IEEE INFOCOM 2024 - IEEE Conference on Computer Communications | 979-8-3503-8350-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/INFOCOMS52122.2024.10621236

Deanonymizing Ethereum Users behind Third-Party
RPC Services

Shan Wang§, Ming Yang§*, Wenxuan Daif, Yu Liu$, Yue ZhangT, Xinwen Fuf
§ School of Computer Science and Engineering, Southeast University.
Email: shanwangsec@gmail.com, {yangming2002, dwx, liuyu_} @seu.edu.cn.
Drexel University. Email: yz899 @drexel.edu.
iUniversity of Massachusetts Lowell. Email: Xinwen_Fu@uml.edu.

Abstract—Third-party RPC services have become the main-
stream way for users to access Ethereum. In this paper,
we present a novel deanonymization attack that can link an
Ethereum address to a real-world identity such as IP address
of a user who accesses Ethereum via a third-party RPC service.
We find that RPC API calls result in distinguishable sizes of
encrypted TCP packets. An attacker can then find when a user
sends a transaction to an RPC provider and immediately send
a beacon transaction after the user transaction. By exploiting
the differences in the distributions of inter-arrival time intervals
of normal transactions and two simultaneously initiated trans-
actions, the attacker can identify the victim transaction in the
Ethereum network. This enables the attacker to correlate the
Ethereum address of the victim transaction’s initiator with the
source IP address of TCP packets from a victim user. We model
the attack through empirical measurements and conduct exten-
sive real-world experiments to validate the effectiveness of our at-
tack. With three optimization strategies, the correlation accuracy
can reach to 98.70% and 96.60 % respectively in Ethereum testnet
and mainnet. We are the first to study the deanonymization of
Ethereum users behind third-party RPC services.

Index Terms—Ethereum, Deanonymization, RPC Service

I. INTRODUCTION

The mainstream approach for users to access Ethereum
networks is now through third-party RPC (Remote Procedure
Call) services. For example, Infura is a representative third-
party RPC provider with over 400,000 developers [1]. In 2021,
about 4.8 trillion Ethereum transactions were sent from Infura
[2]. A cryptocurrency wallet application named MetaMask
is developed upon Infura, and has more than 21 million
active users in 2023 [3]. With RPC services, users can run a
lightweight wallet application or a script to initiate transactions
or query blockchain states by sending RPC requests.

Existing deanonymization attacks against blockchains can-
not identify the real-world identity, such as the IP address,
of a user accessing Ethereum via a third-party RPC service.
Blockchain addresses may be clustered to know that a cluster
of blockchain addresses belongs to an individual user [4]-[8].
However, the real-world identity of the user cannot be identi-
fied. The IP address of the origin node that sends a transaction
to the blockchain network may also be identified [9]-[11].
However, such a method cannot be applied to users who use
the same third-party RPC service since the origin node of a
transaction is the server of the RPC provider in this context.

* Corresponding author: Prof. Ming Yang of Southeast University, China.

In this paper, we present a novel deanonymization attack
that can determine the IP address of an Ethereum user using a
third-party RPC service. We assume that an attacker can mon-
itor and send network traffic going through a network gateway
such as a router. This assumption is popular in studying various
network attacks [12]-[14]. The attacker also deploys a node
in Ethereum as a probe, which collects the arrival times of
transactions. A victim user connects to the Internet through
the gateway, and accesses Ethereum via a third-party RPC
provider such as Infura. By carefully analysing the varying
semantics of all RPC APIs, we find that the size ranges of TCP
segments from a user can be exploited to pinpoint TCP packets
used to initiate a transaction. Once such a victim transaction
is identified, the attacker initiates its own transaction as a
beacon through the same RPC service. The attacker’s probe
node in Ethereum keeps recording arrival times of transactions
including the beacon transaction. We find that the arrival time
of the beacon transaction can be used to estimate the arrival
time of the victim transaction through statistics of transaction
inter-arrival time intervals. The insight is that the inter-arrival
time interval of the victim transaction and beacon transaction
is statistically different from the distribution of a pair of normal
transactions in the Ethereum network.

Our major contributions can be summarized as follows. (i)
We are the first to study the deanonymization of Ethereum
users who use third-party RPC services. (i) We model the
attack theoretically to capture factors that affect the attack.
(iii) Real-world experiments are conducted in both Ethereum
testnet Goerli and mainnet to validate our theoretical results
and the attack effectiveness in practice. By observing one
transaction from a victim IP, the attacker can achieve an
accuracy of 95.40% in testnet and 90.00% in mainnet.
With multiple transactions from a victim IP, it can further
employ multiple confirmations. The accuracy can reach
98.70% in testnet and 96.60% in mainnet via averaging two
confirmations. (iv) Our attack is of low cost as it only requires
transaction fees for initiating beacon transactions. There is
no charge in testnet. If a user is active in both mainnet and
testnest, she/he can be identified in testnest with no fees.

Ethical Considerations. We collect only transaction arrival
times on the Ethereum testnet and mainnet and examine their
statistical features without interfering with the normal oper-
ation of these networks or exposing the real-world identities

979-8-3503i83 5824453 MiG0 © 20R4rsBEH Central Florida. Downloaded @rllJanuary 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

of their users. The attack experiments were conducted against
transactions initiated by us, revealing our own IP addresses.

II. BACKGROUND
This section introduces Ethereum address and transaction,
RPC services, and transaction propagation mechanisms.

A. Ethereum Address and Transaction

Each Ethereum user and smart contract is uniquely identi-
fied by a 42-character address. The address performs as the
identity of a user or a smart contract in the Ethereum network,
and is used as the source address or destination address to
create or receive a transaction. Such an address is derived
from the hash of a public key, which is not linked to any real-
world identity. With the pseudonymity mechanism, Ethereum
enables users to conceal their real-world identities, providing
a degree of anonymity and privacy protection.

An Ethereum transaction contains several fields. Each trans-
action 1is initiated and signed by a user with an Ethereum
address, and the From field indicates the Ethereum address
of its initiator user. Field 7o is the address of the transaction
recipient which can be a user or a smart contract. In a smart
contract deployment transaction, field 7o is null. Value field
contains the amount of native tokens to be transferred in
this transaction. Data field is optional and can be arbitrary
data. If a transaction is used to deploy or invoke a smart
contract, Data will carry the smart contract code or the name
and parameters of a function to be invoked. If a transaction
only transfers tokens, Data field can be null. Field GasLimit
specifies the gas amount that is allowed to be consumed by the
transaction. The gas price for a transaction is defined by the
transaction initiator through the field maxPriorityFeePerGas,
which specifies the fee that the initiator is willing to pay
for executing the transaction. A transaction only reveals the
Ethereum address of its initiator, not its real-world identity.

B. Ethereum RPC Service

Ethereum nodes support RPC protocol, through which users
can conveniently interact with the Ethereum network by send-
ing RPC requests and receiving RPC response. As shown in
Fig. 1, a user can interact with a third-party RPC provider
by running a lightweight wallet application like MetaMask
or a Web3 script on their low-end personal devices. An RPC
provider maintains its own full nodes in Ethereum, and opens
RPC APIs to its users. To send a transaction, a user can
propose an RPC request to invoke an API named sendRaw-
Transaction. This request contains a raw transaction which is
signed by the user. Then the RPC provider can convert the
request into a well-formatted transaction, and propagate the
transaction to Ethereum. An RPC provider also synchronizes
blocks and transactions in Ethereum, and provides APIs such
as getBalance for users to query the blockchain states.

C. Transaction Propagation

In the Ethereum P2P network, a transaction propagates from
an origin node to other nodes. The origin node either creates
the transaction or receives the transaction from an off-chain
source. In the third-party RPC service scenario, a node of

2

Synchronize o o
Tx/Block @ g

[]
- Ethereum Network
RPC Service

Provider

Fig. 1. Third-Party RPC Service in Ethereum

the RPC provider acts as the origin node. Initially, the origin
node propagates the transaction to its neighbor nodes. Upon
receiving a transaction, a node validates the transaction, stores
the transaction in its transaction pool if the transaction settings
such as gas price meet its self-defined standards, and relays
pooled transactions to its neighbors. Please note that, a node
will not relay a transaction to its neighbors who already know
this transaction, such as a neighbor who previously sends this
transaction to the node. Finally, a valid transaction should
appear in the transaction pool of each node.

A transaction with low gas price may experience abnormal
propagation. Each node has a size limit on its transaction pool,
and prioritizes transactions with high gas price. A node may
drop a transaction if its gas price does not meet the node’s
standards. Additionally, a miner node may not prioritize
picking up a pooled transaction with low gas price to wrap a
new block. Transactions that remain pending in a pool for a
period may eventually be dropped. Determining an appropriate
gas price is challenging because it fluctuates with the level
of blockchain network congestion and the number of active
users. A common way for a user to get an appropriate gas
price is to query a suggested gas price from an RPC service.

III. ATTACK OVERVIEW

In this section, we introduce the system model and threat
model, analyze attack goals and challenges, and present the
basic idea and insights of the proposed attack.

A. System Model and Threat Model

As shown in Fig. 2, a group of users use their personal de-
vices to connect to the Infernet through a gateway, and access
Ethereum via a third-party RPC service. When a user sends
an RPC request, the corresponding network data flows through
the gateway. The RPC protocol operates over the application-
layer protocol HTTPS, which runs on top of the transport-
layer TCP protocol and adopts TLS protocol to encrypt the
transmitted data between the user and the RPC provider.

We assume that an attacker can monitor the network traffic
going through the gateway, as well as can send network data
through this gateway. This is a normal assumption in network
attacks [12]-[14]. The attacker may be the owner of the
gateway, an internet service provider (ISP), or a regulatory
authority. The attacker also deploys a node in the public
Ethereum as a probe, which receives propagated transactions
and collects their arrival time. A user who interacts with an
RPC provider through the gateway is a victim. We refer to a
transaction initiated by the victim user as a victim transaction,
which is transmitted in victim TCP packets that are encrypted
by TLS protocol. We assume an RPC provider is trustworthy.

Authorized licensed use limited to: University of Central Florida. Downloaded @2January 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

O Internet RPC Service e o
Gateway Provider ° O
R “ Squest []
7.|.| . ” _.| Ethereum Network
N‘ S i
Request - E”
TCP -z - Prob
Packets é a TXs Nr(:)d:
Users Attacker

Fig. 2. System Model and Threat Model

B. Attack Goals and Challenges

With the network data collected from the gateway and the
transaction data collected from the probe node, an attacker
aims to correlate a victim user’s Ethereum address with the IP
address of the user’s personal device, which can be considered
as a real-world identity of the user [15]. The attacker mainly
faces two challenges as follows.

Encrypted TCP Packets. The TCP packets that may carry
a raw transaction between a victim user and an RPC provider
are encrypted by the TLS protocol. Although an attacker can
obtain the source IP address of TCP packets, which may come
from a victim user, it is challenging for the attacker to identify
TCP packets that pertain to sending a transaction to an RPC
provider, or to obtain the raw transaction and its initiator’s
Ethereum address from the TCP packets.

Enormous Normal Transactions. A significant number of
users are active in Ethereum network and initiate transactions.
It is challenging to pinpoint the transaction initiated by a
victim user from the vast number of daily transactions flowing
in the entire Ethereum network. Existing work [9]-[11] can
infer the IP address of the origin node of a transaction.
However, in the third-party RPC service context, the origin
node belongs to an RPC provider, and existing methods cannot
correlate the victim user’s IP address with a transaction.

C. Basic Idea and Insights

We propose a novel deanonymization attack method that
overcomes the aforementioned two challenges as follows.

Victim TCP Packets Identification (§IV). An attacker
exploits TCP packets to identify when a victim user with
a certain IP address is sending a victim transaction to an
RPC provider. The attack first exploits the TLS handshake
mechanism to identify TCP packets that are directed towards
a certain RPC provider, where the domain name of the RPC
provider serves as a strong identifier. A provider may offer
dozens of RPC APIs. Then the TCP segment sizes are used to
pinpoint TCP packets for calling an RPC API named sendRaw-
Transaction, which is used to initiate a transaction. The insight
behind this approach is that the semantics of sendRawTrans-
action is distinguishable from other RPC APIs, whose request
contains a relatively large raw transaction while the response
only contains a transaction hash with a fixed and small size.

Victim Transaction Identification (§V). Once the attacker
observes the victim TCP packets, it immediately initiates a
transaction as a beacon by sending a request to the same
RPC provider as the victim user. The attacker’s probe
node keeps recording the arrival time of each transaction

3

including the beacon transaction. Using the arrival time of the
beacon transaction, the attacker infers the arrival time of the
victim transaction since the attacker knows when the victim
transaction is sent out through the gateway. The attacker then
finds out the victim transactions from the daily transactions
on Ethereum using statistical features of inter-arrival time
intervals. The insight behind this method is that the inter-
arrival time interval distribution of two simultaneously
initiated transactions is different from the distribution of daily
transactions in the entire Ethereum network.

Using the information obtained through the above two
steps, the attacker can correlate the source IP address of the
identified TCP packets, i.e., IP address of a victim user, with
the Ethereum address of the victim transaction’s initiator.

IV. VICTIM TCP PACKETS IDENTIFICATION
In this section, we illustrate how to accurately identify TCP
packets for sending a transaction to a third-party RPC provider.

A. Identifying TCP Packets Related to RPC Services

We exploit the TLS handshake mechanism to identify TCP
packets related to a third-party RPC service. The RPC protocol
runs over TCP protocol and adopts TLS protocol to secure the
transmitted data. Once a TCP connection, identified by 4-tuple
(source IP, source port, destination IP, destination port), is
established, the TLS handshake is initiated to negotiate cipher
suites. At the beginning of the TLS handshake, the user/client
sends a Client_Hello message to the destination server, i.e.,
RPC provider, which includes a field Sever_Name that indi-
cates the domain name of the RPC provider. We collect the
domain names of representative RPC providers such as Infura,
Alchemy and OnFinality, and use them as strong identifiers to
identify the TCP packets related to a third-party RPC service
and the RPC provider that a victim user registers with.

B. Identifying TCP Packets for Sending Transactions

RPC providers mainly support 44 types of RPC APIs in
total [16], and we need to pinpoint TCP packets for calling
sendRawTransaction API which is used to initiate a transac-
tion, while other APIs are mainly used to query the blockchain
state and do not generate a transaction.

We analyse features of TCP segment sizes that correspond to
different RPC APIs. A TCP segment in TCP packets contains
the ciphertext of an RPC request/response and some TLS
cipher characters of a fixed size. Considering the application-
layer protocols HTTP/1 and HTTP/2, an RPC request/response
contains a JSON object and a HTTP header. A JSON object
in an RPC request or response contains the parameters or
returned results of an RPC API, and its size varies upon the
API semantics. Please note that, application-layer protocols are
distinguishable per their communication patterns [17], and we
do not consider the uncommon WebSocket protocol in RPC.

JSON Object. For each of the 44 RPC APIs, we carefully
analyze its semantics and calculate the size range of its
request and response JSON object respectively. Take the
sendRawTransaction API as an example. Its request JSON
contains four key-value pairs. The values of keys jsonrpc and
method are fixed. The value of key id is a random number,

Authorized licensed use limited to: University of Central Florida. Downloaded @BJanuary 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

w
=3
=]

N
a
=)

N
1=
S

)

o

P AP 40 0 50 0 WD P P (°

—
7]
1=}

=
o
1=}

Request JSON Size (Bytes)

CTRIT

[
=}

o

& (o 2% ® p°

Response JSON Size (Bytes)
[CInewFilter API [[DfeeHistory API MsendRawTransaction API [Other APIs

Fig. 3. Area Range of Request/Response JSON Object Size for 44 RPC APIs.

whose size ranges from 1 to 20 bytes. The value of key params
is a raw transaction. The smallest raw transaction should be
a contract deployment transaction whose both 7o field and
Data field are set to null. In theory, the block gas limit is
the most gas that a single transaction can consume, which
indirectly limits the transaction size. We estimate the largest
size of a raw transaction according to the block gas limit of
30.00 million gas on July 1st, 2023. The response JSON of
sendRawTransaction also includes key-value pairs with keys
Jsonrpc and id, as well as a key-value pair with the key result.
The value of result is the hash of the initiated transaction,
whose size is fixed at 66 bytes. Upon the above analysis,
we derive that the size of sendRawTransaction request JSON
ranges from 239 to about 14.99 million bytes, while the size
of its response JSON ranges from 102 to 121 bytes.

Fig. 3 shows the area range of sizes of request and response
JSON objects for each of the 44 RPC APIs, and the area range
of sendRawTransaction in red does not overlap with any other
APIs. The blue area represents API feeHistory [16], which may
have the same response JSON size as sendRawTransaction.
However, with the same response JSON size, the request JSON
size of feeHistory is smaller than that of sendRawTransaction,
since sendRawTransaction accepts a relatively large raw trans-
action as input and returns a transaction hash with fixed 66
bytes. The yellow area represents newFilter API, which returns
a filter ID with a fixed size. Its response JSON size ranges from
82 to 101 bytes, making its area to be just at the left of the
area of sendRawTransaction, with a gap of only 1 byte.

HTTP Header. The fields in a HTTP header may vary
per different settings, but will not lead to area range overlap
between newFilter and sendRawTransaction in most cases.
The size of a HTTP header may vary due to a varied length
field indicating the length of the JSON object, a date field
whose size may vary due to the HPACK header compression,
and some other fields per application settings such as fields
for method name, trace ID and so on. We carefully analyse
the HTTP settings of three representative RPC providers
including Infura, Alchemy, and OnFinality, and calculate the
size ranges of their HTTP header. As summarized in Table I,
sendRawTransaction and newFilter can keep distinguishable
upon the RPC request and RPC response TCP segment sizes
in most cases. Only in the Infura with HTTP/2 case, the
response TCP segment size of newFilter overlaps with that

4

of sendRawTransaction by 2 bytes.

Identification Rules based on TCP Segment Size.
We use the request/response TCP segment size range of
sendRawTransaction as rules to identify its related TCP
packets according to Table I. Specially, in the case of Infura
with HTTP/2, the response TCP segment size of 250 or
251 bytes may correspond to both sendRawTransaction and
newFilter due to their overlap, potentially leading to false
positives. To avoid false positives, we define the identification
rule in this case as: (i) the response TCP segment size ranges
from 252 to 271 bytes, and (ii) the request TCP segment
size is equal to or larger than 391 bytes. This will result in
a false negative rate of about 9.10%, while maintaining a true
positive rate of 100%. In other cases, the false negative rate is
0, and the true positive rate is 100% as summarized in Table I.

V. VICTIM TRANSACTION IDENTIFICATION

In this section, we demonstrate how to utilize inter-arrival
time intervals of transactions to find out the victim transaction,
which is generated through the identified victim TCP packets.

A. Inter-Arrival Time Interval of Transactions

An attacker deploys a node in Ethereum as a probe, and
collects arrival time of each received transaction. As analysed
in Sec. II-C, a node will not relay a transaction to its neighbors
who have known this transaction. Therefore, we customize the
probe node to only receive transactions, but not relay the re-
ceived transactions to its neighbors. In this way, each neighbor
should relay a transaction to the probe node, if the transaction
gas price satisfies standards of these nodes. Assume the probe
node has n neighbors. For each transaction 7T'z;, the probe
node records the arrival time ¢;; when it receives T'z; from j-
th neighbor, and obtains an arrival time vector (¢;1, L2, ..., tin)-

In practice, the dimension of arrival time vectors for a pair
of transactions may differ, as they may be relayed to the probe
by different neighbors for two reasons. First, different nodes
may set different standards on the gas price, and a low gas
price may discourage most neighbor nodes from relaying a
transaction. Second, neighbor nodes may vary as they may
unpredictably disconnect from the probe node. To calculate the
inter-arrival time interval of two transactions, we only consider
a common vector for each transaction by taking the arrival
time corresponding to common neighbors who relay both
transactions. For example, assume the arrival time vector of
Txq is <If117 ti2,113, t15>, and that of T'x5 is <t21, too, o3, t26>.
Then we create a 3-dimensional common vector for each
transaction, i.e., (t11,%12,t13) and (toy, tao, tas), respectively.

We use the common vector of m dimensions to calculate
the interval of two transactions such as T'z; and T'z;. We
first calculate the interval in each dimension and get (t;; —
L1, tio — ty2, ... tjm). Then we calculate the mean of
these m intervals, which is considered as the interval I;; of
transactions T'x; and T'x; as follows,

_ 2k [tik — il
i :

atim -

I;; (1

Authorized licensed use limited to: University of Central Florida. Downloaded @@January 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TCP segment size range per different RPC providers

RPC HTTP Header TLS False
Protocol Type API JSON Overall
Provider length date others Overall Cipher Negative
) sendRawTransaction | 21-26 147 168-173 | > 239 29 > 436
reques
d newFilter > 20 147 > 167 > 170 29 > 266
HTTP/1 0
sendRawTransaction | 21 37 112 170 102-121 | 29 301-320
response
Inf newFilter 20-21 37 112 169-170 | 82-101 29 280-300
nfura
request sendRawTransaction | 6-11 0 88-92 94-103 > 239 58 > 391
u
d newFilter >5 0 88-92 > 93 > 170 58 > 221
HTTP/2 9.10%
sendRawTransaction | 5 23-25 | 62 90-92 102-121 | 58 250-271
response
newFilter 4-5 23-25 | 62 89-92 82-101 58 229-251
. sendRawTransaction | 21-26 0 156 177-182 | > 239 22 > 438
reques!
d newFilter > 20 0 156 > 176 > 170 22 > 268
HTTP/1 0
sendRawTransaction | 21 37 687 745 102-121 | 22 869-888
response
Alch newFilter 20-21 37 687 744-745 | 70-89 22 836-856
chem
Y request sendRawTransaction | 6-11 0 93-105 99-116 > 239 44 > 382
u
d newFilter >5 0 93-105 > 98 > 170 44 > 212
HTTP/2 0
sendRawTransaction | 5 23-25 117-124 | 145-154 | 102-121 | 44 291-319
response
P newFilter 4-5 23-25 | 117-124 | 144-154 | 70-89 44 258-287
‘ sendRawTransaction | 21-26 0 123 144-149 | > 239 22 > 405
reques
d newFilter > 20 0 123 >143 > 170 22 > 235
HTTP/1 0
sendRawTransaction | 21 37 215 273 102-121 | 22 397-416
response
L. newFilter 20-21 37 215 272-273 | 70-89 22 364-384
OnFinality
request sendRawTransaction | 6-11 0 72 78-83 > 239 44 > 361
ues
d newFilter >5 0 72 > 77 > 70 44 > 191
HTTP/2 0
sendRawTransaction | 5 23-25 141-145 169-175 102-121 44 315-340
response
P newFilter 4-5 23-25 | 141-145 | 168-175 | 70-89 44 282-308

B. Basic Attack Method

When an attacker identifies TCP packets for sending a
victim transaction 7'z, as introduced in Sec. IV, the attacker
immediately initiates a beacon transaction T'x; to the same
RPC provider. To avoid considering abnormal propagation
caused by low gas price, the attacker initiates a beacon
transaction with suggested gas price, and only considers
transactions whose common vector has a dimension of no
less than D when comparing it to the beacon transaction.

Assume the time of observing victim transaction is t,, and
the time of initiating beacon transaction is t;. The delta is
A =t —t,. The probe node obtains the arrival time vector of
beacon transaction as (tp1, tp2, ..., tpm). Intuitively, Ethereum
P2P network maintains a stable topology within a small time
window, and transactions from the same RPC provider are
likely to propagate through the same paths in the P2P network.
Therefore, if the beacon transaction is sent at the same time as
observing T'z,, i.e., at t,, its arrival time vector may be (t5; —
Ajtpa—A, ..., tym —), which represents a beacon transaction
Tz, simultaneously initiated with the victim transaction 7'z,

Intuitively, two transactions initiated simultaneously by the
same RPC provider should have a small inter-arrival time
interval. Therefore, we consider a transaction as a potential
victim transaction if its interval to transaction Tz, is within a

5

time window 7. There may be several potential victim trans-
actions that form a transaction set S,,¢. Assume the number
of transactions in set Sy, is n. There are only three possible
cases per the relationship between Tz, and Sy, , as follows.

Case 1: T'z,, & Spor. The victim transaction is not in the
potential transaction set, which indicates a false identification.

Case 2: Tz, € Syt and n = 1. The victim transaction is
uniquely identified, indicating an accurate identification.

Case 3: Tz, € Spor and n > 1. The victim transaction
is included in the potential transaction set Sy, but other
transactions also appear in Sp,. In this case, the victim
transaction cannot be uniquely and accurately identified, we
consider it a case of non-unique identification.

The probability of each of the three cases may be influenced
by two main factors. (i) The number of transactions from other
users and nodes that arrive at the probe node with an interval
to T;v; within 7'. (ii)) Whether two simultaneously initiated
transactions by an RPC provider will arrive at the probe node
with an interval within 7.

C. Modeling

We formalize the probability of the three cases by modeling
the transaction inter-arrival time interval distribution.

We first model the inter-arrival time interval of daily
transactions in the entire Ethereum network. We use Poisson

Authorized licensed use limited to: University of Central Florida. Downloaded @BJanuary 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

distribution to model the probability of a given number k of
transactions arriving at the probe node in a fixed interval of
time ¢ as follows,
(At)k o= (3H)
P(t,k) = 6T’ (2)
where)\ is the average number of transactions that arrive at
the probe node within a time unit §. Following the Poisson
distribution, the distribution of transaction inter-arrival time

interval ¢ should be a exponential distribution as follows,
At
%)

Pinter(t) = e~ 3)
We further use a normal distribution to model the inter-
arrival time interval, i.e., I, of two simultaneously initiated
transactions through the same RPC provider, i.e., Iy, ~
N (u, p?). The probability of two simultaneous transactions
having an interval of ¢ is as follows,
_ 1 _sesey
N ’ @
where p is the expectation of the interval Ig;,, and p is the
standard deviation. The cumulative probability of I, <t is,

t
/ 5)

Ideally, two simultaneously initiated transactions should arrive
at the probe node at the same time and the interval is O.
Therefore, we set the expectation of interval I;,, as p = 0.
Considering the interval should be an absolute value of the
delta between two arrival time common vectors as shown in
Equation (1), we model the absolute interval I ;im on top
of the normal distribution N (u, p?). The probability of two
simultaneous transactions having an absolute interval of ¢ is

as follows,

F(t)

(1) F(t)dt.

F'(t)=2F(t), t > 0. (6)
The cumulative probability of I ;Lm <t is as follows,
D' (t) = B(t) — O(—t), t > 0. (7)

With the Poisson distribution model and the normal distri-
bution model, we formalize the probability of Case 1—false
identification, Case 2—accurate identification and Case 3—
non-unique identification, as follows.

Case 1: Tz, € Spor. This case means that the interval
between T'x, and Tx;7 is larger than the time window T
According to Equation (7), the false identification rate is,

P(Txy & Spot) =1 — @ (T). (8)

Case 2: T'x, € Syt and n = 1. This case means that Tz,

arrives at the probe node with an interval to Tz, within T,

and there is no other transaction arrives at the probe node.
According to Equation (2) and (7), the accuracy rate is,

P(Tz, € Spos,n = 1) = ® (T) % P(T,0). 9)

Case 3: T'x, € Syt and n > 1. This case means that Tz,

arrives at the probe node with an interval to Tz, within T,

but other transactions also arrive at the probe node. According

to Equation (2) and (7), the non-unique identification rate is,

P(Tz, € Spor,n>1) =@ (T)« P(T, k > 1), (10)
where P(T,k >1)=1— P(T,0).

6

D. Optimization Strategies

In Case 3—non-unique identification, the victim transaction
Tz, is already in the potential transaction set S, Which also
includes other transactions. Assume the potential transaction
set Spo; contains m transactions {Tz?’" Txb® .. TPt}
and Txff(’t is the victim transaction. We design three strategies
to further eliminate other transactions, so as to uniquely
identify the victim transaction and improve the accuracy.

Smallest Interval. Assume an attacker observes only one
transaction from a certain IP address. The attacker calculates
the interval of T'z¥ ° i=1,2,..,m to transaction Tx;, and
chooses the transaction with the smallest interval as the final
identification result.

Multiple Confirmations. Assume an attacker observes
multiple transactions from a certain IP address. Each time the
attacker gets a potential transaction set Sp.;, it also gets a set
of Ethereum address of initiators of these transactions. The
attacker counts the frequency of each address and selects the
most frequent ones. When only one Ethereum address is the
most frequent address, it is considered as the final result.

Raw Transaction Size. Raw transaction size can be ex-
ploited to eliminate false transactions from the set Spo¢. In the
RPC request TCP segment of sendRawTransaction, the JSON
object only contains a raw transaction. According to Table I,
an attacker can estimate the size range of the raw transaction
based on the TCP segment size. When a probe node receives
a transaction, it can obtain the raw transaction size of each
transaction. If the raw transaction size of a potential transaction
is out of the estimated size range, the attacker drops it from
Spot. This strategy may not find out a unique result, but can be
combined with the other two strategies to improve accuracy.

VI. EMPIRICAL MEASUREMENTS
In this section, we empirically measure and validate the
formalization models of our attack in both Ethereum testnet
and mainnet. Then we derive the theoretical attack results.

A. Data Collection and Preprocessing

We deploy a probe node that maintains 25 connections to
other nodes in both Ethereum mainnet and testnet Goerli,
and collects a total of 9,434,025 transactions in mainnet and
5,272,540 transactions in testnet from July 1 to July 7, 2023.
We observe that a neighbor may relay a transaction much later,
such as several seconds later, than other neighbors, which is
abnormal since a transaction normally is broadcast to the entire
network within 300 ms [18]. To eliminate abnormal propaga-
tion time, we discard any time in a transaction arrival time
vector that deviates from other times by more than 300 ms.

We count the dimensions of common vectors for each pair
of adjacent transactions respectively in testnet and mainnet.
As shown in Fig. 5, in the mainnet, the common vectors of
most pairs of transactions have either about 1 dimension or
about 13 dimensions. Upon a detailed analysis of transactions
with low-dimensional common vectors, we find that the
underlying cause was a low gas price. As shown in Fig. 4,
in the testnet, only a few pairs of transactions have low-
dimensional common vectors. This is reasonable since the gas

Authorized licensed use limited to: University of Central Florida. Downloaded @January 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

z z

0.15 100 0.15 1002
[+ [

> Qo > = Q
£ 0.10 0785 249 0753
3 050% 8 L0505
8 0.05- T2 Boos T2
a 0258 & 0258
g g

0.00 - 000 3 0.00 L0003

024 6 810121416182022
Dimension

0246 810121416182022
Dimension

Fig. 4. Dimension Number of Com- Fig. 5. Dimension Number of Com-
mon Vectors in Testnet mon Vectors in Mainnet

ol 2

1.00 1.00 = 1.00 1.00 =

~ Empirical PDF/CDF g - Empirical PDF/CDF / %
2075~ Fitted PDF/CDF 0.75 .@ 20754~ Fitted PDF/CDF 0.75 .5
il o o o
® 050 050 g & 050 050
o =R 2
a 025 0258 o 025 F0258
€

0.00 -0.00 3 0.00 -0.00 3

0 50 100 150 200 250 300 0 50 100 150 200 250 300 ©

Inter-Arrival Time Interval (ms)

Inter-Arrival Time Interval (ms)

Fig. 6. Inter-arrival Time Interval of Fig. 7. Inter-arrival Time Interval of
Normal Transactions in Testnet Normal Transactions in Mainnet

price required by the testnet is lower than that by the mainnet,
and most transactions can be normally relayed. To avoid
considering transactions with abnormal propagation caused
by low gas prices, and to model the testnet and mainnet
in the same way, we only consider transaction pairs whose
common vector dimensions are no less than 8, i.e., D > 8.

B. Model Measurement and Validation

Using the preprocessed data, we first empirically measure
and validate the Poisson distribution model for arrival time
of daily transactions. Fig. 6 and Fig. 7 respectively show the
transaction inter-arrival time interval distribution in testnet
and mainnet. When we consider common vectors with 8 or
more dimensions, 4,409,370 transactions remain in testnet,
and 4,880,577 transactions remain in mainnet, since about
48.11% mainnet transactions incur low-dimensional common
vectors. When we set the time unit as & 25 ms, the
average number of arriving transactions is A 0.17 in
testnet and A\ 0.20 in mainnet. We compare the fitted
Poisson distribution model in Equation (3) with the empirical
measurements. As shown in Fig. 6 and Fig. 7, it can be
observed that the fitted inter-arrival time interval distribution
is similar to the empirical results with minor bias. Considering
the Ethereum network is usually more active at GMT day time
than at GMT night time, but Poisson distribution models the
arrival time with a fixed average rate, we argue that the bias
is reasonable. We also do p-value testing on the fitted Poisson
distribution P(t, k) with different ¢, such as Fig. 10 shows
the case when ¢ = 100 ms, and it can pass the p-value testing.

We also empirically measure the inter-arrival time interval
of two simultaneously initiated transactions through the same
RPC provider. We initiate 1000 pairs of transactions through
Infura in the testnet. As shown in Fig. 8, most pairs of
transactions have an interval within 25 ms. We calculate
that the mean of Ig;,, is about —1.52 which is close to the
expectation p = 0, and its standard deviation is about 38.39.
We set p = 38.39 in testnet. The red lines in Fig. 8 represent

7

2 2

1.00 1.00 E 1.00 1.00 g

o —— Empirical = N —— Empirical =
Z075 — Fitea [0758 £075 — Fited [0758
o o o o
T 050 F050 g 050 050 &
e 2 ®° 2
a 025 0258 a 025 0253
g g

0.00 0.00 5 0.00 0.00 5

0 50 100 150 200 250 300 © 0 50 100 150 200 250 300 ©

Inter-Arrival Time Interval (ms) Inter-Arrival Time Interval (ms)

Fig. 8. Inter-arrival Time Interval of Fig. 9. Inter-arrival Time Interval of
Two Simultaneously Initiated Trans- Two Simultaneously Initiated Trans-
actions in Testnet actions in Mainnet

1.00
= Empirical
- Fitted

o
~
a
1
o
3
3
1

® Casel
Case2
® Case3

robability

0.50 +

robability

P
I
N
A
1

o 0.25

0.00 T T T T
2 4 6 8
Tx Number

T T T T T T
50 100 150 200 250 300
Time Window T (ms)

10 0

o

Fig. 10. Poisson Distribution When Fig. 11. Theoretical Results of Victim
t = 100 ms in Mainnet Transaction Identification in Testnet

Equations (6) and (7). It shows that the fitted model in red
lines is close to the empirical measurements in blue. We also
initiate 30 pairs of transactions in the mainnet, and get the
empirical mean is about —5.26 and the standard deviation is
p = 68.23. As shown in Fig. 9, the fitted model is close to the
empirical measurements with minor bias, which is reasonable
since the data samples in mainnet are limited.

C. Theoretical Results

Overall, the inter-arrival time intervals of daily transactions
across the entire Ethereum network follow a Poisson distri-
bution P(t,k) with A = 0.17 in testnet and A = 0.20 in
mainnet when § = 25 ms. The inter-arrival time intervals
of two simultaneously initiated transactions follow a normal
distribution with p = 0 and p = 38.39 in testnet and p = 68.23
in mainnet. According to Fig. 6-9, it can be observed that two
transactions simultaneously initiated through the same RPC
provider have a higher probability to have a small interval
than normal transactions across the entire Ethereum network.

Based on Equations (8)-(10), we theoretically calculate the
probability of Case 1—false identification, Case 2—accurate
identification and Case 3—non-unique identification per dif-
ferent time window 7. As shown in Fig. 11, the accuracy rate
(Case 2) in testnet can reach about 58.14% with a time window
of 50 ms. Similarly, the theoretical accuracy in mainnet is
43.87%. Using a larger time window can have lower false
identification rate (Case 1), but also lead to lower accuracy
rate (Case 2) and higher non-unique identification rate (Case
3). This also demonstrates the need of the three optimization
strategies in Sec. V-D.

VII. EVALUATION
In this section, we present the real-world deanonymization
attack results in both Ethereum testnet and mainnet.

A. Setup

We use a Vultr cloud sever with Ubuntu 22.04 as the probe
node. It runs DevP2P [19] to build 25 connections to other
nodes and receive transactions. We modify the source codes

Authorized licensed use limited to: University of Central Florida. Downloaded @/January 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

of Ethereum Wire Protocol module in DevP2P to enable the
probe node to only receive transactions but not relay them.

We set up a Cisco 2960 network switch as the gateway. A
victim user interacts with an RPC provider through this switch,
and runs Web3.py library and uses HTTPS protocol to initiate
transactions. An attacker uses a computer with Windows
11 and 16 GB memory, which connects to Internet through
the same switch. The attacker’s computer also connects to
a dedicated port of the switch for port mirroring, through
which the attacker’s computer can capture copies of network
data going through this switch. The attacker runs pyshark
library to collect TCP packets going through the switch, uses
Python to implement victim TCP packets identification rules
in Sec. IV-B, and uses web3.py library to initiate a normal
Ether transfer transaction as a beacon transaction.

B. Deanonymization Results in Testnet

The victim user initiates 1000 transactions in total to Goerli
through Infura. The average time it takes for an attacker to
identify victim TCP packets is about 889.16 ms.

We first evaluate the deanonymization results when the
attacker uses the basic attack method in Sec. V-B, in terms of
false identification rate (Case 1), accurate identification rate
(Case 2) and non-unique identification rate (Case 3). As shown
in Fig. 12, the real-world evaluation results are similar with our
theoretical results in Sec. VI-C, which validates our models.
The largest accuracy rate (Case 2) in practice is about 39.80%.

We further evaluate the effectiveness of the optimization
strategies discussed in Sec. V-D, aimed at increasing the
accuracy. As shown in Fig. 13, utilizing Smallest Interval and
Raw Transaction Size can considerably improve the accuracy.
Particularly, with a time window larger than 200 ms, the
accuracy exceeds 92.80%, and can reach up to 95.40%.

Regarding the strategy of Multiple Confirmations, we
calculate the average number of victim transactions it requires
to filter out the unique result and the corresponding accuracy.
As shown in Fig. 14, an accuracy of about 98.70% can be
achieved with observing about only 2 victim transactions
from a certain IP address.

C. Deanonymization Results in Mainnet

The victim user initiates 30 transactions to the mainnet
through Infura, and the attacker accordingly initiates 30 bea-
con transactions.

As shown in Fig. 15, the practical results of the three cases
in Sec. V-C have similar trend with the theoretical results
with some degree of bias. Considering we only do 30 times
measurements and attacks in the mainnet, the bias between
the theoretical results and practical results is reasonable. The
largest accuracy rate (Case 2) in practice is about 20.00%.

We further evaluate the optimized accuracy. By using the
Smallest Interval and Raw Transaction Size, with a time
window larger than 200 ms, the accuracy can exceed 86.67%,
and can reach up to 90.00% as shown in Fig. 16.

As shown in Fig. 17, by only using the multiple
confirmations strategy, the accuracy can reach about 79.31%.
We carefully analyse the inaccurate cases, and find that most of

8

them are caused by a highly active account, which frequently
sends transactions. By further combining with the raw trans-
action size feature to filter false transactions, the accuracy can
reach about 96.60% with about only 2 times of confirmations.

D. Deanonymization Results against Different RPC Providers

We compare the deanonymization results across different
RPC providers when the time window is 200 ms and the
smallest interval and raw transaction size strategies are
adopted in testnet. The accuracy is 92.80%, 92.70%, 85.10%
respectively in Infura, Alchemy and OnFinality, demonstrating
that our attack is effective against different RPC providers.

E. Attack Cost Discussion

Our attack is of low cost, as it only requires transaction fees
for initiating one beacon transaction per attack. The beacon
transaction can be an Ether transfer transaction, whose fee is
usually within 2 dollars. In the case of multiple confirmations,
two times of attacks are sufficient to achieve high accuracy.

In addition, we also can exploit the deanonymization results
in testnet to obtain real-world identities of users in mainnet,
considering there is no charge in testnet. The insight is that
a user may use the same Ethereum address to access both
the testnet and mainnet. We analyse 5675 blocks in Goerli
within a 24-hour period on July 1st, 2023. 113,869 Ethereum
addresses appear in these Goerli blocks, and 43542 addresses
out of them (about 38.24%) also active in the mainnet. These
43542 addresses hold about 2155.03 Ether balance and involve
about 3,270,950 transactions in mainnet.

VIII. DISCUSSION

We discuss two potential countermeasures that can defend
against the proposed deanonymization attack. First, a user can
access the third-party RPC service through a virtual private
network (VPN) to hide their real IP address and improve
their anonymity. Second, the Ethereum RPC protocol should
be modified to add padding bytes to request and response
JSON objects to ensure they are of the same size. This would
make it difficult for attackers to identify victim TCP packets
for sending transactions through a third-party RPC service.

IX. RELATED WORK

In this section, we review existing work on blockchain
deanonymization attacks, and attacks exploiting RPC services.

A. Clustering Blockchain Addresses

Some work clusters blockchain addresses belonging to the
same user, but does not identify the real-world identity of
the user. In Bitcoin, the UTXO account model [4] and the
interaction pattern between layer 1 an layer 2 [20] can be
used to cluster addresses. In Ethereum, features of smart
contracts can be used to cluster addresses that belong to
the same developer [6], [8]. Node embedding techniques can
profile users based on their activity, transaction fees, and graph
features [7]. In contrast, our method can uniquely determine
the real-world identity of an Ethereum user.

Authorized licensed use limited to: University of Central Florida. Downloaded @8January 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

1.00 1.00 3 1.00
2 . « 2
0.80 © 0.75 4 g, 075 3
< e £ 050 3
0.601 ¥V Empirical C.1 @ Fitted C.1 n > Y. o]
% Q\ Empirical C.2 ® Fitted C.2 § 0.50 E 14 ® Tx Number 5
14 0.401 ¥ Empirical C.3 @ Fitted C.3 S L J ® Int | = - 0.25 8
8 0.25 nterva) Accuracy Rate <
0.20 < Interval + Tx Size 0 - 0.00
0.00 — 0 50 100 150 200 250 300
0.00 T ? T T T ¥ . .
0 50 100 180 200 250 300 0 50. 100 .1 50 200 250 300 Time Window T (ms)
Time Window T (ms) Time Window T (ms)
Fig. 12. Identification Results in Goerli Using

Time Window T. “C.” represents “Case”

Fig. 13. Optimized Identification Results in Goerli
Considering Smallest Interval and Transaction Size

Fig. 14. Optimized Identification Results in Goerli
Considering Multiple Confirmations

1.00 1.00 4 1.00 o
o) = 2
b - ©
0.80 & 0.75 é 3 0.75 &
>
] > 24 . [5)
g0 \ i e mass S 0.50 1 2 e
5404 ¥ Empirical C.3 @ Fitted C.3 5 ® Interval =1 ® Number ® Number(Tx S'Z.e) 0.25 3
8 0.25 Accuracy® Accuracy(Tx Size) <
0.201 Ty ¥ ¥ vy < Interval + Tx Size 0 - 0.00
0.00 — T 0 50 100 150 200 250 300
0.00 y T ' " ? " . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300 Time Window T (ms)
Time Window T (ms) Time Window T (ms)
Fig. 15. Identification Results in Mainnet Using

Time Window T. “C.” represents “Case”

B. Identifying Transaction Origin Node

Some work attempts to identify the IP address of an origin
node that first propagates a transaction to the blockchain
network. Biryukov, et al [9], [10] deploys a super node to
connect to a large amount of nodes, so as to receive transaction
from almost all blockchain nodes. The node which first sends
a transaction to the super node is inferred as the origin node.
Gao, et al [11] exploit the transaction propagation sequence to
train a machine learning model and identify the origin node
of a transaction. It also require a super node. These methods
are not suitable for deanonymization in the third-party RPC
service scenario. They only can correlate an Ethereum address
with the IP address of a node that belongs to the RPC provider,
not the IP address of a victim user. In contrast, our attack
can link a victim user’s IP address to an Ethereum address,
and requires only one probe node in Ethereum and a few
connections to other nodes (25 connections in our experiment).

C. Identifying Real-World Identities of Blockchain Users

A few existing work tries to correlate a user’s blockchain
address to a real-world identity such as an IP address.
Biryukov, et al [15], [21] identify the IP address of a Bitcoin
lightweight client/user using fixed entry nodes. However, this
method cannot work in Ethereum because a Ethereum client
has no fixed entry nodes [20]. A blog post [22] discusses
that RPC providers collect users’ IP addresses and Ethereum
addresses, which violates anonymity. However, our thread
model does not assume that the attacker has privileges like
an RPC provider. We demonstrate that an attacker who can
only monitor network data from a gateway, that a victim user
connects to, can successfully deanonymize Ethereum users,
under the assumption of benign RPC providers.

Fig. 16. Optimized Results in Mainnet Consider-
ing Smallest Interval and Transaction Size

9

Fig. 17. Optimized Identification Results in Main-
net Considering Multiple Confirmations

D. Attacks Exploiting RPC Services

A few work focuses the security problems exploiting RPC
services, such as DoS attacks [23], [24], currency stealing at-
tack [25], passphrase-extraction attack [26], behavior analysis
of malicious users [27] and so on. We are the first to exploit
the third-party RPC service to deanonymize Ethereum users.

X. CONCLUSION

In this paper, we present a novel deanonymization attack,
which can accurately correlate an Ethereum address with an
IP address of a user, who accesses Ethereum through a third-
party RPC service. By exploiting features of TCP packets
and distributions of transaction inter-arrival time intervals, an
attacker can identify a victim transaction that is generated
by encrypted TCP traffic from a victim user. We model
the attack statistically, perform empirical measurements for
modeling, and conduct real-world experiments to validate the
effectiveness of our attack. With three optimized strategies, the
attacker can uniquely identify the victim transaction with an
accuracy of over 96% in both Ethereum testnet and mainnet.

ACKNOWLEDGMENT

This research was supported in part by National Key R&D
Program of China (No. 2023YFC3605804), National Natural
Science Foundation of China (No. 62072103), Jiangsu Provin-
cial Key R&D Programs (Nos. BE2021729, BE2022680,
BE2022065-5), Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China
under grants 93K-9, Collaborative Innovation Center of Novel
Software Technology and Industrialization, and US National
Science Foundation (NSF) Awards 2325451, 1931871 and
1915780. Any opinions, findings, conclusions, and recommen-
dations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

Authorized licensed use limited to: University of Central Florida. Downloaded @BUanuary 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

Infura, “What’s ahead for infura in 2022?” 2022. [Online]. Available:
https://blog.infura.io/post/whats-ahead-for-infura-in-2022

——, “How infura helps metamask scale at the speed of web3 growth,”
2022. [Online]. Available: https://www.infura.io/use-cases/developer-s
tories/metamask

MetaMask, “Foxtagger snap: Mapping addresses with user-defined
tags,” 2023. [Online]. Available: https://metamask.io/news/developers/
foxtagger-snap-mapping-addresses- with-user-defined-tags/

M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting in-
telligence from the bitcoin network,” in Financial Cryptography and
Data Security: 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers 18. Springer,
2014, pp. 457-468.

M. Romiti, F. Victor, P. Moreno-Sanchez, P. S. Nordholt, B. Haslhofer,
and M. Maffei, “Cross-layer deanonymization methods in the lightning
protocol,” in Financial Cryptography and Data Security: 25th Interna-
tional Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part 1. Springer, 2021, pp. 187-204.

S. Linoy, N. Stakhanova, and A. Matyukhina, “Exploring ethereum’s
blockchain anonymity using smart contract code attribution,” in 2079
15th International Conference on Network and Service Management
(CNSM). IEEE, 2019, pp. 1-9.

F. Béres, I. A. Seres, A. A. Benczir, and M. Quintyne-Collins,
“Blockchain is watching you: Profiling and deanonymizing ethereum
users,” in 2021 IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPS). IEEE, 2021, pp. 69-78.

T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C.-S. Lui, X. Lin,
and X. Zhang, “Understanding ethereum via graph analysis,” ACM
Transactions on Internet Technology (TOIT), vol. 20, no. 2, pp. 1-32,
2020.

A. Biryukov and S. Tikhomirov, “Deanonymization and linkability of
cryptocurrency transactions based on network analysis,” in 2019 IEEE
European symposium on security and privacy (EuroS&P). 1EEE, 2019,
pp. 172-184.

——, “Transaction clustering using network traffic analysis for bitcoin
and derived blockchains,” in I[EEE INFOCOM 2019-1EEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019, pp. 204-209.

Y. Gao, J. Shi, X. Wang, R. Shi, Z. Yin, and Y. Yang, “Practical
deanonymization attack in ethereum based on p2p network analysis,”
in 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking (ISPA/BDCloud/So-
cialCom/SustainCom). 1EEE, 2021, pp. 1402-1409.

Z. Ling, J. Luo, D. Xu, M. Yang, and X. Fu, “Novel and practical
sdn-based traceback technique for malicious traffic over anonymous
networks,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. 1EEE, 2019, pp. 1180-1188.

M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu, “Subverting
website fingerprinting defenses with robust traffic representation,” in
32nd USENIX Security Symposium (USENIX Security), 2023.

M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network,” in 2020 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 894-909.
A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, 2014,
pp. 15-29.

Infura, “Json-rpc methods,” 2023. [Online]. Available:
//docs.infura.io/networks/ethereum/json-rpc-methods

M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 1135-1156,
2013.

T. Wang, C. Zhao, Q. Yang, S. Zhang, and S. C. Liew, “Ethna: Analyzing
the underlying peer-to-peer network of ethereum blockchain,” IEEE
Transactions on Network Science and Engineering, vol. 8, no. 3, pp.
2131-2146, 2021.

M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized
application identification via encrypted traffic analysis using graph
neural networks,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 2367-2380, 2021.

https:

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

R. Klusman and T. Dijkhuizen, “Deanonymisation in ethereum using
existing methods for bitcoin,” 2018.

A. Biryukov and I. Pustogarov, “Bitcoin over tor isn’t a good idea,”
in 2015 IEEE Symposium on Security and Privacy. 1EEE, 2015, pp.

122-134.
D. Kumar, “Tips to stay anonymous while using metamask;
how secure is metamask?” 2022. [Online]. Available: https:

//coingape.com/blog/how-to-stay-anonymous- while-using-metamask/
K. Li, J. Chen, X. Liu, Y. R. Tang, X. Wang, and X. Luo, “As strong
as its weakest link: How to break blockchain dapps at rpc service.” in
NDSS, 2021.

K. Li, Y. Wang, and Y. Tang, “Deter: Denial of ethereum txpool
services,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 1645-1667.

Z. Cheng, X. Hou, R. Li, Y. Zhou, X. Luo, J. Li, and K. Ren, “Towards a
first step to understand the cryptocurrency stealing attack on ethereum.”
in RAID, vol. 2019, 2019, pp. 47-60.

X. Wang, X. Zha, G. Yu, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and
K. Zheng, “Attack and defence of ethereum remote apis,” in 2018 IEEE
Globecom Workshops (GC Wkshps). 1EEE, 2018, pp. 1-6.

K. Hara, T. Sato, M. Imamura, and K. Omote, “Profiling of malicious
users targeting ethereum’s rpc port using simple honeypots,” in 2020
IEEE International Conference on Blockchain (Blockchain). 1EEE,
2020, pp. 1-8.

Authorized licensed use limited to: University of Central Florida. Downloaded dfUanuary 29,2025 at 12:28:15 UTC from IEEE Xplore. Restrictions apply.

