially this policy has 100% sampling rate for all spans.

Fig. 3 shows a snippet of a sample policy inside Astraea container,
where fetch is the span and its sampling probability is 0.91. Astraea
continuously builds and updates this policy to steer tracing toward
vital spans, using its Approximate Bayesian Sampling algorithm
considering exploration vs. exploitation trade-off (§III-B).
Output. Astraea is designed to help developers diagnose
unanticipated performance variations by dynamically controlling the
instrumentation in running systems concerning the cost vs. utility of
spans trade-off. The main output from Astraea is, in fact, distributed
traces; however, the data contained in the traces is the set of vital
spans that are most able to explain performance variations. Second,
Astraea provides users a query interface that reports the ranking of
spans based on their utilities, top-k problematic spans, confidence
levels (e.g., the probability that a span is vital), and significantly
correlated tags (e.g., service.version) within traces to help developers
interpret the results regarding localized code regions (§V).
Design principles. Astraea adheres to the following principles to
address practicality, accuracy, and efficiency requirements (§I).

• Statistical rigor: While Astraea doesn’t offer explicit accuracy
guarantees, our method diverges from a greedy strategy of
consistently opting for the highest variance span. Rather, Astraea
constructs Bayesian belief distributions, guiding decisions based
on statistical confidence. Consequently, it demonstrates superior
accuracy in pinpointing performance issues, as evidenced by the
experimental results (§IV).

• Adaptive: Binary decisions on enabling (or disabling) spans

prevent existing tools from adapting to changing sources of
variations. Astraea’s probabilistic approach enables keeping pace
with the changes on-the-fly (§III-B).

• Low-overhead & scalable: Astraea’s low-dimensional Bayesian
approach enables space- and time-efficient computations to
decide whether to create spans based on accumulated beliefs,
which helps avoid computational, network, and storage overheads
( 1 , 2 , and 3 ). Because Astraea maps large trace data to
compact Bayesian representation, it circumvents storing large
chunks of trace and can scale well with production workloads
that have 1000’s of spans.

• Online: Training the entire tracing solution is cumbersome, ex-
acerbated by retraining due to frequent code updates. Astraea em-
bodies an online learning framework to eliminate offline phases.

A. Span utility

We now examine how Astraea decomposes latency contributions
of spans and present the span utility measure, which assesses the
effectiveness of spans in performance diagnosis.
Latency decomposition. Fig. 4 shows the latency decomposition
of spans. Trace includes a root span that corresponds to the client’s
request to the web server (span A) that calls various operations in
parallel (span B and C) and sequentially (span D) after receiving
responses from preceding operations. The latency contribution of
a leaf span (e.g., span D) is determined by the processing duration
of itself. On the other hand, a non-leaf span with one or more
children (e.g., span A) is further decomposed into segments (i.e.,
self segment and child waiting). Astraea relies on the self segment
that represents the amount of time spent by span itself.
Utility. Astraea defines the utility as something that represents
how much a span contributes to performance diagnosis. The utility



Fig. 4: The latency contribution of a leaf span (B, C, and D)
corresponds to its processing duration. In the case of non-leaf spans,
Astraea isolates the self segment, representing the duration when
an operation is not awaiting the completion of a child operation.

Fig. 5: Various statistical measures for span utilities. Figure evaluates
accuracy in terms of whether top-k spans (with the maximum
sampling probabilities in Astraea with given utility) capture the
faulty spans (correspond to the location of injected problem).

serves the following two purposes. First, it is considered a reward
function in Astraea’s online learning framework to identify and
focus on spans with the highest utility [33]. Second, utilities can
also be used to serve insights into developers’ diagnosis efforts in
terms of ranking and comparison of different spans.

We study various ways to measure the utility of a span through per-
formance anomaly injection experiments on three cloud applications
(Social Network, Media, and Train Ticket) and problems include
random delays and resource contentions (§IV-A). Figure 5 shows
the top-K accuracy (i.e., whether the correct span is among the top-K
rankings) per statistical measure. We find that the latency variance
yields the most favorable outcomes, aligning with recent research [2],
[19], which consequently becomes the default utility measure in As-
traea. Beyond preset utility measures, Astraea allows developers to
define and use their own customized measures for specific scenarios.
Tags analysis. Astraea records each tag pair in spans and constructs
a data structure, where features represent tag values (categorical
ones encoded using sklearn LabelEncoder), and the target variable
is end-to-end latency. Astraea applies Pearson correlation analysis
to measure the strength of relationships between tags and latency.
Analyzing tags is crucial for performance diagnosis; for instance,
we illustrate how the service.version tag can reveal issues with
newly deployed code versions (§V).

B. Online learning

Astraea’s online learning framework encapsulates our Bayesian
online learning formulation and multi-armed bandit-based sampling
algorithm (ABS). The former builds belief distributions to pro-
gressively learn span utilities, and the latter adjusts span sampling
probabilities based on the belief distributions.
Belief distributions. Astraea associates a belief distribution with
every span and updates them periodically based on the new batch
of tracing data. The batched update is a practical necessity, as traces
are not available instantaneously but often with delays [7], [25].

We present the mathematical intuition behind belief updates using
the following scenario. Suppose we have a coin with p (=0.7) as the
probability of landing a head. In Bayesian inference, p is a random
variable and can be modeled using beta belief distributions. Beta
distribution, Beta(α,β), describes how likely p can take on each
value between 0 and 1. α and β parameters can be thought of as
the number of successes and failures, respectively. Beta(1,1) is a
reasonable prior when we have no a priori information about p as
it distributes p uniformly in [0, 1]. If we toss the coin 100 times
and observe 70 heads in the sample, we can use Bayes’ theorem to
update our belief for p (i.e.,α←α + # of heads (vice versa for β)) to
obtain a posterior distribution for p, which is now Beta(1+70,1+
30). This is an instance of the classic beta belief update model.

Drawing from the coin example, Astraea models span utilities in
the form of beta distributions. Utility measures such as variance of
latency may not be 0/1 random variables; thus, Astraea normalizes
the utility observations with respect to the maximum value observed
in samples. Formally, let max(h(s)) represents the largest value
of the sample utility function h(s). The beta distribution for span s,
Beta(αs,βs), captures the uncertainty about the normalized expecta-
tion E[h(s)]

max(h(s)) . This distribution is initialized to uninformative prior,
Beta(1,1). Astraea then updates these distributions periodically
at each iteration based on the new batch of trace observations. Let
he(s) represents the sample utility for span s at epoch e, and the
beta belief updates for each span are illustrated as follows:

αe,s←(1−λ)∗αe−1,s+λ∗ he(s)

max(h(s))
(1)

βe,s←(1−λ)∗βe−1,s+λ∗max(h(s))−he(s)
max(h(s))

(2)

where λ represents exponentially weighted moving average (ex-
plained below). We choose the Bayesian beliefs due to its sim-
plicity and the following considerations. First, it provides a low-
dimensional data structure, enabling space- and time-efficient com-
putation (§IV). Second, the posterior mean of the beta distribution
approaches true expectation almost surely as with more data,
provided by the law of large numbers [44]. Similarly, the variance
of the distribution, αβ

(α+β)2(α+β+1) , goes to 0 as with more samples.
Third, Astraea can easily incorporate new span utility distributions
(e.g., due to a code change). Initially, the belief distributions for the
new spans will exhibit higher variance; however, they will converge
to their true expectations as with more requests.

Non-stationary distributions. It is common to find that
span utility distributions drift over time (e.g., due to changing



performance problems). To address this, Astraea employs
ϵ-exploration strategy that prevents span sampling probabilities
from reaching zero, ensuring observation of new samples with
minimum probability of ϵ (default 5%). In §IV-D, we experiment
with various values of ϵ to provide insights on this parameter.
Approximate Bayesian sampling. Given the span observations
until now, how can we quantify the extent to which a span is
worth sampling? Fig. 1b shows most of the performance variations
are contributed by a small number of spans, similar to what we
observed (right-skewed) in traces from benchmark applications and
the production system (§IV). Astraea employs a percentile-based
threshold (denoted by P, default 75th) to determine whether a span
belongs to the vital set that contributes most to performance variation.
We choose the percentile-based threshold for the following reasons.
First, the percentile is an intuitive measure that depicts where a span
stands relative to others. Astraea focuses tracing effort on spans that
fall above the P (i.e., vital set). Second, the percentile serves as a
control knob, modeling the developers’ preferences. By setting P
to higher values (e.g., 90th), developers can increase the focus on
the tail portion and enjoy a higher reduction in trace sizes (§IV-D).

The probability that a span belongs to the vital set can be
approximated using random sampling, referred to as Monte Carlo
methods [44]. Recall that Beta(αs,βs) represents the posterior
belief distribution for the normalized utility ( E[h(s)]

max(h(s))). Astraea
samples multiple times from this distribution, and the collected data
is used to approximate the desired quantity. Given the law of large
numbers [44], larger number of random samples enable a more
accurate approximation (e.g., 1e+6 in Astraea).

Given the posterior probabilities, Astraea now faces a
fundamental trade-off between exploration (of span utilities) vs.
exploitation (confidently steering tracing toward vital spans).
Exploration-exploitation trade-off is best exemplified by the multi-
armed bandit problem [7], [34]. Drawing from the bandit problem,
our ABS algorithm chooses the spans with probability matching
decision strategy [34]. To illustrate, suppose that span A belongs to
vital set 90% of the samples and span B with 10%. A greedy strategy
is to always enable A and disable B, hence can forgo an opportunity
to learn about span B. In contrast, ABS samples spans A and B
with probabilities equal to 0.9 and 0.1, respectively. As such, ABS
explores to resolve uncertainty to help identify the optimal spans.

More formally, Astraea uses the Monte Carlo procedure to create
a sample utility approximation matrix with each row containing
a single utility sample for each span. Given the matrix, ABS picks
the spans that exceed the given percentile P of utility as per row
of the matrix and marks them as candidates. In the final sampling
policy, the sampling probability of a span equals the fraction
of rows in which the span emerged as the candidate. Since the
posterior probability of suboptimal spans converges to 0 over time
(§III-B), ABS progressively shifts tracing towards the optimal
spans as desired. Our algorithm is inspired by the classic Bayesian
algorithms designed for such explore vs. exploit problems [34].
These algorithms provide various benefits over classical multivariate
hypothesis tests and have solid theoretical guarantees.
ϵ-ABS. Astraea employs ϵ-exploration strategy to account for

non-stationary behavior. So, final sampling policy computed by As-
traea is equal to maximum of the probability that ABS derives and ϵ.

C. Implementation

Our Astraea prototype was developed in Python (2.5K LOC),
utilizing popular data science libraries such as NumPy, SciPy, and
Pandas. Our implementation involved several key components of
Astraea, including a module that periodically utilizes Jaeger APIs to
fetch batches of trace data and derives a sampling policy, and a mod-
ule that applies sampling decisions to the instrumented applications.

During each cycle, Astraea fetches a batch of trace data and
converts them to a low-dimensional Bayesian format. To be
specific, we assign a belief distribution to each span with αs and
βs initialized to 1, ensuring that the prior beliefs are uniformly
random. Based on the span utilities acquired from the batch of
trace data, belief distributions are updated. The probability that a
span belongs to the vital set is approximated using Monte Carlo
sampling, which is the most computationally intensive task. To
enable fast and efficient computations for this step, we utilize
NumPy, which implements statistical sampling functionality in C.
Astraea periodically applies span sampling policies to the tracing
modules in the application layer. These policies map span identifiers
to their corresponding sampling probabilities. We use a combination
of service name, operation name, and URL to identify individual
spans, addressing instances of identical operation names.

Utilizing Astraea in cloud applications is a straightforward
process. These applications only need an existing distributed tracing
framework to enable the required support. We developed two
prototype tracing modules in Java (for Train Ticket) and C++
(for Social Network and Media) languages to utilize Astraea. Our
implementation introduced a low-priority background thread that
periodically receives sampling policy from Astraea and loads it
into memory as a dictionary. To store the policy data produced by
Astraea, we utilize Docker volumes (for VMs) or publish it to Object
Store (for NERC), that are then accessed by the modified Jaeger
tracing module living in containers. Our modifications were kept to
a minimum, with the tracing module only fetching span policy data
from the volume at periodic intervals (e.g., every 5 seconds). Our
policy data structure includes per-service span identifiers and their
sampling probabilities, with low memory overhead (a few kilobytes).

In Jaeger C++, we only made changes to the function responsible
for starting spans. Our changes include querying the in-memory
policy to acquire the sampling probability of the intended span and
determining whether to create the span based on that probability.
In Jaeger Java, we needed to make changes in opentracing-spring-
jaeger library that provides automated instrumentation for Java Web
Servlet applications. Specifically, we modified the servlet filter that
is used to create spans upon receiving requests in Spring stack. Simi-
lar to C++ implementation, we implemented the sampling decisions
based on the probabilities fetched periodically from Astraea. The
modifications needed to deliver selective enabling or disabling of
spans by Astraea were minor, totaling less than 200 lines of code.
In our implementations, if a span is not sampled, the function to
start spans does not create new spans but returns, which frees up
overheads such as computational costs (e.g., allocating a new object,
attaching a reference, reading from a performance timer, and updat-
ing the thread-local state), network costs (e.g., emitting the span),
and storage costs (e.g., persisting the span record) for the disabled



spans. In contrast to the alternatives of tail-based sampling (Log2)
or conditional checks using filesystem (VAIF), our implementation
uses an in-memory sampling policy to make sampling decisions
based on accumulated beliefs before creating spans, resulting in
significantly lower overhead (as shown in the evaluation).

The main output of Astraea consists of distributed traces that
contain vital spans for explaining performance variations. When
developers use the tracing UI to address issues, they will only
see crucial spans that explain the current variations. Additionally,
Astraea reports the ranking of spans based on their usefulness, the
most problematic spans, confidence levels (such as the probability
that a span is vital), and tags that are correlated with latency.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of Astraea in three parts. First,
we assess its accuracy and trace size reduction by testing it on
two benchmark distributed cloud applications (Social Network and
Train Ticket), deployed on CloudLab and NERC to demonstrate the
versatility and practicality of our approach. Second, we conduct a
comparative analysis between Astraea, Log2, and VAIF, illustrating
how Astraea outperforms them in various metrics. Third, we perform
sensitivity analysis, examining how Astraea’s performance varies in
response to internal parameters such as epsilon and percentile cutoff.

A. Experimental apparatus

Benchmark applications & datasets. We use three distributed
cloud applications and a trace dataset acquired from a large-
scale Internet application to evaluate Astraea. Social Network
is a broadcast-style Social Network, implemented with 36
microservices, including databases, caches, application logic, and
a frontend Nginx web server, communicating with each other via
Thrift RPCs. The application is instrumented with the Jaeger-CPP
client [45]. Train Ticket is a publicly available booking system,
implemented with 41 microservices that communicate via REST
APIs. The application uses Opentracing java library [46] that
automatically instruments the Spring stack by recording each web
request/response via Jaeger-Java client [47]. Media implements
an end-to-end service for browsing movie information, reviewing,
renting, and streaming movies. The Media application consists of
38 services, and they are instrumented with Jaeger-CPP client.

Comparison baselines. We compare our proposed system to two
automated techniques that selectively enable the instrumentation
required for performance diagnosis. Log2 [28] is an automated
logging mechanism to decide ‘whether to log’ in such a way
that the logging overhead is constrained within the budget while
maximizing logging effectiveness. VAIF [19] is an automated
instrumentation framework that integrates distributed tracing with
control logic to dynamically enable the necessary instrumentation
for identifying performance issues. During an offline profiling
phase, VAIF maps out all possible execution paths of requests,
which are referred to as the constructed search space.

Infrastructure setup. We performed experiments on both VMs
(CloudLab) and Containers (NERC) to demonstrate practicality
of our approach. Our CloudLab cluster comprised of four nodes,
all running Ubuntu 18.04 with Linux 4.15,8 CPU cores (Intel(R)

Xeon(R) E5-2640), 64 GB of memory, and a 1 Gbps network
connection. We deployed the aforementioned applications separately
using a YAML configuration file that defines a set of services and
their dependencies (Docker version 23.0.2).

On NERC, we deployed our services on OpenShift. Each service
had by default 1 pod with 1 CPU and 512 MB RAM. The Social
Network app spanned across 32 pods, and the Train Ticket app
was deployed on 97 pods. We deployed Jaeger to collect spans,
and Astraea utilized it to obtain traces and spans. Astraea published
its span sampling dictionary to a bucket in NERC object store. All
tracing agents in all pods synced this dictionary every 5 seconds.
We used hey [48] and wrk2 [49] workload generators, to send
requests to applications with various concurrent workers (between
5-25) and req/s (between 20-100).

To evaluate accuracy we introduced various types of performance
degradations to randomly chosen operations or services [2], [3].
We selected a span in a service randomly to inject the delay. We
sampled the delay value from a Gaussian distribution with a mean
µ of (10 ms, 50 ms, etc.) and a standard deviation σ of (1 ms, 2 ms,
etc.). Controlling µ and σ served as a control knob for the intensity
of the variance injected. Additionally, we used Pumba [50], a chaos
testing command-line tool for Docker containers, that uses CPU
and memory stressors of stress-ng [51], resulting in delays in the
upstream operations of congested containers.

Since we knew which span had the delay injected, we could
measure if Astraea was able to correctly capture it.

B. Astraea validation

We first validate Astraea’s ability to correctly localize problematic
operations and steer tracing toward them. We did this experiment
on CloudLab and NERC.

Fig. 6a reports the sampling probability of faulty spans, which
capture problematic operations from 20 different runs per applica-
tion. Astraea maximizes the sampling probability of faulty spans in
all applications (above 85% on average). We define Coverage, as the
average sampling probability of the faulty span for the experiment.

Fig. 6b presents whether top-k spans (with the maximum
sampling probabilities in Astraea) capture the faulty spans. Astraea
achieves 92% Top-5 accuracy on average. The accuracy is greater
on CloudLab, as there is less overall interference, whereas, since
NERC is a shared environment and has more variations inherrently,
Top-1 accuracy takes a hit, but Top-3 and Top-5 accuracy are still
high. Accuracy is slightly higher for Train Ticket as traces include a
larger number of repeated spans and sequential executions, enabling
Astraea to learn faster. Fig. 6c demonstrates the fraction of traces
that Astraea uses with respect to the Stock Jaeger implementation,
where all spans are enabled all the time whereas Astraea attaches
a probability to each span, lowering its contribution to average trace
size. We find that Astraea has around 30% as the average span
sampling probability across all spans.

C. Comparative analysis

We compare Astraea with VAIF and Log2. We run VAIF with de-
fault parameters [19]. Log2 requires a budget parameter [28], which
we set equal to the average number of spans enabled by Astraea. We



(a) Sampling of faulty span (b) Accuracy of top-k spans (w/ highest sampling prob.) (c) Trace size comparison with Stock Jaeger

Fig. 6: Astraea’s accuracy and reduction in trace sizes. Astraea maximizes the sampling probability of faulty spans (where problem is
injected) to above 85% confidence level on average, enabling only∼29% of all available spans cumulatively.

(a) Coverage of faulty spans in traces (b) Trace size comparison

(c) Span sampling overhead (CPP) (d) Span sampling overhead (Java)

Fig. 7: Comparison of Astraea with Log2 and VAIF in a controlled
experiment. Astraea’s bandit-based statistical approach outperforms
baselines in terms of coverage of faulty spans while enabling fewer
spans cumulatively. Astraea’s sampling decisions are made before
creating spans using an in-memory sampling policy data structure,
incurring significantly lower latency overheads than baselines.

conducted this experiment only on CloudLab for a fair comparison,
as VAIF and Log2 were both originally reported on VMs.
Accuracy. Fig. 7a and 7b summarize the results from 20 runs per
application. Astraea achieves higher coverage of faulty spans while
reducing larger fraction of traces. Among the three systems, Log2

is the least performing. This result stems from lacking the causal
context provided in distributed tracing. Problems in child spans
propagate to the parents, misleading Log2. VAIF achieves higher
accuracy than Log2 as it leverages the causal context. Astraea
surpasses VAIF by making more accurate decisions, leveraging
the statistical rigor offered by the Bayesian framework. VAIF’s
effectiveness decreases in applications that exhibit high concurrency
(Social Network and Media). It concentrates solely on critical paths,
relying on the most frequent path learned offline, which hinders
its ability to detect issues in less frequent paths.
Effort. A key difference lies in practicality. First, VAIF requires time-
consuming offline phases to memorize all execution paths across the
application. Astraea instead relies on live data to learn and make sta-
tistically robust decisions in an online manner. Second, Log2 incurs
prolonged diagnosis times. Log2 falls short in ranking problematic
operations as it lacks the causal context provided by tracing.

Overhead. We next compare Astraea’s overhead with VAIF and
Log2. Both VAIF and Astraea selectively enable or disable spans,
requiring a check embedded in tracing clients before creating new
spans. VAIF’s sampling decisions are conducted in-band using the
filesystem. Log2 works in a tail-based manner and decides whether
to keep or discard the instrumentation after it is created. Figure 7d
shows the measurements for Java (Train Ticket) and Figure 7c for
CPP (Social Network and Media) implementations. On average,
Astraea incurs 1.6 and 5.7 microseconds overhead per span decision
in CPP and Java implementations, respectively. In contrast, VAIF
incurs 8x and 14x, and Log2 incurs 2.6x and 24x more overhead
in CPP and Java, respectively. We additionally verify that Astraea’s
overhead on end-to-end latency in all applications is less than 1.5%
on average, 6x and 7x lower than VAIF and Log2.

D. Sensitivity analysis

Astraea has two internal parameters (percentile threshold and
epsilon exploration rate). Based on empirical evaluations, we demon-
strate the impact of these parameters on Astraea’s performance. We
conducted these experiments for different levels of variance. We
observed that as we increase the standard deviation (σ), Astraea
is able to correctly identify the problematic span. However, when
(σ) is very small, Astraea misses it. Yet, these minimal variations
are insignificant and are not major contributors of performance
variations of the application.
Percentile-based elimination: Astraea focuses on steering tracing
toward a vital set of spans (§III-B). Percentile here determines
the percentage of spans that Astraea will aim to reduce. So a 90
percentile value means the sampling probability of 90/100 spans
being dropped. Fig. 8a and 8b summarize results for various
percentile levels. Higher percentile levels translate into a higher
reduction in trace sizes by Astraea at the expense of lower accuracy
as problems with low variance might not be detected.
Exploration rate: Astraea can adapt to changing sources of
variations on-the-fly using ϵ-exploration (§III-B). Figure 8c shows
Astraea’s accuracy for various epsilon values. ϵ-exploration is
also the least amount sampling can get for any span, i.e., ϵ = 5
means, Astraea will not lower sampling probability of any span
below 5. Figure 8d presents the reduction in trace sizes. Higher
epsilon values translate into lower savings. We choose the default
exploration rate as 5%, and observe that Astraea can confidently
steer tracing toward new problems with this rate value.



Case Description App / API Utility Samples Savings

1. Implementa-
tion bug

Redis update portion of the WriteHomeTimeline function causing slow down (i.e.,
no batched Redis query with multiple keys)

SN / CP ∼57% ∼450

∼89%2. Network delay NGINX web server experiences latency variation when accessing Compose service SN / CP ∼12% ∼600
3. Resource
throttling

Ticketinfo query API experiences delays before calling downstream service (i.e.,
overloaded downstream service)

TT / QI ∼41% ∼550 ∼83%

4. Implementa-
tion bug

UploadRating operation in Rating service experiences delay after calling downstream
services (i.e., unneccesarily waiting async operations)

Media / CR ∼25% ∼500

∼86%5. Incorrect
instrumentation

MongoFindUser span within UserReview service shows high response times (i.e.,
span.finish() is never called)

Media / CR ∼12% ∼700

6. Implementa-
tion bug

ReadUserTimeline operation shows high response time variation (i.e., Case 9 in [37]) SN / RUT ∼65% ∼200

∼72%7. Network delay NGINX experiences delays when accessing UserTimeline service (i.e., Case 1 in
[37])

SN / RUT ∼25% ∼250

8. Deployment Canary version of the UniqueId service shows high response times Media / CR ∼33% ∼300 ∼84%

TABLE I: Performance variations localized by Astraea. We report the case description, utility, # of samples for 90% confidence, and
savings (reduction in traces compared to Stock Jaeger tracing) measures on applications SN (Social Network), TT (Train Ticket) and
APIs CP (ComposePost), QI (QueryInfo), CR (ComposeReview), and RUT (ReadUserTimeline).

(a) Accuracy for various percentiles (b) Trace sizes for various percentiles

(c) Accuracy for various ϵ (%) (d) Trace sizes for various ϵ (%)

Fig. 8: Sensitivity analysis on Train Ticket Application. (a-b)
Higher percentile thresholds may allow a higher reduction in trace
sizes; however, may decrease accuracy. (c-d) Increasing epsilon
exploration rate lowers size reduction in traces.

V. CASE STUDIES

This section demonstrates the efficacy of Astraea in performance
diagnosis. We present eight case studies of how we used Astraea to
diagnose performance variations on Social Network, Train Ticket,
and Media applications. We run Astraea with all applications and
observe its interface that reports sources of eight performance issues
found with 90% confidence, which include implementation bugs,
resource-related delays, network delays, deployment, and incorrect
instrumentation (Table I). Seven cases were actually present in the

applications and discovered by Astraea. Only one (Case 8) was
injected to show how Astraea can effectively pinpoint performance
variations due to deployments. We discuss two of the cases below.
Case 1: We run Astraea in the Social Network application with no
injected anomaly. We find that resulting traces are 89% smaller than
Stock Jaeger. Within 450 sampled requests, Astraea concludes some
performance problems with 90% confidence. The most vital span
corresponds to Redis update portion of the WRITEHOMETIMELINE
function. The implementation sends one update request for each key
as Redis++ currently does not support a pipeline with multiple keys.
This operation incurs high latency variation and corresponds to 57%
of the total utility observed in traces. We verify this problem via
code documentation (authors have a ToDo note on this issue [36]).
Case 8: We demonstrate how Astraea helps diagnose an issue caused
by the deployment of a new version. We run Astraea with the Media
application; 5 minutes in, we deploy a canary version of UNIQUE-ID
service. The canary code is modified to introduce random latency
spikes, following a normal distribution, and encode the version
information as a tag of the corresponding span. Astraea localizes
the performance issue and also infers that the version tag in the span
is significantly correlated with the end-to-end latency (r = 0.83).

VI. CONCLUSION

We presented Astraea, an online, probabilistic tracing system
designed to combat the cost vs. utility of the “spans” trade-off. Our
key contribution was formulating this tradeoff as an exploration
vs. exploitation problem. Unlike prior work, Astraea embodies a
statistically rigorous, online approach to accurately and adaptively
localize and trace the sources of varying performance variations. Fur-
ther, we demonstrated Astraea’s practicality, accuracy, and resource
efficiency through extensive experiments. We showed that Astraea
can localize 92 % of the performance variations using only 25% of
the available instrumentation in three popular distributed cloud appli-
cations (Social Network, Media, and Train Ticket), while existing ap-
proaches, Log2 and VAIF, achieve 65% and 71% accuracy, incurring
3-24x more latency overhead. As more complex services will con-
tinue to be built in the cloud, systems like Astraea can help localize
performance problems without introducing significant overheads.
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