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capacity, and carbon source identity
modulate algae-bacteria interactions by
impacting the dependence of growth on
nutrient availability.
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SUMMARY

Interactions between photosynthetic and heterotrophic microbes play a key role in global primary produc-
tion. Understanding phototroph-heterotroph interactions remains challenging because these microbes
reside in chemically complex environments. Here, we leverage a massively parallel droplet microfluidic
platform that enables us to interrogate interactions between photosynthetic algae and heterotrophic bacteria
in >100,000 communities across ~525 environmental conditions with varying pH, carbon availability, and
phosphorus availability. By developing a statistical framework to dissect interactions in this complex dataset,
we reveal that the dependence of algae-bacteria interactions on nutrient availability is strongly modulated by
pH and buffering capacity. Furthermore, we show that the chemical identity of the available organic carbon
source controls how pH, buffering capacity, and nutrient availability modulate algae-bacteria interactions.
Our study reveals the previously underappreciated role of pH in modulating phototroph-heterotroph interac-
tions and provides a framework for thinking about interactions between phototrophs and heterotrophs in

more natural contexts.

INTRODUCTION

Microbial communities occupy nearly every niche on Earth, from
animal hosts to soils and oceans. These complex consortia often
contain many interactions between members whereby one spe-
cies impacts the abundance of another. Interactions in these
communities can determine the outcome of invasions,’ meta-
bolic processes, such as carbon and nitrogen remineralization,?
or the phenotype of the host.® Crucially, however, interactions
between members of a microbial consortium depend on the envi-
ronmental context. For example, changes in pH, nutrient avail-
ability, temperature, or toxic metabolic byproducts can strongly
modulate interactions between members of a collective.* As
a result, an important question in ecology is understanding how
environmental parameters impact these interactions.
Understanding how environmental parameters influence
ecological interactions between pairs of taxa in communities is
challenging. The physicochemical environment in natural micro-
bial communities is high dimensional in the sense that there are
many possible parameters that change in time and space and
can impact the outcome of an interaction.® This high dimension-
ality means that experimentally interrogating how interactions
depend on the environment is a daunting task. For example, to
measure the growth of a single strain across all possible combi-

nations of four different environmental variables at 10 levels for
each variable (for example, pH, carbon, nitrogen, and phos-
phorus availability) would require 10* experiments. To determine
interactions between just two taxa would require measuring their
growth alone and in coculture in each one of these conditions—
meaning that 30,000 measurements would be required, a huge
undertaking.

Here, we address this problem using a massively parallelized
droplet microfiuidic platform’® to interrogate interactions be-
tween a photosynthetic alga (phototroph) and a heterotrophic
bacterium. Phototrophs form the basis of primary production in
many environments, and heterotrophic bacteria play an impor-
tant role in the growth of phototrophic populations both in natural
ecosystems and engineered bioreactors.'""'? One of the key fea-
tures of phototroph-heterotroph interactions is that they occur
between distinct metabolic strategies. Phototrophs are capable
of fixing inorganic carbon using light, whereas heterotrophic or-
ganisms require chemical energy, often in the form of reduced
carbon, to generate energy and biomass. Phototrophs excrete
some fraction of the carbon they fix, and this provides the chem-
ical substrates upon which heterotrophic microbes depend. As a
result, prior work on phototroph-heterotroph interactions has
often focused on the exchange of organic carbon between these
two metabolic strategies.'"'?

Cell Systems 15, 1-16, September 18, 2024 © 2024 Elsevier Inc. 1
All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:seppe.kuehn@gmail.com
https://doi.org/10.1016/j.cels.2024.08.002

https://doi.org/10.1016/j.cels.2024.08.002

Please cite this article in press as: Gopalakrishnappa et al., Environmental modulators of algae-bacteria interactions at scale, Cell Systems (2024),

¢ CellPress

Although the exchange of organic carbon between photo-
trophs and heterotrophs is important, other environmental fac-
tors also play a role and are less well studied. For example, in
some nutrient-rich environments, such as estuaries or coastal
ecosystems, organic carbon is available to heterotrophs through
the decay of organic matter rather than the direct excretion of
carbon from phototrophs.’® In addition, interactions between
phototrophs and heterotrophs depend on a host of other envi-
ronmental factors. For example, the dynamics of phototrophs
in association with heterotrophs can depend on the availability
of exogenously supplied carbon, nitrogen, and phosphorus, or
on temperature, light, pH, and small molecule exchanges.'**
Therefore, it appears critical to understand how environmental
factors affect interactions in these communities, even when car-
bon exchange is not the central factor. Most, but not all,'® previ-
ous studies in laboratory model systems have focused on car-
bon exchange,'"?*" leaving a gap in knowledge. Addressing
this gap comes with the challenges posed above of measuring
interactions at a large enough scale to assess the role of multiple
environmental factors. Thus, although carbon exchange be-
tween phototrophs and heterotrophs is important, there are
also contexts where carbon for bacterial growth is supplied
exogenously. In addition, nutrients and environmental variables
beyond carbon can play a defining role in the outcome of photo-
troph-heterotroph interactions, but the role of these variables is
less well studied.

To address this problem, we interrogated phototroph-hetero-
troph interactions in a context where carbon exchange does not
play a dominant role in the growth and proliferation of the com-
munity, but the role of other environmental factors can be readily
assayed at a massive scale. To accomplish this, we used a mi-
crofluidic platform that leverages nanoliter droplets, with con-
tents barcoded using fluorescent dyes, to measure abundance
dynamics in >20,000 cultures in a single experiment. Using this
approach, we measured the interaction between the model
alga Chlamydomonas reinhardtii (C. reinhardtii) and the bacte-
rium Escherichia coli (E. coli) in ~525 environmental conditions
in >10 replicates each for both monoculture and coculture. Using
this platform, we quantified the dynamics of algal and bacterial
growth over a period of 4 days. On this timescale, the excretion
of organic carbon by the alga was small’®; therefore, we pro-
vided exogenous organic carbon to permit bacterial growth
to occur.

Within the nanoliter droplets, we measured algae-bacteria
abundance dynamics via microscopy across a range of organic
carbon sources and concentrations, phosphorus concentra-
tions, pH, and buffering capacities. The resulting dataset proved
amenable to statistical analysis, where regression revealed the
key environmental drivers of algae-bacteria interactions.
Although previous studies suggest that nutrient availability is
the key driver of interactions between phototrophs and hetero-
trophs, we find that pH and buffering capacity qualitatively alter
how the availability of nutrients impacts the interaction between
algae and bacteria. Thus, we show that across a large range of
environmental conditions, pH and the ability of the environment
to resist changes in pH (buffering capacity) act as important
regulators of the interaction between phototrophs and hetero-
trophs. Finally, the role of the environmental factors—pH,
buffering capacity, and nutrient availability—in regulating inter-
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actions is modified by the chemical identity of exogenously avail-
able organic carbon. These results suggest that the chemical
composition of organic carbon and pH interact to qualitatively
determine the outcome of algae-bacteria interactions.

RESULTS

The model system and environmental conditions

The microbial community under study comprises the alga,
C. reinhardtii, commonly found in soils and freshwater,”® as the
phototroph, and the host-associated and soil-dwelling bacte-
rium,*®" E. coli, as the heterotroph. We note that these mi-
crobes are not known to coexist in the wild; therefore, we expect
no strong co-evolutionary history between these organisms.
Despite this, these two species represent the essential meta-
bolic strategies of phototrophs and heterotrophs. The alga fixes
CO,, and the bacterium utilizes complex carbon sources for en-
ergy and biomass. In addition, given that the droplet microfluidic
platform is not readily amenable to longer-term growth assays
(>5 days), the relatively rapid growth of the alga (doubling time
8-12 h) enables us to use the platform to interrogate the interac-
tion between these two taxa. Therefore, although these two spe-
cies do not represent an interacting pair of wild microbes, they
are representative of the orthogonal metabolic strategies of pho-
totrophs and heterotrophs while being amenable to measure-
ments at scale. Thus, our intention here is to utilize these taxa
as representatives of these metabolic strategies while being
cognizant that the insights we gain here will need further valida-
tion in other ecological contexts. Despite this limitation, these
two microbes have been widely used in studies as model photo-
trophs and heterotrophs due to their thorough biological charac-
terization, ease of cultivation, and accessibility to molecular
techniques and quantitative measurements. Previous studies
of closed microbial communities, including these two microbes,
in addition to a ciliate, have revealed strongly deterministic dy-
namics on timescales of months and rich spatiotemporal and
phenotypic processes.®>*® Another study demonstrated the
presence of higher-order interactions between this alga and
bacteria mediated by a ciliate." Thus, the interactions between
these two model organisms constitute a tractable test bed for
understanding phototroph-heterotroph interactions.

In this study, interactions between the algae, C. reinhardtii,
and the bacteria, E. coli were assayed in modified Taub media
(a freshwater mimic media) that varied in five environmental fac-
tors—initial pH, buffering capacity, phosphorus concentration,
carbon concentration, and carbon source identity. The chosen
environmental factors are among those that significantly
contribute to chemical variation across natural environ-
ments.>**> Although resource competition and exchange are
identified as key players in driving phototroph-heterotroph
interactions,''+12 167192236 geyeral studies have reported a
strong correlation between the compositions of microbial com-
munities and environmental factors, such as pH and concentra-
tion of nutrients—carbon, nitrogen, and phosphorus.®”*° Addi-
tionally, it is well known that the identity of the carbon source
affects E. coli metabolism via impacting growth rate and the na-
ture of the metabolic products, which could potentially lead to
different interactions with C. reinhardtii."°*? Therefore, we
reasoned that a multitude of abiotic factors, such as pH,
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Figure 1. Dependence of algae-bacteria interactions on environ-
mental factors

lllustration of our hypothesis that diverse interactions between algae and
bacteria are altered by a multitude of chemical factors in the environments,
such as concentration of nutrients, pH, buffering capacity, light level, and
temperature.

buffering capacity, light level, including nutrient concentration,
and type, may contribute to phototroph-heterotroph interactions
(Figure 1). Hence, we chose the above five factors. The values of
each of the environmental factors were chosen to be in biologi-
cally plausible ranges: 6.1-7.5 for initial pH, ~0-3.5 mM for buff-
ering capacity, 0.01-4 mM for phosphorus concentration, 2—
10 mM (carbon atoms) for the carbon concentration (STAR
Methods). We chose five different carbon sources (glycerol,
glucose, galactose, pyruvate, and acetate) to assay both gluco-
neogenic and glycolytic carbon sources, as well as a carbon
source that is known to support mixotrophic growth of the alga
(acetate). For each of these carbon sources, the algae-bacteria
interactions were assayed in a total of ~105 environmental con-
ditions for monoculture of each taxon and coculture of both.

High-dimensional characterization of phototroph-
heterotroph interactions

In this study, we used droplet-based microfluidic chip (“kChip”
with k = 2) to rapidly assay the phototroph-heterotroph interac-
tions in hundreds of environmental conditions in parallel.
The kChip platform has previously been utilized for drug discov-
ery, pathogen detection, and the study of bacterial interac-
tions.'%*3~*° Briefly, the experiment proceeds by first generating
a library of environmental conditions that vary in the initial pH,
buffering capacity, concentration of phosphorus, and concentra-
tion of carbon of achemically defined minimal medium (Figure 2A;
STAR Methods). Initial pH refers to the starting pH of the environ-
ment, which we varied by using buffers and titration. To vary the
buffering capacity of the environment, we added different con-
centrations of organic buffers (Tris or MOPS) that cannot be
used as nutrient sources by algae or bacteria (Figure S21). We flu-
orescently barcoded each environmental condition using three
fluorescent dyes in low concentrations and added algae and bac-
teria independently. Using these precultures, a commercial
droplet generator was used to create thousands of nanoliter wa-
ter-in-oil droplets containing algae or bacteria in each of the pre-
defined nutrient conditions. These droplets were then pooled and
loaded into a kChip microfluidic chip platform, which contains
~25,000 microwells, each of which randomly groups two drop-
lets containing microbes in predefined media conditions, result-
ing in the formation of all possible combinations of communities

¢ CellP’ress

(monocultures and cocultures) and environmental conditions
(Figure 2A; STAR Methods). The chip is then imaged to identify
the fluorescent dye barcodes and thereby infer the environmental
conditions present in each microwell (STAR Methods). Subse-
quently, the droplets in each microwell were merged via exposure
to an alternating electric field, leading to the formation of the pho-
totroph-heterotroph communities in hundreds of environmental
conditions. Thereafter, the kChip was incubated at 30°C under
light (68.5 pmol m—2s~") to allow for growth. The chip was then
imaged at regular intervals (approximately 0, 12, 21, 45, and
68 h) to track the growth of the microbes using chlorophyll fluo-
rescence for C. reinhardtii and genetically encoded GFP fluores-
cence for E. coli (Figure 2B; STAR Methods). Algal and bacterial
abundances over time were determined by analyzing the micro-
scopy images, generating microbial growth curves, and esti-
mating growth as the difference between the initial abundances
and the final abundances at the end of the experiment. We per-
formed this analysis for both the phototroph and heterotroph in
>100,000 microbial communities constructed in the kChip exper-
iments for all the carbon sources (Figure 2C; STAR Methods and
Dataset 1). We quantified total growth, over the 4 days of the
experiment rather than growth rates because the low temporal
resolution of our measurement seriously limited our ability to
quantify growth rates, especially for bacteria which often satu-
rated before the first time point. We note that the abundance of
the microbes may not be saturated at the end of the experiment
in some of the environmental conditions. This is due to the dura-
tion of the experiment being limited by small droplet volumes and
evaporation losses. The experiments on the kChip platform were
found to be largely reproducible (Figure S20).

Previous studies utilizing this platform studied bacteria. There-
fore, we modified existing protocols to make the measurement
compatible with algae. Specifically, we added the functionality
for imaging chlorophyll fluorescence to track the growth of
C. reinhardtii and devised a computational pipeline to remove
the bleed-through between chlorophyll fluorescence and one
of the barcoding dyes (STAR Methods). This expanded the num-
ber of fluorophores that can be probed on the kChip from four
to five.

Patterns in interactions between algae and bacteria
To begin, we compared the growth of both algae and bacteria in
cocultures with their growth in monocultures. To visualize this,
we plotted the growth in cocultures against the growth in mono-
cultures. The dashed lines indicate equal growth in coculture and
monoculture. Points below the dashed line indicate competitive
or inhibitory interactions, and points above the dashed line
indicate facilitation. The bacterial growth in cocultures was
lower than their respective growth in monocultures in all the
environmental conditions, suggesting inhibition of E. coli by
C. reinhardtii (Figures 3A and S8). Additionally, the E. coli cells
show greater aggregation in monocultures than in cocultures
(Figure S6). These results are consistent with a previous study
that showed that introducing bacteria into algal cultures results
in the inhibition of bacterial growth and the dispersal of bacterial
aggregates.’

C. reinhardtii, on the other hand, has similar growth in cocul-
tures and monocultures in most cases, indicating a weak effect
of E. coli on the growth of C. reinhardtii (Figures 3B and S9).
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Figure 2. A high-throughput droplet platform for measuring algae-bacteria growth in hundreds of environments

(A) Setting up the microfluidic chip. Environments (media conditions) varying in the factors—initial pH, buffering capacity, phosphorus concentration, and carbon
concentration—are prepared and barcoded using three fluorescent dyes (STAR Methods). After adding the bacteria (brown) and algae (green) independently to
each barcoded media, nanoliter droplets of each of the microbes in the barcoded environments are generated. The generated droplets are pooled together and
loaded on the microfluidic chip, which randomly groups two droplets in each of its microwells. The chip is then imaged for fluorescent barcodes using a widefield
fluorescence microscope to infer the values of the environmental factors in the microwells viaimage processing (STAR Methods). Following exposure of the chip
to an alternating electric field, droplets in the microwells merge to form replicates of bacterial monocultures, algal monocultures, and algae-bacteria cocultures in
all combinations of the environments that were present in the initial droplets. The chip is then incubated at 30°C under light (68.5 umol m=2s~1).

(B) Microscopy images of a single microwell showing the growth of algae and bacteria over time. The GFP fluorescence image representing the bacteria (in brown)
and the chlorophyll fluorescence image representing the algae (in green) are overlayed in these images. The first image shows the bacteria and the algae in the
separate compartments of the well, prior to the merging of the droplets. The later images show the increase in the abundance of the algae and bacteria at 12, 21,
and 45 h.

(C) Example growth curves of algae and bacteria in monoculture and coculture in an environmental condition. The images of the chip are analyzed to infer the
abundances of the microbes in the microwells over time (STAR Methods). The growth Y of algae and bacteria are then obtained by estimating the increase in their

respective abundances at 68 h from their abundances at 0 h (black arrow labeled “GROWTH (Y)” right panel).

There do exist a few environments where C. reinhardtii is sup-
pressed or enhanced in coculture relative to monoculture (points
lying considerably below or above the dashed line in Figure 3B),
indicating an impact of the presence of the bacteria.

Further, we observe that interactions tend to be inhibitory or
competitive in conditions where monoculture growth is substan-
tial and facilitative when monoculture yields are low. To see this
examine Figure 3B (and Figure S9) where algal growth tends to
lie below the dashed line at high values along the x axis and
the opposite at low values. This trend is conserved across all
environmental conditions. We observe a similar trend for the
bacteria. Although E. coliis inhibited by algae in all conditions as-
sayed (all points are below the dashed line, Figure 3A), the inhi-
bition is stronger at high values of monoculture growth and
weaker at low values of monoculture growth. If higher values of
monoculture growth are interpreted as indicative of more
permissive environments, this pattern supports the stress-
gradient hypothesis (SGH), which posits that interactions should
tend to be competitive in permissive environments and facilita-
tive in stressful environments (see discussion).

4 Cell Systems 15, 1-16, September 18, 2024

Finally, despite the overall reproducibility of our kChip experi-
ments (Figure S20), we observe higher variability in E. coli growth
than in C. reinhardtii growth. Detailed analyses at the single-
droplet level reveal this variability to be associated with the sto-
chasticity in the initial cell densities in the kChip wells (STAR
Methods and Figure S19).

Algae-bacteria interactions show complex dependence
on the environmental factors

Next, we sought to understand the dependence of algae-bacte-
ria interactions on environmental factors. To visualize this, we
plotted the growth in cocultures against the growth in monocul-
tures, color-coding the data for each of the four environmental
variables considered—initial pH, buffering capacity, and con-
centration of carbon and phosphorus (Figures 3, S8, and S9).
These plots show no distinct grouping of the data based on
any of the four environmental factors and indicate a complex
dependence of algae-bacteria interactions on environmental
factors. For example, in the case of E. coli, whereas low carbon
concentration (the light green points in Figure 3A, bottom right)
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Figure 3. Complex dependence of algae-bacteria interactions on environmental factors

(A) Panels show bacterial growth in monoculture (x axis) and coculture (y axis). Each point indicates median growth (Figure 2C) of E. coli in coculture and
monoculture computed across replicates of each environmental condition. Error bars indicate the standard error of the mean growth. The median number of
replicates per environmental condition ranges from 35-70 for the different culture conditions. The dashed line indicates equal growth in monoculture and

(legend continued on next page)
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sets the growth in monocultures to low values, the variation in
other environmental factors (pH, buffering capacity) causes the
coculture growth to span from low to high values. There also
exist cases where a single environmental factor largely deter-
mines monoculture and coculture growth. For example, low buff-
ering capacity, not initial pH, or nutrient availability, appears to
give rise to the death of C. reinhardtii (light green points have
growth less than zero) (Figure 3B, top right).

When we compute correlations between the environmental
factors and growth, we see significant statistical relationships
between multiple factors and the bacterial or algal growth (Fig-
ure S7) across carbon sources. These correlations reinforce
the idea that there is a complex interplay between nutrient con-
centration, pH, buffering capacity, and the identity of the carbon
source in determining algae-bacteria interactions.

One important observation from Figure 3 is that initial pH and
buffering capacity are shown to affect algae-bacteria interac-
tions. This result agrees with surveys of communities in the
wild, which show that pH is an important environmental factor
in determining community structure.®”’~>° By contrast, most pre-
vious experimental interrogations of interactions between photo-
trophs and heterotrophs focus on the role of nutrient concentra-
tion and competition.'>'"~'92° We expect that pH and buffering
capacity are likely affecting interactions by influencing physi-
ology, including nutrient uptake rates.

Next, we sought a framework to quantify the interaction be-
tween algae and bacteria in our experiment. We considered con-
sumer-resource models to quantify competition for carbon,
nitrogen, and phosphorus. However, the interactions in our com-
munity cannot be described by a model that considers only
these nutrients. For example, the overall inhibition of E. coli
does not depend in a simple way on the concentration of nutri-
ents. Similarly, variations in pH are not naturally modeled in a
consumer-resource framework. Hence, a simple consumer-
resource model approach is not suitable for dissecting the inter-
actions in our data. We, therefore, took a statistical approach us-
ing simple linear regressions to model interactions as a function
of the environmental factors.

Quantifying algae-bacteria interactions statistically

Our goal is to quantify how the presence of algae or bacteria im-
pacts the growth of the other species across all the environ-
mental conditions tested. To do this, we developed a simple
framework for estimating interactions in the algae-bacteria com-
munities via regression analyses. Specifically, we used a linear
regression formalism to predict algal or bacterial growth (Fig-
ure 2C) using environmental factors (pH, buffering capacity,
phosphorus concentration, and carbon concentration) as inde-
pendent variables. We designed a regression approach based
on Monod'’s growth law (STAR Methods), which allowed us to
estimate the role of environmental factors and the presence or

Cell Systems

absence of the other species on growth while retaining a high
level of interpretability. We performed independent regressions
to predict algal and bacterial growth across all conditions.

Our regression approach can be explained mathematically us-
ing a simple example. To do this, first consider communities of
algae and bacteria where the total growth is affected by a single
environmental factor (X) and by the presence of the other species
via an interaction. Our regression was designed to measure the
change in the growth of the target species (algae or bacteria) in
response to changes in X. In this scenario, the model for predict-
ing the growth of E. coli in monoculture and coculture takes the
following form:

yee = ( £o 4 /55?,) +x( £o 4 Iﬁff,) (Equation 1)
where Y£¢ is the growth of E. coli and the ﬁf‘; are regression co-
efficients. / is a variable that indicates the presence (I = 1) or
absence (I = 0) of C. reinhardtii. The coefficient 85, represents
the change in growth in monoculture per unit change in X and
(ﬁﬁfM+ﬁ§3) represents the change in growth in coculture per
unit change in X (Figure 4A). Similarly, ,8’15‘7\,, is the growth at
X = 0 in monoculture and 55, +1655 is the growth at X = 0 in
coculture. Hence, b’f;_c,, estimates the average change in growth
per unit X in coculture relative to monoculture (Figure 4A, right).
In other words, B)E(C, represents the effect of C. reinhardtii on
E. coli as X increases in coculture. A positive coefficient would
represent an enhancement of E. coli growth by C. reinhardtii as
X increases (Figure 4B left). Similarly, a negative coefficient
would represent suppression of E. coli growth by C. reinhardtii
as X increases (Figure 4B, right). An identical regression is
used to estimate the impact of E. coli on C. reinhardtii growth.

We extended the above model to include the effect of multiple
environmental factors in determining the growth of both species
(STAR Methods). For our dataset comprising of four environ-
mental factors—initial pH (pH), buffering capacity (BC), phos-
phorus concentration ([P]), and carbon concentration ([C]), the
model includes the following terms: [P], [C], pH|[P],pH[C],BC[P],
BC|C], [P][C]. For each term, we estimated a coefficient for
monoculture and interaction as described above. For simplicity,
we refer to coefficients of features without the indicator variable /
as monoculture coefficients and coefficients of features with the
indicator variable as interaction coefficients.

We did not include linear terms in pH or BC in our model
because biologically pH alone does not generate biomass but
instead modulates the ability of cells to grow on the available nu-
trients. Thus, we included only interaction effects between nutri-
ents and pH or BC. Therefore, the coefficient ﬁgf,[P] represents
the susceptibility of growth to phosphorus concentration modu-
lated by pH. The feature [P][C] was included to capture interac-
tions between nutrients. Additionally, our model, being simple,
cannot capture nonlinearities in the growth as a function of a

coculture. Note the fact that all points lie below this line, indicating the pervasive inhibition of bacteria by algae. The data in each panel are the same, but the
colorbar represents each of the four environmental factors —initial pH (top left), buffering capacity (top right), phosphorus concentration (bottom left), and carbon
concentration (bottom right). The colorbar for phosphorus is logarithmic. The carbon source is glycerol. See Figures S8 and S9 for the data in other carbon

sources.

(B) Identical plots as in (A) but for algal growth in monoculture and coculture. The fact that most data lie near the dashed line indicates overall weaker impacts on
algal growth by bacteria. Negative values of growth correspond to death where the number of cells detected declines from the beginning to the end of the

experiment.
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Figure 4. Quantifying algae-bacteria interactions via regression

(A) Formulation of the regression model for predicting growth from environmental conditions, here using E. coli as an example. Y is the growth of E. coli in
monocultures and cocultures and X is an environmental factor that determines the growth. The indicator variable / is set to 0 for growth in monoculture and 1 for
growth in coculture. The coefficient ﬁ represents the change in growth in monoculture with X and is referred to as a monoculture coefficient. The coefficient

(legend continued on next page)
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nutrient concentration. Despite these limitations, this statistical
approach allows us to achieve a unified and interpretable picture
of interactions between these microbes across a wide range of
environmental conditions.

Finally, to account for the fact that algae globally inhibit bacte-
rial growth in our experiment, we standardize the growth of both
E. coli and C. reinhardltii prior to performing the regression above
(STAR Methods). Thus, our regressions describe variation in
bacterial growth after removing the effect of this global inhibition.
It is important to recognize that in no condition do the bacteria
actually grow better in monoculture than in coculture (Figure 3A).
To facilitate interpretation, we also standardized all the indepen-
dent variables in the regression. As a result, the regression coef-
ficients describe the relative change in growth per unit change in
each environmental factor. This standardization also allows us to
compare coefficient values for regressions performed on
different carbon sources despite variation in the growth on those
nutrients. To perform the regression, we fit the growth measured
in each well using a weighted least-square approach (STAR
Methods).

In general, we find that this model provides good predictions
of growth across environmental conditions in our experiment,
with the fits being better for some carbon sources (glucose, glyc-
erol, and acetate) than others (galactose) (Figure S10). We suc-
cessfully validated a few coefficients obtained from the regres-
sion model in microtiter plates (STAR Methods and Dataset 3;
Figure S22). Further, we note that the buffering ability of the
phosphorus source in our experiments did not significantly affect
our regression results (STAR Methods). Lastly, we found that a
more complex model, such as a decision tree regression, gives
superb fits to the data at the expense of interpretability
(Figures S15 and S16).

pH and buffering capacity modulate nutrient
dependence of algae-bacteria interactions

Using the linear regression approach outlined above, we
modeled the dependence of algal and bacterial growth on the
environmental factors for each of the five carbon sources in
monoculture and coculture. We first looked at the regression co-
efficients describing the growth of E. coli in one particular carbon
source (glycerol, Figure 5A). Of all the monoculture coefficients
(brown bars in top panel, Figure 5A) obtained from fitting
E. coli growth in glycerol, the coefficient of BC[C] is the largest,
suggesting a strong interaction of buffering capacity with carbon
concentration in determining the monoculture growth. Thus,
when BC is high, there is a substantially higher growth per unit
[C] than when BC is low. These results are consistent with the
greater acidification of the environment at lower buffering capac-
ity observed in the microtiter plate experiments (STAR Methods);
this greater acidification likely negatively impacts E. coli. There-
fore, the E. coli growth is expected to be higher at a higher buff-
ering capacity for the same carbon concentration, which is re-
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flected in the high value of the BC|C] coefficient. In addition to
BCIC], there also exist statistically significant interactions be-
tween pH and carbon concentration and buffering capacity
and phosphorus concentration, with the magnitude of the coef-
ficients of pH|C] and BC|P] being comparable or greater than the
coefficients of [P] and [C] alone. Mechanistically interpreting
each of these coefficients is beyond the scope of this work but
could be pursued via additional experiments in the droplet plat-
form or lower throughput batch cultures.

Next, among the interaction coefficients containing the factors
pH and BC (magenta bars in Figure 5A, top panel), the coeffi-
cients of pH[C], BC|P], and BC[C] are non-zero and compare
in magnitude with their respective monoculture coefficients.
This reveals that the effects of pH|C], BC|P], and BC|C], on bac-
terial growth in coculture are significantly different compared
with their effects in monoculture. We conclude from this that
the interaction between C. reinhardtii on E. coli is strongly
impacted by pH and buffering capacity. This is a central finding
of our study.

The fact that pH and buffering capacity of the environment can
strongly influence interactions is illustrated by looking at a spe-
cific example from the data (Figure 5B). Choosing a subset of
data corresponding to a specific phosphorus concentration
([P] ~1.51 mM), we compared the change in growth with carbon
concentration in monocultures and cocultures at the different pH
and buffering capacity values. The change in E. coli growth in
monoculture with carbon concentration at the different buffering
capacities shows different behavior (Figure 5B, left). Particularly,
the increase in the growth with carbon concentration is observed
to be higher in the condition with high buffering capacity (and low
pH) compared with the increase in the condition with low buff-
ering capacity (and high pH) as expected, with the trends in
the model and the data being in good agreement. Next, we
compare these results with E. coli growth in coculture. The
trends in E. coli growth with carbon concentration in coculture
is distinct from monoculture and depends on the pH and buff-
ering capacity values (Figure 5B right). The growth appreciably
declines with carbon concentration in the condition with low
pH (and high buffering capacity), whereas there is an increase
in growth with carbon concentration at high pH (and low buff-
ering capacity), with the model reasonably capturing the trend
in the data. These results agree with the positive coefficient of
pHIC] and ~0 coefficient of BC[C] obtained when the model is
evaluated for E. coli growth in coculture (sum of brown and
magenta pH|[C] and BC[C] bars in Figure 5A top panel and S13A).

In terms of interactions between E. coli and C. reinhardtii, the
result can be summarized as follows: although an enhancement
of E. coli growth is observed as carbon concentration increases
in monoculture, the effect on E. coli by C. reinhardtii in coculture
as carbon concentration increases is inhibitory at low pH and
high buffering capacity but facilitatory at high pH and low buff-
ering capacity (evidenced by the positive interaction coefficient

EfM + EC, represents the change in growth in coculture with X (shown schematically in the plot on the right). Hence, the coefficient ﬁﬁc, represents the change in
the effect of X on growth in coculture relative to monoculture. The coefficient 555 is dubbed an interaction coefficient.
(B) lllustration of enhancement and suppression of E. coli growth by C. reinhardtii as X increases. The growth of E. coli in monoculture (in brown) and coculture (in
red) vs. the environmental factor X plotted in the case of enhancement (top left) and suppression (top right) of E. coli growth by C. reinhardftii as X increases. The

C

panels on the bottom row show the corresponding regression coefficients. The monoculture coefficient ﬂﬁfM (in brown) and interaction coefficient {)’,E(_, (in magenta)
in the case of enhancement (bottom left) and suppression (bottom right) of E. coli growth by C. reinhardtii as X increases.
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Figure 5. pH and buffering capacity modulate nutrient dependence of algae-bacteria interactions

(A) The coefficients for regressions predicting algal and bacterial growth in coculture and monoculture in glycerol. The results for the other carbon sources are
shown in Figures S11 and S12. The top panel reports the monoculture coefficients ﬁ)EfM (brown bars) and the interaction coefficients 5501 (magenta bars) of the
corresponding features on the x axis obtained for the regression model predicting the growth of E. coli in monocultures and cocultures. The interaction
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of pH|C] and the negative interaction coefficient of BC|[C] ob-
tained from regressing E. coli growth; purple bars in Figure 5A,
top panel). This example illustrates that C. reinhardtii modulates
the capacity of E. coli growth on carbon in a manner that de-
pends on pH and buffering capacity of the environment.

Algal abundance dynamics also depend strongly on pH and
buffering capacity. The regression coefficients for predicting
algal growth on glycerol in monoculture and coculture are shown
in Figure 5A bottom panel. In this regression, we observe a
similar interplay between pH and buffering capacity and nutrient
concentration, i.e., the monoculture coefficients of pH[P], pH|C],
BC[P], and BC|C] (green bars in the bottom panel [Figure 5B]) are
all non-zero and statistically significant, showing the presence of
a modulation effect of pH and buffering capacity on nutrient con-
centration in determining C. reinhardtii growth in monoculture.
Here, again, the largest monoculture coefficient is for the BC[P]
term, indicating an increase in the growth of C. reinhardtii with
phosphorus concentration and buffering capacity. Although
the growth of C. reinhardtii is known to increase with phosphorus
concentration,*® we speculate that the increased phosphorus
uptake leads to increased N utilization (the N source here is
ammonium). Ammonium utilization by algae causes acidification
of the environment,*” which is known to negatively affect the
growth of C. reinharditii.*® Therefore, we reason that the environ-
ments with high buffering capacity potentially prevent this acid-
ification and hence favor increased growth of C. reinhardtii, as
reflected in the high coefficient of BC[P)].

The modulation of algal growth by bacteria also depends on
pH and buffering capacity in a fashion similar to what we observe
with bacteria. For example, the interaction coefficients of pH[C],
BCI[P] , and BCIC] (cyan bars in the bottom panel of Figure 5B)
being significant means that the impacts of E. coli on
C. reinhardtii growth is altered by an interplay between both
pH and buffering capacity and nutrient concentration. Even in
other carbon sources, the impacts of E. coli on C. reinhardltii
growth modified by both pH and buffering capacity are observed
(Figures S12 and S14).

Overall, the result that the interactions between algae and bac-
teria are impacted by pH and buffering capacity through their dif-
ferential impacts on nutrient dependence on monoculture and
coculture growth holds across carbon sources (Figures S11
and S12).

Effect of environmental factors on algae-bacteria
interactions depends on the identity of carbon source
Finally, we investigated whether the dependence of algae-bac-
teria interactions on the environmental factors—pH, buffering
capacity, phosphorus concentration, and carbon concentra-
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tion—is further modulated by the identity of the carbon source
available in the communities. Between several carbon source
pairs, we found some apparent differences in the effect of envi-
ronmental factors on algae-bacteria growth. For example, differ-
ences in several of the monoculture and interaction coefficients
(which quantify the effect of environmental factors on growth
and interactions) between glucose and galactose are clearly
observed (Figure 6A). Although the feature BC|C] has the highest
effect in predicting E. coli growth in the case of glucose, BC[P] is
the feature with the highest importance in the case of galactose.
In addition, the effect of BC|C] in predicting the E. coli growth is
the opposite between glucose and galactose. Additionally, for
E. coli, the coefficients of [P] and [C] show different patterns in
glucose and galactose, with generally negative coefficients in
glucose and coefficients of opposing sign for monoculture
and interaction coefficients in galactose. Qualitatively similar
patterns are observed in coefficients describing algal growth
(Figures S11, S12, and S17). These observations suggest that
the identity of the carbon source modulates how environmental
factors impact algae-bacteria interactions.

To interrogate these patterns further, we classified carbon
sources based on their modulation of the effect of environmental
factors on algae-bacteria growth. To do this, we computed cor-
relations between the regression coefficients (which quantify the
effect of environmental factors on growth and interactions) ob-
tained for predicting algae-bacteria growth, between all pairs
of carbon sources. We performed hierarchical clustering of the
carbon sources based on the monoculture and interaction coef-
ficients of [P}, [C], pH[P], pH|C], BC|P], BC|C], and [P][C] ob-
tained from the regressions for the carbon sources (STAR
Methods). The correlation matrix computed for the hierarchical
clustering showed that glycerol is most similar to glucose, galac-
tose is most similar to pyruvate, and acetate has no strong cor-
relation with any of the carbon sources (Figure 6B, left). There-
fore, hierarchical clustering identified three clusters of carbon
sources in our dataset, with glucose and glycerol forming one
cluster, galactose and pyruvate forming another cluster, and ac-
etate forming a cluster of its own (Figure 6B, right).

We wondered why these different carbon sources would have
such divergent impacts on interactions. We first examined the
metabolic pathways associated with these carbon sources but
found no correlation between the nature of the carbon sources
(glycolytic/gluconeogenic) and the observed clustering pattern
in carbon sources. We then suspected that bacterial utilization
of distinct carbon sources could have differing impacts on pH.
To test this idea, we grew E. coli in plates with each of the five
carbon sources and measured the final pH. We found that
glucose and glycerol both showed large drops in pH, whereas

coefficients (magenta bars) indicate the effects of C. reinhardftii on E. coli growth with an increase in the corresponding features in coculture. The bottom panel
reports the monoculture coefficients ﬂffM (green bars) and the interaction coefficients ﬁ,c(’, (cyan bars) of the corresponding features on the x axis obtained from the
regression model predicting the growth of C. reinhardtii in monoculture and coculture. The interaction coefficients (cyan bars) indicate the effects of E. coli on
C. reinhardltii growth with an increase in the corresponding features in coculture. The error bars represent the 95% confidence intervals. ** indicates a p value <

0.001 and * a p value < 0.05.

(B) Example data illustrating modulation of the effect of carbon concentration on the growth of E. coli by pH and buffering capacity. The median bacterial growth in
monoculture and coculture are plotted as a function of carbon concentration at (P) ~1.51 mM in the left and right panels, respectively. The experimental data are
represented by circles and connected with dashed lines. The error bars represent the standard error about the mean bacterial growth, with the number of
replicates ranging from ~14-114 for the different conditions. The solid lines represent the model prediction. Darker or thicker lines represent the results at low pH
(6.98) and high buffering capacity (2.56 mM), and lighter or thinner lines represent the results at high pH (7.34) and low buffering capacity (0.76 mM).
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Figure 6. Effect of environmental factors on algae-bacteria interactions depends on the identity of carbon source

(A) Comparison of the regression coefficients between glucose and galactose. The monoculture coefficients b’

", (brown bars) and the interaction coefficients 855

(magenta bars) of the corresponding features on the x axis obtained from the regression model predicting the growth of E. coliin monocultures and cocultures for

glucose (on the left) and galactose (on the right). The error bars represent the 95% confidence intervals. **

indicates a p value < 0.001 and * a p value < 0.05.
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the other three carbon sources did not (STAR Methods). Thus,
we speculate that heterotrophic utilization of organic carbon
might play a key role in modulating pH and thus the interactions
between algae and bacteria.

Finally, we wanted to check whether this result was dependent
on the details of the regression formalism we defined for quanti-
fying growth across environments. To do this, we quantified sim-
ilarities in growth across environments in a model-independent
fashion. We classified carbon sources based on the similarity
in algae-bacteria growth. The classification of the carbon sour-
ces was done by computing the correlation between carbon
sources in algae-bacteria growth across all the environmental
conditions and culture conditions (Figure 6C; STAR Methods).
Here, again, we found the carbon sources within the same clus-
ters—glycerol and glucose, galactose, and pyruvate, to have the
greatest correlation in the algae-bacteria growth with each other
compared with any other carbon sources. We concluded that
this apparent clustering of carbon sources does not depend on
the details of our model specification.

DISCUSSION

By using a high-throughput droplet microfluidic platform, we
were able to perform a massively parallel screening of algae-
bacteria interactions in several hundreds of environmental con-
ditions varying in pH, buffering capacity, phosphorus availability,
carbon availability, and carbon source identity. To our knowl-
edge, this is the largest screen exploring the combinatorial effect
of environmental factors on phototroph-heterotroph interactions
in a systematic way via a bottom-up approach. Studies in the
past have tested for the effect of nutrient availability on photo-
troph-heterotroph relationships but have been mostly limited to
only a handful of nutrient types/availabilities or have involved un-
controlled experimental conditions, such as uncharacterized
phototrophic and heterotrophic species, often in the presence
of organisms from other trophic levels.''%*%°° Our observation
of the complex dependence of algae-bacteria interactions on
environmental factors underscores the importance of undertak-
ing such high-dimensional studies. This is especially important in
light of the chemical complexity of environments wild microbial
communities are exposed to.’

Our study is also novel with respect to exploring the effect of
the chemical properties of the environment—pH and buffering
capacity—on algae-bacteria interactions. The central finding
of the study is that pH and buffering capacity substantially alter
algae-bacteria interactions by manipulating the impact of
nutrient availabilities on growth. For most carbon sources,
the role of pH and buffering capacity in determining algae-bac-
teria interactions were comparable to, or significantly higher
than, the effect of nutrient availabilities alone, underscoring
the importance of the effects of pH and buffering capacity
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on algae-bacteria interactions. This result suggests that chem-
ical factors in the environments play an important role in
impacting phototroph-heterotroph interactions, which are
largely considered as being driven by resource exchange and
Competition.ﬂ5—17,19,22,25,36

In the context of photosynthetic metabolism, pH, buffering ca-
pacity, and alkalinity are known to be important factors impact-
ing the availability of inorganic carbon in the environment and the
physiology of autotrophs. Changes in pH alter the equilibrium
between CO, and bicarbonate, both of which can be taken up
by the alga.°™? In addition, photosynthesis alters the pH of
the environment via the utilization of inorganic carbon,® but
this effect on pH can be altered by the presence of organic car-
bon at high concentrations (>100 mM) in the environment.>*
Similar to bacteria, algal growth is also inhibited by large
changes in pH.°° These observations are consistent with our re-
gressions in that we find the buffering capacity to support signif-
icant and positive regression coefficients in monoculture for
algae across carbon sources assayed (Figure S14). Thus, buff-
ered media enable more robust algal growth presumably by
enabling resistance to changes in pH driven by photosynthetic
activity in the absence of bacteria.

Recently, microbial ecologists have encouraged the use of
statistical modeling approaches to derive general governing
principles in ecology.”®°” In this regard, we highlight the
apparent agreement between the results of our statistical
modeling and the known mechanistic processes in literature.
Our statistical approach for predicting algae-bacteria growth in
different environments permitted us to dissect the contribution
of the different environmental factors on the interspecies interac-
tions. Although our modeling approach is largely agnostic to the
detailed mechanisms of the effect of environmental factors on
algae-bacteria interactions, we find that the regression results
do align qualitatively with some known processes. For example,
E. coli can acidify its environment when growing on glycolytic
substrates at sufficiently high growth rates through the process
of overflow metabolism.*® In this case, the bacterium could be
acidifying the medium in conditions where buffering capacity is
weak, and carbon levels are relatively high. However, overflow
occurs at relatively high growth rates of approximately 0.71/h-
0.81/h, and microtiter measurements indicate that our strain
in these conditions grows slower than this (STAR Methods,
Table S5). Further, our measurements cannot accurately capture
bacterial growth rates in droplets due to limited temporal sam-
pling, but we cannot rule out the possibility that overflow causes
growth to modify pH in the droplets. Similarly, it is known that
C. reinhardtii will acidify the environment due to ammonia up-
take, and this may also play a role in the importance of pH and
buffering capacity in determining growth in these experiments.
It remains an important avenue for future work to uncover the
mechanisms underlying the interactions discovered here. Our

(B) Hierarchical clustering of carbon sources by the monoculture and interaction coefficients obtained from the regression models predicting the growth of E. coli
and C. reinhardtii. The matrix showing correlations between the regression coefficients of the different carbon sources on the left and the resulting dendrogram
from hierarchical clustering based on the correlation matrix on the right (see STAR Methods). The colors in the heatmap correspond to the correlation values

indicated by the color bar in linear scale on the right.

(C) Hierarchical clustering of carbon sources by the median growth of algae and bacteria in monocultures and cocultures in all the environmental conditions. The
correlation matrix computed for the hierarchical clustering on the left and the resulting dendrogram on the right (see STAR Methods). The colors in the heatmap
correspond to the correlation values indicated by the color bar in linear scale, on the right.
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hope is that large-scale screens similar to those enabled by this
platform can contribute new insights into the mechanisms by
which environmental factors contribute to algae-bacteria
interactions.

Our observation that interactions tend to favor competition
(facilitation) in permissive (stressful) conditions is one example
of how large-scale screens can help to identify general patterns
in interactions. This observation (Figure 3) generally supports the
SGH.*? Earlier efforts to validate the SGH within the realm of
plants and microbes underscore the difficulties linked to the
inherent ambiguity of the hypothesis.®® Specifically, it is evident
that not all stressors seem to favor facilitative interactions.®’
Moreover, in instances where the SGH has been identified,®® un-
certainties persist regarding the existence of any shared under-
lying mechanisms. Our study points to the possibility that com-
mon environmental factors, such as pH or buffering capacity,
might give rise to persistent patterns in interactions across
environments. Validating this proposal would require additional
measurements and physiological insights into the origins of the
observed pattern.

Our exploration of the impact of carbon source identity on
algae-bacteria interactions showed that the effect of the environ-
mental factors—pH, buffering capacity, and nutrient availabil-
ity—on the interspecies interactions depends on the carbon
source identity. This result suggests that the chemical identity
of the available reduced organic carbon plays a key role in deter-
mining how algae-bacteria interactions play out. Therefore,
considering the role of individual nutrients such as phosphorus®®
in these interactions might be too simple a picture. Additionally,
our analyses revealed three groups of carbon sources, showing
that the impact of the environmental factors—pH, buffering ca-
pacity, and nutrient availability —on algae-bacteria interactions
was approximately conserved between the carbon sources
within the same group. Such an apparent similarity between
the different carbon sources within the groups hints that there
may be some relatively simple structure in how the carbon
source identity and the other environmental factors conspire to
determine the outcome of an interaction. Whether this is the
case or not awaits a broader survey of additional carbon sour-
ces, mixtures of carbon sources, and a deeper mechanistic un-
derstanding of the physiology underlying these processes.

Although kChip offers a massive throughput advantage to
perform a screen of this magnitude, the interactions inferred in
the confined environments of droplets on the kChip could poten-
tially differ from the interactions in the well-mixed, open environ-
ments in the lab or the wild. For example, the rate of gas ex-
change, particularly O, and CO,, will determine respiration,
photosynthesis, and pH and thereby modulate interactions in
the droplets. In fact, a recent microfluidic-based study has
shown that droplet size substantially modifies the degree of syn-
trophic interaction between bacterial species.® Consistent with
these findings, we observe differences in bacterial growth be-
tween microtiter plates and droplets (Figure S18). Hence, it re-
mains an important avenue for future work to understand how
confinement impacts the algae-bacteria interactions observed
here because this process could well be important in the wild.

Because our study of phototroph-heterotroph interactions
was undertaken in a community of algae and bacteria that are
not known to associate in the wild, it remains to be seen how

¢ CellP’ress

our results relate to communities of phototroph and heterotroph
with wild associations and shared evolutionary history. For
example, the mechanism by which C. reinhardftii inhibits E. coli
growth is not precisely known, and it is unclear whether other
bacterial taxa would also be subjected to similar strong inhibitory
effects. Studies between several strains of the phototroph, Pro-
chlorococcus, and of oligotrophic and copiotrophic bacteria
have revealed strain-dependent interactions.®*%° Thus, it would
be interesting to repeat these experiments with a broader sam-
pling of bacterial taxa, including those that are known to asso-
ciate with the alga in the wild.°” By expanding this study to
wild associations, we would hope to more broadly capture
the relevance of these findings for consortia in complex
environments.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and Virus Strains

Escherichia coli MG1655-motile Coli Genetic Stock Center (CGSC) 8237

Fluorescent dyes

Alexa Fluor 555 ThermoFisher Scientific A33080

Alexa Fluor 594 ThermoFisher Scientific A33082

Alexa Fluor 647 ThermoFisher Scientific A33084
Deposited Data

Microscopy and other datasets reporting algal-bacterial This work Zenodo Data: https://doi.org/10.5281/
abundances in different media conditions and the code zenodo.12151777

to reproduce the analyses

Experimental Models: Organisms/Strains

Chlamydomonas reinhardtii UTEX 2244 University of Texas culture collection of algae 2244
Other
kChip droplet microfluidic platform Kulesa et al.™® https://www.pnas.org/doi/abs/

10.1073/pnas.1802233115

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains

The heterotroph was a bacterium, Escherichia coli, strain MG1655 (Coli Genetic Stock Center (CGSC) #8237), which was trans-
formed to constitutively express a green fluorescent protein (GFP) on a plasmid (protocol below). We used a fluorescent protein
coded on a plasmid to increase fluorescence intensity per cell which we found to be too low for the imaging modalities used here
when the protein was genomically integrated. The bacteria were cryogenically preserved at -80 °C. The phototroph in the study
was an alga, Chlamydomonas reinhardtii, strain UTEX2244 obtained from the University of Texas Austin Culture Collection of Algae
utex.org. Algae were cryogenically preserved in liquid nitrogen https://utex.org/pages/cryopreservation#liquid.

Plasmid transformation

The transformation of the wild type strain of E. coli MG1655,° to express GFP on a plasmid, was done to enable the measurement of
bacterial abundances via fluorescence microscopy. Firstly, the plasmid for the transformation was extracted from the E. coli strain,
DH10B pZA 1R GFP,%° following the protocol in the GeneJET Plasmid Miniprep kit #K0503 for the low copy number plasmids.
Following this, the transformation protocol involved the following steps:

Preparation of electrocompetent cells

The wild-type MG 1655 cells were grown from frozen stocks in a 5 mL overnight culture of Lysogeny Broth (LB) at 30 °C in a shaker
incubator. 1/2 mL of the overnight culture was added to a flask containing 30 mL of LB and grown at 30 °C with shaking at 200 RPM
until the OD600 reached 0.5-0.7. The flask was removed and the culture was cooled by swirling in an ice water slurry for five minutes,
then placed on ice for ten minutes. The culture was transferred to a pre-chilled centrifuge tube and pelleted by centrifugation (5 min,
5000 RPM) in a refrigerated centrifuge chilled to 4 °C. The supernatant was dumped and the cells were washed in 10 mL of ice-cold
10% glycerol. Pelleting was repeated in the same way and two more glycerol washes were performed, followed by a final resuspen-
sion in 200 pL. The cells were immediately placed on ice and kept cold until electroporation.

Electroporation of plasmid

100 pL of the prepared electrocompetent cells were mixed with 5 uL of the extracted plasmid mix in a pre-chilled microcentrifuge
tube before being transferred to a pre-chilled 0.1 cm gap electroporation cuvette (USA Scientific) and electroporated at 2 kV in an
Electroporator 2510 (Eppendorf). 1 mL of LB was immediately added and 1h outgrowth at 30 °C with shaking was allowed before
plating on an LB + ampicillin plate, which was grown overnight at 30 °C. A colony from the plate was grown overnight (30 °C, shaking)
in 5 mL of LB+ampicillin, and a frozen glycerol stock of MG1655+GFP was created from the culture.
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Media
Modified Taub medium and nutrient sources
Modified Taub formed the base media in our experiments. Taub media is a freshwater mimic media that was originally created to
support co-cultures of Daphnia pulex and Chlorella pyrenoidosa.”® Several previous studies of microbial ecosystems that used
the 1/2X Taub media with undefined carbon and nitrogen sources (proteose peptone)'*>**> demonstrated the ability of both
E. coli and C. reinhardtii to grow on Taub. However, to probe the effect of nutrient concentration and nutrient sources on algae-bac-
teria interactions, we required the media in our experiments to be chemically defined. Hence, the undefined Taub media was modified
to include chemically defined carbon and nitrogen sources in place of the proteose peptone, similar to that in.”" NH4Cl formed the
nitrogen source in all our experiments and one of the five sources - glucose, glycerol, galactose, acetate, and pyruvate formed the
carbon source in our experiments. The phosphate source in the media was also replaced with an equal mix of potassium phosphate
monobasic (KH, PO,4) and potassium phosphate dibasic (K, HPO,) salts. Modified 1X Taub stock was first prepared by removing the
small amount of phosphate that is traditionally present in 1X Taub solution. It was later supplemented with buffers and nutrient sour-
ces at different concentrations to generate the desired environmental conditions for the kChip experiments (discussed below). The
chemical composition of the modified 1X Taub medium is shown in Table S1.
Preparation of environmental conditions for the kChip experiments
For each carbon source, 16 environmental conditions varying in initial pH, buffering capacity, phosphorus concentration, and car-
bon concentration were prepared. The values of the environmental factors were chosen to be in the biological range: 6.1-7.5 for
initial pH, 0-3.5 mM for buffering capacity, 0.01 mM - 4 mM for phosphorus concentration, 2 mM - 10 mM for carbon concentra-
tion. The environmental conditions were also barcoded at the time of their preparation by adding the three fluorescent dyes Alexa
Fluor 555 (Thermo- Fisher Scientific A33080), Alexa Fluor 594 (Thermo- Fisher Scientific A33082), and Alexa Fluor 647 (Thermo-
Fisher Scientific A33084) such that each environmental condition gets a unique combination of the dyes with the total dye con-
centration always summing to 1 uM. The dye concentrations will be later used to infer the environmental conditions of the com-
munities formed on the kChip as discussed in a further section. The initial pH, buffering capacity, and nutrient concentrations
along with the dye concentration values of the 16 environments are reported in Table S2. Note that the reported pH and buffering
capacity values are not the measured but estimated values from a model we developed and experimentally validated (details pre-
sented in a subsequent section). The dye fluorescence characteristics were not significantly altered by changing pH. Additionally,
these values are reported for environments having glucose/glycerol/galactose as the carbon source. When acetate/pyruvate is the
source of carbon in the environments, the pH and buffering capacity slightly differ from those reported here and are computed
using our model. Depending upon the carbon source, the appropriate values of pH and buffering capacity are used in all the
analyses.

To prepare the 16 environmental conditions, we first prepared the following sets of stock solutions -

1. Stock solutions of the base media 1X Taub:

B1 - The modified 1X Taub media with 0.11% w/v bovine serum albumin (BSA)

B2 - The modified 1X Taub media with 20 mM MOPS buffer and titrated to a pH of 6.95 with 0.11% w/v BSA

B3 - The modified 1X Taub media with 30 mM Tris buffer and titrated to a pH of 7.5 with 0.11% w/v BSA

(BSA is added to the media to improve retention of the fluorescent dyes in droplets on the kChip)

2. Stock solutions of carbon:

C1 - ~417 mM of glucose/glycerol/galactose/pyruvate/acetate by moles of carbon

C2 - ~67 mM stocks glucose/glycerol/galactose/pyruvate/acetate by moles of carbon

3. Stock solution of Nitrogen:

N1 - 50 mM of NH,4ClI stock

4. Stock solutions of Phosphate:

P1 - 50 mM of phosphate stock (KH, PO4 + Ko HPOy4 in 1:1 ratio by moles)

P2 - 1 mM of phosphate stock (KH, PO4 + Ko HPO, in 1:1 ratio by moles)

P3 - 0.12 mM of phosphate stock (KH> PO4 + K» HPO4 in 1:1 ratio by moles) titrated to a pH of 7.5

P4 - 12 mM of phosphate stock (KH, PO4 + Ko HPOy4 in 1:1 ratio by moles) titrated to a pH of 7.5

5. Stock solution of Alexa Fluor 555:

D1 - 25 uM of Alexa Fluor 555 dye

6. Stock solution of Alexa Fluor 594:

D2 - 25 uM of Alexa Fluor 594 dye

7. Stock solution of Alexa Fluor 647:

D3 - 25 uM of Alexa Fluor 647 dye

These stock solutions formed the key components in setting the various properties of the environmental conditions - initial pH,
buffering capacity, nutrient concentrations, and barcodes. The prepared stock solutions were mixed in the desired ratios using a
liquid handling robot Opentrons OT-2 to obtain the 16 environmental conditions. The stock solutions and their volumes used for mak-
ing each of the 16 environments are reported in Table S3. 480 uL of each of the 16 environments were prepared such that we obtained
the indicated concentrations of nutrients and dyes (in Table S2) when 10 pL of the E. coli and C. reinhardltii cells suspended in the
modified 1X Taub media were later independently added to 240 pL of each of the environments. In the 480 L of the environments,

e2  Cell Systems 15, 1-16.e1-e13, September 18, 2024



Please cite this article in press as: Gopalakrishnappa et al., Environmental modulators of algae-bacteria interactions at scale, Cell Systems (2024),
https://doi.org/10.1016/j.cels.2024.08.002

Cell Systems ¢ CellP’ress

230 uL was composed of one of the three base media stock solutions - B1/B2/B3, and the rest of the 250 pL was made up of stock
solutions of carbon, nitrogen, phosphorus, and the dyes, depending on the media type.

Specifically, in environments E1-E8 (Table S3), the modified and unbuffered 1X Taub media, B1, formed the 230 uL volume of the
480 pL. E4-ES8 differed from E1-E4 in the phosphate stock used. While untitrated phosphate stocks P1 and P2 were used to get the
desired phosphorus levels in E1-E4, the titrated phosphate stocks P3 and P4 were used to obtain the desired phosphorus levels in E4-
E8. The use of the phosphate stocks P3 and P4 titrated to a pH of 7.5 (greater than ~7 - the ~ pH of the stocks P1 and P2) caused the
environments E7 and E8 to have higher pH than E1-E4. And, in the environments, E9-E12 and E13-E16, the buffered 1X Taub media B2
(having the MOPS buffer) and B3 (having the Tris buffer) respectively formed the 230 uL volume of the 480 pL. The strong buffers- Tris
and MOPS were chosen to obtain the environments E9-E16 with high buffering capacities (~3.5 mM). And the low initial pH of the en-
vironments E9-E12(~6.9) is due to the modified 1X Taub media buffered with MOPS and titrated to a low pH of 6.95. Similarly, the
higher initial pH of the environments E9-E12 (~7.4) is due to the modified 1X Taub media buffered with Tris and titrated to a high
pH of 7.5. The pKa values of MOPS and Tris (7.1 and 7.9 at 30 °C) make them ideal choices as buffering agents at low pH and high
pH respectively. Lastly, as is reported in Table S2, we chose higher phosphorus levels (0.03-3 mM) for the lower buffering capacity
environments E1-E8 but lower phosphorus levels (0.01-0.08 mM) for the environments E9-E16 which have higher buffering capacity.
This was because the source of phosphorus in our experiments (i.e KH, PO4 + Ko HPO4 in 1:1 ratio by moles) acts as both a nutrient and
a buffer, for example, against the potential acidification of the environment arising from carbon metabolism by E. coli.”* As a result,
lower phosphorus levels were sufficient to give rise to appreciable growth of E. coli in monocultures in the high buffering capacity en-
vironments whereas higher phosphorus levels were required in the lower buffering environments to result in the similar growth of E. coli
in its monocultures. Therefore, our choice of different phosphorus levels at the different buffering capacities allowed us to investigate
differences in the algae-bacteria interactions between environments giving rise to similar growth of E. coli.

Culturing and harvesting of the microbes for kChip experiments

Culturing

Before beginning the experiment, the bacteria and algae were cultured separately in distinct media, with both microbes undergoing
two growth cycles in their respective media.

Bacteria were cultured from a freezer stock in 5 mL lysogeny broth (LB) with ampicillin added at a concentration of 50 ug/mL to
retain the plasmid. The culture was incubated at 30 °C (New Brunswick Scientific C24 Incubator-Shaker), shaking at 200 RPM for
~16 hrs. It was then passaged into fresh 5 mL LB + 50 ug/mL ampicillin at 2500X dilution and grown for ~24 hrs at 30 °C shaking
at 200 RPM, before finally harvesting for the experiments.

The alga, C. reinhardtii was cultured in a 30 °C shaker-incubator (New Brunswick Scientific C24 Incubator-Shaker), shaking at 200
RPM with 68.5 pmol m—2s~ ' illumination in 10 mL Tris-Acetate-Phosphate (TAP) media, inoculated directly from a freezer stock. TAP
is a defined media with acetic acid as a carbon source https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-
minimal/. After ~4 days, the algal culture was passaged into fresh 20 mL of TAP media at 250X dilution and grown for ~ 3 days
at 30 °C shaking at 200 RPM, before finally harvesting for the experiments.

Cultures preparation
Prior to setting up the experiment on kChip, the harvested microbial cultures were washed thrice into modified 1X Taub media.

1 mL of the MG1655 culture was centrifuged in an eppendorf at 3000 RPM (eppendorf centrifuge 5417R) for 5 mins. The super-
natant was immediately discarded and the pellet was resuspended in 1 mL of fresh modified 1X Taub. This process was repeated
thrice and OD590 of the final suspension was adjusted to obtain 0.005 in the droplets by diluting it with the modified 1X Taub media.

20 mL of the UTEX 2244 culture was also centrifuged thrice in 20 mL falcon tubes at 500 RCF for 10 mins. The culture was concen-
trated sequentially after every centrifugation from 20 mL to 7.5 mL to 2 mL. By further concentration or dilution, the OD750 of the final
suspension was adjusted to obtain 0.145 in the droplets by diluting it with the modified 1X Taub media. The optical densities were
measured using the BioTek Synergy HT microplate reader.

METHOD DETAILS

Setting up the experiments on kChip

Droplet preparation

The cultures of E. coli and C. reinhardtii that were washed into the modified 1X Taub media and with their ODs set were independently
added to the 16 barcoded environments of one of the five carbon sources at 25X dilution. Each of the environments was thoroughly
mixed using an electronic pipettor by pipetting up and down at least three times to ensure thorough mixing of the barcode dyes and
the cells. 20 pL aliquots of these environments harboring the E. coli and C. reinhardltii cells independently were transferred to a Bio-
Rad QX200 cartridge and were emulsified into ~20,000 1 nl droplets in fluorocarbon oil (3M Novec 7500) stabilized with 2% (w/v)
fluorosurfactant (RAN Biotech 008 FluoroSurfactant). For each carbon source, there were 32 kinds of droplets - 16 environmental
conditions each having cells of E. coli and C. reinhardtii separately.

Setting up the kChip platform

The generated droplets of all the 16 environmental conditions having cells were pooled together into a 1 mL Eppendorf and mixed by
pipetting up and down with a 200 uL pipette. 180 L of the pooled and mixed droplets were loaded into kChip(k=2) as described in '°.
kChip is made of PDMS and contains an array of ~25,000 microwells each of which can take two droplets (~130 um in diameter).
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Briefly, the kChip was suspended in the chip loader made of acrylic, such that a ~300-500 um flow space was created between the
chip and a hydrophobic glass substrate. The flow space was filled with fluorous oil (3 mL 3M, 7500) prior to loading, followed by the
addition of the droplet pool to the loading slot. By flushing the flow space with oil, the droplets were made to spread around in the flow
space and enter the microwells due to buoyancy. Also, the loader was tilted to further facilitate the movement of the droplet foam
within the flow space until the microwells were filled with droplets. The flow space was then again replenished with 3 mL of the fluo-
rous oil. On the side, a fresh MicroAmp Optical Adhesive film (ThremoFisher #4311971) was laid out on the bench with its sticky side
facing up and wetted with ~1 mL of the fluorous oil. The kChip was carefully lifted off the acrylic loader and sealed with the film by
running the chip against the wetted film on the edge of the bench.

The kChip was then imaged to infer the barcode identities and the starting cell densities in the wells. Following this, the droplet pairs
in the microwells were merged by running the tip of a corona treater (Model BD-20, Electro-Technic Products) over the sealed side of
the chip for 10 seconds. The merging of the droplets resulted in the formation of monocultures and cocultures of algae and bacteria in
all environmental combinations of the initial 16 environments. Overall, 3 culture types (E. coli monoculture, C. reinhardtii monoculture,
E. coli - C. reinhardltii coculture) in 105 environments were generated upon droplet merging for each of the carbon sources, with the
number of replicates ranging from 3 to 330 (The median number of replicates ranged from ~30-85 depending upon the culture type).
The kChip was then transferred with its film side facing up and covered with a glass slide, into a Ziploc bag containing a moist towel to
maintain high humidity and minimize evaporation. The entire setup was housed in an environmental chamber at 30 °C and illuminated
with a bulb (Utilitech pro LOPAR20/LEDG5) at (68.5 umol m—2s~ ", measured with LED light meter PCE-LED 20). The kChip was
imaged at 12 h, 21 h, 45 h, and 68 h from the time of the first scan. For each carbon source, a separate kChip experiment was
set up.

Fluorescence Microscopy

A widefield fluorescence microscope (Axio Observer.Z1) with X-CITE 120 lamp (Excelitas Technologies #012-63000) as the light
source for fluorescence imaging, was used to scan the kChip for barcodes and the growth of the microbes. Images were acquired
with a 5X/0.16 NA objective (Zeiss EC Plan-Neofluar) with FOV (Field of view) of 2.47 x 2 mm, which required collecting 644 images to
scan one full kChip area covering all the microwells. Images were collected by a camera (Axiocam 506 monochromatic) at a bit depth
of 14 with 5x5 binning and at an exposure time of 50 ms. The following filter sets were used to detect the five fluorophores: Alexa
Fluor 555: Semrock Brightline SpOr-B-CSC-ZERO; Alexa Fluor 594: Omega optical Excitation filter-XB102/Dichroic-XF2014/Emis-
sion filter-XF3028; Alexa Fluor 647: Semrock, Brightline Cy5-4040B-CSC-ZERO; GFP: Zeiss filter Set 38 HE; chlorophyll: Chroma
Technology 31017. The lamp power was manually set to obtain ~71 mW with the Alexa Fluor 555 filter/~8 mW with the Alexa Fluor
594 filter/~27 mW with the Alexa Fluor 647 filter, measured at 540 nm/590 nm/630 nm respectively using a Thorlabs power meter
(with power sensor S121B). In addition to the fluorescence images, brightfield images were also acquired with a TL Halogen lamp
(set to 1.51 V) as the light source at an exposure of 1.1 ms. The duration of an entire scan was about 50 min.

Image processing and analysis
The tiled images acquired at each time point were stitched together to form a single image of the entire chip having all the microwells,
using the stitching module in the Zeiss Zen blue image analysis software. Also, the stitched images across the time points were
aligned by manually estimating the rotation and the shift in the chip at each time point with respect to the image acquired at the first
time point, and correcting for them using the rotate and shift features in the zen software. The aligned images were then used for
further processing and analyses in Python. First, the aligned images were computationally redivided and cropped in Python to obtain
644 tiles with 10% overlap as processing a single large image would require too much memory. From here on, the image analysis
pipeline involved (a) Correcting for chlorophyll bleed-through in the A647 image (see below); (b) Inferring barcodes to identify the envi-
ronmental conditions in the droplet pairs in each microwell using the three fluorescence dye signals; (c) estimating abundances of
E. coli and C. reinhardtii in all the environmental conditions. All analyses were performed with either custom Python scripts, or
code obtained from.'%%+7"3
Correcting for chlorophyll bleed-through in the Alexa Fluor 647 images
Inspection of the microscopy images of the fluorophores showed algal cells to appear in the images acquired with the Alexa 647 filter
(Figure S1 (left panel)). This bleed-through of the chlorophyll signal into the Alexa Fluor 647 channel is due to the overlap between the
fluorescence spectrum of the chlorophyll pigment and the Alexa fluor 647 dye. The chlorophyll signal bleed-through into the Alexa
Fluor 647 images would corrupt the barcode clustering process (discussed in the next section), which is crucial for identifying the
environmental conditions formed on the chip. A computational solution was developed to address this issue that involved the
following steps:

1. Apply sobel transform (using scikit-image) to the Alexa 647 image to find the edges of the algal cells

2. Obtain the mask of the sobel transformed image to extract the edges of the algal cells.

3. Use a gaussian filter (with sigma = 1 pixel, in SciPy) to set the intensities of the pixels within the edges in the mask to greater
than 0.

4. Set all the pixel intensities greater than 0 to NaN. This step would essentially set the intensity of all the pixels corresponding to the
algal cells in the mask to NaN.

5. Multiply the mask obtained in step 4 with the original Alexa 647 image with the chlorophyll bleed-through and using a 2D inter-
polation scheme (interpolate.griddata in SciPy), estimate the intensity values of the pixels that were set to NaN. The Alexa 647 image
obtained after this correction algorithm is free from the bright signal from the chlorophyll fluorescence (Figure S1 (right panel)).
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Inferring barcodes to identify environmental conditions

Following the correction of Alexa 647 images for chlorophyll bleed-through, the three dye channel images were analyzed to detect the
barcodes of the droplets in the wells of kChip and thereby infer the environmental conditions formed in the microwells. Similar to the
pipeline in a previously published work,'® the algorithm began with creating images by summing up the three dye channels images
and then applying a circular hough transform (scikit-image) on the summed images to detect the circular droplets in the wells. Using
the positions of the droplets reported by the hough transform, the three-color dye fluorescence intensities of each of the droplets
were extracted. The fluorescence of a dye in a droplet was calculated as the median of the pixel values in the respective dye’s image
in a square of size 10 x 10 pixels at the droplet center, after locally subtracting for the background fluorescence intensities. The three
dye channel images were also smoothed by applying a median filter (SciPy) with a kernel size of 8 pixels, prior to computing the dye
fluorescence intensities. Obtaining the three-color fluorescence intensities of all the droplets in this manner, the intensities were pro-
jected to a 2-dimensional plane on the basis of the constraint that the intensities summed to a constant (as the sum of the dye con-
centrations is a constant equal to 1 uM). The clusters of droplets formed in the 2-dimensional plane based on the dye ratios were
identified by bounding the data points with manually defined polygons (using matplotlib.path). Finally, using the apriori knowledge
of fluorescence-dye-ratios to environmental conditions mapping (from while designing the environmental conditions and barcoding),
the droplets/clusters were assigned to the environmental conditions. This knowledge of the droplet positions and their environmental
conditions allowed inference of the environmental conditions of the communities formed in the different microwells after the merging
of the droplets.

Determining initial pH and buffering capacity of the environments on the kChip
Model to predict titration curves
To infer the pH and buffering capacity of all the barcoded environments and the environments formed by merging of the droplets on
kChip, we developed a model to predict the pH titration curve of any environment given the concentrations of the nutrients and
buffers in it.
A solution’s buffering capacity is its resilience to pH change from additional acid or base. To characterize the buffering behavior of a
defined media, we calculate the titration curve, which relates the change in pH of a solution to additions of strong acid or base.
Consider a medium consists of a molar K, HPO4, b molar KH, POy, ¢ molar Tris, d molar MOPS, and e molar NH,4Cl, titrated by HCI.
We denote the quantity of acid (HC/) added by x. The objective is to calculate pH as a function of x, given by

H,PO;| + |HPO2~| = a+b (Equation 2)
4 4

[Tris] + [TrisH'] = ¢ (Equation 3)
[MOPS] + [MOPS™| = d (Equation 4)
[NH;] + [NH;] = e (Equation 5)
[HPOZIH] _ K Equation 6
[HgPOﬂ = K, (Equation 6)
[[T#lss]ﬁ? = K, (Equation 7)
% = Kz (Equation 8)
% = K, (Equation 9)
[H][OH™] = Kw (Equation 10)
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2a + b + [TrisH'] + [H'] + [NH}] = Q[HPOE;] + [HPO,] + x + [OH"] + [MOPS ] +d (Equation 11)

Equations 2, 3, 4, and 5 are atom conservation. Equations 6, 7, 8, 9, and 10 are chemical equilibrium, where K1,K>,K3,K,4 are
equilibrium constants between weak acids (H.PO,, TrisH*, MOPS, NH; and their conjugate bases (HPOz’, Tris, MOPS™, NHj3),
and K, is the equilibrium constant of water. Equation 11 is the charge conservation. Solving the equation gives

H*] K; [H] Ks Ky K,

X = KaHE T KR T Ror S T Kar ] CER DN

(Equation 12)

d+[H] —

Acetate and pyruvate have buffering effects too when used as carbon sources. When f mol of sodium pyruvate having equilibrium
constant of K5 is present, the titration curve is calculated similarly:

[H*] Ki [H*] Ka

X = a-— b+ c - Ky al
B K1+[ +] K1+[H+] K2+[H+] K3+[H+}

H] ~ KetlH]°

d+[H] - (Equation 13)

H]

" Kot [H]

(Equation 14)

When g mol of sodium acetate having equilibrium constant of kg is present, the titration curve is calculated similarly:

_HT K H] —  Ks 0 Ke  Ki .
X = Rl KR T Rer 1 e O T T K (Equation 1)
+,Q3[T—[:._},+]Q (Equation 16)

Table S4 shows chemical constants for all buffering agents in the experiment. Note that the equilibrium constants depend on tem-
perature. Because equilibrium constants in the literature are often measured at 25° C, we calculate the corrected equilibrium constant
at the experimental temperatures (30°C) using the following equation’*:

1 1 1 0 T
Kr = pKy — =——= |AH| - — = AC,(=—1+In— Equation 17
PRT = P Rln10{ (0 T>+ C"(T +”e>} (Equation 17)
Here pK is defined aspK = — logqq K. 6 denotes the reference temperature (25°C) and T denote the temperature of interest (30°C).

R is the ideal gas constant. AH is the ionization enthalpy and AC, is the ionization thermal capacity at constant pressure.”*
Computing initial pH and buffering capacity

The initial pH of an environment is obtained by computationally solving the equations 12/13/14 atx = 0, depending upon the carbon
source. For our purpose, we define buffering capacity as the quantity of HCI that drops the pH to a point just before the pH can
abruptly change with [HCI]. Hence, we compute buffering capacity as the smallest x (from equations 12/13/14) where the change
in the first derivative before the inflection point on the pH curve is just greater than 30 (pH/[HCI] units). This method yields buffering
capacity values that agree with our definition as shown in several examples (Figure S4). We expect that our measure of buffering ca-
pacity determines the allowed acidification in the environment before the pH drops to very low values at which the microbial growth
will be negatively impacted.*”*®"? Using these definitions of initial pH and buffering capacity, we were able to compute the initial pH
and buffering capacity of all the environments formed by the merging of the droplets on kChip from the model. We note that only in the
case of acetate, the buffering capacity was evaluated without taking acetate into consideration. As the pK, of acetate is ~ 4.98, the
titration curve of the environments having acetate do not have the abrupt drop in the pH with an increase in [HCI] as in the examples
shown in Figure S4. However, as the buffering capacity values computed for environments without acetate correspond to low values
of pH (~ <6) where the microbial growth is negatively affected, using these buffering capacity values for environments with acetate
agrees with our definition of buffering capacity and hence should be valid.

Correcting the initial pH

We experimentally validated our titration model for a set of environmental conditions given in Table S2 (Figure S4). We found that the
predicted initial pH was in good agreement with the experimental data in cases where [MOPS] was ~10 mM (Figure S5A). And the
predicted initial pH deviated from the observed initial pH in cases where [MOPS]<10 mM, the deviations being high at low concen-
trations of Tris and at low values of experimentally observed pH. The conditions with low observed pH were also the conditions with
very low buffering capacity. We speculate that the low buffering capacity could be making the environment susceptible to pH
changes (from uncharacterized chemicals in the water source or atmospheric gases) and causing poor agreement between the
model and data.
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We corrected the deviation in the predicted initial pH using linear regressions (Figure S5B). As can be observed, the qualitative
nature of the disagreement between the initial pH values predicted from the model and the initial pH values obtained from the exper-
iments, in environments with no MOPS buffer and with MOPS at ~5 mM, differed. Hence, two separate linear regressions were set
up, one to correct the data with no MOPS and another to correct the data with ~5 mM MOPS. Using these regression models, the
predicted initial pH values of all the environments formed on the kChip were corrected appropriately.

Linear regression analyses

Model formulation

Linear models were set up to predict the growth of microbes Y from the environmental factors - initial pH (pH), buffering capacity (BC),
phosphorus concentration ([P]), and carbon concentration ([C]). As discussed in the main text, the model was formulated as follows:

1 1
[P] [P]
- | _ | [C]
Y = By |PHP] | +18,|PHIP] | +BsA (Equation 18)
pH[C] pH[C]
BC[P] BC[P]
BC[C] BC[C]

The variable [ is the indicator variable that is O for all monoculture wells and 1 for co-culture wells. A represents the area of the
merged droplets in the well at 68 h, as inferred by the fluorescent dye images. The area feature is included to account for the differ-
ences in the merged droplet volumes across communities. The area feature is not included with the indicatorlariable /js we do not
expect any difference in the contribution of area to the microbial growth in monoculture and coculture. The §,, and @, denote the
vectors of monoculture and interaction coefficients for the corresponding features, and 3, represents the coefficient of the area
feature A.

— .
Bu = [51,M76[P]M’5[C].M75pH[P],M’5pH[C],M:6BC[P].M:ﬁBC[C],M7ﬁ[P][C],M] (Equation 19)

— .
B, = [51,/7ﬁ[P],/:ﬁ[C],/:ﬁpH[P],h5pH[c1./,ﬁBC[P],n5BC[C]./,5[P][C],/] (Equation 20)

For each carbon source, two such regression models were set up, one for predicting the growth of E. coli Y¢ and another for pre-

dicting the growth of C. reinhardtii Y°".

Data preprocessing

The growth data from the kChip experiments was preprocessed for the regression modelling to facilitate the interpretation of the
regression results, as indicated in the main text.

Firstly, we classified the growth data into the different culture types based on the following scheme:

1. The data with NEC_ on >0.5and NS on) < 0.2 were classified as E. coli monocultures

2. The data with Ni"_ o, <0.2 and Ni'_ o, > 0.5 were classified as C. reinhardltii monocultures

3. The data with NZ_, >0.5 and Niy'_ o,y > 0.5 were classified as E. coli - C. reinhardltii cocultures

Following this, the data with merged-droplets area of the community between 850 pixels and 2000 pixels at 68 h were retained (The
median merged-droplets area of the communities at 68 h were in the range of 1100-1400 pixels for the different carbon sources). The
discarding of the data with merged-droplets area outside of 850 pixels and 2000 pixels at 68 h removed wells that have undergone
excessive evaporation. Then again, as it is not feasible to examine these large datasets one by one to remove those with imaging
artifacts, stray fluorescence signals, imperfect wells on the microfluidic chip etc, the data was again filtered to account for any
extreme outliers. In the case of monoculture data, the highest and the lowest 0.05% of the growth data of the microbes considering
all the monoculture wells were discarded. In the case of coculture data, wells with C. reinhardtii growth in the highest and the lowest
0.05% of the C. reinhardtii growth and with E. coli growth in the highest 2% and lowest 0.05% of the E. coli growth considering all the
coculture wells were discarded. This method of discarding the data ensured that the growth of the microbes in the discarded data lay
well beyond the lowest and the highest median growth of the microbes across replicate environmental conditions. Overall, the above
filtering schemes led to data losses of ~4.8%, ~4.5%, ~3.4%, ~8.1%, and ~4.2% in the glycerol, glucose, galactose, pyruvate, and
acetate datasets respectively.

Following the removal of outliers, the yields of each microbe (E. coli/C. reinhardtii) within its culture types (monoculture/coculture)
were independently Z-score normalized. That is, for each microbe within its culture type (E. coli monoculture/C. reinhardtii monocul-
ture/E. coli coculture/C. reinhardtii coculture), the mean and standard deviation of the growth Y were computed and all of the growth
data was subtracted from the mean and then divided by the standard deviation to obtain the standardized growth values.

The values of the independent variables - initial pH (pH), buffering capacity (BC), carbon concentration ([C]), and area (A) were also
independently transformed to range from 0 to 1 for each carbon source. Only phosphorus concentrations ([P]) were first log-trans-
formed (owing to the order-of-magnitude variation in the phoshporus concentrations across environments) and then scaled to range
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from 0 to 1 independently for each carbon source. This scaling brought the values of the independent variables to similar ranges,
avoiding the domination of a variable with the highest magnitude in training the regression model.

Implementing the regressions

A weighted least squares approach was used to solve for the coefficients in Equation 18. The weighted least squares approach
optimizes the cost function to find the regression coefficients by accounting for the variability in the number of data points across
environments (e.g. number of wells with the same environment and culture type). In our case, the weighted least squares
approach works by weighting the squared error of the data by 1/variance in growth across its replicates. Replicates here refer
to wells with the same culture type (E. coli monoculture/C. reinhardtii monoculture/E. coli-C. reinhardtii coculture) and environ-
mental condition. Consider z environments indexed by j. In each environment, we have n;”o”" replicate wells having monocultures
and njco replicate wells having cocultures. Within each environment, we compute a variance across monoculture replicates
0% (Yitam) Where Yl . is the growth in well m having monoculture that contains environment j, and variance across coculture
replicates o2(Y.,,,.) where Y, is the growth in well ¢ having coculture that contains environment j. We then optimize the
following objective function:

pmono co

3

XZ: /Z ;(Y/‘ -7 )2 .y ;W -V )2 (Equation 21)
= — g2 (Y{jata’m> data,m modelm o <Yijata_c) data,c model.c

Using the WLS function in the statsmodels package in python, two regression models, one for predicting E. coli growth and another
for predicting C. reinhardltii growth, were fitted to the standardized growth data of the respective microbes in each of the wells. The fits
obtained from the regressions with the pearson coefficients and the RMSE values are shown in Figure S10. And the ¢ coefficients
obtained for the regression models are shown in Figures S11 and S12. The 95% confidence intervals and the p-values of the coef-
ficients reported here were obtained from the summary output of the regressions in python.

Computing coculture coefficients

As discussed in the main text, the monoculture coefficient 8y, and the interaction coefficient 8y, where Xe ({[P], [C], pH[P],
pHIC], BC[P], BC[C], [P][C]}), respectively indicate the change in the growth in monoculture per unit change in X and the change
in growth per unit change in X in coculture relative to monoculture. Hence, the coculture coefficient 8y ¢, representing the change
in growth in coculture per unit change in X, can be obtained by adding 6x ,, and Bx,. And the 95% confidence interval of a cocul-
ture coefficient Gxc was computed using the covariance matrix of the features (obtained from regression analyses output in
Python) as follows:

Bxc = 1.96(\/var(ﬁle)+var(ﬁx_y,)+200v(6x~,v,,5)(,,)) (Equation 22)

The p-values of the coculture coefficients were obtained as outlined in Altman and Bland.”®
Hierarchical clustering of carbon sources
Two Hierarchical clusterings were performed (using Scipy (cluster.hierarchy) with Ward’s distance as the linkage metric) to find sim-
ilarities between the carbon sources based on

1. similarities in the microbial growth (Figure 6C, main text)

2. similarities in the regression coefficients (Figure 6B, main text)

We began by constructing the data matrices for hierarchical clusterings. In the case of (1), carbon sources formed the columns, and
environmental conditions in the different culture types for each microbe type (E. coli monoculture/C. reinhardtii monoculture/E. coli
coculture/C. reinhardtii coculture) formed the rows, with matrix entries the median standardized growth Y of E. coli or C. reinhardtii
mapping to the environmental conditions, culture types, and microbe types.

In the case of (2), carbon sources formed the columns again and features with and without the indicator variable /i.e ([P}, [C], pH[P),
pHIC], BC|P], BC|C], |[P][C], [P}, I[C], IpH[P], IpHI[C], IBC[P], IBC[C], I[P]|C]) in the regression models of E. coli and C. reinhardtii growth
formed the rows, with matrix entries the monoculture or interaction coefficients obtained from regressing E. coli growth, or mono-
culture or interaction coefficients obtained from regressing C. reinhardtii growth i.e ﬂ,\E/,C or ﬁfc or 6,?,{ or ﬂ,C’ , mapping to the features
and the microbe type.

The correlation matrix for hierarchical clusterings was computed accounting for the error in the data. If v, represents the column
vectors of the data matrices where k € (1,2, 3, 4, 5) represents the five carbon sources, we compute the following quantities to arrive
at the correlation coefficient between v, and v;:

Weighted mean of vy and v;.

1 1
2o Vhe > o 5oV
Hy = — (V“f) Sy = ”(V#’) (Equation 23)
20 2(vy) 202 (vp)
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where vy, and vj, represent the p™ entry in v, and v, respectively, and o(vpp) and a(vkp ) represent the standard errors/95% confidence
interval (as appropriate), in the p entry in v, and v, respectively
Weighted covariance between vy and v;.

W, (Vip — Vp —
cov(v,v)) = 2o (Vip — ) (Vi — 1) (Equation 24)

Ep Wp

where

1

Wp = ——————
P 02 (Vip ) +02(Vip)

(Equation 25)

Then corr(vk,v;), the correlation between the carbon sources k and / in v is computed as:

cov(vk, Vi)
Veov Vi, vi)cov (v, vi)

corr(vi,v;) = (Equation 26)

The correlations between all pairs of carbon sources are computed using the same formulae.
Plate experiment assaying E. coli growth on carbon sources
The growth rate of E. coli measured in microtiter plates in the five carbon sources are reported in Table S5. For this experiment, the
bacterial culture was grown and harvested similar to how it was done for droplet experiments. The growth was assayed in the low pH,
low buffering capacity media conditions formed by combining the environments E3 and E4 and in the low pH, high buffering capacity
media condition formed by combining the environments E11 and E12 (Table S2), via continuous measurement of OD590 for ~68h
using the Tecan infinite F200 PRO plate reader. The growth rate was inferred by fitting a straight line to the linear portion of the natural
logarithm of OD in time. The initial pH and buffering capacities of the environments, along with the growth rates and OD590 (at 68 h) of
E. coli and the final pH (at 68 h) of the cultures (measured using VWR pH paper BDH35309.606) are reported in Table S5. The final pH
was measured to be different in the two environments in the case of glucose and glycerol but similar between the respective envi-
ronments in the two carbon sources - the pH drop is higher in E3+E4 environment which has lower buffering capacity than the envi-
ronment E11+E12 with higher buffering capacity. On the other hand, the final pH is similar in both E3+E4 and E11+E12 in the case of
galactose, pyruvate, and acetate.
Discussion on variability in algal and bacterial growth in monocultures and cocultures
To compare the variation in E. coli and C. reinhardltii growth across monocultures and cocultures, we computed the fractional error as
the standard error across replicates divided by the median growth of E. coli and C. reinhardltii in monocultures and cocultures in each
of the environmental conditions. We find that the median fractional error across environmental conditions is ~4.5% in the case of
E. coli monoculture growth, ~12% in the case of E. coli coculture growth, ~6% in the case of C. reinhardtii monoculture growth,
and ~4.5% in the case of C. reinhardtii coculture growth. Therefore, we find that the variation in E. coli growth in coculture is higher
than in the other cases.

We hypothesized that the higher variation in E. coli coculture growth data compared to other cases is likely due to the higher vari-
ation in the initial number of C. reinhardtii cells per well in coculture we observe. In agreement with this, while the variability in the initial
number of E. coli cells per well in monoculture and coculture, and C. reinhardtii cells in monoculture are similar, ~50-55%, the vari-
ability in the initial number of C. reinhardtii cells per well in coculture is higher, ~80% (Table S7). This difference in the variation in initial
cell density across culture conditions is not surprising as the variation is expected to be higher when the median cell numbers are
lower, which is the case in C. reinhardltii coculture. Additionally, we computed correlations between the final cell density of E. coli
and C. reinhardtii in monoculture and coculture, with the initial density of E. coli and C. reinhardtii, for each culture and media con-
dition, and compared the distribution of the correlation values between the different cases (Figure S19). We find that, on average, the
final cell density of E. coli in monoculture and coculture positively correlates with the initial cell density of E. coli, as expected, the
same being true in the case of C. reinhardtii. However, the final cell density of E. coli in coculture is found to be negatively correlated
with the initial cell density of C. reinhardtii. From these observations, we conclude that the higher variation in E. coli growth in cocul-
ture is due to the higher variability in the initial number of C. reinhardtii cells and the negative correlation between the two.
Analogy between Monod'’s growth law and our statistical model
Monod’s growth law quantitatively describes the steady-state microbial growth in monoculture as a function of nutrient concentra-
tion. The simplest form of this model is as follows:

. uNX .
= KX (Equation 27)

; Y uNX )
X = - KX (Equation 28)

where u is the growth rate, K is the affinity parameter, Y is the yield coefficient, and N and X are biomass and nutrient levels respec-
tively, with some initial quantities of biomass and nutrients. The change in biomass in this model, at long times when nutrients are fully
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utilized is simply Y « X(t = 0). As a result, by construction, the yield coefficient Y is simply the change in biomass per unit nutrient
supplied.

In our statistical framework, when the microbial growth is affected by a single factor X (e.g nutrient concentration), our statistical
model takes a simple form as described in Equation 1 of the main text. The monoculture coefficient 6§?M which describes the change
in E. coli growth in monoculture with X, can be mathematically defined as follows.

o = YEX (Equation 29)

Equations 27, 28, and 29 above show the similarity between the yield coefficient Y in Monod’s growth law and the monoculture
coefficient 8} ), in our statistical model.

One caveat is that the yield coefficient as calculated by Monod’s law and the monoculture coefficient as calculated in our model are
in exact quantitative agreement only when the factor X is limiting in the regime considered. Despite this limitation, growth as a linear
function of nutrient concentration, as modeled by Monod, forms the fundamental premise for our statistical modeling as well.
Experimental validation of regression coefficients in microtiter plates
We attempted to experimentally validate a few coefficients obtained from statistical modeling, in microtiter plates. We assayed for
E. coliand C. reinhardtii growth in several environmental conditions in microtiter plates to validate the monoculture coefficients of BC
[C] and pHIC] of E. coli, and the monoculture coefficient of BC[P] of C. reinhardtii, in the case of glucose, in particular (Figure S11B).
Positive monoculture coefficient of BC[C]| of E. coli. A positive monoculture coefficient of BC[C] implies that the growth of E. coli
would be higher in an environment with high buffering capacity than in an environment with low buffering capacity, for the same car-
bon concentration. To test this, we assayed for growth in environments with low and high buffering capacities at a set of carbon con-
centrations. The plot in Figure S22A indeed shows higher growth at higher buffering capacity, with the increase in growth with [C]
being higher in environments with high buffering capacity, in agreement with the positive coefficient of BC[C].

Negative monoculture coefficient of pH|C] of E. coli. A negative monoculture coefficient of pH[C] implies that the growth of E. coli
would be higher in an environment with low pH than in an environment with high pH, for the same carbon concentration. To test this,
we assayed for growth in environments with low and high pH at a set of carbon concentrations. The plot in Figure S22B indeed shows
higher growth at lower pH, with the increase in growth with [C] being higher in environments with lower pH, in agreement with the
negative coefficient of pH[C].

Positive monoculture coefficient of BC|P] of C. reinhardtii. A positive monoculture coefficient of BC[P] implies that the growth of
C. reinhardtii would be higher in an environment with high buffering capacity than in an environment with low buffering capacity,
for the same phosphorus concentration. To test this, we assayed for growth in environments with low and high buffering capacities
at a set of phosphorus concentrations. The plot in Figure S22C indeed shows higher growth at higher buffering capacity, with the
increase in growth with [P] being higher in environments at high buffering capacity, in agreement with the positive coefficient of
BC|P]. Also, note that the environmental conditions in this plot differ by both pH and buffering capacity with the conditions with
high buffering capacity also having high pH and the conditions with low buffering capacity also having low pH. However, the negative
monoculture coefficient of pH[P], which suggests lower algal growth in an environment with higher pH, is lower in magnitude
compared to the positive monoculture coefficient of BC|P]. Therefore, higher algal growth at a higher buffering capacity for the phos-
phorus concentration, as suggested by the coefficient of BC[P], is observed.

Investigating the buffering ability of the phosphorus source on the regression results

As phosphate, the phosphorus source in the experiments acts as both a nutrient and a buffer, we investigated if this dual nature of
phosphorus source affects our regression results. Firstly, as the experimental design ensures that the environmental phosphorus
levels and buffering capacity have a poor correlation between the two (Pearson correlation ~0.1), we don’t expect the dual nature
of phosphate to affect the regression results. To test this directly, we truncated our full dataset to remove data where phosphate
acts as a buffer i.e [P]>0.01 mM ([P]<0.01 mM in the absence of other buffers offers near zero or very little buffering capacity;
Table S2). We then obtained the regression coefficients of the model considering the truncated dataset. The correlations between
the original regression coefficients considering the full dataset and the new regression coefficients obtained on the truncated dataset
were high ~0.52 - 0.68, in all carbon sources. We conclude from this that the phosphate serving as a phosphorus source and a buffer
doesn’t significantly affect our conclusions inferred from regression results.

Fluorescent intensity of the barcoding dyes is insensitive to pH

We examined the pH-dependent fluorescence characteristics of the Alexa Fluor dyes utilized for barcoding purposes. Firstly, among
the three fluorescent dyes - Alexa Fluor 555 (a modified form of Cy3), Alexa Fluor 594, and Alexa Fluor 647 (a modified form of Cy5),
employed in our experiments, it has been reported that the NHS ester derivatives of Cy3 and Cy5 exhibit negligible (~10%) fluorescence
variation over a pH range of 6.2 to 7.4, encompassing the pH values within our experimental conditions (https://help.lumiprobe.com/p/
44/fluorescence_cyanine_dyes). Furthermore, the manufacturer of these dyes, Thermo Fisher Scientific, asserts that Alexa Fluor dyes
display reduced pH sensitivity compared to their parent dyes (https://www.thermofisher.com/order/catalog/product/A33080).

The efficacy of the barcode clustering algorithm strongly implies that any potential pH dependence of fluorescence, if present,
does not pose a hindrance. The algorithm, which relies on distinguishing the fluorescence signals of the dyes, accurately identifies
the expected number of clusters/barcodes with nearly uniform representation across all barcodes (Figure S23). The result means that
any pH dependence of dye fluorescence is not sufficient to inhibit clustering.
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Single-cell chlorophyll concentration is insensitive to variations in media conditions

We investigated whether the chlorophyll concentration of the alga C. reinhardtii is influenced by cellular physiology, potentially modu-
lated by media conditions. Algal cell density within a well was assessed by dividing the total chlorophyll intensity by the per-cell chlo-
rophyll intensity, computed as the intensity corresponding to single algal cells identified through cell segmentation (STAR Methods). If
chlorophyll concentration were influenced by physiological or media conditions, one would expect differing per-cell chlorophyll inten-
sities across media conditions. This is not what we observe. The standard deviation in the per-cell intensities across media conditions is
within ~2.5% of the median in both monoculture and coculture settings for all carbon sources, with a maximum deviation of only ~ 4%
observed in coculture conditions having galactose as the carbon source. This suggests that any influence of media conditions on chlo-
rophyll concentration is minimal. Consequently, we conclude that the algal cell abundances determined using our methodology remain
comparable across media conditions and are not substantially affected by any physiological differences between the media conditions.
BSA is not a substantial nutrient source to algae and bacteria

The 0.05% w/v BSA utilized in the experiments contain considerable levels of carbon and nitrogen, ~22 mM [C] and 4.5 mM [N]
(calculated based on the presence of ~580 amino acids in BSA, each with an average of 5 carbon atoms and 1 nitrogen atom).
Consequently, we examined whether BSA might support the growth of E. coli and C. reinhardtii in our study. Initially, we evaluated
the growth of bacteria and algae with and without BSA in M9 base media in microtiter plates, monitoring GFP and chlorophyll intensity
atintervals using a plate reader. Endpoint growth measurements and abundance dynamics data indicate that BSA does not substan-
tially contribute to biomass production (Table S8; Figure S24).

Additional evidence supporting this observation can be observed by comparing the optical density (OD) measured in plates with
Taub media without BSA to the cell density computed in droplets containing BSA for E. coli. At the lowest carbon concentration of
2 mM, we measured an OD600 of approximately ~0.04 in plates (Figures S22A and S22B), corresponding to a cell density of approx-
imately 0.6 * 108 cells/mL (assuming OD 1 corresponds to approximately 1.5 « 102 cells/mL for E. coli’®), which closely aligns with the
cell density computed in droplets, approximately 250 cells per well (Figure S8A, light green points in the bottom right plot comparing
E. coli growth in monoculture and coculture), totaling around 1.2 x 108 cells/mL (with each well containing 2 nL of media). Further-
more, the observed increase in E. coli growth in droplets containing BSA, from approximately 250 cells/mL at 2 mM [C] to approx-
imately 1200 cells/mL at 10 mM [C] (Figure S8A, light green points representing data for 2 mM [C] on the left side of the plot vs. orange
points representing data for 10 mM [C] on the right side of the plot), closely correlates with the proportional increase in carbon con-
centration (excluding carbon content from BSA, STAR Methods). If microbes were utilizing carbon from BSA, the fold increase in cell
densities would be much lower between 2 mM [C] and 10 mM [C] as the carbon concentration increases from 24 mM [C] to 32 mM [C]
(considering 22 mM of BSA in addition to 2 mM and 10 mM carbon from glucose). So if BSA was a significant carbon source, and
carbon s limiting, the biomass increase would be 32/24 ~ 1.3, which is not what we observe. Given that BSA also contains nitrogen, it
is unlikely that this phenomenon occurs solely due to nitrogen limitation. Therefore, we conclude that BSA does not serve as a sub-
stantial nutrient source in our study.

Gas permeabilty and compound exchange in kChip platform

Acquiring experimental data regarding the permeability of gases through the kChip platform falls beyond the purview of our study.
Consequently, we undertook estimates to approximate the gas limitations within droplets. Leveraging diffusion coefficients of oxy-
gen and carbon dioxide in PDMS within the range of 10-° — 10~ m2/s,””"® and considering a microwell separation distance of 30
um, we estimated the diffusion time between kChip wells to be on the order of several seconds (t = d?/D). Hence, we performed back-
of-the-envelope calculations to estimate the limitation of gases in droplets. Additionally, utilizing the solubility of oxygen in freshwater
at 30°C and 1 bar, estimated at approximately 8 mg/L, we deduced the oxygen gas moles within a 1 nL droplet volume to be ~ 0.25
picomoles (globalseafood.org/advocate/dissolved-oxygen-requirements-in-aquatic-animal-respiration/). Comparing this estimated
oxygen availability with carbon availability in droplets (2 - 10 picomoles) suggests that oxygen diffusion could play a substantial role in
modulating microbial growth and may account for observed growth discrepancies between plates and droplets (Figure S18).

Furthermore, prior experimental investigations into compound exchange between droplets revealed that depletion of free surfac-
tant during chip loading and droplet compartmentalization through chip sealing substantially reduced chemical exchange, indicating
that nutrients supplied and waste products formed predominantly reside within the droplets.'®

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimating abundances of algae and bacteria

Computing local background GFP and chlorophyll intensities

To account for any spatial and temporal variation in the background intensities in the images, we computed the background fluores-
cence intensities in the GFP and chlorophyll images locally. We defined rectangular regions around the droplets/wells at each of the
time points. Then the local background GFP/chlorophyll intensity for a given droplet/well was obtained as the median of the top 5% of
the pixel intensities in the GFP/chlorophyll images respectively in the region bounded by the rectangle but excluding the droplet/well
area containing the cells.

Detection of algae and bacteria cells

The GFP and the chlorophyllimages were segmented to detect algal and bacterial cells by intensity thresholding the originalimages on
awell-by-well basis. The GFP threshold for any given well was set to 100-pixel intensity units above the local background GFP intensity
computed for that well (from above). Likewise, the chlorophyll threshold for any given well was set to 500-pixel intensity units above the
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local background chlorophyll intensity computed for that well. We refer to the disconnected regions of GFP/chlorophyll pixels in the
segmented images of GFP/chlorophyll as GFP/chlorophyll clusters respectively. These GFP/chlorophyll clusters represent the aggre-
gated or planktonic cells of E. coli or C. reinhardtii. Using scikit-image (regionprops), we extracted the area, total fluorescence intensity,
and mean fluorescence intensity (i.e intensity per pixel) of the GFP and chlorophyll clusters, used in the further analyses below.

Estimating single-cell intensities

To estimate the single-cell intensities of E. coli and C. reinhartdii, we first estimated the typical areas of a single cell of E. coli and
C. reinhardtii. The distribution of the areas of the GFP and chlorophyll clusters at the first and the last time point across the kChip
were plotted (Figure S2). By visual investigation of these distributions, we inferred the typical areas of a single E. coli cell and a single
C. reinhardtii cell at the first time point and the last time point to be around the peak of the distributions as marked in Figure S2. On
average, E. coli showed a decline in the single-cell areas in all the carbon sources. On the other hand, C. reinhardtii showed a lower
reduction in the single-cell areas and only in the case of acetate and galactose.

Using the typical areas of single cells, we were able to estimate the single-cell intensities of E. coli and C. reinhardltii. To account for
any difference in the single-cell intensities between monoculture and coculture, we obtained estimates of the single-cell intensities in
monoculture and coculture separately. This was done by first classifying the wells as having monoculture or coculture communities
as follows -

1. If a well only has GFP clusters but no chlorophyll clusters at the first time-point, the well has an E. coli monoculture community

2. If a well has no GFP clusters but only chlorophyll clusters at the first time-point, the well has a C. reinhardtii monoculture
community

3. If a well has both GFP clusters and chlorophyll clusters at the first timepoint, the well has a E. coli - C. reinhardltii coculture
community

Then, the steps for estimating the single-cell intensities for E. coli and C. reinhardtii in monoculture and coculture involved:
Computing single-cell areas of E.coli and C.reinhardtii in monoculture and coculture
Area of a single E. coli cell ASS in monoculture/coculture was estimated as the median of the areas of GFP clusters in monocultures/
cocultures across the kChip with the typical single E. coli cell areas estimated from above. In the same way, the area of a single
C. reinhardtii cell Agg in monoculture/coculture was computed considering the chlorophyll clusters. The single-cell areas were inde-
pendently computed for the first and the last time points.

Computing single-cell mean intensities of E.coli and C.reinhardtii in monoculture and coculture

Mean intensity of a single E. coli cell MIS¢ in monoculture/coculture was estimated as the median of the mean intensities of GFP clus-
ters in monocultures/cocultures across the kChip with the typical single E. coli cell areas estimated from above. In the same way, the
mean intensity of a single C.reinhardtii cell Mlgg in monoculture/coculture was computed considering the chlorophyll clusters. The
single-cell mean intensities were also independently computed for the first and the last time points.

Finally, the intensity of a single E. coli/C. reinhardtii cell I’gg/lgg in monoculture/coculture was computed by multiplying Agg / Agg with
MIES/MIS., obtained in the respective culture types.

lgi—mono — Mlgzé—mano xAgi—mono (Equation 30)
I5e7% = MIGS™*° x A< (Equation 31)

lCr—mono _ MICr—mono ><ACr—mczno (E :

Sc = Mige sc quation 32)
I8 = MIG*° x AG.~*° (Equation 33)

The estimated values of the single-cell intensities of E. coli and C. reinhardtii at the first and the last timepoint are shown in (Fig-
ure S3). We note that the median intensity of an E. coli cell computed this way showed a reduction in the single-cell intensity of E. coli
from the first timepoint to the last timepoint by more than 50% in most cases. Whereas the single-cell intensity of a C,reinhardtii cell
was more comparable between the time points, except in the case of galactose and acetate. Additionally, E. coli also showed a dif-
ference in the single-cell intensity between monoculture and coculture unlike C. reinhardtii.

Error in single-cell intensity estimates
The standard error in the single-cell intensity estimates, d/s., in monoculture/coculture at any timepoint is calculated as follows:

Miss\? [6Ass\? .
Olse = Ise X Equation 34
sc Sc \/(M/sC> + Ac (Equation 34)
where 6MIs. and 6Asc represent the standard errors in the mean fluorescence intensity and the area of the single cells of the
respective microbes at the corresponding time points and in the corresponding culture types (monoculture/coculture).
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Obtaining abundances of algae and bacteria
We computed the abundances of the microbes in the wells by dividing their total fluorescence intensity by the appropriate single-cell
intensity estimate. For example, if the community in a well was found to be a coculture community, the abundance of E. coli in the
well was computed by dividing the total sum of the background-subtracted fluorescence intensities of the GFP clusters in the well by
the single-cell intensity of E. coli estimated for coculture. The mathematical expressions for calculating abundances in each of the cases
are given below.

Abundance of E. coli N¢ in a well having E. coli monoculture community with n GFP clusters:

GFP S GFP E IGF;T .
lyer = Z/i N = /gcﬂ/fnono (Equation 35)
i=1 o

GFP

where [P represents the total GFP intensity of an /" GFP cluster in the well and /57

clusters in the well.
Abundance of C. reinhardtii N° in a well having C. reinhardtii monoculture with m chlorophyll clusters:

represents the total GFP intensity of all the GFP

m /Chl .
lgg;l = Z Ilcm’ NCF = ICr rlreryono (Equatlon 36)
i=1 Sc
where I€" represents the total chlorophyll intensity of an i chlorophyll cluster in the well and IS, represents the total chlorophyll in-
tensity of all the clusters in the well.
Abundance of E. coli NE¢ and abundance of C. reinharditii N®" in a well having E. coli-C. reinharditii coculture with n GFP clusters and

m chlorophyll clusters:

n |GFP
1560 = > 1P NEe = el (Equation 37)
i=1 ISC
Chl < Chl IChI
Iwell = le 7NCr = lcrwfléo (38)
j=1 Sc

where I and I are respectively the total GFP and total chlorophyll intensity of an /*” GFP and j* chlorophyll cluster in the well, and

lfveF,’,’ and ISZ;, are respectively the total GFP and the total chlorophyll intensity of all clusters in the well.

The growth of E. coli/C. reinhardtii, represented by Y&¢ and Y respectively in any well, is then obtained by subtracting the initial
abundances of the microbes in the well at t = 0 h from their final abundances in the well at t = 68 h.

YEe = N(Ef: aan) — fo: on) (Equation 39)

Y = NJ_ ey — Ni— o (Equation 40)

The median and standard deviation in the abundances across environmental conditions, for each carbon source and culture con-
dition, are reported in Table S6.
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