
Unified View of IoT and CPS Security and Privacy

Lan Luo∗, Christopher Morales-Gonzalez§, Shan Wang†‡, Zhen Ling‡, Xinwen Fu§
∗Anhui University of Technology. Email: Email:lluo@ahut.edu.cn

§University of Massachusetts Lowell. Email: christopher moralesgonzalez@student.uml.edu, xinwen fu@uml.edu
†Hong Kong Polytechnic University. Email: shan-cs.wang@polyu.edu.hk

‡Southeast University. Email: zhenling@seu.edu.cn

Abstract—The concepts of Internet of Things (IoT) and Cyber
Physical Systems (CPS) are closely related to each other. IoT
is often used to refer to small interconnected devices like those
in smart home while CPS often refers to large interconnected
devices like industry machines and smart cars. In this paper, we
present a unified view of IoT and CPS: from the perspective of
network architecture, IoT and CPS are similar given that they
are based on either the OSI model or TCP/IP model. In both
IoT and CPS, networking/communication modules are attached
to original things so that isolated things can be integrated into
cyber space. If needed, actuators can also be integrated with a
thing so as to control the thing. With this unified view, we can
perform risk assessment of an IoT/CPS system from six factors,
hardware, networking, operating system (OS), software, data and
human. To illustrate the use of such risk analysis framework, we
analyze an air quality monitoring network, smart home using
smart plugs and building automation system (BAS). We also
discuss challenges such as cost and secure OS in IoT security.

I. INTRODUCTION

While the definitions of Internet of Things (IoT) and Cyber

Physical Systems (CPSs) may vary, they are converging. Gen-

erally, both systems consist of physical devices with embedded

sensors and/or actuators, perform computations on the data

reported and are linked through networks to automate tasks.

Where they diverge is their primary application areas. IoT is

often used to refer to small interconnected devices like those

in smart home while CPS often refers to large interconnected

devices like industry machines and smart cars.

When it comes to network communications, the underlying

mechanisms of both IoT and CPS networks are quite similar.

Both use the OSI and/or TCP/IP network models. Devices

in IoT networks often utilize IP addresses for communica-

tion within or between IoT networks. CPSs often rely on

wired or non-IP based protocols, often in isolated networks.

Advancements have introduced IP-based communication in

CPSs, exemplified by protocols like KNX/IP, which is a

building automation protocol and enables the old fashioned

KNX communications to be sent over an IP backbone.

A. Internet of Things (IoT)

IoT networks can have objects which can be physical or

even virtual ones. An object shall be addressable. For example

each object can have an IP so that we can communicate with

the object. So the key point here is the interconnected objects,

which can be anything. It can be a humidity and temperature

sensor, a smart plug, a smart camera, and many other things.

Those things generate data, which can be uploaded into the

Fig. 1. Air Quality Monitoring Network

cloud for further processing. In this way, things become

smarter since we can make decision based on the data.

Fig. 1 shows an example IoT system. This is a low-cost

air quality monitoring network [1]. An air quality monitoring

device is connected to a WiFi router and sends air quality

data (PM2.5) to a server, which publishes the data via a web

server and online map, visualizing the air quality at locations

where the air quality devices are deployed. Computers and

smartphones can be used to access the map. The air quality

device itself contains a microcontroller (MCU)—ESP8266—

and an air quality sensor. The MCU reads the air quality sensor

data via UART and sends the data out via its internal WiFi

chip. The thing in this IoT air quality monitoring network

example is the air quality sensor which is connected via UART

to the MCU with WiFi. The MCU is used to read the sensor

and send the data to cyber space via WiFi.

B. Cyber Physical System (CPS)

Fig. 2 shows an example cyber physical system (CPS) in

the form of a smart building. The physical thing is the damper.

The angle of the damper blade can be adjusted to control the

airflow. The damper has a handle, which turns and adjusts

the blade. The handle can be fastened to a damper actuator,

which rotates the handle. The actuator can be connected

to a controller in multiple ways. For example, SIEMENS

DXR2.E12P-102P is a compact room automation station (con-

troller). A damper actuator can be connected to the controller

through a proprietary TX-I/O module for power supply and

communication. The actuator can also be connected to the

controller through the building automation protocol KNX.

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

tin
g,

 N
et

w
or

ki
ng

 a
nd

 C
om

m
un

ica
tio

ns
 (I

CN
C)

 |
 9

79
-8

-3
50

3-
70

99
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

NC
59

89
6.

20
24

.1
05

55
96

6

Fig. 2. Air Quality Monitoring Network

Since KNX is available on the actuator, the actuator with the

integrated damper can form a KNX network with other KNX-

capable building components. DXR2.E12P-102P is basically a

specialized computer and has networking capabilities such as

TCP/IP, BACnet/IP and KNX. It can be connected to a local

area network (LAN). The LAN is normally protected by a

firewall and communicates with the Internet.

A demo of controlling the damper can be found at https://

youtu.be/KOm9banQ86g. We attach an actuator to the damper.

The actuator has I/O modules connecting to a controller, which

can then control the actuator and thus the damper. In this

particular case, the actuator supports the BAS protocol KNX

and allows the actuator plus damper to form a KNX network

with other KNX devices. The controller has the network

connectivity, connecting to the Internet through local network

and firewall. Please refer to [2] for other examples of CPS.

II. UNIFIED VIEW OF IOT AND CPS

A. Unified Network Architecture

We are interested in the cybersecurity of IoT and CPS and

particularly focus on networking and computer systems. From

the perspective of networking, IoT and CPS are similar since

they are based on either the OSI model or TCP/IP model.

An air quality sensor without cyber capability may show

readings on a display attached to the sensor. Now when we

connect a MCU with the WiFi capability to the air quality

sensor (i.e., a thing) via UART, we create a smart air quality

monitoring device, which now has the networking capability

and becomes part of the cyber space. As for the BAS, a damper

without cyber capabilities may be manually controlled. When

we attach an actuator with the networking capability through

its KNX module to the damper (i.e., a thing), we have a smart

damper with the networking capability, which can form a BAS

network through KNX. When the actuator is connected to the

controller, the controller becomes a gateway to the Internet.

In both examples, we add a networking-capable module

and other necessary components to original isolated things

so that these things can connect to a network and we may

communicate and/or control the things remotely. The smart

things can now form networks, which do not necessarily use

TCP/IP and may use particular protocols such as KNX and

BACnet in building automation. The network can get very

complicated depending on the application. For example, in

a smart building application, there are many things such as

Fig. 3. Unified Architecture of IoT and CPS

heating, ventilation, and air conditioning devices. Those things

can be networked together via building automation protocols.

However, if it is not a TCP/IP network, gateways are needed

for the specific network to communicate with the Internet.

Fig. 3 shows the unified view of the IoT and CPS archi-

tecture from the networking perspective. In this architecture,

we have the Internet, firewall, a local area network, controller

and things. Things are connected to the controller via various

I/Os. An I/O may have the networking capability or not. For

example, UART does not have the networking capability while

KNX has the networking capability. If things use network I/O,

these things can form a network on their own. Otherwise,

things can form a network through the controller, which has

the networking capability in general.

B. Difference between IoT and CPS

The difference between CPS and IoT is the applications.

When we talk about CPS, we often talk about industrial

control systems (ICS), smart grid systems, smart cars and

smart buildings. The physical things in those applications are

often large. When we talk about IoT, we talk about smart

plugs, smart bulbs and smart cameras. The physical things in

such applications are usually small. Because of the different

physical things, the communication modules and actuators

added to the physical things can be different. Different ap-

plications may use different hardware, different OSs, software

and programming languages. The networking may use specific

protocol other than the common TCP/IP. An ICS may use the

Modbus or Distributed Network Protocol (DNP3) protocol. A

smart grid may use the Modbus, DNP3 or Inter-Control Center

Protocol (ICCP). Medical devices may use wireless protocol

Bluetooth or ZigBee for convenience of surgical procedures.

Smart cars may use the Controller Area Network (CAN) and

Local Interconnect Network (LIN) to interconnect different

components in the car.

III. RISK ANALYSIS BASED ON UNIFIED VIEW

When we perform risk assessment of an IoT or CPS system,

we can investigate six factors as shown in Fig. 4: hardware,

networking, operating system (OS), software, data and human.

The hardware is the physical thing. Attackers may attack

the hardware I/O of a thing. For example, an appropriate

cable can be attached to the hardware for the purpose of

accessing the firmware of the thing and hacking the system.

For networking, is encryption used for communication? Is

there any authentication? Is the protocol vulnerable? The OS is

Fig. 4. Risk analysis from six factors

Fig. 5. Inside of the air quality monitoring device

a very interesting factor. For many those resource constrained

devices, they may or may not run a real OS like embedded

Linux. A software development kit (SDK) may be provided

by a hardware vendor for programming. Then does the OS or

SDK have vulnerabilities? The software is the user applica-

tion, which may use a SDK for coding. What programming

language is used for coding? Does the software have issues

such as buffer overflow? For data, is flash encryption used

to protect the data on storage media? Humans are often the

weakest link in a system.

We now use the six factors and present a few attacks from

the perspective of unified view including attacks against real-

world air quality monitoring devices, smart plugs and smart

building.

A. Attacks against IoT

We use attacks against air quality monitoring devices to

demonstrate the attacks against IoT. Fig. 5 shows the inside

of the air quality monitoring device.

Hardware attack. When we attach a common smartphone

micro USB cable which supports power supply and communi-

cation to the device, we can dump the flash content including

firmware out of this device, which uses the microcontroller

ESP8266 from Espressif Systems [3]. ESP8266 does not have

any kind of hardware protection. The flash content includes

the WiFi credential.

Networking attack—data pollution attack. To understand

the protocol, we construct a testbed [1]. A laptop is set up as

a WiFi router and installed with a protocol analysis tool called

the mitmproxy, which can capture the passing data from the

sensor to its server. Because the data is not encrypted, we can

analyze all the data and find the air quality monitoring system

architecture, communication protocol, and data format. We

find that the MAC address is used as the identity of the device

and there is no real authentication or other security measures.

Once we understand the protocol, we can perform the data

pollution attack, creating a fake software device and injecting

fake data from the fake device into the victim server. Our

experiments show that we can change the air particle PM2.5

reading dramatically.

B. Attacks against CPS

We use the six factors in Fig. 4 to perform risk analysis of

IoT systems above. We can also use the six factors to perform

risk assessment of a CPS system while we think it is not that

necessary to differentiate IoT and CPS.

Fig. 6 shows a smart building system panel installed by

SIEMENS [4]. The two QXM3 devices with the screens are

temperature and humidity sensors. The two DXR2 devices on

the top right are the building automation controllers, which

collect readings from these two temperature sensors and send

them to the Desigo CC server, a building management station

software program. The Desigo CC server can visualize the lay-

out of BAS components and perform operations if needed. The

Desigo CC uses the BAS protocol BACnet/IP to communicate

with the controllers. We reverse engineer the panel and are able

to know the protocol details. With such information, we can

use the Raspberry Pi on the top left, instead of the Desigo

CC, to communicate with the controllers too. This building

automation system doesn’t have much security.

We purchased a lot of other building automation system

components and attached them to the panel. The bottom

of Fig. 6 shows a damper with an attached actuator, KNX

Pi Hats, KNX power supplies and a power transformer for

the actuator. The KNX power supply provides DC power

while the actuator requires AC power. Therefore, the KNX

power supply is connected to the transformer, which is then

connected to the actuator.

Hardware attack against BAS. In this example attack, we

target the KNX temperate sensor on the panel. We detach the

wire of the temperature sensor from the panel. We then connect

the detached wire to our Raspberry Pi so as to inject data or

commands into the BAS system. Such an attack is realistic

since sensors like the temperature sensor are often deployed

all over a building. How can we actually hook a Pi to the

physical BAS? We have to understand the physical connection.

Our temperature sensor and BAS in this example use the BAS

protocol—KNX—to communicate with each other. As shown

in Fig. 7, we use a particular adapter called KNX Pi head,

which is analogous to a network card, but for KNX. The cables

detached from the temperature sensor are connected to cable

jacks on the KNX Pi Hat. Actually, twisted pair cables are

used to connect the Hat to the BAS and Dupont wires are

used to connect the Hat to the Pi.

To understand the details of the KNX protocol, we de-

veloped a KNX bus dump software tool, which uses the

Fig. 6. Smart Building Testbed

Fig. 7. Man in the middle attack against BAS

combination of the Pi and KNX Pi Hat in Fig. 7 to dump raw

data from twist pair cables. Twisted pair cables that are chained

together can work as a bus connecting many KNX devices

together. We format the dumped data in such a way that we

can import the dump file into Wireshark, which has a KNX

plugin to dissect a telegram, which is the KNX’s protocol data

unit analogous to a packet in the TCP/IP protocol. Wireshark

cannot be used to dump KNX telegrams since Wireshark

works with the TCP/IP network and KNX is not a TCP/IP

protocol. The KNX bus dump tool allows us to look at the

details of telegrams and understand the actual protocol and

data fields. We presented this tool at Blackhat Asia 2022.

False data injection attack. After we understand the

building automation system, the protocol and data fields of

KNX telegrams, we show we can do some damage. We want

to tell the building automation industry to secure their devices

such as temperature, humidity and motion sensors, which may

be exposed to the public and subject to abusers. For example,

somebody may remove those devices, hook their own Pi or

computers to the BAS, and manipulate the BAS.

With the combination of Pi and KNX Pi Hat, we can

deploy a man-in-the-middle attack as shown in Fig. 7 so as

to perform the false data injection attack. One set of Pi and

KNX Pi Hat is connected to the temperature sensor and a

second set is connected to the DXR2 controller. The two Pis

grab KNX telegrams generated at their side, and forward them

Fig. 8. Impact of False Data Injection Attacks

to the other side whenever needed through Ethernet. Since

we already understand the protocol and the data fields of the

communication between the sensor and the controller, we can

actually change the temperature values in telegrams.

Fig. 8 shows the impact of the false data injection attack

in terms of energy cost through simulations. Cooling is

simulated here in Florida, USA. We add a small value,

denoted as bias, to the actual temperature sensor reading.

Fig. 8 shows the extra energy consumption versus the bias.

It can be observed that the total energy waste caused by the

false data injection attack is significant.

Other attacks. We now show a few other attacks against

BAS. We just talked about attacks against KNX, which is

popular in Europe. BACnet/IP is a popular BAS protocol in

North America. Many buildings use insecure BACnet/IP with

not much security. We designed an automatic tool to scan an

IP address and determine if a BACnet device runs at that IP

address. To implement such a tool, we need to understand

the details of the BACnet/IP protocol. Based on the features

of the BACnet/IP, we send the requests to the IP. Based on

the response, we may decide if there is a BACnet/IP device

over there. If yes, we can query the device for BACnet

objects associated with the BACnet device. For example, if

the BACnet/IP device is a controller, many other BAS devices

may be connected to this controller. We can then obtain

detailed information of those BAS devices and control them.

For example, the SIEMENS DRX2.E10PL is a BACnet/IP

device and has an integrated actuator. We are able to rotate

the actuator as shown at https://youtu.be/YUfO8GQILxQ by

sending commands to the DRX2.E10PL. Please note that, the

actuator of the DRX2.E10PL is not connected to a damper. In

this example, we just want to show security is critical to BAS.

If there is no security, once people understand the protocols,

they may control the BAS devices. If the devices are part of a

power plant, the consequence could be disastrous. We really

cannot rely on security-by-obscurity (i.e., hoping hackers do

not know the protocol and network setup) for security.

Software security in a BAS is also critical. BAS devices

are controlled by code and software. We want to understand

if the software of the building automation system devices

is vulnerable to common attacks, such as buffer overflow

and denial of service (DoS) attacks. We performed fuzzing

against popular open source software programs including

knxd, Calimero and Bacnet-stack and found all of them have

software bugs. In fuzzing, we send delicate junk messages
into the target software and see how it behaves [5]. If the
device or the software crashes, then there is a problem. For
example, it could be a buffer overflow vulnerability that caused
the crash. Further investigation of the code can help identify
such a problem.

IV. CHALLENGES IN IOT SECURITY AND PRIVACY

There are two main fields of research in IoT, attack and
defense. Both attack and defense research focuses on the six
factors in Fig. 4.

A. Causes of security issues in IoT

One question we want to ask is what is the root cause of so
many IoT security and privacy issues? Of course, any igno-
rance and incapability of the six factors can cause problems.

IoT hardware. It appears hardware may not be the cause
of IoT security and privacy any more while many people think
so. People may think we do not have appropriate secure chips
for IoT and those chips are too expensive. Those are mis-
conceptions now. There are various low-cost chips designed
for securing IoT. For example, ESP32 microcontrollers from
Espressif Systems support Wi-Fi, Bluetooth, BLE, hardware
crypto acceleration, flash encryption and secure boot, and
are around a couple of US dollars. The ATECC608A from
Microchip Technology Inc. is a crypto co-processor, which ac-
cepts data and performs cryptographic operation on the data. It
is around 50 US cents and supports AES, ECC, HMAC, SHA-
256, RNG (random number generator), and secure key storage.

We have tested the performance of some of those chips
and they are actually pretty good. The ECC key generation
on ESP32 needs about 0.23 second, which is appropriate for
various low cost applications like an air quality monitoring
sensors. Hard real time may not be needed for many IoT
applications. ECC signature generation and verification is
within 0.5 second. The public cryptography algorithms are
often used for key exchange, after which we often use the
symmetrical key cryptography algorithms such as AES for data
encryption and decryption. AES key generation is on a scale
of hundreds of microseconds. AES encryption and decryption
is on a scale of microseconds.

We believe design and ignorance are major causes of poor
IoT security and privacy while hardware may not be the major
issue for emerging IoT devices. Many IoT devices are pushed
to the market without much consideration of security and
privacy design. Training is an issue too since secure coding is
not taught widely in school.

Cost. For large-scale applications like smart buildings and
smart grids, there are so many components. It incurs huge
costs on labor and new devices when we try to innovate them
for the purpose of security. Therefore, one challenge in those
applications is how to mitigate the danger if the physical things
cannot be upgraded or can only be partially innovated.

B. Secure Operating System for IoT

We have been actually looking at how to secure IoT applica-
tions at the level of operating system. IoT application is often
written in C and C++ and such an application is vulnerable to
memory corruption attacks, e.g., buffer overflow attacks. Can
we use traditional address space layout randomization (ASLR)
to fight memory corruption attacks in resource constrained
IoT devices? One challenge is the limited SRAM and flash
in resource constrained IoT devices. For example, Microchip’s
SAML11 microcontroller uses ARM Cortex-M23 CPU, which
runs at up to 48 MHz and has only 64KB Flash and 16KB
SRAM. In Windows, Linux and MacOS, the whole executable
is loaded to a random address in SRAM with ASLR. There
may be no so much RAM in resource constrained IoT devices.
We also do not want to sacrifice much performance given the
limited computing power of those IoT devices.

We have developed a function based ASLR for resource-
constrained IoT systems [6]. The app on the flash is marked
as non-executable through the memory protection unit (MPU).
Now every time a function is called, a MPU hardware excep-
tion will be raised and our particular exception handler will
randomly load the function into the SRAM for execution. Such
function randomization raises the issues of memory manage-
ment and addressing. We have addressed those challenges and
developed a real-world device with decent performance.

Can we develop operating systems for resource constrained
IoT devices incorporating various security measures such as
ASLR and control flow integrity (CFI)? There are various
efforts on secure operating systems [7].

ACKNOWLEDGMENT

This research was supported in part by US National Science
Foundation (NSF) awards 1931871 and 1915780, and US
Department of Energy (DOE) Award DE-EE0009152. Any
opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] L. Luo, Y. Zhang, B. Pearson, Z. Ling, H. Yu, and X. Fu, “On the security
and data integrity of low-cost sensor networks for air quality monitoring,”
Sensors, vol. 18, no. 12, p. 4451, 2018.

[2] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems se-
curity—a survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp.
1802–1831, 2017.

[3] C. Gao, L. Luo, Y. Zhang, B. Pearson, and X. Fu, “Microcontroller based
iot system firmware security: Case studies,” in 2019 IEEE International
Conference on Industrial Internet (ICII). IEEE, 2019, pp. 200–209.

[4] M. Cash, C. Morales-Gonzalez, S. Wang, X. Jin, A. Parlato, J. Zhu,
Q. Z. Sun, and X. Fu, “On false data injection attack against building
automation systems,” in 2023 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2023, pp. 35–41.

[5] B. Pearson, Y. Zhang, C. Zou, and X. Fu, “Fume: Fuzzing message
queuing telemetry transport brokers,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 1699–1708.

[6] L. Luo, X. Shao, Z. Ling, H. Yan, Y. Wei, and X. Fu, “faslr: Function-
based aslr via trustzone-m and mpu for resource-constrained iot systems,”
IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 120–17 135, 2022.

[7] L. Luo, Y. Zhang, C. White, B. Keating, B. Pearson, X. Shao, Z. Ling,
H. Yu, C. Zou, and X. Fu, “On security of trustzone-m-based iot systems,”
IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9683–9699, 2022.

2024 International Conference on Computing, Networking and Communications (ICNC)

499
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2025 at 12:34:38 UTC from IEEE Xplore. Restrictions apply.

