2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS) | 979-8-3503-8605-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/1CDCS60910.2024.00038

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

CORE: Transaction Commit-Controlled Release of
Private Data over Blockchains

Shan Wang'$, Ming Yang'*, Jiannong Cao®, Zhen Ling’, Qiang Tang?, Xinwen Fu’
T Southeast University. Email: {yangming2002, zhenling} @seu.edu.cn.
8The Hong Kong Polytechnic University. Email: {shan-cs.wang, jiannong.cao} @polyu.edu.hk.
¥The University of Sydney. Email: giang.tang @sydney.edu.au.
1University of Massachusetts Lowell. Email: Xinwen_Fu@uml.edu.

Abstract—In blockchain applications such as digital goods
exchange, private data may be transmitted from a data owner
to a recipient through a transfer transaction. However, these
blockchain applications often assume the underlying blockchain
system is secure and reliable, and thus do not consider transaction
failures. We find that a failed transfer transaction may disclose
the private data to the recipient, but the data owner may not
receive tokens as payments or the ledger may not correctly record
the data trail. To handle transaction failures and protect private
data, we propose a novel transaction commit-controlled release
(CORE) protocol. With CORE, the private data can only be
obtained by an intended recipient after the transfer transaction
is committed, the data owner receives tokens, and the ledger
correctly records the data trail. We perform security analysis
of CORE, implement CORE and evaluate its performance over
representative public and permissioned blockchains. The results
of our extensive experiments show CORE introduces minor
overhead in terms of transaction latency and transaction fees.
We are the first to identify and address the generic private data
disclosure issues in both public and permissioned blockchains.

Index Terms—Blockchain, Data Transfer, Private Data Leak

I. INTRODUCTION

In blockchain applications such as digital goods exchange,
cryptocurrency swap and big data sharing, private data may
be transferred from a data owner to a recipient through
a transaction, which can verify the private data via smart
contracts, facilitate mandatory payment and document evi-
dence for purposes such as auditing. For instance, the digital
goods exchange protocol utilizes a hashed time-locked contract
(HTLC) [1] to fairly exchange a secret key s on-chain [2], [3].
The recipient uses a hash h and a time lock T to lock tokens
in the smart contract. Before time T, the owner can propose
a transfer transaction that carries the secret key s, i.e., the
preimage of the hash h, to withdraw the locked tokens. With
a successful transfer transaction, the data owner receives the
locked tokens as payment while the recipient receives s, i.e.,
private data owned by the owner. After time T, the HTLC does
not permit the owner to withdraw locked tokens through trans-
actions, and locked tokens can be refunded to the recipient.

Those blockchain applications for private data transfer often
assume that the underlying blockchain system is secure and
reliable, and thus do not consider transaction failures, which
may cause private data leaks. In practice, a transaction may
encounter failures due to various faults and vulnerabilities

* Corresponding author: Prof. Ming Yang of Southeast University, China.

in a blockchain system, such as message delivery delays in
an asynchronous network and execution faults at nodes. To
ensure fairness [4] for an honest data owner, the recipient
shall only learn the data when the corresponding transfer
transaction is successfully committed to the blockchain for
facilitating payment [3], [4] and documenting evidence [5].
However, in public blockchains, the private data within a
failed transfer transaction may be disclosed to the public
blockchain network. An adversary (including a malicious data
recipient) may learn the private data but does not pay tokens. In
particular, if a transfer transaction is delayed beyond the time
lock T', the owner cannot receive the payment through transfer
transactions any more. In permissioned blockchains, we find
that the original private data is prematurely delivered to a
recipient in a peer-to-peer fashion before transaction commit.
‘When a transfer transaction fails, the recipient still obtains the
private data, but the ledger fails to correctly document the trail.

In this paper, we systematically address the private
data leak issues caused by transaction failures. Qur major
contributions are summarized as follows. We are the first to
identify the generic private data disclosure issues because of
failed transactions in existing applications and protocols over
both public and permissioned blockchains. We propose a
novel protocol named transaction commit-controlled release
(CORE) protocol, which can protect the confidentiality of
private data in case of transaction failures. CORE introduces
a group of m witnesses to attest transaction commit events
and employs bilinear pairing cryptography to keep the private
data confidential from witnesses while ensuring that the
private data can be obtained only by a specific recipient after
the transfer transaction is committed. CORE also introduces
threshold cryptography so as to tolerate a fraction of corrupted
witnesses. A witness attests a transaction commit event by
publishing a verifiable signature on the committed transaction.
With any ? signatures from n witnesses, a recipient can use
its private key to derive the private data. In the case of
transaction failure, the recipient cannot recover the private
data, given well-studied cryptographic assumptions and a
maximum of £ — 1 corrupted witnesses.

In CORE, witnesses do not have access to the private data,
and only provide publicly verifiable signatures on committed
transactions and control the timing of private data release to
a specific recipient. The private data is only shared within the

2575-8411/24/$31.00 ©2024 IEEE 322
DOI 10.1109/ICDCS60910.2024.00038
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

owner and the recipient. This distinguishes CORE from secret
sharing [6] and threshold cryptosystems [7], [8], as well as
the witness encryption based on signatures [9]. In our context,
these existing techniques cannot ensure the confidentiality of
private data from witnesses and unintended parties.

We implement CORE in the representative public
blockchain—FEthereum and the representative permissioned
blockchain—Hyperledger Fabric [10], and evaluate its
performance. We deploy seven cloud servers across different
countries as witnesses with each running with limited compu-
tational resources. The overhead incurred by CORE is minor in
terms of transaction latency and fees. We also conduct a large-
scale analysis of the use of private data transfer transactions
in mainstream blockchains, demonstrating the generality of
private data transfer transactions and the need of CORE.

II. BACKGROUND

In this section, we introduce the private data transfer over

both public and permissioned blockchains.

A. Private Data Transfer in Public Blockchains

Hashed time-locked contracts (HTLCs) [1] are commonly
used for conditional payments in public blockchains, and
serve as building blocks of protocols for fair exchange of
digital goods and HTLC-based atomic swap. A withdrawal
transaction related to a HTLC involves transferring private
data of high value.

Fair Exchange of Digital Goods. In a digital goods fair
exchange protocol over blockchains, the private data trans-
ferred in a transaction is an encryption key s. In ZKCP [2]
and ZKCPlus [3], a seller Alice first sends the ciphertext of
digital goods off chain only to a buyer Bob, and uses zero
knowledge proof (ZKP) to prove to Bob that h is the hash
of the correct encryption key s without revealing s. Next,
Bob and Alice follow the HTLC workflow as shown in Fig.
1 to finish the exchange of s on chain. Bob uses the hash h
and a specific time T to deposit v tokens in the smart con-
tract through a transaction T'X ., (h,T,v,pka, sigg), which
specifies Alice as the intended recipient of v tokens via her
public key pk4 and Bob as the sender via his signature sigpg.
Before time T', Alice can propose a withdrawal transaction
T X,4r(pre, siga), where the preimage pre is the key s, to
withdraw the locked v tokens as the payment. The HTLC smart
contract verifies if the preimage is consistent with hash h and
whether the current time is prior to time T'. If both conditions
are met, the HTLC smart contract sends v tokens to Alice.
Everyone including Bob can obtain s from the withdrawal
transaction in the public blockchain. Bob can use s to recover
the digital goods from the previously received ciphertext. If
Alice fails to deliver a valid T X, 4, before T, the v tokens
only can be refunded to Bob after T". The time-lock T is set to
prevent Alice from intentionally not withdrawing the tokens,
leading to Bob’s tokens being locked permanently. FairSwap
[4], zKDET [11] and protocols in [12]-[15] follow a similar
idea and pattern to ZKCP and ZKCPlus to trade data.

HTLC-based Atomic Swap Protocol. A cross-chain
atomic swap protocol swaps cryptocurrencies in two different

323

[anee | [mc |
l‘ 1: Deposit {h,T,v,pk_A,nig__B',l
:‘ 2: Lock v tokens
[if time <=T]

4: Verify data in
transaction, and send
v tokens to Alice

_B)

6: Refund v H
tokens to Bob

3: Withdraw (pre, sig_A)
I

[else if ime > T]

d

|
I

Fig. 1. HTLC Workfiow in Public Blockchainj.
I

blockchain petworks [16]—[!8]. For instance, Alice intends to
exchange 1 BTC in Bitcoin for 2 Ethers in Etherequm with Bob.
To initiate the swap, Alice |generates a hash h df her private
data s, andisends h to Bobioff chain. Then in Bitcoin, Alice
proposes a |deposit transaction TX&"‘EP(h? t1,1,pkp,siga) to
lock 1 BTC. Once Bob observes Alice’s deposit transaction
TX j‘ep in Bitcoin, Bob proposes another deposilt transaction
TXd'ip(h? t4,2,pka, sigp),|where t3 < t;, in Ethereum to
lock 2 Ethers. Once Alice gbserves Bob’s deposit transaction
TX d'ip in Ethereum, she proposes a withdrawdll transaction
containing the preimage s tb Ethereum to claim|the 2 Ethers
before timé1 ts. Everyone including Bob can l:earn s from
Alice’s withdrawal transactioi“ifi e piiblic Etheréum. Only
Bob can further propose a new withdrawal transaction with s
in Bitcoin to withdraw the locked 1 BTC before time ;.

B. Private Data Transfer in Permissioned Blockchains
Permissioned blockchains usually adopt private transactions
to maintain the private data among only a subset of participants
known as private data members, while others only have access
to the hash of private data. In a big-data sharing protocol [5],
a data owner utilizes a private transaction to share a secret key
with a recipient and document the trail in an immutable ledger.
Private Transaction Lifecycle. The representative permis-
sioned blockchain, i.e., Hyperledger Fabric [10], provides a
private data collection (PDC) mechanism to manage private
data. We assume an owner sets her private data as PDC data
with the owner’s node such as peer 1 as the only PDC member
[5]. Without loss of generality, Fig. 2 illustrates the life cycle
of a private transaction for data transfer in Fabric as follows.
Step 1. A client/user proposes a transaction proposal to the
owner’s node such as peer 1, which performs as an endorser
[19]. Steps 2-4. The endorser executes the smart contract,
i.e., chaincode in Fabric, for the PDC data transfer, and signs
the hash of the execution results that contain the private data.
The endorser only returns the hash of the results with the
signature, called an endorsement, to the client. The original
execution results with the private data are directly sent to the
recipient’s node such as peer 2 in a peer-to-peer way. Peer
2 stores the received results in a local storage space. Steps
5-6. The client generates a transaction which contains the
transaction proposal and the response, and sends it to orderer
nodes. Steps 7-10. Orderer nodes bundle the transaction into
a new block and distribute the new block to all peer nodes.

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

] [=) [(o]
1: Transaction proposal |
3: prop 2: :Ilnll:’oode
and endorsement |
{hash of results) 4 original resullsj]
[T [1f submit Tx |
5:TX atio
o mxoeenten | o _
T
8: block 7: block
9: bleck
10: block distribution | distribution generation
__distribution : !
] 11: Tx] 12: Tx] 13:Tx
i
15: '
14: update update 16: update
world state world world state
state | |
Fig. 2. Private Transaction Lifecyclg in Fabric
T ——

Steps 11-16. Each peer validates transactions in the new block.
Only the transaction which passes the validations, including
the endorsement policy check and version check, is marked
as valid [19]. Only the execution results of a valid transaction
are updated to the world state database. Peer 2 updates the
original private data (that is stored locally) to its world state.
Other PDC non-member peer nodes only update the hash of
the private data in the transaction to their world states.
Another permissioned blockchain Enterprise Ethereum
[20] manages private data through a private transaction in a
similar way to Fabric. In the lifecycle, the owner’s node sends
ciphertext of private data to a recipient node in a peer-to-peer
manner too. The recipient can decrypt the ciphtertext using a
pre-shared symmetric key at any time. Then the private trans-
action proceeds through the consensus and execution phases.
III. PRIVATE DATA LEAK AND SECURITY GOALS

In this section, we first present the system model, and then
discuss private data leak issues caused by transaction failures.
To address this issue, we define an ideal protocol and security
goals in the simulation-based paradigm [21].

A. System Model

‘We provide a unified system model of transferring private
data over both public and permissioned blockchains, which
is applicable to all protocols listed in Table 1. Private data
owner O proposes a private data transfer transaction T X,
to transfer private data m to a recipient R over a blockchain
network B. Blockchain B bundles transaction T'X,, into a
block through a consensus process. An arbiter smart contract
validates the data m in T'X, and/or manages tokens. Private
data recipient R obtains the desired private data m trasferred
through transaction TX, from B. The data owner initiates
the transaction T X, so as to withdraw tokens or document
the trail of data sharing in an immutable ledger.

The system should ensure the fairness for an honest data
owner O: the recipient R only learns the private data m if and
only if the corresponding private data transfer transaction T X,
is committed to the blockchain B as valid. A valid TX,, in a
public blockchain ensures that the owner O definitely receives

324

TABLE 1
Private Data Transferred through Transactions

Blockchain Scenario Private Data
pustic | - — - HTLC-based atomic swap [16H{18] _ _ _ Preimage of a hash __
2. Digital goods fair exchange [2}H4], [11H[15] Secret key
Permissioned 3. Sharing data in private transactions [5] Secret key/Private data

tokens as payment when the recipient already learns data m
in data trading protocols. This aligns with the definition of
sender fairness in FairSwap [4]; In the data sharing protocols
over permissioned blockchains [5], a valid T'X, ensures that
the blockchain builds the exact chain of custody of shared data
owned by the owner.

B. Private Data Leak Issues

We find that those protocols in Table I often assume that
the underlying blockchain system is secure and reliable, and
overlook transaction failures. Typically, a blockchain system
consists of three main components, including a peer-to-peer
network that transmits transactions, a consensus protocol
that orders transactions and nodes that execute transactions.
Transactions may fail due to message delivery delays in
an asynchronous network and execution faults at nodes, as
outlined below. Please note that we do not consider attacks
against consensus protocols such as 519% attack, which may
fail the entire blockchain system [22]-[24].

1) Private Data Disclosure in Public Blockchains: These
HTLC based protocols in Section II-A typically assume a syn-
chronous communication model with a known bound on mes-
sage delivery time. A protocol sets the time lock T in a HTLC
[4], assuming that the withdrawal transaction T'X, initiated by
the data owner will be delivered to the ledger prior to T'. How-
ever, a synchronous communication model rarely aligns with
the real-world public blockchain network with an open and in-
deterministic nature [25], [26]. The delivery of a withdrawal
transaction T'X, to the ledger may be delayed due to various
factors such as low transaction fee in a congested blockchain
network [27], rational miners who are allowed to deprioritize
transactions [28], [29], network attacks such as eclipse attacks
[30], [31] and so on. Considering an asynchronous commu-
nication model, where the message delivery time is uncertain
[26], an initiated withdrawal transaction T X, may be delayed
beyond T. After the time lock 7T, TX, cannot succeed
anymore according to the HTLC protocol. A transaction also
may fail and roll back due to smart contract execution errors
at nodes, such as improper parameters or out of gas errors
in Ethereum. Even if the owner initiates another correct with-
drawal transaction, there is no guarantee that the newly initi-
ated transaction will succeed before T considering the delays.

Implications. These HTLC based protocols in Section II-A
have private data leak issues when transactions fail, leading to
owner unfairness. Specifically, (i) in fair exchange protocols,
when a seller delivers the secret key in a transaction T'X,
but the transaction fails, the secret key within T'X, has
been disclosed to the public blockchain network. Adversaries
including the buyer can learn the secret key. The buyer can
use the learned secret key to recover the digital goods from the

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

previously received ciphertext, but not pay tokens to the seller.
This is unfair for the seller who does not get the payment.
Delivering the ciphertext of the secret key s in a transaction
[11] cannot tolerate the transaction failures either, since a
buyer can obtain the ciphertext from the failed transaction and
use the pre-shared symmetric key to recover the secret key s
without pay. (ii) In the HTLC-based atomic swap protocol,
if Alice’s withdrawal transaction fails, Alice cannot withdraw
the Ethers locked by Bob in Ethereum after time ¢5. But Bob
may learn the preimage from the failed withdrawal transaction,
and use the learned preimage to withdraw the BTC locked by
Alice in Bitcoin. As a result, Alice loses money.

2) Private Data Disclosure in Permissioned Blockchains:
The big data sharing protocol [5] in Section II-B assumes
the underlying permissioned blockchain system and its private
data mechanism are secure, and does not consider transaction
failures either. According to the private data transaction work-
flow in Hyperledger Fabric in Fig. 2, the owner’s peer 1 sends
the original private data to the recipient peer in a peer-to-peer
way in Step 4 before generation of the transaction. We find that
the transaction may fail in multiple cases. (i) Message delivery
delay. During Step 3, if the proposal response is delayed and
not received within the timeout of 30 seconds by default, the
client will not proceed with generating and submitting the
transaction to orderers in Step 5. (ii) Node execution faults. In
Steps 11-13, the transaction may be marked as invalid by peer
nodes due to endorsement policy check errors or version check
errors before updating the execution results to the ledger. For
example, an endorsement policy may not permit the transfer
transaction with only one endorsement [32].

The private data transaction in an Enterprise Ethereum
network has the similar private data disclosure problem as
Fabric, since the private data is also delivered to the recipient
in a peer-to-peer way before the transaction commit.

Implication. In all these transaction failure cases in the
permissioned blockchains, the private data is prematurely
disclosed to the recipient, but the transaction is not committed
to the blockchain. That is, the recipient obtains the private data
but the blockchain fails to correctly document the trail. The
big data sharing protocol [5] does not handle such transaction
failures, which will lead to improper chain of custody and
owner unfairness.

C. Security Goals

To handle the transaction failure cases and enforce owner
fairness, we propose a transaction commit controlled release
(CORE) protocol, which ensures that private data m is ob-
tained by a specific recipient only after T'X, is committed.

Security Assumption. We assume an asynchronous commu-
nication model, where the message delivery time is uncertain.
Our protocol, unlike existing ones, does not rely on a determin-
istic message delivery bound for its execution. Transactions
may fail due to message delivery delays and execution errors in
a blockchain network. The data owner honestly transfers a cor-
rect data, since the data correctness can be verified by the re-
cipient before the protocol execution as discussed in Sec. VIL

325

The ideal functionality F interacts with a private data
owner O identified by a blockchain address ido, a
blockchain network B running an arbiter smart contract
L, a private data recipient R, and a simulator Sim.

« Propose Transaction TX, On receiving
(send, TX,(m,R)) from O, where TX,(m,R)
is a transaction for transferring private data m to R,
leak (send, R,idp) to Sim.

« Validate Transaction TX,. Send TX,(m,R) to
blockchain network B for validating T X, and obtain
an boolean indicator I;, that indicates the validity of
TX,. Output Iy, and leak TX,(R) to Sim.

« Reveal Private Data. If TX, is committed to
Blockchain B as a valid transaction, ie., I;; = 1, re-
veal m only to the recipient R. Otherwise, withhold m.

Fig. 3. Ideal Functionality F of CORE

Security Definition. We define the security of CORE follow-
ing the simulation-based formulation paradigm [21], designing
a real-world protocol II to achieve an ideal functionality J,
i.e., the security goals. In the real world, parties who interact
with IT may be corrupted by a probabilistic polynomial-time
(P.P.T.) adversary .A. In the ideal world, an ideal protocol inter-
acts with honest parties and a P.P.T. simulator Sim. If the sim-
ulator Sim in the ideal world can simulate a view that is com-
putationally indistinguishable from the view in the real world
for A, it is said that II securely realizes the security goals J.

As shown in Fig. 3, we define the ideal functionality JF
for CORE. On receiving a (send,TX,(m, R)) message from
owner O, send the transaction T'X,(m,R) to blockchain
network B. Only the event (send, R, idp) is revealed to Sim,
and m is kept confidential; Then, I3 runs a consensus protocol
to include T'X, into a block, and runs an arbiter smart contract
L to validate the data in T'X,. A transaction validity indicator
I, is output. The data m is kept confidential to Sim; Finally,
if I}, = 1, m is revealed only to the recipient R. If I;, = 0,
other parties including R cannot obtain the data m of owner
O, even when T X, is sent out but is delayed and fails.

Based on the ideal functionality F, the security of a real-
world protocol II of CORE is defined as follows.

Definition 1. (Security of II) Let T JDEAL%STPm denote
the execution of functionality 7, and REALf , denote the

execution of protocol II. TI is said to securely realize F if 3 a
P.PT. Sim, s.t. the following holds for ¥ PP.T. adversary A,

IDEAL% s =~ REALF; 4. 1)

According to the functionalities in J, a real-world protocol
IT that securely realizes J can rigorously guarantee that the
private data m remains confidential in case of transaction fail-
ures, and is only obtained by a specific recipient when transac-
tion T X, is committed, thereby ensuring the owner fairness.

IV. REAL-WORLD PROTOCOL OF CORE
In this section, we introduce a real-world protocol II that im-
plements the ideal functionality F of CORE. We first present

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

the basic idea and then introduce cryptographic preliminaries.
Finally, we present the protocol II in detail.

A. Basic Idea

We design a transaction commit-controlled release (CORE)
protocol II, in which the release of private data is controlled
by a transaction commit event. CORE employs a group of
n blockchain witnesses to attest transaction commit events,
adopts bilinear pairing cryptography to control the timing of
releasing private data to only an intended recipient while keep-
ing the private data confidential from all witnesses, and utilizes
threshold cryptography to tolerate £ — 1 malicious witnesses.

As shown in Fig. 4, in Steps 1-2, an owner O first generates
a random number r, uses bilinear pairing to create a symmetric
key K as a function of the random number, the recipient’s
public key and the owner’s blockchain address, and encrypts
the private data m with the generated symmetric key K.
The owner then creates a private data transfer transaction
TXgo¢(r, ¢, R) with r and the ciphertext c as its fields. At
this point, the recipient R cannot derive the key K and cannot
recover private data m even though R already gets ¢ in the
transaction. Step 3. The blockchain witnesses monitor the
blockchain continuously. When a witness finds that transaction
TXpo(r,c, R) is committed, the witness signs the random
number r and the owner’s blockchain address in the transaction
and publishes the signature as a commit confirmation key (CK),
which is publicly verifiable. If T X °"* fails, a witness will
not generate a signature on this transaction. Step 4. Once the
recipient observes a number of ¢ or more CKs, the recipient
can use its private key and any ¢ published CKs to derive the
symmetric key K and thus recover the private data m from
ciphertext e. If T X5°7¢ fails, the recipient R cannot recover
data m without sufficient CKs.

B. Cryptographic Preliminaries

Gy, is a cyclic additive group and Gr is a cyclic
multiplicative group. The order of G; and Gr is a prime
number p. Let Z, denote the integer set {0,1,--- ,p—1} and
Zj, denote the set Z;\ {0}, i.e., excluding 0 from Z,. A bilinear
pairing is a map e : G1 x G1 — G, which can be computed
in polynomial time. It satisfies the bilinearity property, ie.,
given Va,b € Z; and VP € Gy, e(aP,bP) = e(P, P)ab,
Assume P is a generator of G, @ € G; and a,b,c € Z;.
The bilinear pairing e meets the following assumptions.

Discrete Log (DL) Assumption. It is computationally hard
to find a such that Q) = aP given P and Q.

Decisional Diffie-Hellman (DDH). Tt is computationally
distinguishable between abP and cP for a randomly chosen
¢ from Z;, given P, aP and bP.

Bilinear Diffie-Hellman (BDH). 1t is computationally hard
to compute e(P, P)?*, given P, aP, bP and cP.
Decisional Bilinear Diffie-Hellman (DBDH). 1t is computa-
tionally distinguishable between e(P, P)?** from a random
element in Gr, given P, aP, bP and cP.

H! : {0,1}* — G; is a hash function that maps a string
{0,1}* to an element in G;. H? : Gr — {0,1}* is a hash
function that converts an element in Gr to a string {0,1}*.

L]

326

CK5
| T T 1
| Blockchain Network | 4. Dec
|
TX[c, 1] ITKIc,rI; =
Data Owner | | Recivient
1. ReferGen : 3. cmtConfirm : P
2. Enc | 4 Witnesses | f
| | public Bulletin
I K4, CK5, CK6, CKT
|
A

Fig. 4. Overview of Protocol CORE II.

PRNG(-) — {0,1}* is a secure cryptographic random number
generator. Assume a polynomial of degree £t — 1 is y = ag +
a1z+asz’+...+a, 1zt 1. Given a set of ¢ points on the poly-
nomial, i.e., (z1,¥1), (Z2,Y2), -, (T¢, Y¢), ag can be recovered
according to Lagrange interpolation theorem where ay =

t t
Yy Il
i=1 j=1,j#i
C. Detailed Protocol 11

We design six polynomial-time algorithms, including Wit-
nessKeyGen, UserKeyGen, ReferGen, Enc, CmtConfirm and
Dec, and use them to construct the protocol II which is
formally illustrated in the Fig. 5.

1) Initiate Keys: We design the WitnessKeyGen and
UserKeyGen algorithms for initiating witnesses keys and
user keys. These two algorithms only need to be run once.

The algorithm (SK},PK;) « WitnessKeyGen(Gy,Z;)

—=1__ Less than ¢ points cannot reconstruct ao.

Tj—T4

works in a distributed way, and generates witnesses’
keys without a trusted authority. First, each witness
W;, 5 = 1,2,..,n randomly selects a polynomial

fi(z) = ajo + ajiz + ajp2? + ... + aj—1)z* ! of degree
t — 1, where a;jq € Z,, d = 0,1,2,...,t — 1. W; calculates
and publishes the commitment to coefficients as A4 = a;4P.
Then, W; derives f;(i) and privately sends f;(i) to W,
i=1,2,... n Let s;; = f;(i). Each witness W; can verify
the correctness of the received share s;; from W; by checking

t—1
if s;;P =3 idAjd holds, and only accept the correct share.
d=0

Each witness W; obtains its private key as s; = . s;5,
) j=1

i.e., SK! = s;. The public key of witness W; is derived as

PK! = (P,s;P, A;y) where Ay = a;oP. Others can verify

n t—1
s; P by checking if s;P = 3" (3" i?A,4), which ensures that

=1 d—
the public key of W; matcjhes Svi?h s; and the related shares.
Please note that, as a share s;; from a witness W; is verifiable,
even if witness W; is compromised, others can still finish keys
generation by complaining and excluding the disqualified
witness and only considering shares from qualified witnesses
[6]. We consider a qualified set that contains n witnesses.
Then a recipient R derives its key pair based on the public
keys of n witnesses, and runs the algorithm (SK,,PK,) +
UserKeyGen(PK.,PK3, ..., PKZ, Z). The recipient first ran-
domly selects u & Z; as its private key, ie., SK, = u,

then derives its public key as PK, = (uP,u) A;p), where
i=1

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

CORE protocol II runs over a blockchain net-
work B with an arbiter smart contract £ and
n witnesses. II interacts with a data owner
O identified by idp, and a data recipient R.
The generator P of G; is a public parameter.
Initiate Keys

e Witness W;, 1 1,2,...,n runs algorithm

(SK;,PK}) < WitnessKeyGen(Gy,Z3) to derive

its key pair.

o Recipient R runs algorithm (SKy,PK,) <
UserKeyGen(PK;,PKZ,...,PK3, Z%) to initiate
its key pair.

Propose Transaction X 7"

Owner O generates a transaction reference as r +

ReferGen(\).

Owner O encrypts private data m, and gets

its ciphertext by running the algorithm c¢ <+

Enc(m,PK,,r,idp). O puts c and r as parameters

of transaction T'X ;°"¢(r, ¢, R). Then owner O sends

a request (send, TX;°"(r,c, R)) to IL

On receiving (send, TX;"%(r,c, R)),

TXp;°(r,c, R) to the blockchain network B.
Validate Transaction T'X ;7"

B orders transaction T'X;°"* following a consensus
protocol. An arbiter smart contract £ verifies data
in the transaction and/or manages tokens. B outputs
I, which indicates the validity of TX;O‘"E.
Each witness W;, 1 1,2, ...,n continually
monitors and confirms committed transactions.
Only if the transaction TX;°™® is committed,
W; publishes a commit conﬁrmation key as
CK; < CmtConfirm(T X ;7" ,SKL).

Reveal Private Data
Recipient R obtains ¢ from a valid transaction
TX »"¢, and gets the published CK; from W;. When
R obtains t or more commit confirmation keys, R
recovers the private data by running algorithm m <+
Dec(c, SK,, CK¥» CK2¥ .. CK%Y¥). With in-
sufficient CKs, R cannot derive the private data.

send

Fig. 5. A Real-World Protocol IT of CORE

Ajp is a part of PK};. Please note that others such as an
owner can verify whether the recipient’s public key PK, is
derwed based on the w1tnesses public keys by checking

if H e(uP, Ap) = e(PuZAtD) holds. A correct PK,

i=1 i=1
ensures that the recipient has to obtain signatures, i.e., commit

confirmation keys, of witnesses to perform decryption.

core,

2) Propose Transaction TXg When a private data
owner O, who is identified by a blockchain address idp, wants
to transfer the private data m to a recipient R through a trans-
action, the owner first derives a transaction reference r and
runs algorithm r < ReferGen(\). Reference r is generated

327

by a random number generator PRNG(-), and r = {0,1}*.

Then the owner encrypts the private data m using the
transaction reference r, its identifier ido and the public key
PK, of a specific recipient, and obtains the ciphertext c. The
encryption algorithm ¢ < Enc(m,PK,,r,idp) has four main
steps. (i) The owner verifies the correctness of the recipient’s
public key PK,, as introduced previously. If it is correct,
the encryption continues. (ii) The owner randomly selects
k € Z;, and calculates kP. (iii) The owner concatenates ido
after the reference r and gets 0 = r||idp, where || denotes
the concatenation of two strings. Then the owner derives a

n

symmetric key as K = e(ku Y A;0, H'(o)); (iv) The owner

uses the symmetric key K tozgricrypt private data m, and ob-
tains the ciphertext ¢ = (kP, C,,), where C,,, = m & H%(K).
As a result, the decryption of such a ciphertext will require
both the witnesses’ signatures on r||idp and the recipient’s
private key u. Now, the owner can use r and ciphertext ¢ as
two parameters to create a transaction TX;°"(r, ¢, R), and
trustingly broadcast this enforced transaction to the blockchain
network. Please note that, the owner’s address ido is assigned
by the blockchain system to the initiator address field of
T X, such as the From field in an Ethereum transaction.

Choice of transaction reference r. Transaction hash cannot
perform as r since the owner needs r for encryption before a
transaction is created. The Timestamp field in a transaction
cannot work as r since two transactions may have the same
Timestamp. We use a strong random number generator
PRNG(-) to generate the transaction reference r which
negligibly repeats itself. A random number as r is generic
and applicable to mainstream blockchains such as Ethereum,
Hyperledger Fabric and so on.

CO‘.I"E

3) Validate Transaction T The blockchain network
B follows a consensus protocol to bundle the transaction into
a new block, and runs an arbiter smart contract £ to verify
data in TX2° and manage tokens. The time it takes to
commit a transaction to the ledger is undeterministic, and the
transaction may fail due to faults and vulnerabilities in the
blockchain system as analyzed in Section ITI-B.

The witness W;, i 1,2,...,n keeps monitoring
the blockchain network, and periodically (one period is
one block) confirms the commit of new transactions in
a new block. After the private data transfer transaction
TX,m¢(r,c, R) is committed, witness W; runs algorithm
CK; +— CmtConfirm(TX°", SK}) to attest to the commit, re-
gardless of how long the commit process takes. W; parses the
reference r and the transaction initiator (the owner) identifier
idp in the fields of committed T X 5%, and gets 0 = r||ido.
W; uses its private key SK!, to sign o, obtains a commit
confirmation key as CK; = s;H!(o), and publishes the CK; on
any public bulletin board (or the internet). CK; is publicly veri-
fiable. Anyone can verify CK; by checking if e(s; P,H!(0)) =
e(P, CK;) holds. An honest witness does not sign a transaction
that fails or has not passed the validation, e.g., a failed HTLC
withdrawal transaction that has surpassed the time lock T'.

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

core

4) Reveal Private Data: If T is successfully com-
mitted and ¢t (or more) witnesses publish CK%¥, i
1,2,..,t and w € {1,2,...,n}, the recipient can re-
cover the private data by running the algorithm m <+
Dec(c, SK,, CK¥, CK2%¥ ... CK%"). CK“Y (zi,v:)
where ; = w and y; = CK,, and CK%" is from the
w-th witness. Recipient R obtains the ciphertext ¢ from a
committed T X 7°"*(r, c, R) in the ledger, and obtains commit
confirmation keys from a public bulletin board or directly from
witnesses. The recipient first uses its private key SK, and any
t published commit confirmation keys {CK*¥,i=1,2,...,t}
to recover the symmetric key, i.e.,

= e(kP, z Y H

i=1 j=1,5#i

K is actually equal to the owner generated symmetric key K.

Then the recipient can obtain the private data by calculating

m = C,, @ H*(K'). With less than ¢ commit confirmation
keys, recipient K cannot recover the private data m.

Correctness Analysis. We now analyze the correctness of

the algorithm Dec. Assume f(z) = Z fi(z). Then the W;’s

i=1

secret key s; = f(i) and f(0) =

@)

SK“
)

Z a;o- According to

i=1
Lagrange Interpolation Theorem, f(0) can be obtained by t
points on polynomial f(z) of degree t — 1. We have

e(kP, HI(JJZf ;) H

i=1, J#% a z‘ 3)
=e(P,H (J))kuf 0)
Similarly, we have
- ku i aio
K = e(ku) (aoP), H!(0)) = e(P,H'(0)) ="
i=1
4

Therefore, we have K' = K, and C,, EB'HZ(K’) =mo
H2(K) ® H?(K') = m. The decryption algorithm is correct.
According to equations (3) and (4), 0 = r||idp in algo-
rithms Enc and CmtConfirm ensures that the ciphertext ¢ can
only be decrypted through a transfer transaction T'X;°"(r, c)
initiated by the owner O with the identifier idp. Please note
that a blockchain system does not allow other entities than the
owner O to use idp in the initiator field of a transaction.

D. Witnesses Selection and Incentive

Several properties of CORE allow the blockchain commu-
nity to construct witness services by majority-honest com-
mittees, to ensure the data security of the special type of
private data transfer transactions with a profit motive. First,
private data remains confidential to all witnesses, and CORE
can tolerate a fraction of malicious witnesses. Second, commit
confirmation keys from witnesses are publicly verifiable with
witnesses” public keys and the reference and initiator address
of a committed transaction, making it easy to audit witness
behaviors. Third, the role of a witness is limited to signing

328

the reference of a committed transaction. Its workload is
minor as demonstrated in Section VL In public blockchains
like Ethereum, existing RPC service [33] providers such as
Infura could further integrate the witness services to expand
business and attract more users. Recipients could subscribe
the witness service for querying the commit confirmation keys
like subscribing RPC services for querying blockchain states.
Organizations involved in a permissioned blockchain could
perform as witnesses, such as hospitals and research institu-
tions in a Fabric-based healthcare data sharing system [5].

V. SECURITY ANALYSIS

In this section, we first formally prove that the real-world
protocol IT of CORE is secure, and then analyse that CORE
can resist faults and failures in a blockchain system.

A. Security Proof

Theorem 1. The real-world CORE protocol 11 securely real-
izes the ideal functionality F and is secure under Definition
1, given secure cryptographic primitives and a maximum of
t — 1 malicious witnesses.

Proof. We show that the ideal world and the real world are
computationally indistinguishable for adversary .A which runs
PP.T. algorithms. Adversary .4 can get the inputs and outputs
of the corrupted parties. The owner is honest as discussed in
Sec. III-C. The adversary can corrupt at most ¢ — 1 witnesses
and/or the recipient. We consider private keys of honest
parties are secure because of the DL assumption. To formally
prove Theorem 1, we construct simulators for each possible
corruption case and prove that Sim can simulate views where
A cannot distinguish the real world from the ideal world.

Case 1. t—1 Malicious Witnesses and Malicious Recipient.
There exists a PP.T. simulator Simyy g such that for adversary
A that corrupts both the recipient and at most ¢t — 1 witnesses,
it holds that the view of II in the presence of adversary A
is computationally distinguishable from the view in the ideal
world with Simw r. Simw r works as follows.

1) Simyy g invokes F and obtains the outputs of F including

the transaction validity indicator I;,, data m and ido.
2) Simy p samples the random keys for witness W,

i = 1,2,...,n by running algorithm (gﬁi,ﬁi) —
WitnessKeyGen(G1,Z;) and sends these keys to A.

3) Simy g samples the random keys of the
recipient by running algorithm (gﬁu,ﬁu) —

UserKeyGen(ﬁi, ﬁi? ...?ﬁ{t, Z,) and sends them to A.

4) Simy g samples random messages v’ and m’, and gets
ciphertext ¢’ < Enc m, PKy, r',idp). Simw g generates
a transaction T X ;OT (r',¢', R) and sends it to A.

5) If I;, = 1, Simy g generates t commit’ confirmation
keys CKy < CthonIirm(ﬁwre SK,) and sends
them to A. A outputs m by runmng algorlthm
m < Dec(c, SKu,CK CK) When
Iiz 0, if A does not generalﬁ or send commit
confirmation keys, Simy, g does not act and A will not
obtain the information about decryption keys and data m.

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

If A generates and sends out £ — 1 corrupted commit con-
firmation keys, Simy, g emulates its behavior by sending
t—1 corrupted commit confirmation keys to the recipient.

We now prove that A cannot distinguish the view in the
ideal world from the real-world II executions. Due to the DDH
and DBDH assumptions, the simulated keys and ciphertext ¢’
in the ideal world and the keys and ciphertext ¢ in the real
world are computationally indistinguishable for adversary .A.

In case of I;, = 1, A can recover m from the ciphertext in
both the ideal and real worlds.

In case of I;; = 0 and A does not generate commit
confirmation keys, A will not obtain keys and cannot derive
m in both ideal and real worlds.

In case of I:z = 0 and A sends { — 1 commit confirmation
keys to the recipient, .4 cannot derive m in both ideal and real
worlds. Recall that H! (o) € G, and assume H'(c) = yP.

The key K = e(P,H'(0))*/(9), where f(0) = X asp.

f(0) is unknown since £ — 1 witnesses cannot recové;lf (0)
or f(0)P according to Lagrange interpolation theorem.
It is computationally hard to find e(P, P)¥*/(°) without
knowing y, k and f(0) according to the BDH assumption.
Consequently, A cannot find e(P, P)vkuf(©) or recover m,
even if A has SK,,. IDEAL-._‘E.Sm ~ REALL fi,4 holds.

Case 2. t —1 Malicious Witnesses. Adversary A corrupts at
most £ —1 witnesses and the recipient is honest. The simulation
and the proof are similar to those in Case 1. A simulator
Simw generates a transaction T'X ;Ore(r’, ¢/, R) and sends it
to A. IDEAL% g, ~ REALf; , holds due to DBDH.

Specially, when I, 1, A can get t — 1 commit
confirmation keys from corrupted witnesses, and may also
get one or more valid commit confirmation keys from
honest witnesses smce they are publicly verifiable. Simy,

to A. We prove that even A gets
, A cannot obtaln m in both the real

sends t or more CK
t or more CK

and ideal worlds. K = e(P, Z Ui H Ij_ml)k“, where
i=1 j=1,j# i
Y o= CK, = Sy H (o). Assume Z U H —-"—I__I = zP.
i=1 j=1,j%#i °

Without knowing z, k and g‘ffu, it is computationally hard to
find e(P, P)Ik" given P, kP, P and uP. That is, it is com-
putationally hard for A to obtain symmetric key K or recover
m, though A knows t or more commit confirmation keys.
Case 3. Malicious Recipient. Adversary A only corrupts
the recipient, and witnesses are honest. The simulation and the
proof are similar to those in Case 1 about simulating messages
to the recipient. If I; = 1, a simulator Simg generates

{ﬁflm,z’ =1,2,..,t} and ﬁ;we(r ¢, R), and sends them
to A. If I, = 0, A does nothing. IDEAL?. sim & REALﬁ,A

holds according to DBDH and BDH.

Case 4. All are Honest. Both the witnesses and the recipient
are honest, which is a special case. Simulation in this case is
straightforward, and I DEAL_"‘-;w sim & REAL% Ti,4 holds.

Claim. In both transaction commit and failure cases,
witnesses are unable to obtain the private data m. In the

329

transaction failure case, the recipient cannot obtain m, thereby
achieving security goals and guaranteeing the owner fairness,
when at most ¢ — 1 witnesses and the recipient are corrupted.

B. Analysis
The message delivery delays in an asynchronous network

will not affect the security of CORE, because CORE does not
rely on a predetermined bound on message delivery time. The
worst case with CORE is that the delivery of CK; from a
witness to a recipient may be delayed to an unknown bound,
but it eventually can reach the destination. Firstly, CORE
can tolerate a certain number of fault witnesses. Additionally,
the blockchain community can audit which witnesses do
not function correctly since CK; is publicly verifiable. The
community can fix the delay issue, unless adversaries can
indefinitely delay commit confirmations keys. Therefore, the
delayed C'K; messages will not cause irreversible damage in
CORE. Please recall that, the delays can cause irreversible
damage in existing fair exchange protocols, such as the
owner permanently being unable to receive payment after T'
when the delay causes the transaction failure. By following
CORE to transfer private data through a transaction, existing
application still can ensure the private data security and
owner faimess under an asynchronous communication model.

When contract execution errors or endorsements checking
errors occur on blockchain nodes, a transaction fails.
Witnesses do not sign the failed transaction and then the
encrypted private data cannot be recovered. With CORE, the
disclosure of the private data will align with a committed
transaction, thus ensuring the accurate sequence of data
sharing in the ledger for auditing purposes.

V1. EVALUATION

In this section, we present our implementation of CORE,
evaluate its performance over representative public and
permissioned blockchains, and show the generality of
private data transfer transactions and the need of CORE in
mainstream blockchains.

A. Setup

We develop the six polynomial-time algorithms in CORE
based on a pairing cryptography library bn256 in Golang.
We set up 7 witnesses that are located across the world,
and each of them runs in a Vultr cloud server with Ubuntu
18.04 and only 2GB memory. In Ethereum, witnesses obtain
the latest block through RPC service providers that monitor
different nodes in Ethereum. Table II shows the geographical
distribution of 7 witnesses, and their corresponding RPC
services in Ethereum. In Hyperledger Fabric, each witness
interacts with a Fabric node to get the latest block.

Ethereum. We implement CORE over a Ethereum test
network named Goerli. A witness server uses a Golang library
go-ethereum to interact with Goerli through a RPC service
provider. The witness queries the latest committed block every
5 seconds, then parses its transactions, and derives and stores
commit confirmation keys (CKs) in a CouchDB database. Each

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

TABLE II :: — ey — e o 5

Distribution of Witnesses and the Correspondin m N =4

RPC Services in Ethereum poncine E :: = = = = ‘E 31

E 15 £
‘Witness Num | 1 2 3 4 = 10| == O — — S 14
Location New Jersey Califomia London Seoul 0.5 —— e ————— e 04 3 3 P P p
RPC Service | Infura BlockPI Alchemy Ankr 0.0 =— . i — Required Witness Number
Witness Nom | 5 3 7 64 128 256 512 1024
Data Size (Byte)

Location Singapore Sydney Toronto Fig. 7. Time of Getting Data vs.
RPC Service | Blast OnFinality Omnia Number of Required Witnesses

Fig. 6. Performance of Six Algorithms

witness server can be queried with a HTTP Get request with
a transaction hash for the corresponding CK.

Hyperledger Fabric. We work on Hyperledger Fabric v2.3.3,
and build a test network with 7 nodes on multiple Vultr
cloud servers with Ubuntu 18.04 and 8GB memory. The block
generation period is set as 10s. A witness is developed in
Golang with a CouchDB database, and interacts with the test
network with the Golang Fabric SDK. The Fabric witness
queries the latest block every 5 seconds, then parses the block
and derives and stores CKs. It also provides a HTTP service
for users querying the published CKs.

B. Performance

We use the same test data set that contains private data
of different sizes to evaluate the performance of CORE in
different blockchains, and run each case 20 times.

Algorithms Performance. The boxplots in Fig. 6 shows
the performance of the developed six algorithms of a (4, 7)-
threshold CORE written in Golang on a computer running
Ubuntu 18.04 with 32 GB memory. It takes less than 3.5 ms
for each algorithm to perform their work efficiently.

Performance in Public Blockchain. In Ethereum’s Goerli
test network, we deploy a HTLC smart contract in Solidity.
We apply a (4, 7)-threshold CORE to its withdrawal trans-
action, i.e., a private data transfer transaction. Fig. 8 shows
that CORE incurs negligible transaction latency overhead.
When a recipient attempts to obtain private data once the
transaction is committed, CORE incurs some overhead due
to time cost of collecting sufficient CKs from witnesses,
although the overhead amount is relatively small. Fig. 9
illustrates that the withdrawal transactions with CORE incur
more gas cost, because we deliver additional data such as
the transaction reference in the transaction. Assuming the
gas price is 50 gwei, we calculate the cost in terms of
Ether. It can be observed that the monetary cost overhead
is acceptable. Our HTLC contract and the related with-
drawal transactions can be found via the contract address
0x4D46599A814bfd8fBE629F969al 1 5F0104bcfb9C through
the Goerli EtherScan explorer.

Performance in Permissioned Blockchain. In the
Hyperledger Fabric test network, we deploy an official
smart contract example in Golang which involves private data
transfer transactions. Fig. 10 shows that CORE has negligible
overhead in the private transactions latency in Hyperledger

330

Fabric. Please note that a transaction in Fabric does not have
gas cost like Ethereum. When a recipient attempts to recover
the private data, collection sufficient commit confirmation
keys incur minor overhead, in comparison to directly querying
the private data from the ledger without using CORE.
Impact of Number of Required Witnesses on Performance.
The number of witnesses does not affect the encryption time
or transfer transaction latency, as witnesses are not involved
in the encryption or transaction commit process. Witnesses
come into play only after transaction commit. The number of
required witnesses, i.e., the threshold, may impact the time
it takes for the recipient to get the original private data, as
the recipient needs to collect the threshold number of CKs
from the witnesses. Fig. 7 demonstrates that the average time
overhead of getting data (of 256 bytes) increases as the number
of required witnesses rises. It takes a few seconds for the re-
cipient to collect sufficient CKs over either Ethereum or Fabric
networks. This is mainly due to the witnesses being distributed
across the world and monitoring different blockchain nodes.
Witnesses may attest to the commit of the same transaction at
varying times. The delay is acceptable in most applications.

C. Generality of Private Data Transfer Transactions

‘We identify a HTLC smart contract in Ethereum by search-
ing common keywords such as htlc, hashtimelock, hash op-
erators like keccak256, preimage and keyword combinations
in source codes of smart contracts. Fig. 11 shows 11 popular
Ethereum HTLCs that were involved in 26179 transactions
which include 11439 withdrawal transactions. By analyzing
deposit transactions, we find 11 HTLCs locked 1509.47 Ethers.
159 withdrawal transactions which contain private data have
execution errors such as out of gas. The withdraw transactions
with errors disclose the private data as discussed in Sec. III-B1.

We analyze Hypereldger Fabric projects on GitHub, since
it is difficult to obtain permissions to access real-world per-
missioned blockchains. A Fabric project maintaining private
data should configure a “json” file using specific keywords
[19]. As shown in Fig. 12, we identify 6653 Fabric projects
from 2018 to 2022, and 364 projects adopt the private data
mechanism which was first introduce in 2018.

VII. DISCUSSION ON RECIPIENT FAIRNESS

An honest recipient R should be guaranteed to derive the
correct private data m from the ciphtertext c after the transfer
transaction is committed. The recipient fairness can be ensured

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

—— TX Latency (CORE) Let

1.0
—— TX Latency (Original)
—— Get Data (CORE)
—— Get Data (Original)

=== Transaction Cost (CORE)
=== Transaction Cost (Original)

128 512 1024 64 128

256
Message Size (Byte)

Fig. 8. Transaction Latency in Ethereum.

100000 1000 077 r—
10000 800 P —
.é’ 1000 600 g g2020 P
—
f 10 200 &
= 1 [1] 0 500 1000 1500
D .9 O N
‘é\ 15‘, # 1@ 15‘» . Number .
Year M All projects M PDC projects

ENTX 0 Error TX B Withdraw Tx ——Ether

Fig. 12. Hyperledger Fabric Projects

Fig. 11. HTLCs in Ethereum with private data

following techniques like zero knowledge proof (ZKP) used by
existing protocols outlined in Section II. Prior to transferring
the data, the data owner can utilize ZKP [2] to prove to the
recipient that h is the hash of the ciphtertext ¢, as well as
c is derived from the correct private data m using CORE,
without disclosing either the private data or the ciphtertext.
The proof can be completed off-chain and will not interfere
with our CORE protocol. Subsequently, the recipient can use h
to lock tokens and utilize an arbiter smart contract to validate
weather the delivered data matches the hash h. A successfully
committed CORE-enforced transfer transaction indicates that
the owner has disclosed the correct ¢ matching with hash h,
allowing for the recovery of the correct m from c.

VIII. RELATED WORK

We now compare CORE with related work that shares some
similarities but cannot address the private data leak issues.

Timed Release Encryption (TRE) solves the problem
of sending information into the future. Witness encryption
[34] based TRE requires several hours for encryption and
decryption [35]. A trusted time server based TRE [36] is
efficient, but cannot tolerate a single-point failure. It can send
a message to a future time like 11:59PM EDT, August 1, 2024,
but is not well-suited for the blockchain context because the
commit time of a transaction is unpredictable.

Threshold Cryptosystem. In secret sharing [6], a secret
is divided into multiple shares. A predetermined number of
participants with shares can reconstruct the original secret.
In a threshold cryptosystem [7], [8], the decryption key of
a ciphertext is shared among n parties. Any ¢ out of n parties
can work together to recover the plaintext. With these typical
constructions, private data cannot be kept invisible to witnesses
as our CORE does. In addition, these constructions do not
have an appropriate parameter to perform as the transaction

256
Data Size (Byte)

Fig. 9. Transaction Gas Cost in Ethereum.

331

20
+0.05 == TX Latency (CORE) = Get Data (CORE)
== TX Latency (Original) === Get Data (Original)
| 0.04 15
ro.03 g @ 10
= E
W R
r0.02
5 — — ——e
r0.01 %@i i—%; %—-
T T 0 T T T T T
512 1024 64 128 256 512 1024

Message Size (Byte)

Fig. 10. Transaction Latency in Fabric.

reference in the blockchain context. The witness encryption
based on threshold signatures [9] does not considers the private
data transfer scenario, and cannot used to maintain the private
data confidential from witnesses and unintended parties.

Proxy Re-Encryption (PRE). In PRE, a sender generates
a ciphertext and a re-encryption key. A proxy uses the re-
encryption key to convert the sender’s ciphertext into another
ciphertext, which a recipient can decrypt [37]. This convert
does not involve any keys of the proxy. Anyone including the
recipient can perform as the proxy. In a PRE-based fair trade
protocol [38], a data owner sends the re-encryption key to the
smart contract through a transaction. With the re-encryption
key in a failed transaction, the recipient itself still can convert
the previously received ciphertext, and then decrypt it. This
trade protocol also has the private data disclosure issues.

Zero Knowledge Proof. ZKP is a powerful data privacy
protection tool in blockchains, but cannot solve the proposed
data leakages issues, as it cannot control the timing of private
data release. In the scenarios discussed in this paper, the data
should be obtained by the recipient in case of transaction com-
mit for exchange or sharing, and should be kept confidential
when the transaction fails. ZKP cannot achieve conditional
decryption like CORE.

Off-Chain. An off-chain scheme for data privacy protection
may still involves transferring private data on-chain to claim
payment, such as PrivacyGuard [39]. It executes the smart
contract off chain and commits the execution results to the
blockchain through a transaction named CompleteTransaction,
which carries a key K.y PrivacyGuard does not set up a
time lock T like HTLC, thus the owner of data K,..,;: can
intentionally not claim the payment so as to lock the data
buyer’s tokens for indefinite time. If PrivacyGuard adopts the
time lock to address the indefinite data locking issue above,
it has the similar private data leak issue like HTLC, which
can be addressed by our approach.

IX. CONCLUSION

In this paper, we identify and address the private data leak
issues caused by failed transactions in blockchain applications.
We perform a holistic study of private data transfer transac-
tion failures due to faults in both public and permissioned
blockchains. We then design the transaction commit-controlled
release (CORE) protocol based on bilinear pairing cryptogra-
phy and threshold cryptography. A group of n witnesses are

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

introduced to monitor the blockchain network and generate
commit confirmation keys for a committed transaction. A
recipient has to obtain ¢ out of n commit confirmation keys to
recover the private data from the ciphertext transferred in trans-
actions and can only derive the private data when the transfer
transaction does not fail and is committed. In CORE, witnesses
cannot derive the private data. Our extensive analysis and
experiments validate the security and performance of CORE.

ACKNOWLEDGMENT
This research was supported in part by National Key R&D

Program of China (No. 2023YFC3605804), National Natural
Science Foundation of China (Nos. 62072103, 622322004),
Jiangsu Provincial Key R&D Programs (Nos. BE2021729,
BE2022680, BE2022065-5), HK RGC Collaborative Research
Fund (No. C2004-12GF), HK RGC Research Impact Fund
(No. R5034-18), US National Science Foundation Awards
(Nos. 2325451, 1931871, 1915780), and Research Institute for
Artificial Intelligence of Things, The Hong Kong Polytechnic
University. Any opinions, findings, conclusions, and recom-
mendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.
REFERENCES

[1] S. Wadhwa, J. Stoeter, F. Zhang, and K. Nayak, “He-htlc: Revisiting
incentives in htle,” Cryptology ePrint Archive, 2022.
[2] Wiki, “Zero knowledge contingent payment,” 2020. [Online]. Available:
https://en.bitcoin.it'wiki/Zero_Knowledge_Contingent_Payment
[3] Y. Li, C. Ye, Y. Hu, I. Morpheus, Y. Guo, C. Zhang, Y. Zhang,
Z. Sun, Y. Lu, and H. Wang, “Zkcplus: Optimized fair-exchange protocol
supporting practical and flexible data exchange.” in Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, 2021.
S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Comp and Ci ications Security, 2018.
S. Wang, M. Yang, T. Ge, Y. Luo, and X. Fu, “Bbs: A blockchain big-
data sharing system,” in ICC 2022-IEEE International Conference on
Communications. 1EEE, 2022, pp. 1-6.
R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” Journal of Cryp-
tology, vol. 20, pp. 51-83, 2007.
1. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM'03. IEEE Global
Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 3.
IEEE, 2003, pp. 1491-1495.
[8] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” Journal of Cryptology, vol. 15, no. 2, 2002.
[9] V. Madathil, S. A. Thyagarajan, D. Vasilopoulos, L. Fournier, G. Mala-
volta, and P. Moreno-Sanchez, “Cryptographic oracle-based conditional
payments,” in NDSS, 2023.
E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the 13th EuroSys Conference, 2018.
R. Song, S. Gao, Y. Song, and B. Xiao, ‘Zkdet: A traceable and privacy-
preserving data exchange scheme based on non-fungible token and zero-
knowledge.” in 2022 IEEE 42st International Conference on Distributed
Computing Systems (ICDCS). 1EEE, 2022.
F Chen, J. Wang, C. Jiang, T. Xiang, and Y. Yang, “Blockchain based
non-repudiable iot data trading: Simpler, faster, and cheaper.” in I[EEE
Conference on Computer Communications (INFOCOM). 1EEE, 2022.
S. He, Y. Lu, Q. Tang, G. Wang, and C. Q. Wu, “Blockchain-based p2p
content delivery with monetary incentivization and faimess guarantee,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, 2022.
[14] Y. Lu, Q. Tang, and G. Wang, “Zebralancer: Private and anonymous
crowdsourcing system atop open blockchain,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2018.
[15] , “Dragoon: Private decentralized hits made practical,” in IEEE
International Conference on Distributed Computing Systems, 2020.

[4

—

[5]

[6]

71

[10]

(1]

[12]

[13]

332

[16] M. Herlihy, “Atomic cross-chain swaps.” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018.

R. van der Meyden, “On the specification and verification of atomic swap
smart contracts,” in 2019 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, 2019, pp. 176-179.

I-Y. Zie, 1-C. Deneuville, J. Briffaut, and B. Nguyen, “Extending
atomic cross-chain swaps,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2019, pp. 219-229.

S. Wang, M. Yang, Y. Zhang, Y. Luo, T. Ge, X. Fu, and W. Zhao, “On
private data collection of hyperledger fabric,” in IEEE 41st International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2021.
Ethereum, “Ethereum mainnet for enterprise.” 2021, [Online]. (Accessed
13 June 2021). [Online]. Available: https://ethereum.org/en/enterprise/
Y. Lindell, “How to simulate it-a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, pp. 277-346, 2017.

L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor, “On power
splitting games in distributed computation: The case of bitcoin pooled
mining,” in IEEE Computer Security Foundations Symposium, 2015.

Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 195-209.

S. Gao, Z. Li, Z. Peng, and B. Xiao, “Power adjusting and bribery
racing: Novel mining attacks in the bitcoin system.” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 833-850.

M. Saad, A. Anwar, S. Ravi, and D. Mohaisen, “Revisiting nakamoto
consensus in asynchronous networks: A comprehensive analysis of
bitcoin safety and chainquality,” in Proceedings of ACM SIGSAC Con-
ference on Comp and Ci ications Security, 2021.

A. Lewis-Pye and T. Roughgarden, “How does blockchain security
dictate blockchain implementation?” in Proceedings of ACM SIGSAC
Conference on Comp and Ci ications Security, 2021.
Alchemy, “Ethereum transactions - pending, mined, dropped &
replaced,” 2023. [Online]. Available: https://docs.alchemy.com/docs/et
hereum-transactions-pending-mined-dropped-replaced

F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in the
presence of rational miners,” in 2019 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). 1EEE, 2019.

T. Nadahalli, M. Khabbazian, and R. Wattenhofer, “Timelocked brib-
ing,” in International Conference on Financial Cryptography and Data
Security. Springer, 2021, pp. 53-72.

E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 129-144

M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network.” in 2020 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 894-909.
S. Wang, M. Yang, B. Pearson, T. Ge, X. Fu, and W. Zhao, “On se-
curity of proof-of-policy (pop) in the execute-order-validate blockchain
paradigm.” in 2022 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2022, pp. 317-325.

K. Li, J. Chen, X. Liu, Y. R. Tang, X. Wang, and X. Luo, “As strong
as its weakest link: How to break blockchain dapps at rpc service.” in
NDSS, 2021.

S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and its
applications,” in Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, 2013, pp. 467-476.

G. Uberti, K. Luo, O. Cheng, and W. Goh, “Building usable witness
encryption,” arXiv preprint arXiv:2112.04581, 2021.

A.-F. Chan and 1. F Blake, “Scalable, server-passive, user-anonymous
timed release cryptography.” in 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05). IEEE, 2003, pp. 504-513.
D. Nunez, “Umbral: a threshold proxy re-encryption scheme,” NuCypher
Inc and NICS Lab, University of Malaga, Spain, 2018.

P. Zhang, J. Wei, Y. Liu, and H. Liu, “Proxy re-encryption based fair
trade protocol for digital goods transactions via smart contracts,” arXiv
preprint arXiv:2306.01299, 2023,

Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T Hou, “Privacyguard:
Enforcing private data usage control with blockchain and attested off-
chain contract execution,” in The 25th European Symposium on Research
in Computer Security (ESORICS), 2020.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34

[33]

[36]

[37]

[38]

[39]

Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:48:48 UTC from |EEE Xplore. Restrictions apply.

