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Abstract—Third-party RPC services have become the main-
stream way for users to access Ethereum. In this paper,
we present a novel deanonymization attack that can link an
Ethereum address to a real-world identity such as IP address
of a user who accesses Ethereum via a third-party RPC service.
We find that RPC API calls result in distinguishable sizes of
encrypted TCP packets. An attacker can then find when a user
sends a transaction to an RPC provider and immediately send
a beacon transaction after the user transaction. By exploiting
the differences in the distributions of inter-arrival time intervals
of normal transactions and two simultaneously initiated trans-
actions, the attacker can identify the victim transaction in the
Ethereum network. This enables the attacker to correlate the
Ethereum address of the victim transaction’s initiator with the
source IP address of TCP packets from a victim user. We model
the attack through empirical measurements and conduct exten-
sive real-world experiments to validate the effectiveness of our at-
tack. With three optimization strategies, the correlation accuracy
can reach to 98.70% and 96.60% respectively in Ethereum testnet
and mainnet. We are the first to study the deanonymization of
Ethereum users behind third-party RPC services.

Index Terms—Ethereum, Deanonymization, RPC Service

I. INTRODUCTION

The mainstream approach for users to access Ethereum
networks is now through third-party RPC (Remote Procedure
Call) services. For example, Infura is a representative third-
party RPC provider with over 400,000 developers [1]. In 2021,
about 4.8 trillion Ethereum transactions were sent from Infura
[2]. A cryptocurrency wallet application named MetaMask
is developed upon Infura, and has more than 21 million
active users in 2023 [3]. With RPC services, users can run a
lightweight wallet application or a script to initiate transactions
or query blockchain states by sending RPC requests.

Existing deanonymization attacks against blockchains can-
not identify the real-world identity, such as the IP address,
of a user accessing Ethereum via a third-party RPC service.
Blockchain addresses may be clustered to know that a cluster
of blockchain addresses belongs to an individual user [4]–[8].
However, the real-world identity of the user cannot be identi-
fied. The IP address of the origin node that sends a transaction
to the blockchain network may also be identified [9]–[11].
However, such a method cannot be applied to users who use
the same third-party RPC service since the origin node of a
transaction is the server of the RPC provider in this context.

∗ Corresponding author: Prof. Ming Yang of Southeast University, China.

In this paper, we present a novel deanonymization attack
that can determine the IP address of an Ethereum user using a
third-party RPC service. We assume that an attacker can mon-
itor and send network traffic going through a network gateway
such as a router. This assumption is popular in studying various
network attacks [12]–[14]. The attacker also deploys a node
in Ethereum as a probe, which collects the arrival times of
transactions. A victim user connects to the Internet through
the gateway, and accesses Ethereum via a third-party RPC
provider such as Infura. By carefully analysing the varying
semantics of all RPC APIs, we find that the size ranges of TCP
segments from a user can be exploited to pinpoint TCP packets
used to initiate a transaction. Once such a victim transaction
is identified, the attacker initiates its own transaction as a
beacon through the same RPC service. The attacker’s probe
node in Ethereum keeps recording arrival times of transactions
including the beacon transaction. We find that the arrival time
of the beacon transaction can be used to estimate the arrival
time of the victim transaction through statistics of transaction
inter-arrival time intervals. The insight is that the inter-arrival
time interval of the victim transaction and beacon transaction
is statistically different from the distribution of a pair of normal
transactions in the Ethereum network.

Our major contributions can be summarized as follows. (i)
We are the first to study the deanonymization of Ethereum
users who use third-party RPC services. (ii) We model the
attack theoretically to capture factors that affect the attack.
(iii) Real-world experiments are conducted in both Ethereum
testnet Goerli and mainnet to validate our theoretical results
and the attack effectiveness in practice. By observing one
transaction from a victim IP, the attacker can achieve an
accuracy of 95.40% in testnet and 90.00% in mainnet.
With multiple transactions from a victim IP, it can further
employ multiple confirmations. The accuracy can reach
98.70% in testnet and 96.60% in mainnet via averaging two
confirmations. (iv) Our attack is of low cost as it only requires
transaction fees for initiating beacon transactions. There is
no charge in testnet. If a user is active in both mainnet and
testnest, she/he can be identified in testnest with no fees.

Ethical Considerations. We collect only transaction arrival
times on the Ethereum testnet and mainnet and examine their
statistical features without interfering with the normal oper-
ation of these networks or exposing the real-world identities
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of their users. The attack experiments were conducted against
transactions initiated by us, revealing our own IP addresses.

II. BACKGROUND

This section introduces Ethereum address and transaction,
RPC services, and transaction propagation mechanisms.

A. Ethereum Address and Transaction
Each Ethereum user and smart contract is uniquely identi-

fied by a 42-character address. The address performs as the
identity of a user or a smart contract in the Ethereum network,
and is used as the source address or destination address to
create or receive a transaction. Such an address is derived
from the hash of a public key, which is not linked to any real-
world identity. With the pseudonymity mechanism, Ethereum
enables users to conceal their real-world identities, providing
a degree of anonymity and privacy protection.

An Ethereum transaction contains several fields. Each trans-
action is initiated and signed by a user with an Ethereum
address, and the From field indicates the Ethereum address
of its initiator user. Field To is the address of the transaction
recipient which can be a user or a smart contract. In a smart
contract deployment transaction, field To is null. Value field
contains the amount of native tokens to be transferred in
this transaction. Data field is optional and can be arbitrary
data. If a transaction is used to deploy or invoke a smart
contract, Data will carry the smart contract code or the name
and parameters of a function to be invoked. If a transaction
only transfers tokens, Data field can be null. Field GasLimit
specifies the gas amount that is allowed to be consumed by the
transaction. The gas price for a transaction is defined by the
transaction initiator through the field maxPriorityFeePerGas,
which specifies the fee that the initiator is willing to pay
for executing the transaction. A transaction only reveals the
Ethereum address of its initiator, not its real-world identity.

B. Ethereum RPC Service
Ethereum nodes support RPC protocol, through which users

can conveniently interact with the Ethereum network by send-
ing RPC requests and receiving RPC response. As shown in
Fig. 1, a user can interact with a third-party RPC provider
by running a lightweight wallet application like MetaMask
or a Web3 script on their low-end personal devices. An RPC
provider maintains its own full nodes in Ethereum, and opens
RPC APIs to its users. To send a transaction, a user can
propose an RPC request to invoke an API named sendRaw-
Transaction. This request contains a raw transaction which is
signed by the user. Then the RPC provider can convert the
request into a well-formatted transaction, and propagate the
transaction to Ethereum. An RPC provider also synchronizes
blocks and transactions in Ethereum, and provides APIs such
as getBalance for users to query the blockchain states.

C. Transaction Propagation
In the Ethereum P2P network, a transaction propagates from

an origin node to other nodes. The origin node either creates
the transaction or receives the transaction from an off-chain
source. In the third-party RPC service scenario, a node of
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Fig. 1. Third-Party RPC Service in Ethereum

the RPC provider acts as the origin node. Initially, the origin
node propagates the transaction to its neighbor nodes. Upon
receiving a transaction, a node validates the transaction, stores
the transaction in its transaction pool if the transaction settings
such as gas price meet its self-defined standards, and relays
pooled transactions to its neighbors. Please note that, a node
will not relay a transaction to its neighbors who already know
this transaction, such as a neighbor who previously sends this
transaction to the node. Finally, a valid transaction should
appear in the transaction pool of each node.

A transaction with low gas price may experience abnormal
propagation. Each node has a size limit on its transaction pool,
and prioritizes transactions with high gas price. A node may
drop a transaction if its gas price does not meet the node’s
standards. Additionally, a miner node may not prioritize
picking up a pooled transaction with low gas price to wrap a
new block. Transactions that remain pending in a pool for a
period may eventually be dropped. Determining an appropriate
gas price is challenging because it fluctuates with the level
of blockchain network congestion and the number of active
users. A common way for a user to get an appropriate gas
price is to query a suggested gas price from an RPC service.

III. ATTACK OVERVIEW

In this section, we introduce the system model and threat
model, analyze attack goals and challenges, and present the
basic idea and insights of the proposed attack.

A. System Model and Threat Model
As shown in Fig. 2, a group of users use their personal de-

vices to connect to the Internet through a gateway, and access
Ethereum via a third-party RPC service. When a user sends
an RPC request, the corresponding network data flows through
the gateway. The RPC protocol operates over the application-
layer protocol HTTPS, which runs on top of the transport-
layer TCP protocol and adopts TLS protocol to encrypt the
transmitted data between the user and the RPC provider.

We assume that an attacker can monitor the network traffic
going through the gateway, as well as can send network data
through this gateway. This is a normal assumption in network
attacks [12]–[14]. The attacker may be the owner of the
gateway, an internet service provider (ISP), or a regulatory
authority. The attacker also deploys a node in the public
Ethereum as a probe, which receives propagated transactions
and collects their arrival time. A user who interacts with an
RPC provider through the gateway is a victim. We refer to a
transaction initiated by the victim user as a victim transaction,
which is transmitted in victim TCP packets that are encrypted
by TLS protocol. We assume an RPC provider is trustworthy.
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Fig. 2. System Model and Threat Model

B. Attack Goals and Challenges
With the network data collected from the gateway and the

transaction data collected from the probe node, an attacker
aims to correlate a victim user’s Ethereum address with the IP
address of the user’s personal device, which can be considered
as a real-world identity of the user [15]. The attacker mainly
faces two challenges as follows.

Encrypted TCP Packets. The TCP packets that may carry
a raw transaction between a victim user and an RPC provider
are encrypted by the TLS protocol. Although an attacker can
obtain the source IP address of TCP packets, which may come
from a victim user, it is challenging for the attacker to identify
TCP packets that pertain to sending a transaction to an RPC
provider, or to obtain the raw transaction and its initiator’s
Ethereum address from the TCP packets.

Enormous Normal Transactions. A significant number of
users are active in Ethereum network and initiate transactions.
It is challenging to pinpoint the transaction initiated by a
victim user from the vast number of daily transactions flowing
in the entire Ethereum network. Existing work [9]–[11] can
infer the IP address of the origin node of a transaction.
However, in the third-party RPC service context, the origin
node belongs to an RPC provider, and existing methods cannot
correlate the victim user’s IP address with a transaction.

C. Basic Idea and Insights
We propose a novel deanonymization attack method that

overcomes the aforementioned two challenges as follows.
Victim TCP Packets Identification (§IV). An attacker

exploits TCP packets to identify when a victim user with
a certain IP address is sending a victim transaction to an
RPC provider. The attack first exploits the TLS handshake
mechanism to identify TCP packets that are directed towards
a certain RPC provider, where the domain name of the RPC
provider serves as a strong identifier. A provider may offer
dozens of RPC APIs. Then the TCP segment sizes are used to
pinpoint TCP packets for calling an RPC API named sendRaw-
Transaction, which is used to initiate a transaction. The insight
behind this approach is that the semantics of sendRawTrans-
action is distinguishable from other RPC APIs, whose request
contains a relatively large raw transaction while the response
only contains a transaction hash with a fixed and small size.

Victim Transaction Identification (§V). Once the attacker
observes the victim TCP packets, it immediately initiates a
transaction as a beacon by sending a request to the same
RPC provider as the victim user. The attacker’s probe
node keeps recording the arrival time of each transaction

including the beacon transaction. Using the arrival time of the
beacon transaction, the attacker infers the arrival time of the
victim transaction since the attacker knows when the victim
transaction is sent out through the gateway. The attacker then
finds out the victim transactions from the daily transactions
on Ethereum using statistical features of inter-arrival time
intervals. The insight behind this method is that the inter-
arrival time interval distribution of two simultaneously
initiated transactions is different from the distribution of daily
transactions in the entire Ethereum network.

Using the information obtained through the above two
steps, the attacker can correlate the source IP address of the
identified TCP packets, i.e., IP address of a victim user, with
the Ethereum address of the victim transaction’s initiator.

IV. VICTIM TCP PACKETS IDENTIFICATION

In this section, we illustrate how to accurately identify TCP
packets for sending a transaction to a third-party RPC provider.

A. Identifying TCP Packets Related to RPC Services
We exploit the TLS handshake mechanism to identify TCP

packets related to a third-party RPC service. The RPC protocol
runs over TCP protocol and adopts TLS protocol to secure the
transmitted data. Once a TCP connection, identified by 4-tuple
(source IP, source port, destination IP, destination port), is
established, the TLS handshake is initiated to negotiate cipher
suites. At the beginning of the TLS handshake, the user/client
sends a Client Hello message to the destination server, i.e.,
RPC provider, which includes a field Sever Name that indi-
cates the domain name of the RPC provider. We collect the
domain names of representative RPC providers such as Infura,
Alchemy and OnFinality, and use them as strong identifiers to
identify the TCP packets related to a third-party RPC service
and the RPC provider that a victim user registers with.

B. Identifying TCP Packets for Sending Transactions
RPC providers mainly support 44 types of RPC APIs in

total [16], and we need to pinpoint TCP packets for calling
sendRawTransaction API which is used to initiate a transac-
tion, while other APIs are mainly used to query the blockchain
state and do not generate a transaction.

We analyse features of TCP segment sizes that correspond to
different RPC APIs. A TCP segment in TCP packets contains
the ciphertext of an RPC request/response and some TLS
cipher characters of a fixed size. Considering the application-
layer protocols HTTP/1 and HTTP/2, an RPC request/response
contains a JSON object and a HTTP header. A JSON object
in an RPC request or response contains the parameters or
returned results of an RPC API, and its size varies upon the
API semantics. Please note that, application-layer protocols are
distinguishable per their communication patterns [17], and we
do not consider the uncommon WebSocket protocol in RPC.

JSON Object. For each of the 44 RPC APIs, we carefully
analyze its semantics and calculate the size range of its
request and response JSON object respectively. Take the
sendRawTransaction API as an example. Its request JSON
contains four key-value pairs. The values of keys jsonrpc and
method are fixed. The value of key id is a random number,
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Fig. 3. Area Range of Request/Response JSON Object Size for 44 RPC APIs.

whose size ranges from 1 to 20 bytes. The value of key params
is a raw transaction. The smallest raw transaction should be

a contract deployment transaction whose both To field and

Data field are set to null. In theory, the block gas limit is

the most gas that a single transaction can consume, which

indirectly limits the transaction size. We estimate the largest

size of a raw transaction according to the block gas limit of

30.00 million gas on July 1st, 2023. The response JSON of

sendRawTransaction also includes key-value pairs with keys

jsonrpc and id, as well as a key-value pair with the key result.
The value of result is the hash of the initiated transaction,

whose size is fixed at 66 bytes. Upon the above analysis,

we derive that the size of sendRawTransaction request JSON

ranges from 239 to about 14.99 million bytes, while the size

of its response JSON ranges from 102 to 121 bytes.

Fig. 3 shows the area range of sizes of request and response

JSON objects for each of the 44 RPC APIs, and the area range

of sendRawTransaction in red does not overlap with any other

APIs. The blue area represents API feeHistory [16], which may

have the same response JSON size as sendRawTransaction.

However, with the same response JSON size, the request JSON

size of feeHistory is smaller than that of sendRawTransaction,

since sendRawTransaction accepts a relatively large raw trans-

action as input and returns a transaction hash with fixed 66

bytes. The yellow area represents newFilter API, which returns

a filter ID with a fixed size. Its response JSON size ranges from

82 to 101 bytes, making its area to be just at the left of the

area of sendRawTransaction, with a gap of only 1 byte.

HTTP Header. The fields in a HTTP header may vary

per different settings, but will not lead to area range overlap

between newFilter and sendRawTransaction in most cases.

The size of a HTTP header may vary due to a varied length
field indicating the length of the JSON object, a date field

whose size may vary due to the HPACK header compression,

and some other fields per application settings such as fields

for method name, trace ID and so on. We carefully analyse

the HTTP settings of three representative RPC providers

including Infura, Alchemy, and OnFinality, and calculate the

size ranges of their HTTP header. As summarized in Table I,

sendRawTransaction and newFilter can keep distinguishable

upon the RPC request and RPC response TCP segment sizes

in most cases. Only in the Infura with HTTP/2 case, the

response TCP segment size of newFilter overlaps with that

of sendRawTransaction by 2 bytes.

Identification Rules based on TCP Segment Size.

We use the request/response TCP segment size range of

sendRawTransaction as rules to identify its related TCP

packets according to Table I. Specially, in the case of Infura
with HTTP/2, the response TCP segment size of 250 or

251 bytes may correspond to both sendRawTransaction and

newFilter due to their overlap, potentially leading to false

positives. To avoid false positives, we define the identification

rule in this case as: (i) the response TCP segment size ranges
from 252 to 271 bytes, and (ii) the request TCP segment
size is equal to or larger than 391 bytes. This will result in

a false negative rate of about 9.10%, while maintaining a true

positive rate of 100%. In other cases, the false negative rate is

0, and the true positive rate is 100% as summarized in Table I.

V. VICTIM TRANSACTION IDENTIFICATION

In this section, we demonstrate how to utilize inter-arrival

time intervals of transactions to find out the victim transaction,

which is generated through the identified victim TCP packets.

A. Inter-Arrival Time Interval of Transactions
An attacker deploys a node in Ethereum as a probe, and

collects arrival time of each received transaction. As analysed

in Sec. II-C, a node will not relay a transaction to its neighbors

who have known this transaction. Therefore, we customize the

probe node to only receive transactions, but not relay the re-

ceived transactions to its neighbors. In this way, each neighbor

should relay a transaction to the probe node, if the transaction

gas price satisfies standards of these nodes. Assume the probe

node has n neighbors. For each transaction Txi, the probe

node records the arrival time tij when it receives Txi from j-

th neighbor, and obtains an arrival time vector 〈ti1, ti2, ..., tin〉.
In practice, the dimension of arrival time vectors for a pair

of transactions may differ, as they may be relayed to the probe

by different neighbors for two reasons. First, different nodes

may set different standards on the gas price, and a low gas

price may discourage most neighbor nodes from relaying a

transaction. Second, neighbor nodes may vary as they may

unpredictably disconnect from the probe node. To calculate the

inter-arrival time interval of two transactions, we only consider

a common vector for each transaction by taking the arrival

time corresponding to common neighbors who relay both

transactions. For example, assume the arrival time vector of

Tx1 is 〈t11, t12, t13, t15〉, and that of Tx2 is 〈t21, t22, t23, t26〉.
Then we create a 3-dimensional common vector for each

transaction, i.e., 〈t11, t12, t13〉 and 〈t21, t22, t23〉, respectively.

We use the common vector of m dimensions to calculate

the interval of two transactions such as Txi and Txj . We

first calculate the interval in each dimension and get 〈ti1 −
tj1, ti2 − tj2, ..., tim − tjm〉. Then we calculate the mean of

these m intervals, which is considered as the interval Iij of

transactions Txi and Txj as follows,

Iij =

∑m
k=1 |tik − tjk|

m
. (1)
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TABLE I
TCP segment size range per different RPC providers

RPC

Provider
Protocol Type API

HTTP Header
JSON

TLS

Cipher
Overall

False

Negativelength date others Overall

Infura

HTTP/1

request
sendRawTransaction 21-26 0 147 168-173 ≥ 239 29 ≥ 436

0
newFilter ≥ 20 0 147 ≥ 167 ≥ 70 29 ≥ 266

response
sendRawTransaction 21 37 112 170 102-121 29 301-320
newFilter 20-21 37 112 169-170 82-101 29 280-300

HTTP/2

request
sendRawTransaction 6-11 0 88-92 94-103 ≥ 239 58 ≥ 391

9.10%
newFilter ≥ 5 0 88-92 ≥ 93 ≥ 70 58 ≥ 221

response
sendRawTransaction 5 23-25 62 90-92 102-121 58 250-271
newFilter 4-5 23-25 62 89-92 82-101 58 229-251

Alchemy

HTTP/1

request
sendRawTransaction 21-26 0 156 177-182 ≥ 239 22 ≥ 438

0
newFilter ≥ 20 0 156 ≥ 176 ≥ 70 22 ≥ 268

response
sendRawTransaction 21 37 687 745 102-121 22 869-888
newFilter 20-21 37 687 744-745 70-89 22 836-856

HTTP/2

request
sendRawTransaction 6-11 0 93-105 99-116 ≥ 239 44 ≥ 382

0
newFilter ≥ 5 0 93-105 ≥ 98 ≥ 70 44 ≥ 212

response
sendRawTransaction 5 23-25 117-124 145-154 102-121 44 291-319
newFilter 4-5 23-25 117-124 144-154 70-89 44 258-287

OnFinality

HTTP/1

request
sendRawTransaction 21-26 0 123 144-149 ≥ 239 22 ≥ 405

0
newFilter ≥ 20 0 123 ≥143 ≥ 70 22 ≥ 235

response
sendRawTransaction 21 37 215 273 102-121 22 397-416
newFilter 20-21 37 215 272-273 70-89 22 364-384

HTTP/2

request
sendRawTransaction 6-11 0 72 78-83 ≥ 239 44 ≥ 361

0
newFilter ≥ 5 0 72 ≥ 77 ≥ 70 44 ≥ 191

response
sendRawTransaction 5 23-25 141-145 169-175 102-121 44 315-340
newFilter 4-5 23-25 141-145 168-175 70-89 44 282-308

B. Basic Attack Method
When an attacker identifies TCP packets for sending a

victim transaction Txv as introduced in Sec. IV, the attacker
immediately initiates a beacon transaction Txb to the same
RPC provider. To avoid considering abnormal propagation
caused by low gas price, the attacker initiates a beacon
transaction with suggested gas price, and only considers
transactions whose common vector has a dimension of no
less than D when comparing it to the beacon transaction.

Assume the time of observing victim transaction is tv , and
the time of initiating beacon transaction is tb. The delta is
△ = tb−tv . The probe node obtains the arrival time vector of
beacon transaction as ⟨tb1, tb2, ..., tbm⟩. Intuitively, Ethereum
P2P network maintains a stable topology within a small time
window, and transactions from the same RPC provider are
likely to propagate through the same paths in the P2P network.
Therefore, if the beacon transaction is sent at the same time as
observing Txv , i.e., at tv , its arrival time vector may be ⟨tb1−
△, tb2−△, ..., tbm−△⟩, which represents a beacon transaction
Tx

′

b simultaneously initiated with the victim transaction Txv .
Intuitively, two transactions initiated simultaneously by the

same RPC provider should have a small inter-arrival time
interval. Therefore, we consider a transaction as a potential
victim transaction if its interval to transaction Tx

′

b is within a

time window T . There may be several potential victim trans-
actions that form a transaction set Spot. Assume the number
of transactions in set Spot is n. There are only three possible
cases per the relationship between Txv and Spot , as follows.

Case 1: Txv ̸∈ Spot. The victim transaction is not in the
potential transaction set, which indicates a false identification.

Case 2: Txv ∈ Spot and n = 1. The victim transaction is
uniquely identified, indicating an accurate identification.

Case 3: Txv ∈ Spot and n > 1. The victim transaction
is included in the potential transaction set Spot, but other
transactions also appear in Spot. In this case, the victim
transaction cannot be uniquely and accurately identified, we
consider it a case of non-unique identification.

The probability of each of the three cases may be influenced
by two main factors. (i) The number of transactions from other
users and nodes that arrive at the probe node with an interval
to Tx

′

b within T . (ii) Whether two simultaneously initiated
transactions by an RPC provider will arrive at the probe node
with an interval within T .

C. Modeling
We formalize the probability of the three cases by modeling

the transaction inter-arrival time interval distribution.
We first model the inter-arrival time interval of daily

transactions in the entire Ethereum network. We use Poisson

5
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distribution to model the probability of a given number k of
transactions arriving at the probe node in a fixed interval of
time t as follows,

P (t, k) =
(λtδ )

k e−(λt
δ )

k!
, (2)

where λ is the average number of transactions that arrive at
the probe node within a time unit δ. Following the Poisson
distribution, the distribution of transaction inter-arrival time
interval t should be a exponential distribution as follows,

Pinter(t) = e−(λt
δ ). (3)

We further use a normal distribution to model the inter-
arrival time interval, i.e., Isim, of two simultaneously initiated
transactions through the same RPC provider, i.e., Isim ∼
N(µ, ρ2). The probability of two simultaneous transactions
having an interval of t is as follows,

F (t) =
1

ρ
√
2π

e−
1
2 (

t−µ
ρ )2 , (4)

where µ is the expectation of the interval Isim and ρ is the
standard deviation. The cumulative probability of Isim ≤ t is,

Φ(t) =

∫ t

−∞
F (t)dt. (5)

Ideally, two simultaneously initiated transactions should arrive
at the probe node at the same time and the interval is 0.
Therefore, we set the expectation of interval Isim as µ = 0.

Considering the interval should be an absolute value of the
delta between two arrival time common vectors as shown in
Equation (1), we model the absolute interval I

′

sim on top
of the normal distribution N(µ, ρ2). The probability of two
simultaneous transactions having an absolute interval of t is
as follows,

F
′
(t) = 2 ∗ F (t), t ≥ 0. (6)

The cumulative probability of I
′

sim ≤ t is as follows,

Φ
′
(t) = Φ(t)− Φ(−t), t ≥ 0. (7)

With the Poisson distribution model and the normal distri-
bution model, we formalize the probability of Case 1—false
identification, Case 2—accurate identification and Case 3—
non-unique identification, as follows.

Case 1: Txv ̸∈ Spot. This case means that the interval
between Txv and Tx

′

b is larger than the time window T .
According to Equation (7), the false identification rate is,

P (Txv ̸∈ Spot) = 1− Φ
′
(T ). (8)

Case 2: Txv ∈ Spot and n = 1. This case means that Txv

arrives at the probe node with an interval to Tx
′

b within T ,
and there is no other transaction arrives at the probe node.
According to Equation (2) and (7), the accuracy rate is,

P (Txv ∈ Spot, n = 1) = Φ
′
(T ) ∗ P (T, 0). (9)

Case 3: Txv ∈ Spot and n > 1. This case means that Txv

arrives at the probe node with an interval to Tx
′

b within T ,
but other transactions also arrive at the probe node. According
to Equation (2) and (7), the non-unique identification rate is,

P (Txv ∈ Spot, n > 1) = Φ
′
(T ) ∗ P (T, k ≥ 1), (10)

where P (T, k ≥ 1) = 1− P (T, 0).

D. Optimization Strategies
In Case 3—non-unique identification, the victim transaction

Txv is already in the potential transaction set Spot, which also
includes other transactions. Assume the potential transaction
set Spot contains m transactions {Txpot

1 , Txpot
2 , ..., Txpot

m },
and Txpot

1 is the victim transaction. We design three strategies
to further eliminate other transactions, so as to uniquely
identify the victim transaction and improve the accuracy.

Smallest Interval. Assume an attacker observes only one
transaction from a certain IP address. The attacker calculates
the interval of Txpot

i , i = 1, 2, ...,m to transaction Tx
′

b, and
chooses the transaction with the smallest interval as the final
identification result.

Multiple Confirmations. Assume an attacker observes
multiple transactions from a certain IP address. Each time the
attacker gets a potential transaction set Spot, it also gets a set
of Ethereum address of initiators of these transactions. The
attacker counts the frequency of each address and selects the
most frequent ones. When only one Ethereum address is the
most frequent address, it is considered as the final result.

Raw Transaction Size. Raw transaction size can be ex-
ploited to eliminate false transactions from the set Spot. In the
RPC request TCP segment of sendRawTransaction, the JSON
object only contains a raw transaction. According to Table I,
an attacker can estimate the size range of the raw transaction
based on the TCP segment size. When a probe node receives
a transaction, it can obtain the raw transaction size of each
transaction. If the raw transaction size of a potential transaction
is out of the estimated size range, the attacker drops it from
Spot. This strategy may not find out a unique result, but can be
combined with the other two strategies to improve accuracy.

VI. EMPIRICAL MEASUREMENTS

In this section, we empirically measure and validate the
formalization models of our attack in both Ethereum testnet
and mainnet. Then we derive the theoretical attack results.

A. Data Collection and Preprocessing
We deploy a probe node that maintains 25 connections to

other nodes in both Ethereum mainnet and testnet Goerli,
and collects a total of 9, 434, 025 transactions in mainnet and
5, 272, 540 transactions in testnet from July 1 to July 7, 2023.
We observe that a neighbor may relay a transaction much later,
such as several seconds later, than other neighbors, which is
abnormal since a transaction normally is broadcast to the entire
network within 300 ms [18]. To eliminate abnormal propaga-
tion time, we discard any time in a transaction arrival time
vector that deviates from other times by more than 300 ms.

We count the dimensions of common vectors for each pair
of adjacent transactions respectively in testnet and mainnet.
As shown in Fig. 5, in the mainnet, the common vectors of
most pairs of transactions have either about 1 dimension or
about 13 dimensions. Upon a detailed analysis of transactions
with low-dimensional common vectors, we find that the
underlying cause was a low gas price. As shown in Fig. 4,
in the testnet, only a few pairs of transactions have low-
dimensional common vectors. This is reasonable since the gas
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Fig. 4. Dimension Number of Com-
mon Vectors in Testnet
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Fig. 5. Dimension Number of Com-
mon Vectors in Mainnet

� 
� ��� �
� ��� �
� 	��
��!�������#����������!��#����� �

����

���


��
�

���


����

��
��

��
���!
$

����

���


��
�

���


����


"�

"�
�!
�#
��
��

��
��

���!
$

��������������
��
��!!�������
��

Fig. 6. Inter-arrival Time Interval of
Normal Transactions in Testnet
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Fig. 7. Inter-arrival Time Interval of
Normal Transactions in Mainnet

price required by the testnet is lower than that by the mainnet,
and most transactions can be normally relayed. To avoid
considering transactions with abnormal propagation caused
by low gas prices, and to model the testnet and mainnet
in the same way, we only consider transaction pairs whose
common vector dimensions are no less than 8, i.e., D ≥ 8.

B. Model Measurement and Validation
Using the preprocessed data, we first empirically measure

and validate the Poisson distribution model for arrival time
of daily transactions. Fig. 6 and Fig. 7 respectively show the
transaction inter-arrival time interval distribution in testnet
and mainnet. When we consider common vectors with 8 or
more dimensions, 4, 409, 370 transactions remain in testnet,
and 4, 880, 577 transactions remain in mainnet, since about
48.11% mainnet transactions incur low-dimensional common
vectors. When we set the time unit as δ = 25 ms, the
average number of arriving transactions is λ = 0.17 in
testnet and λ = 0.20 in mainnet. We compare the fitted
Poisson distribution model in Equation (3) with the empirical
measurements. As shown in Fig. 6 and Fig. 7, it can be
observed that the fitted inter-arrival time interval distribution
is similar to the empirical results with minor bias. Considering
the Ethereum network is usually more active at GMT day time
than at GMT night time, but Poisson distribution models the
arrival time with a fixed average rate, we argue that the bias
is reasonable. We also do p-value testing on the fitted Poisson
distribution P (t, k) with different t, such as Fig. 10 shows
the case when t = 100 ms, and it can pass the p-value testing.

We also empirically measure the inter-arrival time interval
of two simultaneously initiated transactions through the same
RPC provider. We initiate 1000 pairs of transactions through
Infura in the testnet. As shown in Fig. 8, most pairs of
transactions have an interval within 25 ms. We calculate
that the mean of Isim is about −1.52 which is close to the
expectation µ = 0, and its standard deviation is about 38.39.
We set ρ = 38.39 in testnet. The red lines in Fig. 8 represent
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Fig. 8. Inter-arrival Time Interval of
Two Simultaneously Initiated Trans-
actions in Testnet

� 	� ��� �	� ��� �	� ���
����������!�������������!�������

����

���	

��	�

��
	

����

��
��
��
����
"

����

���	

��	�

��
	

����

�
 �

 �
��
�!
��
��
��
��
����
"


��������
������

Fig. 9. Inter-arrival Time Interval of
Two Simultaneously Initiated Trans-
actions in Mainnet
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Fig. 10. Poisson Distribution When
t = 100 ms in Mainnet
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Fig. 11. Theoretical Results of Victim
Transaction Identification in Testnet

Equations (6) and (7). It shows that the fitted model in red
lines is close to the empirical measurements in blue. We also
initiate 30 pairs of transactions in the mainnet, and get the
empirical mean is about −5.26 and the standard deviation is
ρ = 68.23. As shown in Fig. 9, the fitted model is close to the
empirical measurements with minor bias, which is reasonable
since the data samples in mainnet are limited.

C. Theoretical Results
Overall, the inter-arrival time intervals of daily transactions

across the entire Ethereum network follow a Poisson distri-
bution P (t, k) with λ = 0.17 in testnet and λ = 0.20 in
mainnet when δ = 25 ms. The inter-arrival time intervals
of two simultaneously initiated transactions follow a normal
distribution with µ = 0 and ρ = 38.39 in testnet and ρ = 68.23
in mainnet. According to Fig. 6-9, it can be observed that two
transactions simultaneously initiated through the same RPC
provider have a higher probability to have a small interval
than normal transactions across the entire Ethereum network.

Based on Equations (8)-(10), we theoretically calculate the
probability of Case 1—false identification, Case 2—accurate
identification and Case 3—non-unique identification per dif-
ferent time window T . As shown in Fig. 11, the accuracy rate
(Case 2) in testnet can reach about 58.14% with a time window
of 50 ms. Similarly, the theoretical accuracy in mainnet is
43.87%. Using a larger time window can have lower false
identification rate (Case 1), but also lead to lower accuracy
rate (Case 2) and higher non-unique identification rate (Case
3). This also demonstrates the need of the three optimization
strategies in Sec. V-D.

VII. EVALUATION

In this section, we present the real-world deanonymization
attack results in both Ethereum testnet and mainnet.

A. Setup
We use a Vultr cloud sever with Ubuntu 22.04 as the probe

node. It runs DevP2P [19] to build 25 connections to other
nodes and receive transactions. We modify the source codes

7
1707Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:28:15 UTC from IEEE Xplore.  Restrictions apply. 



of Ethereum Wire Protocol module in DevP2P to enable the
probe node to only receive transactions but not relay them.

We set up a Cisco 2960 network switch as the gateway. A
victim user interacts with an RPC provider through this switch,
and runs Web3.py library and uses HTTPS protocol to initiate
transactions. An attacker uses a computer with Windows
11 and 16 GB memory, which connects to Internet through
the same switch. The attacker’s computer also connects to
a dedicated port of the switch for port mirroring, through
which the attacker’s computer can capture copies of network
data going through this switch. The attacker runs pyshark
library to collect TCP packets going through the switch, uses
Python to implement victim TCP packets identification rules
in Sec. IV-B, and uses web3.py library to initiate a normal
Ether transfer transaction as a beacon transaction.

B. Deanonymization Results in Testnet
The victim user initiates 1000 transactions in total to Goerli

through Infura. The average time it takes for an attacker to
identify victim TCP packets is about 889.16 ms.

We first evaluate the deanonymization results when the
attacker uses the basic attack method in Sec. V-B, in terms of
false identification rate (Case 1), accurate identification rate
(Case 2) and non-unique identification rate (Case 3). As shown
in Fig. 12, the real-world evaluation results are similar with our
theoretical results in Sec. VI-C, which validates our models.
The largest accuracy rate (Case 2) in practice is about 39.80%.

We further evaluate the effectiveness of the optimization
strategies discussed in Sec. V-D, aimed at increasing the
accuracy. As shown in Fig. 13, utilizing Smallest Interval and
Raw Transaction Size can considerably improve the accuracy.
Particularly, with a time window larger than 200 ms, the
accuracy exceeds 92.80%, and can reach up to 95.40%.

Regarding the strategy of Multiple Confirmations, we
calculate the average number of victim transactions it requires
to filter out the unique result and the corresponding accuracy.
As shown in Fig. 14, an accuracy of about 98.70% can be
achieved with observing about only 2 victim transactions
from a certain IP address.

C. Deanonymization Results in Mainnet

The victim user initiates 30 transactions to the mainnet
through Infura, and the attacker accordingly initiates 30 bea-
con transactions.

As shown in Fig. 15, the practical results of the three cases
in Sec. V-C have similar trend with the theoretical results
with some degree of bias. Considering we only do 30 times
measurements and attacks in the mainnet, the bias between
the theoretical results and practical results is reasonable. The
largest accuracy rate (Case 2) in practice is about 20.00%.

We further evaluate the optimized accuracy. By using the
Smallest Interval and Raw Transaction Size, with a time
window larger than 200 ms, the accuracy can exceed 86.67%,
and can reach up to 90.00% as shown in Fig. 16.

As shown in Fig. 17, by only using the multiple
confirmations strategy, the accuracy can reach about 79.31%.
We carefully analyse the inaccurate cases, and find that most of

them are caused by a highly active account, which frequently
sends transactions. By further combining with the raw trans-
action size feature to filter false transactions, the accuracy can
reach about 96.60% with about only 2 times of confirmations.

D. Deanonymization Results against Different RPC Providers
We compare the deanonymization results across different

RPC providers when the time window is 200 ms and the
smallest interval and raw transaction size strategies are
adopted in testnet. The accuracy is 92.80%, 92.70%, 85.10%
respectively in Infura, Alchemy and OnFinality, demonstrating
that our attack is effective against different RPC providers.

E. Attack Cost Discussion
Our attack is of low cost, as it only requires transaction fees

for initiating one beacon transaction per attack. The beacon
transaction can be an Ether transfer transaction, whose fee is
usually within 2 dollars. In the case of multiple confirmations,
two times of attacks are sufficient to achieve high accuracy.

In addition, we also can exploit the deanonymization results
in testnet to obtain real-world identities of users in mainnet,
considering there is no charge in testnet. The insight is that
a user may use the same Ethereum address to access both
the testnet and mainnet. We analyse 5675 blocks in Goerli
within a 24-hour period on July 1st, 2023. 113,869 Ethereum
addresses appear in these Goerli blocks, and 43542 addresses
out of them (about 38.24%) also active in the mainnet. These
43542 addresses hold about 2155.03 Ether balance and involve
about 3,270,950 transactions in mainnet.

VIII. DISCUSSION

We discuss two potential countermeasures that can defend
against the proposed deanonymization attack. First, a user can
access the third-party RPC service through a virtual private
network (VPN) to hide their real IP address and improve
their anonymity. Second, the Ethereum RPC protocol should
be modified to add padding bytes to request and response
JSON objects to ensure they are of the same size. This would
make it difficult for attackers to identify victim TCP packets
for sending transactions through a third-party RPC service.

IX. RELATED WORK

In this section, we review existing work on blockchain
deanonymization attacks, and attacks exploiting RPC services.

A. Clustering Blockchain Addresses
Some work clusters blockchain addresses belonging to the

same user, but does not identify the real-world identity of
the user. In Bitcoin, the UTXO account model [4] and the
interaction pattern between layer 1 an layer 2 [20] can be
used to cluster addresses. In Ethereum, features of smart
contracts can be used to cluster addresses that belong to
the same developer [6], [8]. Node embedding techniques can
profile users based on their activity, transaction fees, and graph
features [7]. In contrast, our method can uniquely determine
the real-world identity of an Ethereum user.
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Fig. 12. Identification Results in Goerli Using
Time Window T. “C.” represents “Case”
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Fig. 13. Optimized Identification Results in Goerli
Considering Smallest Interval and Transaction Size
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Fig. 14. Optimized Identification Results in Goerli
Considering Multiple Confirmations
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Fig. 15. Identification Results in Mainnet Using
Time Window T. “C.” represents “Case”

� 	� ��� �	� ��� �	� ���
������������������

����

���	

��	�

��
	

����

��
��

��
�!

�

��
�

��������
������������ ���"�

Fig. 16. Optimized Results in Mainnet Consider-
ing Smallest Interval and Transaction Size
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Fig. 17. Optimized Identification Results in Main-
net Considering Multiple Confirmations

B. Identifying Transaction Origin Node

Some work attempts to identify the IP address of an origin
node that first propagates a transaction to the blockchain
network. Biryukov, et al [9], [10] deploys a super node to
connect to a large amount of nodes, so as to receive transaction
from almost all blockchain nodes. The node which first sends
a transaction to the super node is inferred as the origin node.
Gao, et al [11] exploit the transaction propagation sequence to
train a machine learning model and identify the origin node
of a transaction. It also require a super node. These methods
are not suitable for deanonymization in the third-party RPC
service scenario. They only can correlate an Ethereum address
with the IP address of a node that belongs to the RPC provider,
not the IP address of a victim user. In contrast, our attack
can link a victim user’s IP address to an Ethereum address,
and requires only one probe node in Ethereum and a few
connections to other nodes (25 connections in our experiment).

C. Identifying Real-World Identities of Blockchain Users

A few existing work tries to correlate a user’s blockchain
address to a real-world identity such as an IP address.
Biryukov, et al [15], [21] identify the IP address of a Bitcoin
lightweight client/user using fixed entry nodes. However, this
method cannot work in Ethereum because a Ethereum client
has no fixed entry nodes [20]. A blog post [22] discusses
that RPC providers collect users’ IP addresses and Ethereum
addresses, which violates anonymity. However, our thread
model does not assume that the attacker has privileges like
an RPC provider. We demonstrate that an attacker who can
only monitor network data from a gateway, that a victim user
connects to, can successfully deanonymize Ethereum users,
under the assumption of benign RPC providers.

D. Attacks Exploiting RPC Services
A few work focuses the security problems exploiting RPC

services, such as DoS attacks [23], [24], currency stealing at-
tack [25], passphrase-extraction attack [26], behavior analysis
of malicious users [27] and so on. We are the first to exploit
the third-party RPC service to deanonymize Ethereum users.

X. CONCLUSION
In this paper, we present a novel deanonymization attack,

which can accurately correlate an Ethereum address with an
IP address of a user, who accesses Ethereum through a third-
party RPC service. By exploiting features of TCP packets
and distributions of transaction inter-arrival time intervals, an
attacker can identify a victim transaction that is generated
by encrypted TCP traffic from a victim user. We model
the attack statistically, perform empirical measurements for
modeling, and conduct real-world experiments to validate the
effectiveness of our attack. With three optimized strategies, the
attacker can uniquely identify the victim transaction with an
accuracy of over 96% in both Ethereum testnet and mainnet.
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