
Collapse Like A House of Cards: Hacking Building Automation
System Through Fuzzing

Yue Zhang
Drexel University

Philadelphia, PA, USA

yz899@drexel.edu

Zhen Ling∗

Southeast University

Nanjing, Jiangsu, China

zhenling@seu.edu.cn

Michael Cash
University of Central Florida

Orlando, FL, USA

mcash001@knights.ucf.edu

Qiguang Zhang
Southeast University

Nanjing, Jiangsu, China

qgzhang@seu.edu.cn

Christopher Morales-Gonzalez
UMass Lowell

Lowell, MA, USA

Christopher_MoralesGonzalez@student.uml.edu

Qun Zhou Sun
University of Central Florida

Orlando, FL, USA

QZ.Sun@ucf.edu

Xinwen Fu
UMass Lowell

Lowell, MA, USA

xinwen_fu@uml.edu

Abstract

Building Automation Systems (BAS) play a pivotal role in modern

smart buildings, integrating sensors, controllers, and software to

manage crucial functions such as HVAC, lighting, and more. The

global smart building market is on the rise, underscoring the impor-

tance of securing BAS networks. This paper introduces the Building

Automation System Evaluator (BASE), a specialized fuzzer designed

to assess the security of BAS networks. BAS networks typically in-

volve a BAS client communicating with a BAS server through BAS

protocols (e.g., BACnet, KNX), each presenting unique challenges in

BAS network fuzzing. These challenges encompass complex packet

structures and sequencing in BAS protocols, closed-source clients

with indeterminable code coverage, and unobservable server status

with limited throughput. BASE automatically identifies protocol

structures, dynamically instruments clients for code coverage anal-

ysis, and monitors responses for new coverage areas. Collected

timestamps are used to estimate the input scan intervals of servers,

optimizing throughput. We evaluated BASE on various BAS servers

and clients, uncovering 13 new vulnerabilities. Furthermore, we

present three attack case studies, highlighting the real-world secu-

rity implications of these vulnerabilities in BAS systems, such as

delayed fire detection, loss of climate control, and security breaches.

We reported our findings to the respective vendors, who acknowl-

edged the implications, and some have subsequently patched their

systems based on our reports.

∗Corresponding Author

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690216

CCS Concepts

• Security and privacy → Software security engineering.

Keywords

IoT Security; Fuzzing; CPS Security; Building Automation System

Security; Vulnerability Discovery

ACM Reference Format:

Yue Zhang, Zhen Ling, Michael Cash, Qiguang Zhang, Christopher Morales-

Gonzalez, Qun Zhou Sun, and Xinwen Fu. 2024. Collapse Like A House of

Cards: Hacking Building Automation System Through Fuzzing. In Proceed-

ings of the 2024 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690216

1 Introduction

A building automation system (BAS) is a type of industrial control

system (ICS) that consists of a network of interconnected sensors,

controllers, and software used to implement various functions in a

building, such as heating, ventilation, and air conditioning (HVAC),

lighting, shading, and many other operations. BAS can be deployed

in commercial, industrial, and residential environments. The in-

tegration of BAS within a building is commonly referred to as a

“smart building.” The global market for smart buildings is growing

rapidly, and according to ReportLinker, by 2027, the BAS market is

expected to reach $277 billion [36]

A BAS network typically comprises clients, servers, and vari-

ous BAS devices. A BAS client, which serves as the user front-end

controller (e.g., a laptop), usually has the capability to establish

communication through BAS protocols (e.g., KNX [2], BACnet [11])

with a BAS server, constituting the backend of the BAS system

responsible for connecting various BAS devices (e.g., lights and

secure cameras). Communication between servers and clients, as

well as between devices and servers, can be facilitated using wire-

less protocols such as WiFi. This essentially means that anyone

https://doi.org/10.1145/3658644.3690216
https://doi.org/10.1145/3658644.3690216

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

within the confines of a firewall possesses the capacity to both

modify and monitor data across the BAS network. This heightened

accessibility expands the potential attack surface of the BAS system,

creating opportunities for vulnerabilities to manifest in the BAS

client, the BAS server, or even the network protocol itself. Attackers

positioned within the network can exploit these vulnerabilities to

launch various attacks (e.g., Denial-of-Service [33], impersonation

attacks [6, 29]).

To investigate the vulnerability landscape of BAS networks, em-

ploying fuzzing emerges as the natural choice—a widely adopted

technique for autonomously identifying weaknesses and bugs (e.g.,

memory corruption) within applications. This can be achieved by

generating IP packets and sending them to the appropriate BAS

target (e.g., the BAS server or the client). However, fuzzing a BAS

network presents unique challenges: (𝑖) BAS IP packets exhibit

complexity, comprising elements such as magic bytes, length fields,

counter fields, and various other structures. Furthermore, some pro-

tocols have critical packet sequences that must remain unchanged.

(𝑖𝑖) Fuzzing closed-source BAS clients makes it difficult to assess
code coverage and determine when to stop. For example, many

fuzzers assume programs will terminate after processing input,

which cannot be directly used to calculate code coverage. (𝑖𝑖𝑖) De-
termining the operational state of the server and inferring its code

coverage presents another formidable hurdle. This becomes even

more complex as BAS servers may intermittently scan for inputs,

thereby potentially constraining the efficiency and speed of the

fuzzing process.

This paper presents Building Automation System Evaluator

(BASE), a fuzzer targeted specifically at BAS networks, which ad-

dresses these three challenges. First, BASE automatically identifies

important structures within the protocol and the actual order of the

packets, by probing the packets and comparing the new network

responses from the BAS server to the expected responses. Sec-

ond, BASE dynamically instruments the BAS client and calculates

the code coverage of probed responses. The coverage score of the

probed response is compared to the coverage score of the expected

response to determine when to terminate. Finally, BASE functions

as a BAS client, transmitting fuzzed requests to the BAS server

while carefully monitoring responses that indicate the discovery of

new coverage areas. Timestamp metadata from the corpus is used

to estimate the input scan interval of devices (i.e., throughput), both

during the probing stage and during the fuzzing stage.

We evaluate BASE on 11 BAS servers (i.e., 4 BACnet devices, 7

KNX devices), and 6 BAS clients. We discovered 13 new vulnerabili-

ties. We conducted experiments on code coverage and comparisons

with other fuzzers. Specifically, we evaluated our fuzzer’s perfor-

mance over 24 hours, during which it discovered 17,616 unique

edges in the control flow graph and maintained an average execu-

tion speed of 138.91 executions per second. In terms of effectiveness,

we compared our BASE with BooFuzz [5]. Particularly, Boofuzz

sent 2,856,753 mutated messages with zero knowledge and found

no vulnerabilities, highlighting the inefficiency of random fuzzing

without targeted strategies. Even when Boofuzz was provided with

knowledge of the packet structure, it still exhibited low perfor-

mance with extensive message mutations. Our fuzzer surpasses

others because it not only recognizes the structure of messages

but also resolves the relationships between fields, enhancing its

effectiveness in discovering vulnerabilities.

To demonstrate the implications, we also conducted three distinct

attack case studies and successfully caused the devices under test-

ing to crash. The first attack targeted a BASrouter and a connected

sensor, rendering them unresponsive with a crafted BACnet/IP

packet. The second disrupted a KNX damper by sending corrupted

KNXnet/IP packets. The third attack on the ETS client used for

KNX-based automation triggered memory consumption, leading to

software unresponsiveness. These vulnerabilities and attacks can

lead to severe consequences in building automation systems. For

example, disruption of temperature or humidity sensors means the

BAS can no longer accurately monitor and control the building’s

climate, causing occupant discomfort, potential damage to sensitive

equipment, and even safety risks in extreme cases (e.g., overheating

or freezing). Additionally, the BASrouter might serve as a gateway

to other critical systems, such as security cameras and access con-

trol. Crushing those devices may allow an attacker to gain further

access to the building’s security infrastructure, compromising the

safety of people and assets. Moreover, disrupting the fire alarm

system could delay or prevent timely detection of a fire emergency,

increasing risks to occupant safety and property damage.

Our major contributions are summarized as follows:

• Novel Tool with Domain Insights. We propose BASE,

an automatic fuzzing tool to identify the bugs in BAS. We

are the first to systematically assess security threats in BAS

networks. BASE dynamically learns packet structures and

sequencing, calculates code coverage for clients, and mon-

itors server status. The collected timestamps are utilized

to estimate the input scan intervals of devices, optimizing

throughput.

• New Bugs Impacting BAS Networks.We evaluated BASE

on 11 BAS servers, comprising 4 BACnet devices and 7 KNX

devices, along with 6 BAS clients. We identified 13 new BAS

vulnerabilities, including 8 client-side and 5 server-side bugs.

• Practical Case Studies with Serious Impacts. We con-

ducted three attack case studies: crashing a BASrouter con-

troller with a crafted BACnet/IP packet, disrupting a KNX

damper controller with corrupted KNXnet/IP packets, and

triggering memory consumption in the ETS client, causing

software unresponsiveness in KNX-based building automa-

tion. These vulnerabilities may pose serious threats such as

delayed fire detection, loss of climate control, and security

breaches.

Responsible Disclosure:We upheld the highest ethical standards

during the launch of our fuzzing testing and attacks. First, we con-

ducted all experiments and attacks exclusively within a controlled

environment on our own devices to prevent any harm to BAS net-

works and to avoid inconveniencing the building occupants. Second,

as part of the responsible disclosure policy, we have notified all

affected parties about our findings, and they have acknowledged

our findings. At the time of writing, six of the bugs have already

been patched by the vendors.

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 1: Communication overview between a BAS client,

a BAS server, and various BAS devices in a smart building

network.

Code Availability: The source code of BASE is available at: https:

//github.com/AnSECer/BASE.

2 Background

In this section, we present an overview of BAS (§2.1), followed

by a brief introduction of the KNX and BACnet communication

protocols (§2.2).

2.1 Building Automation Systems (BAS)

In cyber-physical systems (CPS), BuildingAutomation System (BAS)

controls and monitors building components such as HVAC, lighting,

security scanning, and more. A BAS network has an administrator

that manages it via dedicated software. The software is usually

proprietary and licensed [3, 18, 41]. To enable communication with

a breadth of devices across a potentially large physical area, it is

common for BAS protocols to support IP-layer communication (e.g.,

KNX [2] and BACnet [11]) and form a distributed network. Devices

without IP support may connect via physical wiring.

Figure 1 provides an overview of a typical BAS network topology.

In this setup, the BAS network comprises a workstation running

management or automation software, referred to as the BAS client.

The BAS client connects to controllers within the network, desig-

nated as BAS servers, and these servers, in turn, link to the sensors

and actuators in the field, known as BAS devices (e.g., light, HVAC).

The process begins with the BAS client attempting to “discover”

the BAS server through broadcast or multicast messages across the

network (Step �). The server can announce its presence either by

broadcast, multicast, or unicast, i.e., replying directly to the BAS

client (Step �). Afterward, the BAS server and BAS client typically

communicate directly via unicast, with the BAS client acting as a

network client and the BAS server acting as a network server (Step

�).

2.2 BAS Communication Protocols

KNX. KNX is a popular building automation protocol, administered

by the KNX Association, widely used in Europe and Asia [2]. KNX

devices may offer a number of services and expose different vari-

ables and functions, which are collectively called “datapoints.” Some

datapoints manifest as object properties, which may be device- or

application-specific. A collection of properties is called an “object”.

Objects and properties are indexed. For example, Object 0 is for
device-specific properties such as manufacturer ID, accessible via

individual addresses. The client can use software such as ETS [3] to

connect to the server. As shown in Figure 3, the process involved

in the data flow of a tunneling connection is intricate and multi-

faceted, necessitating a carefully orchestrated exchange of packets,

which is detailed as follows:

� The client first opens a tunnel connection to the server

(Tunnel ConnectReq) and receives a response with the sta-
tus of the connection (Tunnel ConnectResp).

� The client requests to connect to the underlying transport

layer of the server (TunnelReq L_Data.Req (Connect)).
The server acknowledges the tunnel request (TunnelAck)
and confirms the connect request (TunnelReq L_Data.Con
(Connect)).

� The client acknowledges the server’s confirmation (TunnelAck).
� The client sends a data request via APCI (TunnelReq L_Data.Req

(<APCI>)). The server acknowledges (TunnelAck) and con-
firms (TunnelReq L_Data.Con (<APCI>)) the APCI request.

� The client acknowledges the server’s confirmation (TunnelAck).
The server sends a transport layer acknowledgement (TunnelReq
L_Data.Ind (ACK)).

� The client acknowledges the transport layer acknowledge-

ment (TunnelAck). The server finally sends the response to
the APCI request (TunnelReq L_Data.Ind (<APCI>)).

� The client acknowledges receipt of the data (TunnelAck).
Then the client sends a transport layer acknowledgement re-

quest (TunnelReq L_Data.Req (ACK)). The server acknowl-
edges (TunnelAck) and confirms (TunnelReq L_Data.Con
(ACK)) the request.

	 The client acknowledges the confirmation (TunnelAck).

 The client requests to disconnect from the underlying trans-

port layer of the server (TunnelReq L_Data.Req(Disconnect)).
The server acknowledges (TunnelAck) and confirms (TunnelReq
L_Data.Con (Disconnect)) the request.

� Finally, the client requests to close the tunnel connection

(DisconnectReq). The server responds with the status of the
close request (DisconnectResp).

BACnet. BACnet, popular in the US and Canada, was developed

by ASHRAE [11]. A BACnet server organizes device data into struc-

tures called “objects”, and each object may have a list of characteris-

tics called “properties”. BACnet servers provide services to interact

with their objects. Clients (other BACnet devices) use these ser-

vices to access and manipulate the data within BACnet servers. For

example, in a BAS server of the temperature sensors, each sensor

is represented as an “Analog Input” object with properties such

as “Present Value” (current temperature) and “Object Name.” The

clients can use the “Read Property” service to retrieve the current

temperature from a specific sensor. For instance, the client sends

a “Read Property” service request to “Analog Input” object (repre-

senting a sensor) with the “Present Value” property, and the BAS

server responds with the temperature reading (e.g., 18.5 C).

https://github.com/AnSECer/BASE
https://github.com/AnSECer/BASE

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

3 Threat Model and Challenges

3.1 Threat Model

Assumptions. Our aim is to create a specialized fuzzing tool for

BAS. This tool assumes that users, including building security an-

alysts, can reasonably access the BAS network (wired or wireless),

gather valid IP packet sessions, and send BAS packets. This as-

sumption applies to both fuzzing tests and potential attacks. This

assumption is conspicuously sound when applied to fuzzing tests

since those conducting these assessments typically include building

managers and security analysts. However, we posit that it remains a

reasonable premise even in the context of potential attacks. Within

any given building, numerous individuals enter and exit daily, and

any one of them could conceivably gain access to the building’s

WiFi network, which often connects to the BAS server. Please note

that some devices may require additional authentication or encryp-

tion. For such devices, we do not assume our attack will be effective.

To target these devices, our discovered exploits would need to be

combined with other advanced hacking techniques for unautho-

rized access (e.g., [6, 7, 10, 13, 19, 33]). For example, BACnet Secure

Connection (BACnet/SC) uses TLS and a PKI system for security.

Compromising these would require exploiting vulnerabilities in TLS

or its implementation within these protocols. An insider attacker,

such as someone who gains access to the building, could potentially

plant malware and send packets from authenticated devices.

Scope. BAS firmware images are typically proprietary and not read-

ily accessible online. This poses a significant challenge for testers

who wish to obtain these firmware images for advanced testing

techniques such as firmware rehosting. Due to these constraints,

our research has concentrated on blackbox fuzzing, a method that

does not require access to the internal workings of the firmware.

Blackbox fuzzing is advantageous as it is broadly applicable and

can be used to test systems without needing detailed knowledge of

their internal architecture.

3.2 Challenges

While fuzzing can be an effective method for discovering bugs

quickly and automatically, fuzzing BAS systems presents several

major challenges (C) that must be addressed. We have split these

challenges into three separate categories: protocol challenges (C1),

which arise from the protocol irrespective of the specific smart

building software or hardware; client-side challenges (C2), which

arise from the clients used to control the devices; and server-side

challenges (C3), which arise from the BAS servers.

(C1) Complex BAS Message Structure and Dependencies. Pro-

tocols are often structurally complex, as packets typically encom-

pass multiple network layers. For instance, BACnet/IP packets, typ-

ically transmitted via UDP, include information about the BACnet

network within the UDP payloads, abstracted from the IP network.

A simplistic mutation fuzzer might inadvertently corrupt BACnet

network-related information (e.g., destination address), potentially

prompting the IP-layer destination host to respond with an error

message or disregard the request entirely. Such an approach would

likely generate numerous futile fuzzy requests. Additionally, pack-

ets may contain context-sensitivemetadata, such as special counters

BVLC

NPDU

APDU

Version ControlVersion Control

Type Function LengthType Function Length

Object
Identifier

APDU
Type

Property
Identifier

PDU
Flags

Response
Flags

Invoke
ID

Service
Choice

Object
Identifier

APDU
Type

Property
Identifier

PDU
Flags

Response
Flags

Invoke
ID

Service
Choice

Magic
Byte
Magic
Byte

Length
Field
Length
Field

Counter
Field
Counter
Field

BVLC

NPDU

APDU

Version Control

Type Function Length

Object
Identifier

APDU
Type

Property
Identifier

PDU
Flags

Response
Flags

Invoke
ID

Service
Choice

Magic
Byte

Length
Field

Counter
Field

Figure 2: A sample BACnet property read request.

and length fields. Figure 2 illustrates a BACnet request containing

magic bytes, length fields, and counter fields. A fuzzer must gener-

ate valid values for these fields; otherwise, the entire packet could

be discarded. Also, without knowing the correct sequence, a fuzzer

might not reach deep code within the target. Figure 3 illustrates

this, where a KNX client communicates with a KNX server via an

intermediate IP interface. To send fuzzy APCI data consistently,

the fuzzer must open the tunnel connection (Steps �–�), send the

necessary acknowledgment frames, and terminate the connection

properly (Steps
–�). Failure to perform any of these actions will

likely cause the server to terminate the connection preemptively.

(C2) Complicated Code Coverage for BAS Clients. Fuzzing

smart building clients is challenging because most clients are closed-

source and proprietary, making compile-time instrumentation for

coverage-guided fuzzing difficult. To make matters worse, the BAS

client usually runs an on-demand UDP client as necessitated by the

user, e.g., to perform a liveness check on the network or to send a

command to a server. Most off-the-shelf fuzzing frameworks cannot

directly work with these kinds of applications, as they cannot deter-

mine the code coverages of the BAS clients (which is closely related

to the functionality of the client). For instance, many fuzzers adopt

the “file-parsing” approach popularized by AFL, where the fuzzer

assumes the program will terminate after processing the input, and

its coverage function is based on this assumption. Other fuzzers

such as WinAFL and honggfuzz can fuzz user-selected functions

within long-lived applications by calling the function repeatedly

and mutating its input parameters; however, the selected function

must either be self-contained, or the user must provide “cleanup”

code to reset the application to the fuzzable state, which is non-

trivial for proprietary (and complex) programs.

(C3) Closed-source BAS Server and Limited BAS Throughput.

Fuzzing BAS applications faces challenges due to the restrictive

hardware of BAS servers. Recent fuzzing works on embedded sys-

tems emphasize firmware rehosting via emulation software (e.g.,

QEMU) for analysis or instrumentation [22–24, 42, 49]. However,

BAS firmware images are usually proprietary and not available

online. Another server-specific challenge concerns the timing of in-

put delivery. BAS devices such as Programmable Logic Controllers

(PLCs) “scan” for inputs at fixed intervals, which limits the fuzzing

throughput [42]. For example, if inputs are generated too quickly,

the device may ignore a portion of them because the scan cycle is

not ready. However, as shown in Figure 1, a client does not typi-

cally communicate directly with the BAS devices; instead, the BAS

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 3: KNX flowchart for a tunneling connection.

server may act on behalf of the devices and forward the appropriate

telegrams between the client and the devices. The IP interface of

the BAS server may not necessarily be limited by the scan cycle

interval imposed on the devices; however, the physical interface

between the server and devices is still limited, so the server may

not receive data if the client generates them too quickly.

4 BASE Design

In this section, we describe our proposed method for designing a

BAS fuzzer. Our tool called BASE, is illustrated by Figure 4 and

comprises four primary modules: protocol analyzer, client inspector,

server examiner, and core fuzzer. We now explain each module in

greater detail:

• Protocol Analyzer (§4.1). This module examines the re-

quest packets transmitted from the BAS client to the BAS

server, as well as those from BAS server to the BAS devices.

It scrutinizes and categorizes the individual bytes within

each packet based on the BAS server’s response to altered

requests. The primary purpose of this module is to furnish

the fuzzer with the necessary information to generate valid

fuzzing requests.

• Core Fuzzer (§4.2): This module consolidates data obtained

from the protocol analyzer and employs it to conduct fuzzing

on the target BAS server or client. Simultaneously, it cap-

tures responses from the server or software information

from the client, which are subsequently forwarded to the

Client Inspector and Server Examiner for the purpose of

understanding their code coverage.

• Client Inspector (§4.3): This module dynamically instru-

ments with the BAS client software framework to exam-

ine response packets from a BAS interface and capture run-

time coverage data. It is responsible for detecting client-side

crashes and contributing to the overall client-side final re-

sults.

• Server Examiner (§4.4): Similar to the client inspector, this

module directly interrogates the BAS server to retrieve re-

sponses and scrutinizes response packets with the aim of

assessing the server’s fuzzing coverage. Additionally, it man-

ages throughput to ensure that all sessions are successfully

conveyed to the BAS server. Its primary role is to identify

server-side crashes and make a substantial contribution to

the overall server-side final results.

4.1 Protocol Analyzer

We now describe the protocol analyzer, which collects and anno-

tates BAS session data for further fuzzing. As discussed earlier,

a BAS protocol can be difficult to fuzz due to the complexity of

its frame syntax. For example, a packet may contain magic bytes,

context-sensitive data such as length and counter fields, or require

a sequence of packets to maintain a specific order. Therefore, the

purpose of this module is to identify which fields and packet se-

quences are context-sensitive and determine the values they are

sensitive to. At a high level, the protocol analyzer first collects the

packets (Step I), then statically analyzes and dynamically probes

the BAS system to identify the fields of interest (Step II), and finally

resolves the dependencies (Step III).

Step I: Collecting the Session Data. BASE first collects a cor-

pus consisting of one or more sessions by monitoring the traffic

between the server and the client. A session in this context refers to

a self-contained sequence of packets that can be repeatedly sent to

the BAS server with consistent responses. This property is crucial

for probing packets, as it involves mutating packets byte-by-byte

and comparing the responses to the original. Sessions are generally

easy to capture by interacting with BAS frameworks. For instance,

ETS can be configured to communicate over the tunnel connec-

tion with a KNX interface in the network, capturing all necessary

packets for repeatable tunnel connections. For each packet, BASE

records the tuple (e.g., timestamp, IP source, port source, IP desti-

nation, port destination, raw payload). After capturing a session,

BASE further splits it into smaller sub-sessions. A sub-session is

a continuous sequence of requests followed by a continuous se-

quence of responses; an illustration is provided by Figure 5. Later

on, when BASE discovers which session sequences should preserve

their order, the corresponding sub-sessions will contain pointers to

each other.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

Figure 4: BASE high-level overview.

Req1 Resp1 Req2 Resp2 Resp3 Req3 Req4 Resp4

Req1 Resp1

Req2 Resp2 Resp3

Req3 Req4 Resp4

Full Session

Sub-session 1

Sub-session 2

Sub-session 3

Figure 5: BASE splits sessions into smaller sub-sessions con-

sisting of discrete request-response pairs

Step II: Identifying Fields. The primary idea of this step involves

generating distinct packets with specific fields set as either fixed

or dynamically changing. These crafted packets are then sent to

the server, and its responses are collected. By comparing the fields

across various packets, we can determine the type of each field.

These identified fields are subsequently utilized in our ensuing

fuzzing process. Specifically, we focus on the following fields:

• Magic Byte. BASE first probes the session by identifying

magic bytes within each packet. A “magic byte” is defined

as a byte for which its initially designated value is the sole

valid entry. These bytes should remain unchanged during the

fuzzing process. To identify these bytes, we iterate over the

entire packet, generating multiple new copies of the original

packet, each identical except for one randomized byte. These

new packets are then sent to the BAS server, along with any

other necessary (unmodified) requests in the session. If the

BAS server provides an unexpected response or no response

at all, and the response is identical for all copies, the byte is

initially annotated as a magic byte.

• Length Field. A length field is a field whose value depends

on the length of the packet. To identify length fields, BASE

inserts a single byte into the packet at an index that was not

previously marked as magic. If the response differs from the

expected response, we inspect the immediately preceding

magic field as a length field candidate. The intuition is that

length fields might have been erroneously marked as magic

since the incorrect length would generate errors. For the

bits under consideration, we increment their field value by

1 (rolling over to 0 if necessary) and resend the packet. If

the packet results in a new response, it may indicate a new

error message. To confirm the validity of the length field, we

mutate the value of the injected byte multiple times. If the

BAS server responds with a consistent error response not

seen before, the field under test is likely a magic byte, and

we save the responses for further reference. Conversely, if

we observe a response previously associated with a mutated

magic byte (i.e., an error response), we can confirm that the

field under test is not a length field. If the response matches

the expected valid response, we can confirm that the field

under test is a length field.

• Counter Field. A counter field is a field whose value in-

crements from packet to packet. Identifying these fields is

crucial since repeated calls to the same request may fail if

the counter field is not updated correctly. To identify counter

fields in a given packet, BASE employs two criteria. First, in

consecutive requests, the counter field should increment, and

after reaching its maximum value (e.g., 0xff), it should reset
to the minimum value (e.g., 0x00). Second, the counter fields
in corresponding pairs of requests and responses should

match. Our intuition is that true application-specific infor-

mation, which can vary significantly between packets, gen-

erally occurs after the counter field, while relevant header

information, which tends to be more consistent, generally

occurs before the counter field. We do not check length fields

and other non-magic bytes since they may also vary be-

tween packets. However, since length fields can cause offset

differences, we adjust our packet search to align with the

appropriate offset when a length field is detected. After iden-

tifying a matching packet, we compare the values of the

selected bytes between packets. If the difference is 1 (or if

the preceding packet is 0xff and the succeeding packet is
0x00), we consider the field a counter field candidate. To
validate, we check the value in a third packet. If the field

is absent, we adjust the counter and send the packet to the

BAS server. A match confirms the counter field.

• Passive Field. Passive bytes are defined as bytes where every

value is both valid and identical; the BAS server’s response

is always as expected, regardless of the field’s value. These

fields can be difficult to identify through static protocol anal-

ysis [26] because their behavior is usually target-dependent.

For instance, a passive byte may occur if a BAS target failed

to implement a certain error-handling mechanism. Nonethe-

less, annotating passive bytes is important to avoid wasting

time fuzzing them. Passive byte identification is straightfor-

ward and can be performed concurrently with magic byte

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

socket() bind()

r
e
c
v
f
r
o
m
(
)

Path(2)

Path(N-1)

Path(N)

Path(1)

Path end

sendto()

close()

Receive responses

Start

End

Figure 6: Instrumentation control flow graph for BAS clients

running a UDP server.

identification. We generate multiple packets with mutated

bytes at a selected offset and send them to the BAS server.

If each response matches the expected response, we mark

the selected byte as passive.

Step III: Resolving Dependencies. The next challenge is to iden-

tify immutable session sequences, such as the KNX tunneling con-

nection. BASE identifies immutable sequences by swapping each

adjacent pair of sub-sessions, patching counter fields as necessary,

and monitoring the response from the BAS server when each new

session is sent out. If a response returns a known error or unex-

pected response, then we annotate the latter sub-session as a suc-

cessor to the former by adding a “next” pointer from the preceding

sub-session to the successive sub-session, as well as a “prev” pointer

in the opposite direction; in this way, BASE knows to always gener-

ate the successive sub-session after the former. If the server returns

the same expected response, then the order of this sub-session pair

does not matter and we do not have to annotate them.

4.2 Core Fuzzer

The core fuzzer implements the fuzzing component of BASE. We

prioritize fuzzing of regular fields, since they are less likely to re-

sult in complete semantic or syntax bugs, allowing us to discover

new behaviors in the target more quickly: magic bytes and passive

bytes have low probabilities of being mutated since our probing

modules failed to discover any interesting new behavior in those

bytes.While still low, the probability of mutating a context-sensitive

byte is kept higher than magic and passive bytes, since we suspect

context-sensitive bytes to have more than one valid value. As for

length fields, there is a reasonable probability that BASE perturbs

the length of the field, either by deleting or inserting new bytes,

and immediately patching the length field value to reflect the new

byte count, and a slightly smaller probability that the length field

value is not patched. For cases when the total number of bytes

exceeds the maximum size of the length field, we simply set the

length field to the maximum value. Furthermore, there is a slim

possibility that BASE will insert significantly more bytes than nor-

mal into the packet, potentially triggering a buffer overflow or DoS

attack. Finally, since BASE must retroactively set the values of the

counter fields after it selects the session for fuzzing, there is a minor

probability that it will set incorrect values.

Specifically, in a cycle, the fuzzer picks a random sub-session

without a “prev” pointer (indicating sequence dependence) and

mutates its packets based on the annotations, adjusting timestamps

and relevant data as needed. For each packet in the sub-session

and for each byte B in a packet, the following mutation rules shall
apply:

• If B is not annotated, then it has a probability N to be
mutated.

• If B is a magic byte, then it has a probability 𝑁
100 to be

mutated.

• If B is a passive byte, then it has a probability 𝑁
50 to be

mutated.

• If B is part of a length field and the value of the field is

L, then: (i) There is a probability 𝑁
3 that we randomly

insert or delete up to L bytes immediately after B. (ii)

There is a probability 𝑁
100 that we insert up to L * 100

bytes after B. (iii) There is a probability 𝑁
5 that the value

of L is not patched after the new bytes are inserted or

deleted.

• if B is part of a counter field, then it has a probability
𝑁
40 to be set to an invalid value.

4.3 Client Inspector

We present the client inspector of BASE. This module probes re-

sponse packets to gain insight into the client’s functionality. As

discussed in (C2), fuzzing smart building clients is complex owing

to their closed-source nature, and complicated code coverage. As

such, this module needs to inspect the functionality of a given BAS

client (Step I) and calculate the client’s code coverage (Step II).

Step I: Inspecting Client Function. Considering the source code

of the client is unavailable, a method to inspect its functionality is by

altering the server’s response andmonitoring the resultant behavior.

However, directlymutating the response packet and forwarding it to

the BAS client might not yield a response, as the client may become

unresponsive. Our approach involves dynamically instrumenting

the BAS client, allowing us to observe its reaction to modified

responses. Although the client is closed-source, it still relies on

standard system functions, which remain un-obfuscated regardless

of the client’s source code status.

Specifically, BASE must determine which code regions of the

BAS client to instrument, focusing only on the code that processes

responses from the BAS server. This can be achieved using a cov-

erage flag: when activated, it instruments the target code; when

deactivated, the code runs without instrumentation. Since the BAS

client communicates with the BAS server over IP (generally UDP),

we can use network-specific functions and system calls to identify

when the client is processing the response. A BAS client typically

runs both a UDP server (for multicast/broadcast data) and a UDP

client (for unicast data), each requiring different tracing methods.

Below, we provide two examples to illustrate the concept. For sim-

plicity, we use Linux system calls as an example, but the approach

applies to Windows using the Winsock API.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

• UDP Server. As shown in Figure 6, the UDP server starts

by opening a socket with the socket system call. We instru-

ment the bind call to monitor relevant network functions. If
the received address matches the address of interest i.e., the

broadcast or multicast address, we log the socket. The client

then uses sendto to interact with the BAS server. In our

packet probing approach, BASE operates a decoy BAS server

that sends back a modified packet. When this is received, the

recvfrom call provides details about the socket and response
content. If the socket aligns with the bind’s, we activate the
coverage flag and begin instrumentation. However, deter-

mining when to conclude the UDP server’s instrumentation

is complex, as the close call for the socket might only occur
at the app’s closure. One method is to identify the server’s

“listening” section awaiting the recvfrom call, instructing
the tool to deactivate the coverage flag there. This is labor-

intensive for each target. An alternative, adopted by BASE,

is to auto-deactivate the coverage after a predetermined du-

ration, set by analyzing timestamps in the session corpus to

gauge the time between a client’s response and the next re-

quest. This respects the BAS devices’ input synchronization

and ensures timely coverage cessation.

• UDP Client. We now discuss how to trace a UDP client.

Like the server, the client first opens a socket via the socket
system call. Although a UDP client does not make the bind
system call, address information for the recipient host can

be obtained via the recvfrom system call. In this case, we

monitor the system call and toggle the coverage flag on

when the recipient address matches the BAS server address,

also recording the socket value. Eventually, the application

closes the connection via the close system call, at which

point we toggle the coverage flag off and share the coverage

information.

Step II: Calculating Code Coverage.We now describe the code

coverage calculation algorithm. Our algorithm is inspired by AFL’s

branch coverage algorithm. AFL calculates coverage by keeping

track of which code paths have been executed during the fuzzing

process. It uses a bitmap structure to record this information. Each

bit in the bitmap corresponds to a specific code path, and when

an input takes a particular code path, the corresponding bit is set.

When a new path is explored, the coverage score increases accord-

ingly, thus reflecting the overall extent of coverage achieved.

In the original AFL, at each executed branch i -> j, for a
parent function i and a child function j, AFL calculates an index
𝑖 ⊕ (𝑗 >> 1) and increments covmap[index], where map is a 64 kB
block of memory shared with the parent fuzzer. The exact values

of i and j are generated randomly at compile-time. AFL defines
several hit count “buckets” of the following values: 1, 2, 3, 4-7, 8-15,

16-31, 32-127, and 128 and above. If covmap[index] falls within a
bucket that was not previously observed, then AFL considers it to

be new coverage.

Our code coverage algorithm preserves some of this behavior,

with notable modifications. Instead of sharing a memory block with

BASE, the instrumentation engine maintains a private coverage

map (an array of integers) and calculates a running coverage score

based on the values in this map. For each branch i -> j, BASE cal-
culates the index value exactly like AFL. The values of i and j can
either be provided directly by the dynamic instrumentation engine

or referenced from the entry addresses of the respective functions.

When the value of covmap[index] reaches a bucket, BASE incre-
ments the total coverage score by primes[index], where primes
is a list of consecutive prime integers. The buckets are mostly iden-

tical, except we split the bucket 32-127 into two buckets: 32-63 and

64-127. When the coverage flag is toggled off, only the final cover-

age score is shared with BASE, allowing it to efficiently compare

the coverage score with previous scores.

We note that this method introduces a slight risk of coverage

score collision, in which the algorithm may generate erroneous

coverage score duplicates even if the true coverage was unique.

However, due to the primesmap usage, the risk of collisions is kept
minimal. The first time an edge is hit, the score increments by a

prime number, guaranteeing that the score could only increment by

that amount if that particular edge was hit. For hit counts greater

than one, there is a slight chance of duplication. For instance, if

the target hits primes[N] = 13 twice, the coverage score increases
by 26. However, a duplication can occur if the target later hits

primes[N] = 5 once and primes[M] = 7 four times (triggering
the third bucket). Still, we observe that the majority of edges only

execute once, which keeps the chances of duplication small. To

confirm our theory, we wrote a simulation tool that runs 5000

iterations of our code coverage algorithm, with a map size of 10000

and a branch count of 50000. Not a single iteration resulted in

a duplicate coverage score. Moreover, duplicates can be avoided

entirely by mapping hit counts and indices to primes[N * S +
index], where N is the N’th bucket hit by this index, and S is the
coverage map size (i.e., size of covmap). Then every bucket of every
index is guaranteed to always increment the coverage score by a

unique value. The downside is that the size of primes increases
nine-fold, since there are nine buckets.

4.4 Server Examiner

We introduce the server examiner component of BASE. This mod-

ule dispatches fuzz payloads to the server. As highlighted in (C3),

fuzzing servers present challenges due to their closed-source nature

and restricted throughput. Consequently, this module is tasked with

determining the server’s operational status (Step I) and managing

its limited throughput (Step II).

Step I: Examining Server Running Status. For effective fuzzing

of a target BAS device, understanding and monitoring the fuzzing

status is crucial. This often involves emulating and instrumenting

server-side firmware, which is typically inaccessible. However, the

primary goal of such emulation and instrumentation is to gain code

coverage insights. If alternative side channels can provide server-

side code coverage data, then firmware access becomes unnecessary.

Therefore, BASE can pose as a BAS client, sending fuzzy requests to

the BAS server and observing responses that suggest new coverage

areas.

To target a specific device, the user should first collect a session

corpus of packets addressing the device in their requests. When

BASE probes the session, it will likely mark the address-relevant

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

bytes as magic bytes, since invalid addresses return error responses

(or not return any responses at all). When receiving a response,

BASE will compare it to previous responses to determine if it is

unique, excluding any frequently changing counter fields. If the

response is unique, the fuzzed session is added to the corpus. The

“prev” pointer is preserved if present, but the “next” pointer is

deleted since the next session depends on the original unfuzzed

session. Lastly, BASE checks the hardware’s liveness by sending

periodic heartbeat monitors, i.e., requests with guaranteed and pre-

dictable responses. A suitable heartbeat monitor can be arbitrarily

selected from any sub-session sequence in our corpus, as we have

already confirmed the consistency of those sessions.

Step II: Handling Throughput. As discussed in (C3), timing

synchronization is crucial because BAS devices scan for inputs at

regular intervals, and requests may be lost if sent too frequently.

Therefore, during the network monitoring phase, we collect times-

tamp information for each packet. Later, when we probe and an-

notate the session, we preserve the timing by sending requests at

the same rate as observed. When listening for responses from the

server, we wait up to twice the original response time to account

for unexpected network delays. By replicating the original session

timing as closely as possible, we avoid input synchronization issues.

Due to the forced input synchronization, the packet probing

module can take a long time if the session contains many packets

or if the packets themselves are large. To increase the module’s

overall performance, when BASE begins probing a new packet,

it first refers back to previously analyzed packets and compares

the magic or passive bytes, length fields, and counter fields. If the

packet under test appears to contain the same fields as the previous

packets, we annotate those fields without sending requests to the

BAS server and waiting for responses. This approach minimizes

the amortized time cost of the packet probing module.

5 Evaluation

5.1 Experimental Setup

BASE Running Environment: All experiments were conducted

on a Dell XPS 15 9510 laptop with Intel Core i9-11900H CPU and

32 GB of RAM. The majority of experiments were performed on

Windows 11 directly on the host, while some Linux-specific experi-

ments were performed in an Ubuntu 22.04 virtual machine. We used

the Python library Scapy to monitor traffic between BAS servers
and clients and seed our session corpus. For dynamic instrumen-

tation, we used Intel Pin, which supports Windows and Linux

targets on 32- and 64-bit architectures.

BAS Server-side Targets: In total, we targeted 7 KNX devices and

4 BACnet devices. The KNX devices are QAW912, KNX RF/TP Cou-

pler 673 Secure, KNX IP LineMaster 762, 5WG1 258-2DB12, EIKON

21840, KNX Virtual, and the GDB181.1E/KN. The BACnet devices

are PMDTBXB, BASRT-B, HNDTA2BX, and GH2SMBBR1. These

devices cover a variety of smart building functions including room

heating control, particulate matter (PM) sensing, temperature, and

humidity sensing, and so forth. Table 1 presents a summary of all 11

devices. For our experiments, the BASRT-B by Contemporary Con-

trols serves as the BACnet/IP interface (BAS server), while the KNX

IP LineMaster 762 by Weinzierl serves as the KNXnet/IP interface.

KNX Virtual, a Windows application by the KNX Association, is a

virtual interface, while also implementing 27 virtual KNX devices

such as actuators, alarm modules, room controllers, and more; we

do not include those devices in our discussion since we did not

evaluate them individually.

BAS Client-side Targets: As shown in Table 2, we performed

our experiments on 3 KNX software clients and 3 BACnet soft-

ware clients. The KNX applications were ETS, knxd, and Calimero.

The BACnet applications were Innea BACnet Explorer, YABE, and

CAS BACnet Explorer. Of these, ETS, Innea BACnet Explorer, CAS

BACnet Explorer, and YABE are proprietary Windows applications.

knxd is an open-source library that runs as a daemon on Linux

hosts. Calimero is an open-source Java library.

5.2 Discovered Vulnerabilities

BASE successfully discovered 13 new BAS vulnerabilities, includ-

ing 8 client-side vulnerabilities and 5 server-side vulnerabilities.

Table 3 summarizes our findings. All client-side vulnerabilities re-

sult in nearly immediate termination of the application. Three of

the server-side bugs resulted in denial-of-service. In the case of

BASRT-B, a full power cycle is necessary to resume access to the

BACnet/IP interface. For the 5WG1 (presence detector), the device

appeared to have permanently lost its functionality and attempts

to reprogram the device using ETS and restore it failed. The vulner-

abilities discovered in the KNX IP LineMaster result in a temporary

denial-of-service in which configuration requests from the client

are completely ignored for several seconds; eventually, the LineMas-

ter terminates the connection with the client and resumes normal

operation.

Client-Side Vulnerabilities:We begin by focusing on client-side

vulnerabilities (V). In the context of these vulnerabilities, we con-

sider two potential scenarios: the attacker can either be the mali-

cious server or an attacker who compromises the gateway. In both

cases, the attacker gains the capability to send carefully crafted

packets to the victim clients without restraint. To be more specific:

(V1) Innea BACnet Explorer: Innea BACnet Explorer can crash

if a malicious BAS server or a gateway sends a fuzzy I-Am
packet to the application; this payload is regularly used to

respond to a BACnet Who-Is discovery request. The crash oc-
curs due to amemory access violation (error code 0xc0000005).

(V2) CAS BACnet Explorer: CAS BACnet Explorer can become

unresponsive indefinitely if a malicious BAS server sends a

fuzzy readProperty acknowledgement packet containing
a vendor proprietary object type, without specifying the

property ID. This payload allows BACnet devices to respond

to requests to read property information; typically the de-

vice shall respond either with an error code or the property

contents.

(V3) knxd: knxd can crash if the daemon is started with the

–listen-tcp option, which exposes an IP server on port

6720 for remote KNX devices to communicate. The bug re-

sults in process aborts to corrupted addresses in the KNX

payload.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

Name Manufacturer Protocol Description

QAW912 Siemens KNX RF Heat controller
PMDTBXB Greystone BACnet MSTP PM sensor
KNX RF/TP Coupler 673 Secure Weinzierl KNX RF, KNX TP KNX RF/TP coupler
KNX IP LineMaster 762 Weinzierl KNXnet/IP, KNX TP KNX Interface
BASRT-B Contemporary Controls BACnet/IP, BACnet TP, Ethernet BACnet Interface
HNDTA2BX Greystone BACnet MSTP Duct humidity/temperature sensor
5WG1 258-2DB12 Siemens KNX TP Presence detector
EIKON 21840 VIMAR KNX TP 4-button programmable switch
GH2SMBBR1 Greystone BACnet MSTP Temperature, humidity and𝐶𝑂2 sensor
KNX Virtual The KNX Association KNXnet/IP Various virtual devices
GDB181.1E/KN Siemens KNX TP VAV compact controller (damper)

Table 1: Summary of BAS servers that were tested.

Name Developer Protocol Platform

ETS The KNX Association KNX �
knxd Matthias Urlichs KNX �
Calimero Calimero Project KNX �  �
Innea BACnetExplorer Inneasoft BACnet �
YABE Morten Kvistgaard BACnet �
CAS BACnet Explorer Chipkin AutomationSystems BACnet �

Table 2: Summary of BAS client software frameworks that

were tested (� Windows,  MacOS, and � Linux).

Name Protocol Type Error Summary

(V1) Innea BACnetExplorer BACnet � Memory access violation
(V2) CAS BACnet Explorer BACnet � Unresponsive
(V3) knxd KNX � Abort #1
(V4) knxd KNX � Abort #2
(V5) knxd KNX � Segmentation fault
(V6) Calimero KNX � Out of memory
(V7) ETS KNX � Out of memory
(V8) KNX Virtual KNX � Index out of bounds
(V9) LineMaster KNX � Unresponsive
(V10) Presence Detector KNX � Permanent brick
(V11) BASRT-B BACnet � Crash #1
(V12) BASRT-B BACnet � Crash #2
(V13) GDB181.1E/KN KNX � Unresponsive

Table 3: Summary of vulnerabilities. �: Server, and

�: Client.

(V4) knxd: Similarly, this bug also causes knxd crash when the

daemon is started with the –listen-tcp option. This bug
results in process aborts due to failed assertion checks. It

fails when certain packets do not include the Transport Layer

Protocol Data Unit (TPDU) data structure, which carries in-

formation about service requests and responses.

(V5) knxd: This bug exhibits a comparable trigger condition (i.e.,

when BASE transmits fuzzy KNX packets to the server via

port 6720). It causes a segmentation fault.

(V6) Calimero:When running the KNXnet/IP server implemented

byCalimero, a Java exception java.lang.OutOfMemoryErro
r can occur when amalicious BAS client sends a KNX request
with service code 0xffff. Before crashing, the software will

rapidly and repeatedly echo an error message, and the mem-

ory consumption of the process will gradually increase until

the exception occurs.

(V7) KNX Virtual: KNX Virtual can crash if a malicious client

sends a truncated KNX request that is missing the “Total

Length” field, leading to a .NET System.IndexOutOfRangeEx
ception.

(V8) ETS: By sending a corrupted Search Response Extended
packet to ETS after it sends a Search Request, the software
quickly begins to consume a large amount of memory, lead-

ing to resource exhaustion and performance degradation

of the software and host system. The payload contains a

corrupted data information block.

Server-Side Vulnerabilities:We are now directing our attention

towards server-side vulnerabilities (V). In contrast to client-side

attacks, exploiting server-side vulnerabilities merely necessitates

the attacker’s connection to a server, making it a more practical

scenario in real-world situations. To be more specific:

(V9) LineMaster: By opening a KNX configuration connection

with the LineMaster and repeatedly sending Configuration

Request messages, the device will eventually stop responding

to the client, even for completely valid requests. In normal

circumstances for the KNX management service, a Configura-
tion Request (for a valid connection) shall always bemet with

a Configuration Acknowledgement by the KNX server; this

is analogous to the Tunnel Requests and Tunnel Acknowl-

edgements illustrated in Figure 3. However, by spamming

Configuration Requests, the LineMaster eventually stops

communicating with the client and eventually terminates

the connection.

(V10) Presence Detector: The 5WG1 258-2DB12 (presence de-

tector) can become unresponsive by sending fuzzy routing

indication packets. KNX routing services may carry the

same application-layer payloads as the tunneling services,

but there is no acknowledgment requirement as opposed to

management or tunneling services. Our experiments caused

the presence detector to become completely unusable. Typi-

cally, a KNX device can become “reprogrammed” by using

ETS to download the application to the device.

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(V11) BASRT-B: We discovered one bug in the BASRT-B “BAS-

router” interface. It occurs when the malicious client broad-

casts a BACnet request with a corrupted APDU field. The

interface becomes completely unresponsive until receiving

a full power cycle.

(V12) This bug has also been identified in the BASRT-B “BASrouter”

interface. It manifests when an Abort message is sent, caus-
ing the interface to become entirely unresponsive until it

undergoes a complete power cycle.

(V13) KNX Damper: The GDB181.1E/KN VAV compact controller

(“KNX damper”) can become temporarily unresponsive due

to fuzzy Routing Indication packets. If the packet con-
tains a corrupted APDU field, the damper will become unre-

sponsive for a few seconds. The attacker can send the fuzzy

packet in an infinite loop to disable the damper indefinitely.

5.3 Performance Evaluation

To understand its performance, we evaluated our BASE in terms of

code coverage and compare it with state-of-the-art fuzzers.

Code Coverage. In our study, we tested the code coverage perfor-

mance of knxd, which is a KNX gateway software program. The

rationale for selecting this particular software is knxd is identified

as containing the highest number of vulnerabilities within its cate-

gory (3 out of 8 vulnerabilities). Testing on the software with a high

vulnerability density allows us to more effectively demonstrate the

coverage capabilities of our fuzzing tool. Unlike traditional fuzzers,

which may crash and terminate testing when a vulnerability is

detected, our fuzzer can continue fuzzing even if a vulnerability is

triggered, showcasing its robustness and thoroughness. knxd [14]

is also very popular in BAS. Its widespread adoption enhances the

relevance and applicability of our findings to real-world scenarios.

The fuzzing process was carried out continuously for 24 hours,

during which our fuzzer monitored the execution of knxd and

logged coverage data. Specifically, it tracked the transitions be-

tween basic blocks (edges) in the program’s control flow graph and

measured the number of executions per second to assess perfor-

mance. Figure 7 and Figure 8 illustrate the results, showing that our

fuzzer discovered a total of 17,616 unique edges in knxd’s control

flow graph. Additionally, the fuzzer maintained an average speed

of 138.91 executions per second, demonstrating efficient input pro-

cessing and sustained performance.

ComparisonwithOther Fuzzers.We chose to compare our fuzzer

with Boofuzz [5]. Boofuzz is an open-source fuzzing framework

that provides various tools and functionalities to help users de-

fine, execute, and monitor fuzzing tests. Its highly customizable

nature allows for the addition of extra implementations to support

packet analysis and message field dependency resolution. We tested

Boofuzz using its default packet resolution and fuzzing policies.

In some of our tests, we enhanced Boofuzz’s capabilities by inte-

grating BASE’s packet analysis capabilities. To enable dependency

support in Boofuzz, we would need to re-implement its feedback

mechanism.

The comparison is conducted in the followingway: if Boofuzz can

identify the vulnerability in significantly less time or discover a new

vulnerability that our fuzzer cannot find, then Boofuzz is deemed

Figure 7: Code coverage for knxd

Figure 8: Fuzzing Speed for knxd

superior. Otherwise, our fuzzer is considered better. To test Boofuzz,

we designed two experiments. In the first experiment, Boofuzz is

configured with zero knowledge, meaning all inputs are randomly

generated without considering the structure of the messages. In the

second experiment, we assume that Boofuzz knows the format of

the message (e.g., Boofuzz already knows the message consists of a

string and two integers). This is achieved by using our BASE packet

message analysis. A notable feature of Boofuzz is the “fullrange”
configuration option. When set to fullrange=True, Boofuzz tests
every possible value within the specified range for a given field,

rather than testing only a subset or a random sampling of the values.

However, with fullrange=True, Boofuzz systematically tests all
values. In our experiment, we toggled the fullrange setting on to

test a specific field thoroughly. This allowed us to compare the

performance and thoroughness of Boofuzz and our fuzzer under

different configurations and knowledge levels. All the experiments

were executed three times to ensure reliability.

Table 4 shows the results and the following observations are

made. First, after 24 hours of continuous operation, Boofuzz, with-

out any prior knowledge, sent a total of 2,883,793 (on average)

mutated messages but did not find any vulnerabilities. This indi-

cates that completely random fuzzing without targeted strategies

can be extremely inefficient and may fail to uncover vulnerabilities

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

1st Attempt 2nd Attempt 3rd Attempt
Average

F pkt # F pkt # F pkt #

BooFuzz (Random) � 2,856,753 � 2,650,042 � 2,994,584 2,883,793
BooFuzz (w/ fullrange) � 3,059,973 � 2,838,229 � 2,690,164 2,862,788
BASE � 50,217 � 41,612 � 91,524 61,117

Table 4: Comparison with Boofuzz. “F” represents “found”.

in the system. Second, when Boofuzz has knowledge of the packet

structure, it did not find vulnerabilities after sending 2,862,788

(on average) mutated messages. This inefficiency of Boofuzz can

be attributed to its control of mutation testing depth through the

max_depth parameter. This is a useful feature as it provides flexibil-
ity and customizability to the testing process. However, in practical

application, this approach can lead to a significant amount of redun-

dant testing. For example, suppose there are three bit fields, A, B,

and C. Different max_depth settings result in single-field mutations,
combinations of two fields, and combinations of three fields. As

max_depth increases, the number of test cases grows exponentially,
but many cases are redundant. For instance, the combinations A=0,

B=1, C=0 and B=1, A=0, C=0 are treated as different test cases even

though they are essentially the same input. This redundancy not

only wastes resources but also reduces the efficiency of the testing

process. Finally, our fuzzer finds the vulnerability with an average of

61,117 mutated messages. This is because it not only recognizes the

structure of messages but also resolves the relationships between

fields, enhancing its effectiveness in discovering vulnerabilities.

6 Attack Case Studies

In this section, we discuss the attack case studies to demonstrate

the consequences caused by crashes. We do not include more so-

phisticated attacks beyond crashes or unresponsive BAS devices

because our focus is on using fuzzing to understand the BAS system

security landscape and test software and devices for vulnerabilities,

rather than designing more sophisticated attacks. Fuzzing research

(e.g., [8]) often targets availability-related bugs. The discovered

crashes may be caused by various reasons such as buffer overflow

and may be further exploited, leading to advanced attacks, which

can be our future work. Please also note that in all our tested de-

vices, none of the BAS devices support additional authentication

(e.g., BACnet/SC). This means that we can initiate the DoS attack

without employing any additional hacking techniques.

Attacks against BACnet Router:We now present a detailed case

study of our attack against the BASrouter controller. Figure 9 il-

lustrates our attack testbed. The BASrouter is wired via MSTP to

the GH2SMBBR1 temperature/humidity sensor. A power supply

connects to both the BASrouter and sensor. The BASrouter exposes

the BACnet/IP interface at 192.168.92.68:47808. To communi-
cate with and monitor the devices, a victim’s laptop connects to an

Ethernet switch, which is connected to the BASrouter; in practice,

the BASrouter may instead be connected to a wireless router, and

the attack can be performed remotely. The victim runs the Innea

BACnet Explorer software to monitor the devices. To detect devices,

BACnet Explorer sends Who-Is broadcast requests on the network
and listens for any I-Am responses. The BASrouter also exposes a

Figure 9: Our testbed for the attack on the BASRT-B.

web server, which the victim can visit to configure the router and

monitor network information. Meanwhile, the attacker’s laptop

also connects to the BACnet/IP interface using the Ethernet switch.

To conduct the attack, the attacker laptop just sends a crafted

BACnet/IP packet onto the network. This packet contains a cor-

rupted APDU payload, ff1083. After the BASrouter receives the
packet, it becomes completely unresponsive, and the victim lap-

top can no longer monitor either device on the network. The web

server also becomes inaccessible. Although the fault exists solely

in the BASrouter, the temperature/humidity sensor also becomes

inaccessible because it depends on the BASrouter to relay traffic to

the user or other devices. In our experiments, a full power cycle was

required in order to restore the normal functionality. In a practical

BAS application, this attack could potentially disable communica-

tion to dozens of equipment and have serious consequences (e.g.,

loss of climate control, fire systems failure).

Attacks against KNX Damper: This attack works against the

GDB181.1E/KN VAV compact controller, which we refer to as the

KNX damper for simplicity. Figure 10 illustrates our testbed. The

damper is connected to the KNX LineMaster router via twisted pair

(KNX TP). The LineMaster is connected to the power supply on the

lower right in the figure. Meanwhile, the damper must be powered

using a secondary power supply (in the upper right of the figure)

and a transformer. Similar to the BASrouter example, the victim’s

laptop can communicate with the KNX network by connecting to an

Ethernet switch, which connects to the LineMaster. The LineMaster

exposes the KNXnet/IP interface at 169.254.123.252:3671, while
the multicast interface can be reached at 224.0.23.12:3671. The
victim’s laptop runs the ETS software to monitor the LineMaster

and damper. ETS provides a feature called “Individual Address

check”, which attempts to establish a Tunnelling connection and

read some basic information from the device. The victim can use

this feature to monitor the damper’s liveness. The attacker also

connects to the LineMaster via the Ethernet switch.

To conduct the attack, the attacker sends a number of KNXnet/IP

packets to the multicast interface. The payload contains a Routing
Indication packet to the LineMaster with the destination address
0.2.249, which is the programmed address of the damper. Therefore,

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 10: Our testbed for the attack on the KNX damper.

the LineMaster forwards the payload to the damper. The packet

contains a corrupted APCI PropValueWrite payload, attempting
to write data to the device at an invalid property index (2817). After

the damper receives this payload, it becomes unresponsive on both

KNX interfaces for a fewmoments. For instance, if the victim tries to

use ETS to perform the Individual Address Check, the address will

appear to be inactive. In our experiments, the attacker only needs

to send the payload to the LineMaster about once per 2 seconds to

render the damper completely inaccessible.

Attacks against ETS: This attack works against the ETS software

framework. For the setup, the attacker just needs to obtain a copy

of ETS, which is available for free as a demo. We confirmed this bug

on ETS version 6.0.6, which is the newest version available at the

time of writing. The attacker runs ETS and the attack script on the

same machine. Once ETS opens, it periodically tries to identify KNX

routers on the network by sending out Search Request multicast
packets on different interfaces.

To conduct the attack, the attacker listens on an interface and

waits for ETS to send the discovery request. It then responds with

the number of our crafted packets, containing a Search Response
Extended packet with a corrupted data information block. After the
attacker sends this payload, ETS begins to gradually consume more

of the system’s memory, until the software eventually becomes

unresponsive. The bug may cause Windows to prompt the user that

the software is not responding. It’s worth mentioning that ETS is

considered the “official” smart building automation software for

KNX, as it is developed and maintained by the KNX Association,

which also maintains the KNX standard itself. Therefore, any bugs

that impact ETS can have wide repercussions on the whole KNX

community.

7 Related Work

This section summarizes the state-of-the-art works related to gen-

eral smart building security, particularly those aimed at BACnet

and KNX, as well as fuzzing techniques applied to hardware (e.g.,

embedded systems and IoT devices) and software. Our work is

novel in three major aspects as highlighted in our contribution list.

First, we are the first to systematically assess the system security

of BAS networks. Second, we evaluated BASE on 11 BAS servers

and identified 13 new vulnerabilities. Third, we conducted attack

case studies to demonstrate the implications of these vulnerabili-

ties, which may pose serious threats such as delayed fire detection,

loss of climate control, and security breaches. It is worth noting

that although context-aware fuzzing tools can handle complicated

protocol states, they cannot be directly used to fuzz BAS, as their

default policies are not optimized for BAS (as discussed in §5.3).

BAS Security. BAS security research [17] has predominantly fo-

cused on the network layer, addressing threats such as key manage-

ment flaws [15], denial-of-service [33], impersonation attacks [6],

and data theft (e.g., [4, 6, 7, 9, 10, 13, 16, 19–21, 31, 33, 37, 44, 46]).

This emphasis arises from the inherent security gaps in popu-

lar smart building protocols (e.g., BACnet [11], KNX [2]), which

lack client/server authentication. Optional security extensions, e.g.,

BACnet Secure Connect [12] KNX IP Secure [28], and KNX Data

Secure [19, 27], remain underutilized. For example, W. Granzer and

W. Kastner observed that many BAS implementations adopt the

flawed “security by obscurity” approach, and they investigate flaws

in popular protocols such as ZigBee, LonTalk, KNX, and Z-Wave

[15]. They found that these protocols are commonly vulnerable to

data availability attacks and scalability issues, while key manage-

ment services are commonly centralized, introducing a single point

of failure. P. Ciholas et al. analyzed 45 papers on smart building se-

curity and concluded that most works focus on defense techniques

against BACnet, KNX, and Lon [10]. They further explored BAS in

terms of the field layer (BAS devices) and automation/management

layer (BAS server), showing that most works focus on the latter.

In contrast, BAS software security has been largely overlooked. In

[43], the authors used a basic fuzzing script testing one KNX device.

Our work targets software attacks across the entire BAS network,

emphasizing the imperative need to scrutinize BAS server and client

through a software security lens, as evident in our assessment and

preliminary results.

Fuzzing Research.Many fuzzing works emphasize assessing the

security of embedded systems, notably IoT devices [8, 22, 23, 50].

For example, FIRM-COV enhances augmented emulation by incor-

porating a panic handler for system-mode emulation [22]. ICSFuzz

targets programmable logic controllers in ICS control applications,

writing arbitrary data to the device by intercepting input control

calls [42]. In the realm of software fuzzing, recent advancements

have primarily tackled two key challenges: application complexity

and input complexity [25, 30, 35, 39]. For example, ZAFL enhances

dynamic instrumentation performance through binary transforma-

tions [30]. VUzzer utilizes static and dynamic analyses to inform

the fuzzer about application data and control flows [35]. There

are also a number of efforts that deal with understanding and han-

dling structurally complex inputs (e.g., [32, 34, 45, 48]). For example,

Wang et al. [45] developed Taintscope, which uses dynamic analy-

sis to identify checksum checks in the application. Different from

those efforts, we aim for greater flexibility and universality in smart

building security assessment.

Park et al. [32] introduce a new technique called aspect-preserving

mutation. This technique aims to stochastically preserve desirable

properties, termed aspects, during the mutation process. The focus

is on maintaining structure and type preservation. However, their

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Zhang et al.

techniques are designed for JavaScript, and they do not deal with

the dependency relationship between the different field of a fuzzing

message. FreeDom [47], a cluster-friendly DOM fuzzer supporting

both generative and coverage-guided modes, uses a context-aware

intermediate representation to describe HTML documents with

accurate data dependencies. While very powerful, FreeDom cur-

rently does not support parsing BAS protocols. To process BAS

protocols, FreeDom would need to convert BAS messages to its cus-

tom intermediate representation, FD-IR, which requires additional

effort. PeriScope [40] focuses on the interface between hardware

and the operating system, which is critical in many IoT devices.

It identifies and fuzzes interfaces where vulnerabilities may exist.

FIRM-AFL [50] extends the AFL fuzzer to handle IoT firmware by us-

ing process emulation to execute firmware code on a host machine.

It augments traditional fuzzing with hardware-specific feedback.

However, such efforts would require hardware knowledge or the

proper emulation of the firmware image. While not exclusively

IoT-focused, Nyx [38] offers insights into fuzzing environments

where hypervisors are used, which can include advanced IoT de-

vices. It leverages fast snapshots and affine types to enhance fuzzing

efficiency. However, it is subject to complexity of setup and applica-

bility to specific use cases involving hypervisors. REDQUEEN [1]

improves fuzzing by understanding the correspondence between

input bytes and program state, which can be particularly useful for

protocol fuzzing in IoT devices. However, it is subject to complexi-

ties in establishing and maintaining input-to-state mappings.

8 Conclusion

In this work, we present BASE, which assesses the security of BAS

networks through fuzzing. BASE automates the process of iden-

tifying protocol structures, dynamically instruments clients for

comprehensive code coverage analysis, and monitors responses

to discover new coverage areas. Additionally, it utilizes collected

timestamps to optimize server input scan intervals, thereby han-

dling throughput limits. Through extensive evaluations conducted

on various BAS servers and clients, BASE has identified and re-

ported 13 previously undisclosed vulnerabilities. These findings are

not purely theoretical; they have real-world security implications

for BAS systems, as confirmed by our case studies. We anticipate

that in the near future, more security assessment tools like BASE

will be introduced to enhance the protection of the integrity and

reliability of BAS networks.

9 Acknowledgments

We thank the shepherd and the anonymous reviewers for their valu-

able suggestions and comments. This researchwas supported in part

by Drexel Startup Fund, by US National Science Foundation (NSF)

Awards 1931871 and 2325451, by Jiangsu Provincial Key R&D Pro-

grams Grant Nos. BE2021729, BE2022680, and BE2022065-5, Jiangsu

Provincial Key Laboratory of Network and Information Security

Grant No. BM2003201, Key Laboratory of Computer Network and

Information Integration of Ministry of Education of China Grant

No. 93K-9, and Collaborative Innovation Center of Novel Software

Technology and Industrialization. Any opinions, findings, conclu-

sions, and recommendations in this paper are those of the authors

and do not necessarily reflect the views of the funding agencies.

References
[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. Redqueen: Fuzzing with input-to-state correspondence. In NDSS,
volume 19, pages 1–15, 2019.

[2] KNX Association. Knx. https://www.knx.org/, 2023.
[3] KNX Association. What is ets professional? https://www.knx.org/knx-en/for-

professionals/software/ets-professional/, 2023.
[4] Rage Usha Bhargavi. Smart home automation and security using raspberry

module.
[5] Boofuzz Documentation. boofuzz: Network protocol fuzzing for humans.

https://boofuzz.readthedocs.io, 2024. Accessed: 2024-08-01.
[6] Michael Cash, Christopher Morales, Shan Wang, Xipeng Jin, Alex Parlato,

Qun Zhou Sun, and Xinwen Fu. On false data injection attack against building
automation systems. arXiv preprint arXiv:2208.02733, 2022.

[7] Michael Cash, Shan Wang, Bryan Pearson, Qun Zhou, and Xinwen Fu. On
automating bacnet device discovery and property identification. In ICC 2021-
IEEE International Conference on Communications, pages 1–6. IEEE, 2021.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In NDSS, 2018.

[9] Woo-Hyun Choi and Jung-Ho Lewe. Advancing fault detection in building
automation systems through deep learning. Buildings, 14(1):271, 2024.

[10] Pierre Ciholas, Aidan Lennie, Parvin Sadigova, and Jose M Such. The security of
smart buildings: a systematic literature review. arXiv preprint arXiv:1901.05837,
2019.

[11] BACnet Committee. Ashrae bacnet. https://bacnet.org/, 2023.
[12] BACnet Committee. Bacnet secure connect. https://bacnetinternational.org/ba

cnetsc/, 2023.
[13] Behrang Fouladi and Sahand Ghanoun. Security evaluation of the z-wave wireless

protocol. Black hat USA, 24:1–2, 2013.
[14] GitHub. Github - knxd/knxd. https://github.com/knxd/knxd, 2024. Accessed:

2024-08-01.
[15] Wolfgang Granzer and Wolfgang Kastner. Security analysis of open building au-

tomation systems. In Computer Safety, Reliability, and Security: 29th International
Conference, SAFECOMP 2010, Vienna, Austria, September 14-17, 2010. Proceedings
29, pages 303–316. Springer, 2010.

[16] Adib Habbal, Mohamed Khalif Ali, and Mustafa Ali Abuzaraida. Artificial intelli-
gence trust, risk and security management (ai trism): Frameworks, applications,
challenges and future research directions. Expert Systems with Applications,
240:122442, 2024.

[17] David G Holmberg and D Evans. BACnet wide area network security threat
assessment. US Department of Commerce, National Institute of Standards and
Technology, 2003.

[18] Inneasoft. Bacnet explorer. https://inneasoft.com/en/bacnet-explorer/, 2023.
[19] Aljosha Judmayer, Lukas Krammer, and Wolfgang Kastner. On the security of

security extensions for ip-based knx networks. In 2014 10th IEEE Workshop on
Factory Communication Systems (WFCS 2014), pages 1–10. IEEE, 2014.

[20] Ben Kereopa-Yorke. Building resilient smes: Harnessing large language models
for cyber security in australia. Journal of AI, Robotics & Workplace Automation,
3(1):15–27, 2024.

[21] Haena Kim, Yejun Kim, and Seungjoo Kim. A study on the security requirements
analysis to build a zero trust-based remote work environment. arXiv preprint
arXiv:2401.03675, 2024.

[22] Juhwan Kim, Jihyeon Yu, Hyunwook Kim, Fayozbek Rustamov, and Joobeom
Yun. Firm-cov: High-coverage greybox fuzzing for iot firmware via optimized
process emulation. IEEE Access, 9:101627–101642, 2021.

[23] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and
Yongdae Kim. Firmae: Towards large-scale emulation of iot firmware for dynamic
analysis. In Annual computer security applications conference, pages 733–745,
2020.

[24] Chongqing Lei, Zhen Ling, Yue Zhang, Yan Yang, Junzhou Luo, and Xinwen Fu.
A friend’s eye is a good mirror: Synthesizing {MCU} peripheral models from
peripheral drivers. In 33rd USENIX Security Symposium (USENIX Security 24),
pages 7085–7102, 2024.

[25] Kaizhen Liu, Ming Yang, Zhen Ling, Yue Zhang, Chongqing Lei, Junzhou Luo, and
Xinwen Fu. RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting
Vulnerabilities in IoT Devices. In Proceedings of the 31th Conference on Computer
and Communications Security (CCS’24), 2024.

[26] Kaizheng Liu, Ming Yang, Zhen Ling, Huaiyu Yan, Yue Zhang, Xinwen Fu, and
Wei Zhao. On manually reverse engineering communication protocols of linux-
based iot systems. IEEE Internet of Things Journal, 8(8):6815–6827, 2020.

[27] Vassilios Lourdas. Knx data secure. https://support.knx.org/hc/en-us/articles/
360012689639-KNX-Data-Secure, March 2020.

[28] Vassilios Lourdas. Knx ip secure. https://support.knx.org/hc/en-us/articles/
360012666599-KNX-IP-Secure, March 2020.

https://www.knx.org/
https://www.knx.org/knx-en/for-professionals/software/ets-professional/
https://www.knx.org/knx-en/for-professionals/software/ets-professional/
https://boofuzz.readthedocs.io
https://boofuzz.readthedocs.io
https://bacnet.org/
https://bacnetinternational.org/bacnetsc/
https://bacnetinternational.org/bacnetsc/
https://github.com/knxd/knxd
https://inneasoft.com/en/bacnet-explorer/
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure
https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure
https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure

Collapse Like A House of Cards: Hacking Building Automation System Through Fuzzing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[29] Lan Luo, Yue Zhang, Bryan Pearson, Zhen Ling, Haofei Yu, and Xinwen Fu.
On the security and data integrity of low-cost sensor networks for air quality
monitoring. Sensors, 18(12):4451, 2018.

[30] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson, and Matthew
Hicks. Breaking through binaries: Compiler-quality instrumentation for better
binary-only fuzzing. In 30th USENIX Security Symposium, 2021.

[31] Andrzej Ożadowicz. Generic iot for smart buildings and field-level automa-
tion—challenges, threats, approaches, and solutions. Computers, 13(2):45, 2024.

[32] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing javascript
engines with aspect-preserving mutation. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1629–1642. IEEE, 2020.

[33] Matthew Peacock, Michael N Johnstone, Craig Valli, O Camp, P Mori, and S Fur-
nell. Security issues with bacnet value handling. In ICISSP, pages 546–552,
2017.

[34] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program
transformation. In 2018 IEEE Symposium on Security and Privacy (SP), pages
697–710. IEEE, 2018.

[35] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In NDSS,
volume 17, pages 1–14, 2017.

[36] ReportLinker. Building automation systems market - growth, trends, covid-19
impact, and forecasts (2022 - 2027). https://www.reportlinker.com/p06360537/,
October 2022.

[37] Francesco Rosati. Enhancing Security in Smart Buildings: Traffic Classification for
Automated Access Control. PhD thesis, Politecnico di Torino, 2024.

[38] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. Nyx: Greybox hypervisor fuzzing using fast snapshots and affine types. In
30th USENIX Security Symposium (USENIX Security 21), pages 2597–2614, 2021.

[39] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. Nyx-net: network fuzzing with incremental snapshots. In Proceed-
ings of the Seventeenth European Conference on Computer Systems, pages 166–180,
2022.

[40] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. Periscope: An effective probing and fuzzing framework for the hardware-
os boundary. In NDSS, 2019.

[41] Chipkin Automation Systems. Cas bacnet explorer. https://store.chipkin.com/pr
oducts/tools/cas-bacnet-explorer, 2023.

[42] Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos. Icsfuzz: Ma-
nipulating i/os and repurposing binary code to enable instrumented fuzzing in
ics control applications. In USENIX Security Symposium, pages 2847–2862, 2021.

[43] Claire Vacherot. Sneak into buildings with knxnet/ip. In Sneak into buildings
with KNXnet/IP, 2020.

[44] Markus Voggenreiter, Florian Angermeir, Fabiola Moyón, Ulrich Schöpp, and
Pierre Bonvin. Automated security findings management: A case study in indus-
trial devops. arXiv preprint arXiv:2401.06602, 2024.

[45] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In 2010 IEEE
Symposium on Security and Privacy, pages 497–512. IEEE, 2010.

[46] Yonghao Wang, Yao Wang, Zhenqin Yang, Qingshan Wang, Hao Zhang, et al. A
hybrid building information modeling and collaboration platform for automation
system in smart construction. Alexandria Engineering Journal, 88:80–90, 2024.

[47] Wen Xu, Soyeon Park, and Taesoo Kim. Freedom: Engineering a state-of-the-art
dom fuzzer. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 971–986, 2020.

[48] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. Profuzzer: On-the-fly input type probing for better zero-day
vulnerability discovery. In 2019 IEEE symposium on security and privacy (SP),
pages 769–786. IEEE, 2019.

[49] Yue Zhang, Melih Sirlanci, Ruoyu "Fish"Wang, and Zhiqiang Lin. When Compiler
Optimizations Meet Symbolic Execution: An Empirical Study. In Proceedings of
the 31th Conference on Computer and Communications Security (CCS’24), 2024.

[50] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. Firm-afl: High-throughput greybox fuzzing of iot firmware via
augmented process emulation. In USENIX Security Symposium, pages 1099–1114,
2019.

https://www.reportlinker.com/p06360537/
https://store.chipkin.com/products/tools/cas-bacnet-explorer
https://store.chipkin.com/products/tools/cas-bacnet-explorer

	Abstract
	1 Introduction
	2 Background
	2.1 Building Automation Systems (BAS)
	2.2 BAS Communication Protocols

	3 Threat Model and Challenges
	3.1 Threat Model
	3.2 Challenges

	4 BASE Design
	4.1 Protocol Analyzer
	4.2 Core Fuzzer
	4.3 Client Inspector
	4.4 Server Examiner

	5 Evaluation
	5.1 Experimental Setup
	5.2 Discovered Vulnerabilities
	5.3 Performance Evaluation

	6 Attack Case Studies
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

