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A B S T R A C T

Chain of custody is needed to document the sequence of custody of sensitive big data such as various healthcare

data. In this work, we propose a secure and autonomous big data sharing system (BBS) based on a permissioned

blockchain. In our system, we refer to the data stored at a blockchain node but outside the ledger for sharing as

‘‘off-state’’, such as the large amounts of data (called ‘‘big data’’) that cannot be stored directly in a blockchain

ledger in practice. To securely and autonomously share the off-state data, we further design an off-state sharing

protocol. In the proposed protocol, a sender registers the big data with BBS for sharing. To acquire the big

data, an authenticated and authorized receiver has to propose transactions and interact with BBS in five

phases, including data transfer authorization, data transfer, two-time key request, and data decryption. The

key advantage of BBS is its ability to defeat dishonest users and autonomously perform the aforementioned

five phases. The corresponding transactions are recorded in the ledger, serving as chain of custody evidences

that document the data trail. To demonstrate the effectiveness of our proposed system, we have designed and

implemented prototypes of BBS for sharing big files over two representative permissioned blockchains, i.e.,

Hyperledger Fabric and Enterprise Ethereum. Extensive experiments are performed to validate the feasibility

and performance of our system.
1. Introduction

A consortium of organizations such as hospitals and research in-

stitutions may need to share sensitive data such as biomedical and

scientific data with each other free of charge for better cooperation

and scientific discovery. The data sharing brings an attractive value

to disease diagnosis, therapeutic regimens, and precision medicine [1].

However, the shared data may be sensitive and large in volumes, such

as videos, diffusion MRI images [2], and confidential files. For instance,

umerous diffusion studies can yield datasets of several gigabytes for a

ingle patient. Due to growing concerns regarding intellectual property

heft and industrial espionage [3,4], it is imperative to develop a

secure and reliable ‘‘big data’’ sharing system that incorporates a record

of the chain of custody [5]. This record will serve to document the

omplete trail of the data, including information on who requests the

ata and who owns it. Centralized systems for data sharing often suffer

rom issues such as single point of failure, data abuse, and privacy

� An earlier version of this paper entitled ‘‘BBS: A Blockchain Big-Data Sharing System’’ is accepted to IEEE International Conference on Communications (ICC)
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violations [1,6,7]. Therefore, a decentralized data sharing system is

highly demanded.

Blockchain technology is a promising solution to establish the chain

of custody of the shared sensitive data without a central authority, and

can preserve non-repudiable evidence [8]. In conventional blockchain

systems, data is typically stored in a ledger that consists of a world

state and a blockchain. The ledger is synchronized across all blockchain

nodes. The world state maintains the current system state, which in-

cludes information like the user’s cryptocurrency balance in Bitcoin [9],

while the blockchain records the entire transaction history. This trans-

action history contains the operations performed on the world state and

the data required to update the world state. A smart contract, i.e., a

decentralized application running over a blockchain system, controls

operations on the world state and is usually treated as a trustworthy

third-party arbiter. The complete transaction history generates the

current state values and can serve as evidence for auditing purposes.
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However, existing blockchain frameworks cannot be directly ap-
plied to big data sharing. This is primarily because existing frameworks
impose limitations on ledger data size and data types, driven by factors
such as transaction fees, system performance, and other concerns [10–
13]. Traditionally, the ledger is designed to store state data, such
as cryptocurrency balances. It is impractical to store big files in the
world state database or use transactions to carry big files across the
blockchain network. Furthermore, all blockchain nodes typically main-
tain the same ledger data. However, due to privacy and intellectual
property concerns, data owners may be reluctant to share large-scale
data across all nodes. Sharing data within ledgers presents storage and
privacy challenges for big data sharing.

Off-chain schemes have been proposed for blockchain-related big
data sharing systems. However, these off-chain based schemes are
inappropriate for our purposes, especially for establishing the chain of
custody, for the following reasons. First, some off-chain schemes are
proposed for big data selling applications over public blockchains [14–
17] such as FairSwap [16]. In these systems, users must pay transaction
fees to miners for smart contract execution or pay fees to data owners
for data exchange. They are not specifically designed for facilitating free
ata sharing applications, which is the objective we aim to achieve. Sec-
nd, data transfer in those big data selling systems is often performed
ff-chain, not as an integral part of the blockchain system, and cannot
e executed autonomously. Third, in the big data selling scheme, the
ncryption key is revealed to a public blockchain. The revealed key
ay incur the temporary censorship attack [18]. If an encrypted file is

eaked, such as being intercepted by malicious cyber actors, there is a
isk that the encrypted file may be decrypted by adversaries. Fourth,
n [19–21], a blockchain module is used to manage data access tokens
or data sharing, and users use the token to access data off-chain. The
lockchain system has no control over the actual data transfer and
annot know the status of the data transfer. A dishonest sender may not
hare the data with the receiver, and a dishonest receiver may falsely
laim that he/she does not receive the data.

In this paper, we design a novel blockchain-based big data sharing
ystem (BBS) which can autonomously and securely build the chain
f custody of the shared data without privacy issues. We introduce
novel ‘‘off-state’’ data sharing system model and protocol, which

an concurrently address the storage, privacy, autonomy, and security
ssues in existing on-chain and off-chain data sharing schemes. Our BBS
ystem is built upon a permissioned blockchain so as to freely share
ensitive big data with authenticated and authorized users, and manage
aried types of big data. Our major contributions are summarized as
ollows.

• We introduce the concept of ‘‘off-state’’, which is data, partic-
ularly big data, maintained at a separate storage space to dis-
tinguish from the ledger at blockchain nodes. Off-states can be
shared between parties of interest and do not need to be synchro-
nized across all nodes for privacy considerations. A trustworthy
smart contract can directly operate on off-state data, such as
sharing, so that the blockchain system can autonomously control
the data sharing process and record all necessary evidence in
ledgers.

• We propose a novel off-state sharing protocol utilizing the smart
contract for autonomous data management and securing the chain
of custody. During big data sharing, a receiver only interacts with
the system and does not need to involve the sender. Users must
interact with the blockchain system through transactions, which
document the chain of custody. Dishonest receivers cannot deny
that they obtained the original data since the transaction history
in the blockchain provides non-repudiable evidence.

• We implement a prototypical BBS running our off-state data
sharing protocol for big file sharing over two mainstream permis-
sioned blockchain paradigms, i.e., ‘‘execute-order-validate’’ and
2

‘‘order-execute’’, used by Hyperledger Fabric [22] (denoted as
Table 1
Comparison to existing work.

Schemes Storage Privacy Security Autonomy

On-chain [24–29] ✗ ✗ ✓ ✓

Off-chain [14–17,19–21] ✓ ✓ ✗ ✗

Off-state (ours) ✓ ✓ ✓ ✓

Note: The symbol ✓ indicates that the corresponding property is achieved, while the
symbol ✗ indicates that the corresponding property is not achieved.

Fabric), and Enterprise Ethereum [23] respectively. This demon-
strates that our protocol is general. We present our protocol over
Fabric in detail and discuss the Enterprise Ethereum version in
Section 8. Extensive experiments are performed to evaluate the
feasibility and performance of BBS, such as the latency of big
file sharing between pairs of blockchain nodes. BBS over Fabric
performs similarly or better compared to secure file transfer
applications SFTP/SCP in Linux in terms of performance.

The rest of this paper is organized as follows. The related work is
presented in Section 2. Section 3 introduces two representative per-
missioned blockchain frameworks and their permission mechanisms.
Section 4 presents the design goals, system model, and threat model.
Section 5 proposes a secure off-state sharing protocol and presents
the protocol details. The security analysis of the protocol is presented
in Section 6. We evaluate the prototypical BBS based on Fabric in
Section 7. Section 8 discusses the BBS system over Enterprise Ethereum
and shows that the proposed protocol is general. Section 9 concludes
this work.

2. Related work

In this section, we review related work on data sharing pertaining
to blockchain.

In some work, blockchain systems are employed to store, manage,
and share data such as biomedical data within ledgers. In [24–29],
smart contracts are utilized to control the data access. Users interact
with the system by proposing transactions to set or retrieve shared
data. Transactions carry the shared data. However, sharing big data
in ledgers is impractical due to ledger storage limitations and privacy
concerns.

In [14–17], blockchain systems are designed for selling big data
and charging users in cryptocurrency. For example, FairSwap [16,17]
is a digital goods selling protocol. It is unsuitable for a free or au-
tonomous big data sharing system for three reasons. First, FairSwap
sells big files in Ethereum. Users need to pay fees to miners for smart
contract execution and pay for requested data. It is not designed for
free data sharing applications for the purpose of scientific discovery.
Second, in the FairSwap protocol, users are required to transfer files
off-chain and perform encryption/decryption, while the blockchain
system handles tasks such as cryptocurrency transfer and encryption
key exchange. Therefore, FairSwap segregates file transfer from the
blockchain system. In contrast, file transfer is an integrated part of our
BBS, and can be executed autonomously. Third, FairSwap operates on
a public blockchain, where the encryption key is openly disclosed on
the ledger. This means that if an encrypted file is compromised, such as
being intercepted by adversaries, there is a possibility for the encrypted
file to be decrypted using the publicly available encryption key. Our
system securely manages the encryption key by a data isolation mech-
anism, and is not revealed to the public. DataTBC [14] and FaDe [15]
have similar drawbacks to FairSwap. Revealing the encryption key by
FairSwap to a public blockchain may incur the temporary censorship
attack [18], in which a transaction is censored by malicious miners and
cannot be committed to the blockchain, but the key has been revealed.

The blockchain modules in [19–21] utilize the blockchain system to
manage data access tokens. The data is stored outside of the blockchain.
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Users utilize those tokens to access data off-chain. However, they over-
look security issues such as dishonest users. For example, in [19,21],
a dishonest sender may refuse to share the required data when the
receiver requests the data off-chain. In [20], encrypted data is stored
in a decentralized file storage system InterPlanetary File System (IPFS),
and a blockchain system is utilized to manage the encryption key. A
dishonest sender may upload the wrong requested data to the IPFS
or share a wrong encryption key, so as to refuse to share the data.
In [20], users have to off-chain interact with each other. The system
is not autonomous. The aforementioned blockchain systems as well as
many others [30–33] lack control over the actual data sharing process
and are unable to know the status of data sharing, e.g., whether the data
is actually shared. Most of such related work often misses a detailed
description of the sharing protocol.

As summarized in Table 1, existing blockchain-based data shar-
ing schemes can be categorized into on-chain schemes and off-chain
schemes. On-chain schemes often suffer from storage and privacy is-
sues, while off-chain schemes usually encounter security and autonomy
challenges. In comparison, our off-state scheme can address all of these
issues, resulting in a secure and autonomous data sharing protocol for
big data without compromising privacy.

Furthermore, an earlier version of this paper [34] introduces an off-
state scheme. However, the earlier version scheme assumes that one
organization only has one user who represents that organization. It only
allows data sharing among organizations not among users. This paper
extends the system model and generalizes the data sharing protocol,
where each organization can set multiple users and users can share data
within one organization or across different organizations. This paper
also formalizes the security of the proposed protocol in detail, and
provides an Enterprise Ethereum version of BBS which demonstrates
the generality of the proposed protocol.

3. Background

In this section, we introduce two mainstream permissioned
blockchain paradigms, i.e., ‘‘execute-order-validate’’ and ‘‘order-
execute’’, and the related built-in permission mechanisms for access
control and data confidentiality. A permissioned blockchain framework
is more suitable for our purposes than a public blockchain, because a
permissioned blockchain involves multiple permission mechanisms for
security and privacy purposes, and does not involve transaction fees.

3.1. Permissioned blockchain paradigms

Permissioned blockchains mainly follow two types of paradigms,
i.e., execute-order-validate and order-execute. In the execute-order-
validate paradigm, a transaction is executed before ordering the trans-
action into a block. In the order-execute paradigm, a transaction is
executed after transaction ordering.

3.1.1. Execute-order-validate
In the execute-order-validate blockchain architecture, smart con-

tracts execute before transaction ordering. The representative frame-
work is Hyperledger Fabric. The ‘‘execute-order-validate’’ paradigm
involves three types of nodes, i.e., peers, orderers, and clients, each
responsible for specific tasks in the transaction workflow. Peers are
responsible for maintaining ledgers and smart contracts, and serve as
the backbone of the blockchain network. Orderers are responsible for
block generation. Clients are the users of the blockchain system.

Fig. 1 illustrates the ‘‘execute-order-validate’’ transaction workflow.
(Steps 1–2) A client/user signs and initiates a transaction proposal
which is then sent to a subset of peers called endorsers. The endorsers
are specified by an endorsement policy; (Steps 3–6) Each endorser
independently executes the chaincode (i.e., smart contract in Fabric),
and signs the execution results as an endorsement. The signed results
3

are then returned to the client as the proposal response. It is important
Fig. 1. ‘‘Execute-order-validate’’ transaction workflow. ‘‘Tx’’ is the abbreviation of
‘‘Transaction’’.

to note that the execution results are not yet updated to the world
state at this stage; (Steps 7–8) If the execution results obtained from
different endorsers are consistent, the client has the option to construct
and submit a transaction. This transaction includes the transaction
proposal, execution results, and a list of signatures on the execution
results as endorsements. The client then sends this transaction to the
orderer nodes for further processing. (Steps 9–12) The orderer nodes
bundle collected transactions into a new block following a consensus
protocol such as Raft, and distribute the new block to all peers including
both endorsers and non-endorsers; (Steps 13–15) All peers validate
the transactions in the received new block. For each transaction, if
its endorsements meet the endorsement policy check and its execution
results pass the version conflict check, each peer updates the world
state according to execution results. After validating all transactions,
each peer appends the new block to its local blockchain; (Step 16)
Finally, a peer will notify the client if the transaction initiated by the
client has been successfully committed.

3.1.2. Order-execute
In the order-execute blockchain architecture, smart contracts exe-

cute after the transaction ordering. The representative framework is En-
terprise Ethereum [23]. The ‘‘order-execute’’ architecture involves two
types of nodes, i.e., client and full node. Full nodes maintain ledgers,
run the smart contract, generate blocks and form the blockchain sys-
tem. A client proposes transactions to trigger actions of the blockchain
system.

Fig. 2 shows the ‘‘order-execute’’ transaction workflow. (Steps 1–3)
A client/user signs, crafts and sends a transaction to a full node. The
transaction contains the index of the smart contract function that the
client intends to invoke with a parameter list. This full node verifies
and broadcasts the transaction to the network of full nodes; (Steps
4–12) A full node is elected as a proposer through the consensus
protocol such as Proof-of-Authority (PoA). This proposer generates
and signs a new block with the received transactions, and broadcasts
the new block to the network of full nodes. Full nodes can work as
validators to validate, sign the block and broadcast to notify others of
its endorsing of the block; (Steps 13–15) If the new block is properly
signed by a group of validators, e.g., 2

3 of all the validators, each full
node accepts and appends the new block to its local blockchain, and
processes transactions in the new block one by one. The node executes
the specified smart contract function with provided parameters, and
updates its world state; (Step 16) The full node that received the client’s
transaction sends a notification to the client.
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Fig. 2. ‘‘Order-execute’’ transaction workflow.

.2. Permission mechanisms

A permissioned blockchain usually adopts multiple mechanisms for
ccess control and data confidentiality. We mainly utilize the following
hree properties of the permissioned blockchain to design our BBS
ystem.
Membership Service: Each node and user has a certificate which

ndicates its identity. The identity is bonded with one party within the
onsortium who builds/uses the blockchain system. Only authorized
odes and users can participate in a permissioned blockchain network.
Data Isolation: A data isolation mechanism is required when a

ubset of participants want to keep sensitive data private from others
ithin the consortium. Fabric incorporates a private data collection

PDC) mechanism [35] to maintain the confidentiality of PDC data
ithin a specific group of PDC members. In this mechanism, the origi-
al data is stored only by PDC member peers, while PDC non-member
eers only store the hashes of the data.

In Enterprise Ethereum, the private transaction mechanism is
dopted to manage private data, which is shared within a privacy
group. A private transaction operates on the private world state at the
privacy group nodes. A private transaction has a data field that contains
function index and parameters, and is shared and stored only in the
privacy group nodes. Only the hash of the data field is included in the
rivate transaction, which will be bundled in the blockchain and stored
t all nodes.
Endorsement Policy: In the ‘‘execute-order-validate’’ architecture,

.e., Fabric, a special mechanism called endorsement policy is adopted.
n endorsement policy stipulates which peers are required to perform
s endorsers for endorsing a transaction. Endorsing involves executing
mart contracts and signing the execution results. Each smart contract
as a default chaincode-level endorsement policy, which governs all
ublic data and PDC data in the world state. A key-level endorsement
olicy can be flexibly customized to manage specific key–value data.
collection-level endorsement policy is employed to manage the PDC

ata.

. Design goals and models

In this section, we first present the design goals and then present
ur system model and threat model. A naive protocol is introduced at
4

he end and its issues are discussed. 𝑂
.1. Design goals

Our goal is to design a blockchain based big-data sharing system
BBS) that enables the establishment of a chain of custody for the big
ata. The ledger serves as evidences that cannot be repudiated. The
ig data is freely shared between a sender and a receiver within a
onsortium of organizations.

Given the diverse types and varying sizes of data, along with the
hallenges of applying existing blockchain frameworks to build BBS,
ur design goals are as follows.

• Big data storage. Given the storage limitations of traditional
ledgers, it is not feasible to store large volumes of big data directly
in the ledger or include extensive amounts of big data within
transactions. BBS should overcome the storage limitation for big
data sharing.

• Privacy preservation. Big data may be sensitive. The owner may
not want to share the data with everyone. The blockchain system
cannot be directly used for big data sharing due to all nodes
maintain the same data in a conventional blockchain system. The
data should be maintained only by an owner node and be shared
with desired users. Access control shall be adopted.

• Autonomy. BBS shall be autonomous. Users shall not interact with
each other off-chain for data transfer as done in related work. A
sender shall be able to register his/her data with BBS, which takes
over the data sharing process. The whole process of data sharing
can be autonomously completed.

• Security. During a big data sharing session, either the sender or
the receiver has the potential to behave dishonestly. The sender
might fail to really share data or may provide the data that does
not align with the description that she/he advertises. The receiver
may dishonestly deny receiving the data from the sender. In the
event of a dispute, the blockchain shall serve as a source of
evidence to resolve the case.

.2. System model

Permissioned Blockchain Settings: A consortium of organizations  =
{𝑂1,… , 𝑂𝑛} cooperate together to build a permissioned blockchain sys-
tem . One organization has multiple users. For clarity and simplicity
but without loss of generality, assume each organization contributes a
single node, i.e., peer node in Fabric, and authorizes multiple users to
participate in the system. The node set is denoted as  = {𝑁1,… , 𝑁𝑛}.
The user set of 𝑂𝑖, 𝑖 = 1, 2,… , 𝑛 is denoted as 𝑈𝑖 = {𝑈𝑖1,… , 𝑈𝑖𝑚}. A
user interacts with  through a client node. 𝑁𝑖 and 𝑈𝑖 belong to 𝑂𝑖. All
rganizations collaborate to jointly develop and deploy a smart contract
on nodes  , aiming to achieve a common business objective such as

acilitating big data sharing.
We introduce a new concept of ‘‘off-state’’, which is stored at

lockchain nodes  , but outside of the ledgers, particularly the world
tate. For example, the off-state data can be big data. Therefore, we
eneralize big data sharing as off-state data sharing. Node 𝑁𝑖 maintains
eparate off-state storage spaces for different users in 𝑈𝑖. A user only
an access its own off-state space. Off-states can be inconsistent across
𝑁1,… , 𝑁𝑛}. Off-state data can be shared between two users whose
ff-state storage spaces may locate at pairs of nodes or locate within
ne node. A smart contract 𝐶 can directly operate on the off-state for
eading, writing, encryption/decryption and other operations including
ata sharing.

Fig. 3 illustrates the model of our blockchain off-state sharing
ystem. Each node in the system maintains a world state database and
ome off-state storage spaces when needed. Users initiate transactions
o activate the smart contracts to operate the off-state data, such as
ata transfer. An off-state sharing session occurs between two users
enoted as 𝑆 and 𝑅. The two users belong to organizations, 𝑂𝑆 and
𝑅 𝑆 𝑅
respectively, within . We denote their nodes as 𝑁 and 𝑁 , and
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Fig. 3. Blockchain off-state sharing system model. Denote ‘‘World state’’ as ‘‘W’’, ‘‘smart

contract’’ as ‘‘S’’, ‘‘transaction’’ as ‘‘Tx’’.

their off-state spaces as 𝐷𝑆 and 𝐷𝑅. 𝑂𝑆 and 𝑂𝑅 can be the same one,

here two users who belong to the same organization share big data.

he smart contract has complete control over the sharing process and

an facilitate the transfer of off-state data 𝑓 from 𝐷𝑆 in 𝑁𝑆 to 𝐷𝑅 in

𝑁𝑅 using an off-state sharing protocol. Prior to data sharing, the data

wner, such as User 1, uploads its data such as 𝑓1 to its own off-state

pace for sharing. During the data sharing process, a data receiver, such

s User 3, proposes a transaction to request a specific data such as 𝑓1.

Then the smart contract running on blockchain nodes follows the data

sharing protocol to manage data access and perform operations on the

off-state data. If the receiver is authorized according to the access rules,

the smart contract transfers the data from the sender’s off-state space

to the receiver’s off-state space. Subsequently, the data receiver can

retrieve the shared data from its own off-state space.

4.3. Threat model

We assume that the underlying blockchain infrastructure  includ-

ing all permission mechanisms is secure. All parties securely store their

private key. User 𝑈𝑖𝑗 trusts the node 𝑁𝑖 which belongs to the same

rganization 𝑂𝑖 as the user, and does not trust nodes which belong

to different organizations 𝑂𝑘, 𝑘 ≠ 𝑖 from the user. A user 𝑈𝑖𝑗 can

retrieve the world state data in 𝑁𝑖, and retrieve, upload and download

ata only in its own off-state storage space in 𝑁𝑖. In Fabric, the smart

contract is deployed in a decentralized manner, ensuring that no single

organization has exclusive control over it. Consequently, we assume the

smart contract 𝐶 is trusted.

Users (e.g., sender/receiver) may be dishonest due to various factors

(e.g., economic incentive, internal/external attacks). The sender may

withhold the data or may share the data that does not align with the

description that she/he advertises. The receiver may dishonestly deny

having received the data from the sender.

Security Goals. Denote a malicious adversary (e.g., sender/receiver)

s . We call a tuple (𝑖𝑑∗
𝑓
, 𝑛𝑎𝑚𝑒∗, 𝑓 ∗), which contains the data ID,

ame and the data plaintext, as a 𝑓𝑜𝑟𝑔𝑒𝑟𝑦 if the sender/receiver could

heat on this data. A sender cheats by providing a 𝑓𝑜𝑟𝑔𝑒𝑟𝑦 which

atches with the metadata in the world state but is different from the

ctually transferred data. A receiver cheats by getting a 𝑓𝑜𝑟𝑔𝑒𝑟𝑦 which

matches with the data metadata in the world state before transaction

ordering. Intuitively, the proposed system is secure if the polynomial-

time adversary  is computationally infeasible to find a 𝑓𝑜𝑟𝑔𝑒𝑟𝑦 of the

proposed system. We formalize the protocol security of the BBS system

as follows.
Fig. 4. A Naive off-state sharing protocol.

Definition 1. Let Pr[𝖢𝗁𝖾𝖺𝗍] = Pr
[
𝛱 (𝜆) → 𝑓𝑜𝑟𝑔𝑒𝑟𝑦

]
be the probability

that the sender/receiver is able to cheat. We say the proposed protocol

is secure if Pr[𝖢𝗁𝖾𝖺𝗍] is negligible.

4.4. Naive protocol and issues

We begin by introducing a naive protocol to illustrate the security

issues that need to be carefully addressed during protocol design. This

serves to motivate the development of a secure protocol, which we

delve into in Section 5.

Fig. 4 shows a straightforward off-state sharing protocol 𝛱 . 𝛱 has

two stages. In the preparing stage, user 𝑆 registers data 𝑓 with the

blockchain system . 𝑆 defines the data access rule and advertises

the data description. During the sharing stage, user 𝑅 proposes a

transaction to request 𝑓 from . Contract 𝐶 facilitates the transfer of

𝑓 to a legitimate 𝑅. These two transactions will be recorded in the

blockchain as evidences of the data sharing process.

Under our threat model, the naive protocol 𝛱 is insecure. (i) A

sender may deny that he/she delivers wrong data which does not

match with advertised metadata in the world state. For example, in the

preparing stage, 𝑆 may upload wrong data 𝑓 which does not match

with the description but deny sharing 𝑓 . (ii) A receiver may get 𝑓

without recording the transaction in the blockchain so as to repudiate

receiving the data. For example, under the ‘‘execute-order-validate’’

architecture discussed in Section 3.1.1, the smart contract executes

before ordering. In the 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 stage, after the smart contract transfers

the data 𝑓 , a dishonest 𝑅 may change the client application and does

not submit the transaction for ordering. Then the blockchain cannot

record this data transfer activity but 𝑅 has received 𝑓 . A secure off-state

sharing protocol is needed to securely establish the chain of custody.

In the next section, we propose a secure off-state sharing protocol. This

protocol utilizes the trustworthy smart contract to calculate the hash of

the shared data and stores it in the world state as undeniable evidence,

thereby thwarting dishonest sender. It also leverages the smart contract

to encrypt the off-state data and employs a private data mechanism

to securely share the encryption key on-chain, effectively defeating

dishonest receivers.

5. Off-state sharing protocol

In this section, we propose a secure off-state sharing protocol and

present the protocol details based on Fabric. Main notations used in the

following are summarized in Table 2.
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Table 2
Main notations summary.

Notations Description

𝑓 Data to be shared
𝑘 Encryption key used to encrypt data 𝑓
𝑓𝑧 Ciphertext of data f encrypted by 𝑘
ℎ𝑧 Hash of the data ciphertext 𝑓𝑧
ℎ𝑘 Hash of the encryption key 𝑘
𝑘𝑅 Ciphertext of encryption key 𝑘 encrypted by the public key of the

receiver user
𝑘𝑧 Ciphertext of 𝑘𝑅 encrypted by the public key of the receiver peer node

5.1. Protocol overview

In the protocol, a sender user 𝑆 shares data 𝑓 with a receiver
user 𝑅. These two users can belong to different organizations, such as
when a hospital shares some biomedical data with a research institute.
Alternatively, these two users can belong to the same organization, like
when two departments within a hospital internally share documents.

The secure off-state sharing protocol  is shown in Fig. 5. We use
a big file 𝑓 as an off-state data example. In Stage 1, sender 𝑆 uploads
and registers 𝑓 with system . 𝑓 is stored at the sender’s off-state space
𝐷𝑆 at the sender node 𝑁𝑆 .  derives the commitment information,
i.e., hash, and stores such information as well as the metadata of 𝑓 in
the world state. In Stage 2, the blockchain system  can perform the
whole off-state sharing process autonomously. Different from related
work, receiver 𝑅 only interacts with , and does not need to involve
sender 𝑆. Smart contract 𝐶 encrypts 𝑓 using a symmetric encryption
key 𝑘, and transfers the encrypted data 𝑓𝑧. The received 𝑓𝑧 is stored
at the receiver’s off-state space 𝐷𝑅 at the receiver node 𝑁𝑅. 𝑘 is
encrypted two times using the public keys of the receiver node 𝑁𝑅 and
he receiver 𝑅. 𝑘 is stored in the world state and managed by a data
solation mechanism such as PDC in Fabric so that receiver 𝑅 has to

propose transactions to get 𝑘 so as to decrypt 𝑓𝑧. Critical information
such as hashes of 𝑓𝑧 and 𝑘 will be recorded in the world state and
n transactions, which perform as evidences for the chain of custody
f the data. With our protocol  , the big data can be securely shared
etween two users who may belong to different organizations or the
ame organization.

.2. Stages of protocol

We now introduce the protocol  in detail.

.2.1. Stage 1: Preparing data for sharing
The sender and data owner 𝑆 prepares the big data/file to be shared.

uploads 𝑓 to its off-state storage 𝐷𝑆 at the sender’s blockchain node
𝑆 . 𝑆 also proposes a transaction to trigger smart contract 𝐶 to derive

he metadata (𝑛𝑎𝑚𝑒, ℎ, 𝑜𝑤𝑛𝑒𝑟, 𝑟𝑢𝑙𝑒, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) of 𝑓 and record it as a
𝑖𝑙𝑒 entity in the world state so that people can search for the data

nformation.

• The file hash ℎ can be used to verify the integrity of 𝑓 . 𝐶
calculates and records ℎ in the world state. Every node maintains
ℎ.

• The access rule 𝑟𝑢𝑙𝑒 protects the privacy of 𝑓 . 𝑆 defines the access
rule based on the identities in the permissioned blockchain. As
an example, a rule denoted as {𝑂1, 𝑂2} means that 𝑓 can only be
shared with users belonging to organization 𝑂1 and organization
𝑂2.

• File metadata in the world state database is public to all users for
searching.

.2.2. Stage 2: Sharing data
Fig. 6 shows the workflow of sharing a big file over Fabric. The
6

haring process involves five transactions, which follow the same
Fig. 5. A secure off-state sharing protocol.

workflow introduced in Section 3.1.1. Endorsers for each transaction
can be different per the specific endorsement policy, which stipulates
who should endorse the transaction. Fig. 6 shows only transaction steps
of interest while ignoring other steps such as ordering in Fig. 1.

Phase 1: Data Transfer Authorization. 𝑅 shall request the permis-
sion of transfer of a specific file 𝑓 and the request shall pass through
the access control governed by a specific endorsement policy. The
endorsement policy can be set as 𝐴𝑁𝐷(𝑂𝑆 , 𝑂𝑅), which mandates peers



S. Wang et al.

t

𝑂

a

F

𝑁

ℎ

𝑠

s

𝐶

𝑘

𝑘

u

ℎ

a

a

𝑁

𝐸

s

t

o

𝑘

a

s

t

𝑘

m

w

u

𝑘

p

h

t

o

Fig. 6. Five phases in the off-state sharing protocol based on Fabric.

from both organizations 𝑂𝑆 and 𝑂𝑅 must endorse the transaction.

Smart contract 𝐶 can get the identity of the user who initiates the

ransaction proposal. 𝐶 running at endorser peers including the sender

peer node and the receiver peer node checks if the user identity meets

the access rule in the 𝐹 𝑖𝑙𝑒 entity, and generates and signs the result

𝑓𝑙𝑎𝑔 in an 𝐸𝑣𝑒𝑛𝑡 entity as an endorsement, which will be packed into

a transaction by the receiver client. This transaction will record the

result 𝑓𝑙𝑎𝑔 in an 𝐸𝑣𝑒𝑛𝑡 entity in the world state. The variable 𝑓𝑙𝑎𝑔 is a

Boolean value that indicates whether the endorser allows the transfer

of the file. A valid transaction occurs when both organizations, 𝑂𝑆 and
𝑅, reach a consensus and sign the same result (i.e., 𝐸𝑣𝑒𝑛𝑡 entity). This

result can either signify the denial of or agreement on the file transfer.

We call this transaction as ‘‘Tx: data transfer request’’.

Phase 2: Data Transfer. After the file transfer is authorized, 𝑅

proposes another transaction—‘‘Tx: data transfer’’—to initiate the file

transfer. The endorsement policy for ‘‘Tx: data transfer’’ can be set as

𝐴𝑁𝐷(𝑂𝑆 ), which means the sender peer 𝑁𝑆 works as the endorser

nd signs the transaction following the consensus process as shown in

ig. 1. Smart contract 𝐶 at sender node 𝑁𝑆 first checks 𝑓𝑙𝑎𝑔 in the

𝐸𝑣𝑒𝑛𝑡 entity. The file transfer continues only if 𝑓𝑙𝑎𝑔 is 𝑡𝑟𝑢𝑒.

Smart contract 𝐶 in sender blockchain node 𝑁𝑆 encrypts 𝑓 using

a symmetric key 𝑘. 𝐶 sends the encrypted file 𝑓𝑧 to the receiver node
𝑅 via a file transfer protocol such as SFTP, and calculates the hash

𝑧 of 𝑓𝑧, hash ℎ𝑘 of 𝑘 and signature 𝑠 of 𝑓𝑧, and records ℎ𝑧, ℎ𝑘, and

in the corresponding 𝐸𝑣𝑒𝑛𝑡 entity in the world state. Hashes and the

ignature can be used to verify the integrity of 𝑓𝑧 and 𝑘 by the receiver.

encrypts 𝑘 using the public key 𝑝𝑘𝑅 of receiver 𝑅 and gets 𝑘𝑅, and

further encrypts 𝑘𝑅 using the public key 𝑝𝑘𝑁 of receiver peer node 𝑁𝑅

and gets 𝑘𝑧. 𝑘𝑧 is put in the world state as a 𝐾𝑒𝑦 entity. Specifically in

Fabric, the 𝑘𝑒𝑦 entity is set as PDC data with sender organization 𝑂𝑆

as the only PDC member. PDC can guarantee that only PDC member

peers can see 𝑘𝑧 and others only get its hash. Transactions involving

𝑧 contain only its hash in Fabric. In this phase, only sender node 𝑁𝑆

keeps the original 𝑘𝑧. Others such as 𝑁𝑅 and 𝑅 only have the hash of

𝑧.

Phase 3: 𝑘𝑧 Request. Receiver 𝑅 can send a query request to𝑁𝑅 and

se 𝐶 to check if 𝑁𝑅 has received 𝑓𝑧 and 𝑓𝑧 matches with the hash

𝑧 in the world state. In Fabric, the query request will not generate

transaction. If the check is successful, 𝑅 proposes a transaction—

‘‘Tx: 𝑘𝑧 request’’. The endorsement policy for ‘‘Tx: 𝑘𝑧 request’’ is set

s 𝐴𝑁𝐷(𝑂𝑆 ) so that 𝑁𝑆 performs as an endorser. Smart contract 𝐶 at
𝑆 checks if 𝑅 is the legitimate receiver by checking the corresponding

𝑣𝑒𝑛𝑡 entity, which is generated in Phase 1 and stored in the world
tate. If yes, 𝐶 sets 𝑘𝑧 as a new PDC data with members of organizations
𝑂𝑆 and 𝑂𝑅. During the consensus process of this transaction, the PDC

data 𝑘𝑧 will be transferred from the node of 𝑂𝑆 to the node of 𝑂𝑅. After

his transaction is committed to the ledger, the PDC data 𝑘𝑧 at the node

f 𝑂𝑅 will be updated to the world state [35]. Then the PDC mechanism

stores 𝑘𝑧 in both 𝑁𝑆 and 𝑁𝑅. Therefore, 𝑁𝑅 will be able to retrieve

𝑧. Please note that the corresponding transaction only stores PDC hash,

and the PDC value 𝑘𝑧 is transmitted using a specific protocol in Fabric,

nd 𝑘𝑧 is updated to the world state of 𝑁𝑅 after the transaction is

validated. PDC ensures that 𝑘𝑧 is shared with the legitimate peer 𝑁𝑅

and receiver 𝑅 and is not publicly disclosed. Please also note when the

ender and receiver belong to the same organization, i.e., 𝑂𝑆 = 𝑂𝑅,

Phase 3 can proceed as expected.

Phase 4: 𝑘𝑅 Request. After 𝑁𝑅 obtains 𝑘𝑧, 𝑅 proposes a

ransaction—‘‘Tx: 𝑘𝑅 request’’—to  to request the decryption of 𝑘𝑧 to

get 𝑘𝑅. The endorsement policy for ‘‘Tx: 𝑘𝑧 request’’ is set as 𝐴𝑁𝐷(𝑂𝑅)
so that 𝑁𝑅 performs as an endorser. If 𝑅 is the legitimate receiver

according to the 𝐸𝑣𝑒𝑛𝑡 entity in the world state, smart contract 𝐶 at

𝑁𝑅 decrypts 𝑘𝑧 using the private key of 𝑁𝑅 and gets 𝑘𝑅. 𝐶 further sets

𝑅 as PDC data with members 𝑂𝑆 and 𝑂𝑅. Similarly to Phase 3, the PDC

echanism securely stores 𝑘𝑅 in both 𝑁𝑆 and 𝑁𝑅 after the transaction

is validated and recorded in the blockchain [35], and ensures that 𝑘𝑅

will not appear in the transactions. 𝑅 is able to retrieve 𝑘𝑅 from the

orld state.

Phase 5: Data Decryption. After receiver 𝑅 gets 𝑘𝑅, 𝑅 can choose to

se  to decrypt the shared data (or decrypt 𝑓𝑧 itself). 𝑅 first decrypts

𝑅 using its private key 𝑠𝑘𝑅 to get 𝑘. Then 𝑅 proposes the transaction

—‘‘Tx: data decryption’’—to . 𝑅 passes 𝑘 to 𝐶 through the transaction

proposal to decrypt 𝑓𝑧. In Fabric, 𝑘 can be set as a special transient

parameter, which is pruned during building the transaction so that 𝑘

will not appear in the world state. 𝑘 is only shared between peer 𝑁𝑅

and user 𝑅. The endorsement policy can be set as 𝐴𝑁𝐷(𝑂𝑅) so that 𝑁𝑅

performs as an endorser. 𝑁𝑅 can access 𝑓𝑧 in the off-state space 𝐷𝑅,

use 𝑘 to decrypt 𝑓𝑧 to get 𝑓 , and verify if 𝑓 matches with the recorded

hash ℎ in the 𝐹 𝑖𝑙𝑒 entity.

6. Security analysis

In this section, we first prove the security of our protocol. Then, we

analyze how the proposed protocol achieves the design goals.

6.1. Proof

Cryptographic tool. Let Adv[] = Pr[ (𝜆) → collision] be the
robability that an adversary  finds a collision of the cryptographic

ash function . Let Adv[] be the advantage of an adversary that

distinguishes two ciphertexts under chosen plaintext attacks, as in

standard secure encryption schemes (e.g., [36]). If  and  are said

o be secure, Adv[] and Adv[] are negligible respectively for any
polynomial-time adversary.

Proposition 1. If the cryptographic hash function (⋅) and the encryption
scheme (⋅) are secure, the system BBS is then secure under Definition 1.

Proof. We first respectively analyze the security in the sender cheating

case and the receiver cheating case. Then, we analyze the privacy-

preserving property of BBS.

Sender Cheating. In protocol  , the trusted smart contract 𝐶 gen-

erates critical information of shared data 𝑓 such as hash ℎ and ℎ𝑧,

and puts them in the corresponding transactions and in the world

state. Sender 𝑆 cannot deny sharing data 𝑓 , unless 𝑆 finds a forgery

(𝑖𝑑∗
𝑓
, 𝑛𝑎𝑚𝑒∗, 𝑓 ∗) where (𝑓 ∗) = ℎ but 𝑓 ∗ ≠ 𝑓 . That is 𝑆 finds a collision

f the cryptographic hash function (⋅). Then it holds that Pr[𝖢𝗁𝖾𝖺𝗍] ≤
Adv[]. A secure (⋅) means that Adv[] is negligible. Then Pr[𝖢𝗁𝖾𝖺𝗍]
is also negligible. 𝑆 cannot deny the sharing of data 𝑓 which may not

be consistent with the advertisement description.
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Fig. 7. Prototypical off-state sharing system over Hyperledger Fabric.

Receiver Cheating. In the case of sharing data between two users from
two different organizations, after Phase 2: Data Transfer, the built-in
DC mechanism guarantees that 𝑁𝑅 and 𝑅 only know the ciphertext
𝑧 of 𝑓 and the hash of 𝑘𝑧. If 𝑅 does not submit the transaction—

‘Tx: 𝑘𝑧 request’’, organization 𝑂𝑅 cannot get 𝑓 even peer 𝑁𝑅 and
ser 𝑅 collude together, unless 𝑂𝑅 finds the preimage of the hash of
𝑧 or the plaintext of 𝑓𝑧. For the former case, the adversary could
ind a collision of the employed cryptographic hash function; in the
atter case, the adversary could distinguish ciphertexts of the employed
ncryption scheme. Then it holds that Pr[𝖢𝗁𝖾𝖺𝗍] ≤ Adv[] + Adv[].
hen we have that Pr[𝖢𝗁𝖾𝖺𝗍] is negligible with a secure hash function
nd encryption scheme.

In the case of sharing data between two users from the same
rganization, after Phase 2: Data Transfer, the built-in PDC mechanism
uarantees that 𝑅 only knows the ciphertext 𝑓𝑧 of 𝑓 , and ciphertext 𝑘𝑧
f 𝑘𝑅. Under the assumption that a user trusts the node which belongs
o the same organization as the user, both sender and receiver trust 𝑁𝑅.
f 𝑅 does not submit the transaction—‘‘Tx: 𝑘𝑅 request’’, 𝑅 cannot get
, unless 𝑅 finds the plaintext of 𝑘𝑧 or the plaintext of 𝑓𝑧. Similarly,
r[𝖢𝗁𝖾𝖺𝗍] is negligible.

If Pr[𝖢𝗁𝖾𝖺𝗍] is negligible, 𝑅 has to propose and submit ‘‘Tx: 𝑘𝑧
equest’’ to get 𝑘𝑧 (if cross organizations) and ‘‘Tx: 𝑘𝑅 request’’ to
et 𝑘𝑅 so as to get 𝑘 and decrypt 𝑓𝑧. The trusted 𝐶 generates 𝑘, 𝑘𝑧
nd 𝑘𝑅 and can guarantee their correctness. The blockchain provides
on-repudiable evidences. 𝑅 cannot deny she/he has received 𝑓 .
Privacy Preservation. Regarding the privacy goal, our protocol in-

orporates access control mechanisms such as Private Data Collections
PDC) to allow off-states to be shared between pairs of nodes, not across
ll blockchain nodes. Other nodes are only aware of the hash ℎ of the
hared data and the hash ℎ𝑘 of the encryption keys. Similarly, a secure
ash function (⋅) can ensure that it is negligible for other nodes to
erive the plaintext of the data or of the encryption keys. Therefore,
he data is maintained at only an owner side node and is shared with
uthorized users, and the privacy property can be ensured.

To summarize, our system BBS running protocol  can securely
stablish the chain of custody of the off-state data and achieve the
rivacy goal if the underlying cryptographic function and encryption
cheme are secure. □

.2. Design goals achievement

We now summarize how BBS achieves the four design goals in Sec-
ion 4.1. (i) Storage. We introduce the concept of ‘‘off-state’’ and store
he big data off the ledger to address the big data storage challenge in
8

lockchain. (ii) Privacy. As analyzed in Section 6.1, BBS can preserve
Fig. 8. SFTP latency versus buffer size.

the data privacy by adopting off-state sharing and access control mech-
anisms. The shared data is stored at only the sender and the authorized
receiver nodes. This feature also saves storage space at nodes that do
not need the off-state data. (iii) Autonomy. BBS is autonomous and
does not need users to interact with each other off-chain. A sender can
register and delegate his/her data to BBS, which takes over the data
sharing process. A receiver has to propose transactions to BBS to request
data and does not need to interact with the sender. This design is user-
friendly. (iv) Security. As analyzed in Section 6, BBS can securely build
the chain of custody of the shared data to defeat dishonest users, and
the blockchain provides non-repudiable evidences.

7. Evaluation

We have implemented a prototypical off-state sharing system, BBS,
based on Fabric, and evaluate its feasibility and performance in this
section.

7.1. Experiment setup

Fig. 7 shows the prototypical BBS, which has three organizations
 = {𝑂1, 𝑂2, 𝑂3}. Each party contributes one physical computer that
runs Ubuntu 18.04 with 16 GB memory and 1TB disk. These three
computers access the network through WiFi. 𝑂1 and 𝑂2 perform as
the sender and the receiver respectively. The sender computer and the
receiver computer are located in separate buildings within a university
campus. We adopt Hyperledger Fabric v2.3.3 to build the prototypical
system, and choose Raft as its consensus protocol. Fabric nodes run
in Docker containers. The sender computer and the receiver computer
run one peer node and one client node respectively. The computer
of 𝑂3 runs one peer node and one orderer node, which performs
the equivalent functions as a group of orderer nodes, based on the
official Fabric test-network. We incorporate off-state storage space and
SFTP [37] service into peer docker containers of interest. The smart
contract can directly operate on the off-state storage. In Hyperledger
Fabric, the smart contract is referred to as chaincode and is developed
using Golang. The chaincode runs at peer nodes, and can transfer and
retrieve data to and from the local off-state storage. For the client
application used by users to propose transactions, we employ Node.js
for its development.

7.2. Performance and feasibility

We utilize Golang ’s SFTP package for file transfers, and it has come
to our attention that the sender’s buffer size parameter significantly
impacts the speed and latency of SFTP process. Fig. 8 shows how
the buffer size affects the file transfer latency between two docker
containers representing 𝑁𝑆 and 𝑁𝑅 using a 576 MB file and a 1.2 GB
file. It can be observed that a buffer size of more than 1 MB will not
reduce the latency further. So we set the buffer size as 1 MB in our

system.
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Table 3
Test file list.

Type Size Description

.pdf 67 MB An electronic book

.mp4 218 MB An over 5h audio file

.tif 576 MB A high-resolution image

.zip 1.2 GB A collection of medical images

.rar 2.6 GB The compressed file of one movie

.zip 5.3 GB The compressed file of two movies

Fig. 9. Transaction latency of ‘‘Tx: data transfer request’’, ‘‘Tx: 𝑘𝑧 request’’ and ‘‘Tx:
𝑅 request’’.

Fig. 10. SFTP latency and transaction Latency of ‘‘Tx: data transfer’’ and ‘‘Tx: data
ecryption’’.

Fig. 11. File sharing session latency.

We evaluate the feasibility and performance of BBS by utilizing
iles of various types and sizes. Table 3 provides a list of the test files

used in our evaluation. Recall that a file sharing session comprises five
transactions as illustrated in Fig. 6. Our evaluation involves measuring
the latency of individual transactions as well as the overall latency of
the entire session. We first present the cases of sharing data between
two users who belong to two organizations.

7.2.1. File size
For each file in Table 3, we conduct the file sharing session 16

times. Each time only one file sharing session is performed. The results
9

Fig. 12. Transaction latency of ‘‘Tx: data transfer request’’ in different parallel transfer
cases (across different organizations).

Fig. 13. Transaction latency of ‘‘Tx: data transfer’’ in different parallel transfer cases
(across different organizations).

Table 4
Percentage of SFTP latency in ‘‘Tx: file transfer’’ latency.

Size 1 Parallel 2 Parallel 4 Parallel 8 Parallel

67 MB 78.45% 86.74% 96.10% 96.38%
218 MB 90.19% 94.65% 97.78% 91.29%
576 MB 94.79% 96.88% 98.26% 82.64%
1.2 GB 96.30% 95.45% 97.52% 87.17%
2.6 GB 94.00% 91.04% 84.46% 82.65%
5.3 GB 94.66% 90.66% 83.03% 79.26%

are shown in Figs. 9–11. As shown in Fig. 9, the file size has minor
effect on the latency of ‘‘Tx: data transfer request’’, ‘‘Tx: 𝑘𝑧 request’’
and ‘‘Tx: 𝑘𝑅 request’’. This is reasonable since these three transactions
only operate on the world state data. As shown in Fig. 10, the latency
of ‘‘Tx: data transfer’’ and ‘‘Tx: data decryption’’ rapidly increases as
the file size increases. The reason is that these two transactions involve
multiple cryptographic calculations and the Golang SFTP operation.
According to Fig. 10 and Table 4, the Golang SFTP latency accounts for
a large proportion of the whole ‘‘Tx: data transfer’’ latency. As is well
known, the SFTP latency can be optimized by improving the network
bandwidth.

Fig. 11 illustrates the latency of a single file sharing session of
BBS, and provides a comparison with the latency of Linux SFTP and
SCP applications. In BBS, we utilize the optimized Golang SFTP with
a buffer size of 1 MB. The latency measurement for BBS includes
the latency of file transfer via Golang SFTP, as well as the latency
incurred by the cryptographic computation and transaction processing
and transmission. It can be observed that the latency of BBS increases
rapidly as the file size grows. This is because normally more time is
required to transfer larger files. We evaluate the default Linux SCP
command for file transfer and there is no buffer size parameter. For
Linux SFTP command, there is a buffer size parameter. We set the buffer
size of Linux SFTP to 99 999 Bytes which is its maximal buffer size value.
It can be observed that BBS performs similarly or better compared with
Linux SFTP/SCP applications.
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Fig. 14. Transaction latency of ‘‘Tx: 𝑘𝑧 request’’ in different parallel transfer cases
(across different organizations).

Fig. 15. Transaction latency of ‘‘Tx: 𝑘𝑅 request’’ in different parallel transfer cases
(across different organizations).

7.2.2. Parallel transfer
We also demonstrate that BBS has the capability to process multiple

concurrent big file transfer sessions and other transactions in parallel.
In BBS, a long transaction involving the big file transfer does not
stop other transactions from running. For each file, the number of
simultaneous parallel file sharing sessions is 1, 2, 4 and 8, denoted as
1-P, 2-P, 4-P and 8-P in Figs. 12–16, which show the experiment results.
In each case, the file is transferred 16 times in total. For example, in the
case of 2-P (2 parallel file sharing sessions), we perform the experiments
8 times and the file is transferred 16 times (2 × 8).

We make the following observations. As the number of parallel
essions increases, the latency of ‘‘Tx: data transfer request’’, ‘‘Tx: 𝑘𝑧

request’’ and ‘‘Tx: 𝑘𝑅 request’’ is relatively stable as shown in Figs. 12
and 14–15. However the latency of ‘‘Tx: data transfer’’ and ‘‘Tx: data
decryption’’ increases as the number of parallel sessions increases.
Table 4 shows the percentage of SFTP incurred latency in the ‘‘Tx:
data transfer’’ latency. The SFTP latency accounts for the most of the
transaction latency.

Fig. 16 presents the average latency of a single file sharing ses-
sion in various parallel transfer cases. It can be observed that the
average latency of a file sharing session increases as the number of
parallel sharing sessions increases. This observation is expected because
when multiple parallel file sharing sessions are active, they share the
available network bandwidth. Consequently, with more sessions, the
network bandwidth available for each file sharing session decreases,
leading to increased latency.

7.3. Users from the same organization

For sharing data between two users who belong to the same orga-
nization, we conduct similar experiments. For each file in Table 3, we
conduct the file sharing session 16 times in different parallel cases with
SFTP. Figs. 17–22 shows the experimental results of sharing data. They
show the same tendency as sharing data cross different organizations.
10

For example, more time is needed to handle larger data.
Fig. 16. Average file sharing session latency in different parallel transfer cases (across
different organizations).

Fig. 17. Transaction latency of ‘‘Tx: data transfer request’’ in different parallel transfer
cases (within one organization).

Fig. 18. Transaction latency of ‘‘Tx: data transfer’’ in different parallel transfer cases
(within one organization).

8. Discussion

In this section, we first compare different permissioned blockchain
frameworks. Then we demonstrate the generality of our off-state shar-
ing protocol by discussing the off-state sharing over Enterprise Ethereum.
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Fig. 19. Transaction latency of ‘‘Tx: 𝑘𝑧 request’’ in different parallel transfer cases
(within one organization).

Fig. 20. Transaction latency of ‘‘Tx: 𝑘𝑅 request’’ in different parallel transfer cases
(within one organization).

Fig. 21. Transaction latency of ‘‘Tx: data decryption’’ in different parallel transfer cases
within one organization).

Fig. 22. Average file sharing session latency in different parallel transfer cases (within
one organization).

8.1. Comparing permissioned blockchain frameworks

We argue that Fabric is a better choice to implement an off-state
sharing system. Enterprise Ethereum’s functionalities are limited. (i)
11
Enterprise Ethereum does not support a mechanism like the endorse-
ment policy of Fabric to control which nodes execute the smart con-
tract and sign the execution results. (ii) We need to use precompiled
contracts of Enterprise Ethereum to manage the off-state big data
due to limited functions of the built-in Solidity contract in Enterprise
Ethereum. A precompiled contract needs manual deployment. A node
may also deploy a malicious precompiled contract since it is not de-
ployed on-chain through a transaction. In comparison, Fabric’s smart
contract can be developed in general-purpose language such as Golang,
nd is deployed in a decentralized way. It is easier to use and is more
ecure. (iii) Enterprise Ethereum does not group users or nodes into
rganizations. Fabric’s membership service provides the extra organiza-
ion identifier for each node/user. It is easier in Fabric to define access
ules and manage nodes/users at the organization level. (iv) Enterprise
thereum does not have the transient parameter mechanism like Fabric.
t cannot securely pass secret information such as key 𝑘 from a user to
odes in the blockchain system.

.2. Off-state sharing over enterprise ethereum

Our off-state sharing protocol is general and can be implemented
ver Enterprise Ethereum though Enterprise Ethereum’s functionalities are
imited. We now introduce the Enterprise Ethereum version of our off-
tate sharing protocol in Fig. 5. We will present the threat model,
rotocol phases and evaluation results, and point out the differences
etween the Enterprise Ethereum version and Fabric version.

.2.1. Threat model
We assume that the underlying blockchain infrastructure  includ-

ing all nodes and all permission mechanisms is secure. A user trusts the
node that belongs to the same party as the user. In Enterprise Ethereum,
the smart contract is not fully trusted. Enterprise Ethereum adopts So-
lidity [38] to develop the smart contract. A Solidity contract is deployed
hrough a transaction and each node runs the same solidity contract.
olidity’s functionalities are very limited though Solidity is turing-
omplete. Enterprise Ethereum also adopts the precompiled contract to

perform complex functionalities such as cryptographic operations. The
precompiled contract can be developed in Java, and used to perform
the off-state data sharing. The precompiled contract is not deployed
through a transaction like a Solidity contract. A precompiled contract
is locally configured at each node. A party may deploy a malicious
precompiled contract. Therefore, we assume that the Solidity contract
is trusted but the precompiled contract may not be trusted.

Users (e.g., sender/receiver) may be dishonest. The naive protocol
𝛱 in Section 4.4 over Enterprise Ethereum works as follows. A user
proposes a transaction to the blockchain system to request the data
and the smart contract directly transfers the data to the receiver. This
protocol is also insecure. (i) Under the order-execute architecture of
Enterprise Ethereum, the data transfer request transaction is recorded
in the blockchain and then the precompiled contract for data sharing
executes. However, the precompiled contract can be changed locally,
not transferring the data. The data transfer may also fail due to net-
work failure. A dispute will happen when the sender says the data is
transferred while the receiver claims the data is not received. (ii) A
malicious sender may also transfer wrong off-state data not matching
with the advertised metadata. The naive protocol 𝛱 under Enterprise
Ethereum cannot securely establish the chain of custody.

8.2.2. Secure off-state sharing protocol
Fig. 23 shows the workflow of off-state sharing over Enterprise

thereum, which is similar to the Fabric version in Fig. 6. We will point
out the difference below.

Phase 1: Data Transfer Authorization. A receiver proposes a similar
transaction—‘‘Tx: data transfer request’’—to one node such as the
receiver blockchain node. This transaction is forwarded to all nodes.
Every node executes this transaction/smart contract and stores the
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Fig. 23. Five phases in the off-state sharing protocol based on Enterprise Ethereum.

𝐸𝑣𝑒𝑛𝑡 entity which contains the authorization result 𝑓𝑙𝑎𝑔 in the world

state.

Phase 2: Data Transfer. The receiver proposes a transaction—‘‘Tx:

data transfer’’ to initiate the file transfer. The smart contract is written

in such a way that only if this node is the sender node, it encrypts

the data 𝑓 using key 𝑘, signs the encrypted data 𝑓𝑧 and generates

signature 𝑠, transfers 𝑓𝑧, derives the hash ℎ𝑧 of 𝑓𝑧, and performs the

wo-layer encryption of 𝑘 and get 𝑘𝑧. At the end of executing the

transaction—‘‘Tx: data transfer’’, the precompiled contract at the sender

node proposes a new transaction called ‘‘Update Tx: data transfer’’,

which updates ℎ𝑧 and 𝑠 to the world state across all nodes, and sets 𝑘𝑧

as a private data with one member 𝑁𝑆 by utilizing the data isolation

mechanism—private transaction mechanism—in Enterprise Ethereum.

This private transaction mechanism is similar to the PDC in Fabric and

securely manages 𝑘𝑧 in the world state. Only the sender node keeps 𝑘𝑧

and other nodes keep the hash of 𝑘𝑧.

Phase 3 & 4: 𝑘𝑧 / 𝑘𝑅 Request. After the receiver node receives

the data 𝑓𝑧, the receiver proposes the transaction—‘‘Tx: 𝑘𝑧 request’’.

The corresponding smart contract at sender node checks the receiver’s

identity and initializes a new transaction—‘‘Update Tx: 𝑘𝑧 request’’—to

invoke a built-in Solidity contract to add the receiver node 𝑁𝑅 to the

rivate data member group of 𝑘𝑧. The receiver node obtains 𝑘𝑧 after the

transaction is committed to the blockchain. The receiver then proposes

the transaction—‘‘Tx: 𝑘𝑅 request’’. The smart contract at the receiver

node decrypts 𝑘𝑧 and gets 𝑘𝑅, and sets 𝑘𝑅 as the private data with

two members {𝑁𝑆, 𝑁𝑅}. 𝑘𝑅 is then updated to the world state at both

sender node and receiver node.

Phase 5: Data Decryption. Receiver 𝑅 gets 𝑘𝑅 from the world state

t node 𝑁𝑅 and decrypts 𝑘𝑅 to obtain 𝑘. The receiver retrieves the

received 𝑓𝑧 in the off-state space at 𝑁𝑅. Then 𝑅 locally does the

decryption and derives the desired data 𝑓 . Unlike in Fabric, the receiver

n Enterprise Ethereum cannot propose the transaction—‘‘Tx: data de-

ryption’’ and ask the blockchain system  to do decryption. Enterprise

thereum does not have a mechanism like transient parameter in Fabric

o avoid exposing sensitive parameters such as 𝑘 in transactions.

.2.3. Security analysis

(i) Sender 𝑆 cannot deny sharing data 𝑓 unless 𝑆 finds a collision

r preimage of the cryptographic functions. ℎ, ℎ𝑧, ℎ𝑘 and signature 𝑠

carried in related transactions can be used to verify the genuineness of

the shared data. (ii) Receiver 𝑅 cannot deny receiving data 𝑓 . The built-

n private transaction mechanism of Enterprise Ethereum manages keys

n the world state and guarantees that 𝑅 can get the key 𝑘 to derive the
esired data 𝑓 only after proposing required transactions. Our off-state
Fig. 24. Average file sharing session latency (across organizations) over Enterprise

Ethereum.

sharing protocol  can securely establish the chain of custody of shared

data over Enterprise Ethereum.

8.2.4. Evaluation

We implement a prototypical BBS system over Enterprise Ethereum

and evaluate its feasibility and performance. We also use the test files

in Table 3 and evaluate the parallel cases for each file. The number of

simultaneous parallel file sharing sessions is 1, 2, 4 and 8. We use an

Enterprise Ethereum solution named Hyperledger Besu [39] to develop

our system. The consensus protocol employed in this system is Proof-

of-Authority. The smart contract is developed in Solidity. We configure

precompiled contracts which are written in Java to manage the off-

state data. The client application is developed in Node.js. We set the

transaction fee for executing smart contract to zero to implement a free

system. Fig. 24 shows the experiment results of the average latency of

one file sharing session. The session latency shows the similar tendency

as in the Fabric-based BBS although higher. The higher latency is

mainly caused by Java-based encryption/decryption calculations which

are slower than Golang-based encryption/decryption calculations.

8.3. Scalability discussion

We argue that the performance of data sharing is not influenced

by the number of nodes. In our off-state system model, the data is

shared between two nodes without the need for synchronization across

all nodes. Moreover, as per Table 3, the overall latency primarily

arises from the use of SFTP for file transfer. The number of nodes

ay slightly impact the latency incurred during the consensus process.

onetheless, this effect is not significant enough to seriously impact

he performance of BBS. Consequently, the BBS prototype system can

eadily accommodate a larger number of organizations and nodes.

. Conclusion

In this paper, we propose a blockchain based big data sharing

rotocol, which is able to establish the chain of custody of various

hared data. Such a decentralized data sharing application is critical for

anaging data of various types and sizes such as healthcare data. We

enote data such as a big file stored at a blockchain node but outside

f the ledger as off-state. We design and implement a blockchain-based

ig data sharing system (BBS), which addresses the challenge of storage

y storing big data outside of the ledger, and exchanges data between

nly users of interest autonomously, thus preserving data privacy. The

ransactions generated by our protocol serve as auditing evidences for

he chain of custody. We implement BBS over Hyperledger Fabric and
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Enterprise Ethereum, and conduct extensive experiments to validate the
feasibility and performance of the blockchain based big data sharing
protocol. It appears that Fabric is a better choice for BBS given Fabric’s
framework and SDK features. In the future work, we would investigate
methods for optimizing the overhead associated with data transfer, aim-
ing to explore the integration of traditional big data sharing techniques
into the smart contract framework.
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