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ABSTRACT
Magnetic particle tracking (MPT) is a recently developed non-invasive measurement technique that has gained popularity for studying dense
particulate or granular flows. This method involves tracking the trajectory of a magnetically labeled particle, the field of which is modeled as a
dipole. The nature of this method allows it to be used in opaque environments, which can be highly beneficial for the measurement of dense
particle dynamics. However, since the magnetic field of the particle used is weak, the signal-to-noise ratio is usually low. The noise from the
measuring devices contaminates the reconstruction of the magnetic tracer’s trajectory. A filter is then needed to reduce the noise in the final
trajectory results. In this work, we present a neural network-based framework for MPT trajectory reconstruction and filtering, which yields
accurate results and operates at very high speed. The reconstruction derived from this framework is compared to the state-of-the-art extended
Kalman filter-based reconstruction.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0183533

I. INTRODUCTION

Particle trajectories provide critical information for the study
of particle dynamics in multiphase or granular flows. Optical-based
particle tracking techniques are state-of-the-art methods.1,2 How-
ever, they require the systems under investigation to be transparent.
Dense particulate flow systems, such as batch mixing systems3 in
chemical, food, and pharmaceutical sectors, and industrial systems,
such as fluidized beds4 and rotating drums,5 usually operate in
opaque environments. The inability of optical-based methods to
be applied to opaque environments has been the driving factor for
developing particle tracking techniques for opaque systems, includ-
ing radioactive particle tracking (RPT),6 positron emission particle
tracking (PEPT),7,8 and magnetic resonance imaging (MRI).9 These
methods have both advantages and drawbacks. For instance, PEPT
is a popular and reliable tracking technique with high accuracy and
time resolution,10 which is vital for studying rapid dynamics.11 It is
often used as a validation tool for theoretical and numerical mod-
els such as the discrete element method (DEM) and computational

fluid dynamics (CFD) in granular systems.12,13 Recently, a machine
learning algorithm was developed to identify and track multiple par-
ticles in PEPT that achieved a spatial resolution of 2 mm.14 Despite
PEPT’s reliability, it does require expensive equipment, and the han-
dling of radioactive materials demands special expertise. On the
other hand, the MRI approach does not rely on radioactive materi-
als, but its temporal resolution is usually insufficient for high-speed
dynamics.15

Magnetic particle tracking (MPT) offers an economic solution
for particle tracking in opaque environments,16,17 as it does not need
any special equipment for radiation safety. It uses a magnetically
labeled particle, some magnetometers, and a computer for data pro-
cessing. WithMPT, the presence of magnetic poles makes it possible
to obtain the tracer’s rotational information,18 which is difficult to
achieve using other techniques. This is vital for understanding the
dynamics governing granular motion.19,20 The MPT method was
introduced in the field of medicine to examine the gastrointesti-
nal tract without using x rays.21 Since then, numerous methods
have been developed to solve the MPT problem and reconstruct a
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tracer’s trajectory for a wide range of applications. Analytical solu-
tions are developed to locate a magnetic tracer in real time,21 which
is useful in areas such as targeted drug delivery and classification of
buried mines.22 An early analytical solution to MPT was a simple
formula that was based on the tracer’s magnetic field and its gradi-
ents.23 Despite this method’s simplicity, a special sensing device was
required that can measure both the magnetic field and its gradients.
Improved analytical solutions include the scalar triangulation and
ranging (STAR) method22 and its derivatives,24–26 which address
the issue of the asphericity error encountered in the STAR method.
A limitation of these analytical methods is that they require gra-
dients of the field and depend on a specific sensor arrangement.
Other quick and robust analytical or semi-algebraic solutions that
do not rely on the gradients of magnetic field are proposed in
Refs. 27 and 28. Although fast in processing data, these algebraic
and analytical methods usually possess no filtering or optimization
functions that can mitigate the fluctuation caused by measurement
uncertainty.

Optimization algorithms have been developed for MPT to
achieve accurate results for studying complex physics in fluidized
beds,29,30 stirred media,31 and rotating equipment.32,33 The formula-
tion of loss functions in these algorithms18,34 enables an arbitrary
arrangement of sensors, which is not generally seen in analytical
methods. With this arrangement, an array of sensors can be used
to obtain field data with good signal-to-noise ratio (SNR), allow-
ing for highly accurate reconstruction of particle trajectories.29,35

However, finding a global minimum with these algorithms can be
time consuming and, in some cases, may not even be possible if
the initialization is poor. Noisy reconstruction from the optimiza-
tion algorithm can be smoothed using the Kalman filter.36 Köhler37
applied this methodology to study fuel mixing in a fluidized bed,
revealing the presence of three fuel segregation regimes for the
operating ranges investigated. In fact, the particle trajectory recon-
struction can be modeled as a state-space problem and solved the
using extended Kalman filter (EKF), which has been shown to
achieve the same accuracy as optimization methods but with greater
processing speed.38

The performance of a reconstruction method also depends on
its ability to reduce noise. Traditional reconstruction and filtering
methods, such as EKF, usually assume that noise has certain mathe-
matical features (e.g., noise is at high frequency or follows Gaussian
distribution), which cannot address certain systematic errors in a
specific sensor setup. Thanks to the development of neural networks
(NN), a new kind of filter has emerged. The NN-based methods,
such as the convolutional neural network (CNN) and recurrent neu-
ral network (RNN), have the capability to learn specific patterns in a
sequence of signal and are increasingly recognized in the field of sig-
nal processing, e.g., filtering electroencephalogram (EEG) signals,39
electrocardiogram (ECG) signals,40,41 radar signals,42 and speech
recognition and separation.43,44 An early work in employing NN as
a filter integrates wavelet filters into it to remove high-frequency
noise in ECG signals.45 Since then, NNs have shown capability in
filtering noise containingmultiple characteristic frequencies, includ-
ing drifting noise that can be difficult to filter using methods such
as wavelet.46 NNs can also learn the sparse information present
in the time–frequency decomposition of a noisy signal and filter
out band-limited, low-frequency, and cyclic noise.47 In addition,

NN-based filters have demonstrated the ability to preserve phase
information in the input signal while reducing mutual interference
noise, making them highly valuable in multiple radar sensor sys-
tems for autonomous driving.48 Specialized RNN networks, such as
the Gated Recurrent Units (GRU) and Long Short-Term Memory
(LSTM), have the advantage to recognize and remember long-term
correlations in a time sequence, which is critical to denoise the
sequence.28,49–53

In this work, we present NN-based particle tracking and
denoising algorithms to reconstruct the trajectory of a magnetic
tracer in MPT. Our approach utilizes a multi-layer perceptron
(MLP) network for the initial reconstruction of the tracer’s posi-
tion. MLP networks are known as “universal approximator” due to
their ability to learn any mapping function.54,55 In our work, the
MLP network learns the non-linear mapping betweenmagnetic field
signals and the tracer’s trajectory. In addition, we employ a GRU-
based RNN to reduce the noise in the MLP-reconstructed tra-
jectories. Similarly, we constructed an MLP-GRU framework for
orientation reconstruction. Using separate networks was inspired by
the study of Wu et al.28 They demonstrated the capability of using
separate networks for denoising position and orientation of a single
magnetic tracer for simulated datasets.

This paper is organized as follows: Sec. II outlines the princi-
ples underlying the MPT method. Subsequently, Sec. III provides
insights into the experimental setup. Section IV focuses on three
reconstruction methods employed in our study: image-based, EKF-
based, and NN-based, along with parametric studies conducted to
select crucial parameters for NN training. Finally, Sec. V delves into
the performance of the NN framework and its comparison with the
state-of-the-art EKF method.

II. MAGNETIC DIPOLE AND MPT PRINCIPLE
To perform MPT, a small magnetic source moving in a flow

field and a few magnetic sensors (magnetometers) are required, as
shown in Fig. 1. The magnetic field can be modeled using the dipole
equation,

B(r, r0,m) =
μ0
4π
[3n ⋅ (m ⋅ n) −m]

∣r − r0∣3
, (1)

where, r0 is the location of a magnetometer, r is the magnet’s posi-
tion, n is the normal vector in the direction r – r0,m is the magnetic
moment, and μ0 is permeability of air. The magnetometers placed in
a known configuration record the field strength Di,

Di = Bi(r, r0i,m) ⋅ Si, (2)

where B is determined using [Eq. (1)], Si is the orientation of the ith
(i = 1, 2, . . ., N) sensor in the lab frame of reference, andN is the total
number of sensors. It is necessary to know beforehand the location
and orientation of the sensors relative to the reference coordinate
system. The task ofMPT is to determine the position and orientation
of the magnetic source, constituting its trajectory, at every instant,
according to the field strength measured by the magnetometers. For
this purpose, we developed a framework based on neural network
algorithms and compared them to the EKF method.
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FIG. 1. Schematics of MPT.

III. EXPERIMENTAL SETUP
The experimental setup, as shown in Fig. 2(a), consisted of a

circular tube through which air flowed upward into the domain of
interest (a cubical glass enclosure with a mesh on top), 4 three-
channel magnetometers (constituting 12 measurement channels),
two high-speed cameras, and a spherical ball with a magnet located
at its center. In the following text, we refer to this ball as the tracer.
65 cfm (cubic feet/min) of air from a compressor flowed through a
vertical tube of diameter 9.5 cm and height 90 cm. The upward flow
suspended the tracer in the air and caused it tomove randomly in the
glass enclosure, which was further amplified by its collisions with the
walls. The enclosure had dimensions of 8 × 8 × 8 cm3 with a mesh
fixed on top to keep the tracer inside the enclosure.

We placed two cameras 90 cm from the center of the experi-
mental setup to record the 3Dmovement of the tracer in the domain.
They were high-speed cameras, NAC HX-5, with Tokina 100 mm
F2.8 lenses. The cameras were set to capture motion at a frame rate
of 500 Hz with a resolution of 1088 × 1032 pixel2. The stereo angle
between the cameras was 90○, allowing for the easy projection of

FIG. 2. (a) Experiment setup and (b) 3D printed tracer with the magnet at its center.

TABLE I. Location of sensors in the lab frame of reference.

x (m) y (m) z (m)

Sensor No. 1 0.045 0.045 0.01
Sensor No. 2 −0.045 −0.045 0.01
Sensor No. 3 −0.045 0.045 0.01
Sensor No. 4 0.045 −0.045 0.01

pixels to the lab frame of reference. This setup enabled the image-
based 3D reconstruction of trajectories, which was independent of
the MPT reconstruction. As discussed later, images captured by the
cameras were processed to obtain the magnet’s position and orien-
tation at every instant, and these results served as the ground truth
for MPT calibration or validation.

Four 3-axis fluxgate Bartington M612 magnetometers were
placed in a circular configuration surrounding the enclosure. The
locations of the magnetometers were known in the lab frame of
reference and are presented in Table I. Each magnetometer has
3 channels and recorded the field strength in 3 directions, total-
ing 12 sensor readings at any instant. The magnetometers recorded
the magnetic field strength of the moving magnetic tracer, which
was then used as input to the EKF and NN algorithms for trajec-
tory reconstruction. These magnetometers have a sensing range of
(−90, 90 μT) and a maximum sampling rate of 3000 Hz. Finally,
the cameras and magnetometers were synchronized and set to a
sampling rate of 500 Hz.

In our work, a magnet was positioned at the center of a
3D-printed sphere (printed using polylactic acid) with a diameter
of 2 cm, serving as the magnetic tracer. This cylindrical magnet had
a moment of 0.0125 Am2 and was made of neodymium rare earth
with dimensions of 1/16 × 1/32 in. To determine the magnet’s ori-
entation at any given moment, six markers with different shapes
(“O,” “–,” “Y,” “+,” “☀,” and “∗”) were printed on the tracer’s
surface. The dimensions of the markers, in terms of circumscribed
circles, were 6 mm in diameter with 1 mm outward protrusion.
The 3D design of the tracer with the markers attached is shown in
Fig. 2(b). Markers “O” and “–” indicated the north and south poles
of the magnet, respectively. The magnetic moment aligned with the
direction of marker “O.” The remaining four markers (“Y,” “+,”
“☀,” and “∗”) were evenly distributed around the equator of the
tracer. This arrangement allowed us to employ vector cross product
to determine the orientation of the tracer at any instant.

IV. RECONSTRUCTION METHODS
Formulation of the reconstruction methods: image, EKF, and

NN-based, are described in this section. Reconstruction obtained the
images that served as the ground truth in our work, and the EKF
reconstruction served as an indicator to gauge the performance of
the NN framework through direct result comparison.

A. Image reconstruction
The images captured by the cameras were processed to obtain

the position and orientation of the magnetic tracer in three dimen-
sions. Two sets of images at every instant, one from each cam-
era, allowed for 3D reconstruction. The results obtained from the
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images were used to supervise the training of the neural networks.
The image processing performed in MATLAB R2022a involved the
following steps:

1. Background subtraction: the background was recorded before
we introduced the ball into the domain. During image pro-
cessing, we subtracted this background from the raw image.
For example, Fig. 3(a) shows a raw image obtained by one of
the cameras. Once the background is removed, only the tracer
is retained in the image, as shown in Fig. 3(b).

2. Binarization: after background subtraction, the image matrix
was then converted to a binary matrix of 0s and 1s represent-
ing dark and bright regions in the image, respectively. This
was done using an in-built MATLAB adaptive thresholding
function that chooses threshold values based on the localmean
intensity in each pixel’s neighborhood. Intensity values below
the threshold were changed to 0 and above threshold to 1.

3. Center identification: at any instant, determining the true
position of the magnet meant locating the center of the tracer
in the image. For this, we used an in-built function called
“imfindcircles” in MATLAB to detect the center. This func-
tion is based on the circular Hough transform, which detects
the outline of a circle and subsequently derives its center and
radius.

4. Orientation vector determination: as the first step of orien-
tation reconstruction, the image matrix of the tracer in the
binary image [in Fig. 3(b)] was inverted (changing 0s to 1s and
1s to 0s). This resulted in the markers becoming bright and
other regions inside the tracer becoming dark [as shown in
Fig. 3(c)], allowing us to determine the centroid of the mark-
ers (using the center of mass method in the Matlab function,
“regionprops”). Note that the circular outline of the tracer is
added in Fig. 3(c) for representation only. This outline was
not present in image processing. Consequently, the magnet’s
orientation vector was obtained by one of the following three
ways:

● The simplest case was that theNorth Pole (represented
by marker “O”) was present in the camera’s field of
view [Fig. 3(c)]. For such cases, the orientation vector
was obtained by determining the vector from the cen-
ter of the tracer to the center of the marker. This case
is shown in Fig. 3(c), where the center of the ball is

shown as the red asterisk, and the center of the marker
“O” is shown as the blue asterisk, along with the vector
between them.

● If the South Pole (represented by the marker “–”) was
in the field of view, the orientation vector was obtained
by simply taking the vector from the center of the
marker to the center of the ball.

● If neither “O” nor “-” was in the camera’s field of view,
we made use of the markers that were present on the
equator of the tracer (“Y,” “+,” “☀,” and “∗”). They
were perpendicular to themoment of the magnet. One
marker was selected from each image (totaling to two
markers from two images at any instant in time). Both
the markers selected were the closest to the center of
the tracer in the image. Subsequently, we could obtain
two vectors perpendicular to the north direction of the
magnet. The cross product of these vectors gave us the
orientation vector.

B. EKF reconstruction
Tao et al.38 demonstrated that the MPT problem can be framed

as a state-space model and solved using EKF. We adopted the
same formulation in this study. We represent the state (unknown)
variables as Xk = ( rk

mk
), where r denotes the tracer’s position and

m represents its moment at the current time step k. Equation (3)
presents the kinematic equation, which models the tracer’s current
position. This equation relies on the tracer’s position and velocity at
the previous time step k − 1, denoted by rk−1 and uk−1, respectively,

rk = rk−1 + uk−1Δt +wr
k. (3)

The moment of the magnetic tracer mk was calculated using a
quaternion as shown in Eq. (4). The quaternion q, which signifies
the tracer’s rotation, is expressed by Eq. (5), where Ω represents
the magnitude of the tracer’s angular velocity and ω = (ωx,ωy,ωz)
denotes the unit vector along the axis of rotation. Both tracer
velocity, u, and quaternion, q, can be estimated using historical data,

mk = qk−1mk−1q
−1
k−1 +w

m
k , (4)

FIG. 3. Steps in the processing of images. (a) Sample image from the experimental dataset, (b) background subtraction, and (c) processed image showing the vector from
the tracer center to the marker center.
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q = (cos ΩΔt
2

,ωx sin
ΩΔt
2

,ωy sin
ΩΔt
2

,ωz sin
ΩΔt
2
). (5)

In Eqs. (3) and (4), wr
k and wm

k are independent Gaussian variables
that depict the unknown perturbations in the tracer’s position and
orientation. These uncertainty variables are assumed to possess a
zero mean, with their covariance represented by Qk.

Henceforth, we derive the forwardmodel F of the state variables
Xk by combining Eqs. (3) and (4),

Xk = (
rk
mk
) = F(Xk−1) +wk, (6)

where

F(Xk−1) = (
rk−1 + uk−1 Δt
qk−1mk−1q

−1
k−1
) (7)

and

wk = (
wr
k

wm
k
).

The measurements acquired by the ith sensor at time step k are
described by Eq. (8). Here, D represents the theoretical, noise-free
measurement of the magnetic field strength, as defined in Eq. (2). In
addition, vk represents another independent variable that accounts
for uncertainties in themeasurements, assumed to have a zeromean.
The covariance matrix for vk is denoted by Rk,

Oi,k = Di(Xk)(1 + vk),
Di = B(Xk) ⋅ Si,

(8)

Equations (6) and (8) collectively constitute the state-space model.
Within the EKF procedure, determining the conditional probability
of the state variable Xk, given the measurements Ok, is necessary.
We denote this conditional probability as P(Xk∣Ok). In this model,
P(Xk∣Ok) is approximated by a Gaussian distribution that can be
completely characterized by its mean and covariance.

Determining the state variables at time step k involves two
steps, prediction and correction, as follows:

a. In the prediction step, a prediction of the mean and covariance
of the state variables given by X−k and P−k is made using Eq. (9).
In this equation, Xk−1 and Pk−1 represent the mean and covari-
ance obtained at time step k − 1, respectively, and Fk denotes the
Jacobian of the model function F evaluated at Xk−1,

X−k = F(Xk−1),
P−k = FkPk−1FT

k +Qk,
(9)

where

Fk =
∂F
∂X
(Xk−1).

b. In the correction step, the predicted state and covariance
X−k and P−k are updated to Xk and Pk using the measurement
Ok. This update is given by the Kalman formula as follows:

Xk = X−k + KK(Ok −D(X−k )),
Pk = (I − KkHk)P−k ,

(10)

where

Kk = P−k HT
k (HkP

−

k H
T
k +VkRkV

T
k )
−1
,

Hk =
∂D
∂X
(X−k ),

Vk =
∂Ok

∂vk
.

Here, Hk and Vk are Jacobian matrices, and Kk is the standard EKF
correction matrix (for example, see Refs. 38 and 56 for more details).

C. Neural networks construction and training
We used PyTorch 2.0.0 to develop the NN model, and the net-

works were trained on the Nvidia 2080 Graphics Processing Unit
(GPU). Two sets of networks were developed, one for position and
another for orientation reconstruction. Each set contains an MLP
reconstruction network and an RNN denoiser.

1. Reconstruction network
The reconstruction of a trajectory aims to find a mapping

from the measurements to the particle position and orientation.
MLP network, a universal approximator, provides a straightforward
model. Therefore, our initial reconstruction is performed usingMLP
networks.

a. Dataset and preprocessing. The time series dataset in our
work has the form D = (x, y), where x represents the sensor read-
ings and y denotes the image-based trajectory reconstruction [Eq.
(11)], which is used as ground truth for network training,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 ⋅ ⋅ ⋅ xn1 ⋅ ⋅ ⋅ x3N1

⋮
. . . ⋮

x1T ⋅ ⋅ ⋅ xnT ⋅ ⋅ ⋅ x3NT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

rx,1, ry,1, rz,1
⋮
rx,T , ry,T , rz,T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

for position network,

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θx,1, θy,1, θz,1
⋮
θx,T , θy,T , θz,T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

for orientation network,

(11)

where xnt means the signal from the nth magnetic sensor at time t.
T means the total time steps, and 3N is the total number of sensor
readings. The entries in y are the position (rx, ry, rz) or orientation
(θx, θy, θz) at a certain time. The position vectors r are measured
relative to the center of the experimental domain. The orienta-
tion vectors θ are unit vectors. The complete dataset consisted of
T = 280 000 datapoints. Half of them, i.e., 140 000 datapoints, were
used for developing networks. Once trained, the networks were
applied on the remaining 140 000 datapoints in the dataset to obtain
the trajectory.
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Before the sensor data were fed into the reconstruction network
for training, we preprocessed and normalized them in the following
steps:

1. Remove background Earth field: during the data collection
process, sensor readings were recorded prior to the intro-
duction of the tracer into the experimental domain. These
recorded readings are labeled as xearth, which are subsequently
removed from the real measurements [Eq. (12)],

x ← (x − xearth) ∗η, (12)

xearth is the mean of xearth. Factor η = 1000/89 converts the
recorded sensor readings into Volts to field strength in
micro-Tesla.

2. Normalization: to ensure that the sensor readings have the
same order of magnitude, they were scaled to have zero mean
and unit standard deviation using Eq. (13a). Here, x and
μx are the mean and standard deviation calculated over each
sensor reading in the dataset, respectively. Similarly, y was
scaled to zero mean and unit standard deviation [Eq. (13b)]
using scaling factors y and μy computed in the same manner,

Xn ← xn − xn
μnx

, . (13a)

Yk ← yk − yk

μky
. (13b)

Given the preprocessed dataset, the problem of reconstruction can
be posed as finding the non-linear mapping function between the
normalized sensor readings X and ground truth Y .

b. Network architecture. An MLP network consists of an input
layer, an output layer, and hidden layers between them. An element
in the hidden layer (known as the neuron) takes the inputs x from
the input layer (or previous layer of neurons), sums them up with
weights w and a bias b [Eq. (14a)], and finally generates an output y
using a non-linear rectified linear unit (ReLU) function [Eq. (14b)],

z =
P

∑
i=1

wixi + b, (14a)

y = ReLU(z). (14b)

Here, P in Eq. (14a) represents the number of neurons in the preced-
ing layer. The ReLU function is ReLU(z) = z if z ≥ 0 and ReLU(z)
= 0 if z < 0. It introduces nonlinearity in the network. The outputs
y can be the final output of the network or an input to the following
layers. The parameters w and b are determined in the training pro-
cess explained in the following. A network with proper parameters
can approximate any continuous function.54,55

c. Network training process. The network is trained by adap-
tively adjusting the weights w and biases b to minimize a loss
function that measures the difference between the ground truth
and the network predictions. The loss function in our network

is the averaged L2 norm [Eq. (15)], i.e., the mean squared error
(MSE) between the network predictions Ypred and ground truth
(image-based results) Y ,

MSEw,b(Y ,Ypred) =
∑T

t=1 (Y − Ypred)
2

T
. (15)

As aforementioned, the position and orientation reconstructions
use different networks. In the position network, Y is the normal-
ized (rx, ry, rz), and in the orientation network, Y is (θx, θy, θz).
The training processes are the same for both networks. It includes
forward pass, backward pass, and parameter (weights and biases)
update. In the forward pass, the network takes the inputs, calcu-
lates the predictions using Eqs. (14a) and (14b), and evaluates the
error using Eq. (15). Backward pass involves determining the gra-
dient of the loss with respect to all the weights and biases in the
network. In theMLP network, this process is called backpropagation
(BP). The gradients are used to adjust the network parameters. The
adjustments are done using an optimization procedure called adap-
tive moment estimation (ADAM). The adjusted parameters produce
a lower MSE. These adjustments are controlled using a learning rate
(LR) to ensure stable training. A high LR speeds up the training pro-
cess at the cost of accuracy. A low LRmay lead to better accuracy but
at the expense of slow network training. In our work, the network is
trained until it starts to overfit the training dataset. Overfitting can
be determined by evaluating the network on a separate dataset, called
validation dataset, during each iteration of training. Generally, a net-
work is overfit when it fits the training dataset with high accuracy but
performs poorly on the validation dataset.

2. Denoiser network
Trajectories reconstructed with the MLP networks are fur-

ther denoised with GRU-based RNNs. We term the GRU networks
as denoiser networks. Their architecture and training process are
described in this section.

a. Dataset. We concatenated the MLP-reconstructed trajecto-
ries x′ with the image-reconstructed trajectories to form the dataset
D′ = (x′, y′). The image-reconstructed y′ were used to determine
the error in the network predictions and supervise the training. Note
that y′ here is the same as the normalized signal Y in Eq. (13b), but
we use a new symbol to indicate that they are used for the denoiser
network. For position denoising, y′ is the normalized (rx, ry, rz), and
for orientation, y′ is (θx, θy, θz). The dataset for the denoiser net-
works contained 140 000 datapoints, of which 125 000 were used for
training, and the remaining 15 000 for fine-tuning and validating the
denoiser networks.

b. Gated recurrent unit (GRU) network architecture. Different
fromMLP, the hidden layers of an RNN can store information from
the past in the form of a hidden state. This allows an RNN to cap-
ture temporal dependencies in a time series. In a general RNN, the
inputs at current time xt along with the hidden state from the previ-
ous time step ht−1 are used to update the hidden state ht [Eq. (16)].
Subsequently a prediction yt is made using Eq. (17),

ht = f (Whht−1,Wxxt , bh, bx), (16)

yt =Woht + bo. (17)
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Here, h, W, and b represent the hidden state, network weights, and
biases, respectively. Subscripts t, h, x, and o pertain to the time step,
hidden state, input, and output, respectively. The function f is non-
linear. Different fs are used in different RNN models.

GRU network is an enhanced version of RNN. A GRU network
uses gating structures to control the flow of information. The specific
algorithm is listed in Eqs. (18)–(21). The update gate zt determines
how much information in the past should be used at time step
t [Eq. (18)]. The matrices Wxz and Whz contain the weight para-
meters. On the other hand, the reset gate rt determines how much
information in the previous time step matters at the current time
step, t [Eq. (19)]. If the information stored in the hidden state
ht−1 is uncorrelated to the input at the current time step, the reset
gate becomes zero and erases the contribution from ht−1. This is
shown in Eq. (20) in the form of Hadamard product of the reset gate
rt and hidden state ht−1, in the determination of a candidate hidden
state h̃t . A linear interpolation of the candidate state h̃t and previ-
ous state ht−1 determines the current hidden state [Eq. (21)]. This
interpolation is the key component for long term dependencies in
the time series data. If the update gate zt is close to one, the hidden
state update is dependent more on the current input and the recent
past, whereas if the update gate is close to zero, then the hidden state
is not updated,

zt = σ(Wxzxt +Whzht−1 + bz), (18)

rt = σ(Wxrxt +Whrht−1 + br), (19)

h̃t = tanh (Wxh̃xt +Whh̃(rt ⋅ ht−1) + bh̃), (20)

ht = (1 − zt)ht−1 + zt h̃t. (21)

Subscripts r, z, and h̃ pertain to reset gate, update gate, and candi-
date hidden state, respectively; σ is the non-linear sigmoid function
σ(x) = 1/(1 + e−x); and tanh is the hyperbolic tangent function. The
final output of the network is given by Eq. (17).

c. Network training process. The training process of GRU
requires a more complex loss function and a backpropagation
depending on history. The loss function employed in the denoiser
networks considers the smoothness of the trajectory. It includes two
terms [Eq. (22)]: the error of direct network predictions, MSEpred
[Eq. (15)], and that of smoothness,MSEgrad [Eq. (23)]. The smooth-
ness is defined as the finite difference (gradient) between successive
predictions [Eq. (24)]. In addition, ẏ and ẏpred denote the gradi-
ents of the ground truth and network’s predictions, respectively.
The smoothness of the tracer’s position can be simply understood as
velocity (displacement per time step). The parameter λ in Eq. (22) is
the weighting factor controlling the significance ofMSEgrad. It needs
to be optimized, as specified later. This formulation of loss function
aids the minimization of error in the network’s predictions and the
error in the gradients of the predictions simultaneously during the
training process. The loss at each time step is evaluated and summed
up for all time steps,

Loss =MSEpred + λ ∗MSEgrad, (22)

MSEgrad =MSE(ẏ, ẏpred), (23)

ẏt = yt+1 − yt. (24)

During the backpropagation, GRU must consider the hidden states.
The gradients of loss function with respect to the weights and biases
pertaining to the hidden states and inputs at each time step are eval-
uated, in what is called the backpropagation through time (BPTT).
The process of BPTT can become demanding in terms of computa-
tion and memory when training the network with a single and long
sequence of data.

Truncated BPTT is often employed to reduce the computa-
tional and memory cost by reducing the number of time steps for
which the loss is backpropagated.57,58 This may not always be practi-
cal as crucial information might be available in the time steps that
are truncated. Instead in our work, to manage the computational
and memory demands, we divided the training dataset into shorter
sequences and fed batches of the sequences to the denoiser networks
as input, similar to the method in Ref. 59.

D. Network parametric study
In this section, we outline the methodology to optimize the

trajectory reconstruction and denoising networks. The hyperparam-
eters employed in the MLP and denoiser networks were determined
through heuristic methods and are presented in Table II. Our focus
here is to determine the ideal dataset size for effective training of
the reconstruction networks, pinpoint the optimal input sequence
length for the denoiser networks to minimize prediction errors, and
explore the impact of λ in [Eq. (22)] to account for errors in gradi-
ents of denoiser network’s predictions. It is important to note that
we evaluated the network performance on validation sets using the
MSE metric [Eq. (15)].

1. Training dataset size vs reconstruction
network performance

First, we focused on the optimal number of datapoints for effec-
tive MLP network training. We conducted a series of trainings,
gradually increasing the size of the training dataset from 25 000 to
150 000 datapoints. To assess the performance of the networks, we
employed a validation set, comprising 15 000 datapoints. It is worth
noting that all the training datasets underwent normalization using
the mean and standard deviation derived from the largest dataset,
which contained 150 000 points. This allowed us tomakemeaningful
comparison of errors from networks trained with different dataset
sizes.

TABLE II. Hyperparameters of reconstruction and denoiser networks.

Network settings Reconstruction Denoiser

Weight decay 1 × 10−5 1 × 10−6
Learning rate (LR) 0.001 0.001
Layers 5 3
Neurons 50 10
Batches 10 5-6
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FIG. 4. (a) Effect of the training dataset size on reconstruction networks, (b) effect of the input sequence length on denoiser networks, and (c) effect of the gradient weighting
factor on the position denoiser network.

Figure 4(a) shows the errors of position and orientation net-
works with different training datasets. As the size of the training data
increases, the error in the predictions decreases as expected, indicat-
ing an improving performance. As a side note, the position result
[blue line shown in Fig. 4(a)] has fluctuations (at 50 000 training
size), which is common in NN training 60 and is probably due to the
randomness of data shuffling. No considerable improvement is seen
from 125 000 to 150 000 datapoints. Consequently, we opted to uti-
lize the networks trained with 125 000 datapoints for the trajectory
reconstruction.

2. Input sequence length vs denoiser
network performance

The training dataset for GRU consisted of 125 000 datapoints.
Using the entire training data as a large single input sequence for the
GRU is computationally very demanding and may not necessarily
improve the network performance. Hence, we conducted a study to
assess the performance of the GRU network as a function of increas-
ing input sequence lengths: 100, 1000, 5000, 10 000, 50 000, and
100 000 datapoints. Their performance was assessed on a validation
set containing 15 000 datapoints. Figure 4(b) shows the error in the
predictions of position and orientation denoising. The error in net-
work predictions exhibited a “U” shape with the minimum located
at 10 000. The network performance declines for input sequences
larger than 10 000 points. This can be attributed to the fact that
as the input sequence length increases, the network must form
and hold memory in its computational unit for longer sequences.
This may not always be advantageous in terms of the network’s
performance.59,61,62

3. Gradient weightage vs denoiser
network performance

The loss function in denoiser networks includes a parameter
λ, controlling the weight of trajectory gradients or smoothness
[Eq. (22)]. Here, we use the results from position denoiser network
to demonstrate the effect of λ. Six different values, ranging from
0 to 0.5, were selected for this investigation. The validation sets used
in this study were the same as those used in the previous study
regarding input sequence length. The MSE in predictions and MSE
in gradients are depicted using blue and orange curves shown in

Fig. 4(c), respectively. As the weightage of gradients in the loss func-
tion increases, the error in the gradients of network’s predictions
decreases, but concurrently, the error in the predictions increases.
In other words, a large λ value results in a smoother trajectory with
lower position accuracy. The MSEgrad reaches a plateau for λ > 0.1,
while the prediction error becomes worse. The crossing point of
MSEpred and MSEgrad is a good option for both low prediction error
and high smoothness. Therefore, we choose λ = 0.05 in the modified
loss function.

To summarize the training process in this framework, we uti-
lized a dataset comprising a total of 280 000 datapoints. Of these,
125 000 datapoints were dedicated to training the reconstruction
networks. An additional 15 000 datapoints were set aside for fine-
tuning the network and validation purposes. Subsequently, the
trained networks were leveraged to reconstruct the remaining 140
000 datapoints. The reconstructed trajectories along with their cor-
responding image-reconstructed counterparts were employed to
train the denoiser networks. Of those, 15 000 points were used to
fine-tune and validate the denoiser networks. The remaining 125 000
points were segmented into sequences of 10 000 datapoints, serving
as input for the denoiser networks. The loss function was designed to
take into account the error in the gradients of network’s prediction.
The weightage of the gradient error was set to be 0.05. Finally, we
evaluated this framework on an independent testing set consisting
of 5000 points, the results of which are detailed in Sec V.

TABLE III. Computation time for training the networks.

Position Orientation

Networks MLP GRU MLP GRU

Time (s)/epoch 0.022 14 0.022 14
No. of epochs 210 000 1100 7 000 4 755
Total time (s) 4 620 15 400 154 66 570
Total training time (s) 20 020 66 724

Total training time (h) ∼5.5 ∼18.5
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FIG. 5. (a) Training plot of position reconstruction network, (b) training plot of the position denoiser network, (c) training plot of the orientation reconstruction network, and (d)
training plot of the orientation denoiser network.

V. RESULTS AND DISCUSSION
In this section, we present the results obtained from testing our

NN framework on an independent dataset. The training process of
the position and orientation networks is shown in Fig. 5, showcasing
the error in network predictions as a function of epochs (or itera-
tions) during training for both training and validation datasets. It is
worth noting that all the networks were trained until they exhibited
initial signs of overfitting the training data.

Table III presents the time required for training these networks.
Notably, the reconstruction networks completed an epoch (or itera-
tion) in ∼0.022 s, while the denoiser networks required significantly
more time, i.e., around 14 s/epoch. In total, the position networks
finished training in ∼5.5 h, with the orientation networks demand-
ing much more time at 18.5 h. This slower training pace (i.e., high
number of epochs) can be attributed in part to a low LR of 0.001.
Despite the extended training times, the trained networks exhibited
remarkable speeds in processing the data. Testing on an independent
dataset comprising 5000 points, we employed the “process_time_ns”
function from the “time” package in Python to precisely measure the
time consumption. The combined testing time for both the position
and orientation networks on the independent dataset is presented in
Table IV. The processing speed of the reconstruction networks was
less than 0.02 ms/point. On the other hand, both position and orien-
tation denoiser networks required 1.75 s each to process the testing
dataset, totaling to just 3.5 s/5000 points or 0.7 ms/point.

Figures 6 and 7 show sample trajectories from the testing
dataset reconstructed using image-, EKF-, and NN-based meth-
ods. Figure 6 shows the tracer’s position (rx, ry, rz) over time,
with position vectors relative to the experimental domain’s center.

TABLE IV. Computation time for testing the networks.

Networks MLP GRU

Time (ms/point) ≤0.02 0.7

Meanwhile, Fig. 7 shows the tracer’s orientation in the x, y, and
z directions (θx, θy, θz) with time, represented as the components
of a unit vector. Upon observing these figures, it becomes evident
that the NN reconstruction closely aligns with the results obtained
from EKF and image reconstruction methods, indicating a strong
comparative performance.

To evaluate the uncertainties δ, in EKF and NN-based recon-
structions, we calculated the mean absolute error (MAE) between
their predictions and image-based reconstruction,

δr = ∑
T
t=1 ∣rt − rimage,t ∣

T
,

δθ =
∑T

t=1 ∣θt − θimage,t ∣
T

,
(25)

where r and θ are the 3D position and orientation vectors of the
magnetic tracer, respectively, t indicates the current time step, and
T is the total time steps. In addition, δr and δθ represent the uncer-
tainty in reconstruction of the tracer’s position and orientation,
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FIG. 6. (a) Reconstructed x position, (b) reconstructed y position, and (c) reconstructed z position.

FIG. 7. (a) Orientation of the tracer in x direction, (b) orientation of the tracer in y direction, and (c) orientation of the tracer in z direction.

respectively. In addition, we also determined the uncertainty in the
gradients of the trajectories given by

δṙ = ∑
T−1
t=1 ∣ṙt − ṙimage,t ∣

T − 1 ,

δθ̇ =
∑T−1

t=1 ∣θ̇t − θ̇image,t ∣
T − 1 ,

(26)

where ṙ and θ̇ are the gradients of position and orientation of
the magnetic tracer, respectively. They are calculated using forward
finite difference [Eq. (24)]. A comparison between the uncertainty
in EKF and NN-based reconstruction gives us an insight into how
the NN framework performs relative to the state-of-the-art EKF
method. Table V presents this comparison. In addition, uncertainty
in the position was normalized by the dimensions of the experimen-
tal domain (80 mm in each direction), whereas uncertainty in the
orientation of the tracer was converted to degrees. These are denoted
as normalized position error and orientation error (deg), presented
in Table VI. Note that the EKF noise in this study is slightly larger
compared to that of our previous work in Ref. 38. This is due to the
higher electromagnetic interference caused by the electric air pump.

From Tables V and VI, we find the following:

(a) Normalized uncertainty in position was 1.25% of the domain
size in the EKF approach, while it was 1.4% for our NN-
based approach. The EKF method has a slightly better position
reconstruction. We attribute the higher uncertainty of the NN
method to the fact that this method considers the smoothness

TABLE V. Comparison of uncertainties in EKF and NN-based reconstruction.

Method δr (m) δṙ (m) δθ (rad) δθ̇ (rad)

EKF 0.001 3.6 × 10−4 0.049 0.022
NN 0.0011 3.4 × 10−4 0.042 0.025

TABLE VI. Comparison of normalized position error (%) and orientation error (deg).

Method δr (%) δθ

EKF 1.25 2.8○

NN 1.4 2.4○

of the trajectory through the application of λ in [Eq. (22)],
which compromises the position accuracy.

(b) Uncertainty in EKF-reconstructed orientation was 2.8○,
whereas it was 2.4○ in NN-reconstructed orientation. The latter
method is better.

(c) The position gradient δṙ results suggest that the NNmodel has
a lower uncertainty.

The MPT method aims to measure the velocity and orientation
of a particle in an opaque environment, which are important to
study granular dynamics. The above-mentioned results show that
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the NN model did slightly better in reconstructing particle velocity
and orientation.

VI. CONCLUSION
In this study, we introduced an innovative approach that

employed neural networks to reconstruct a tracer’s trajectory based
on the magnetic field strength data. We developed two distinct sets
of neural networks: one dedicated to reconstructing the tracer’s posi-
tion and the other focused on reconstructing its orientation. Each set
consisted of a combination of an MLP network for the initial recon-
struction and a GRU-based RNN for denoising the MLP results. The
training process for both the position and orientation networks was
completed in a day. Once trained, the networks processed the test-
ing dataset at speeds significantly higher than the sensor sampling
rate (which was 500 Hz) in the validation experiment. This feature
allows for the real-time reconstruction of MPT trajectories at a sam-
pling rate of up to 1400 Hz (on a computer with Nvidia 2080). This
aspect is particularly valuable in applications demanding live moni-
toring of tracer particles, where immediate and accurate tracking is
essential.

We showed that the NN method with systematically chosen
parameters can reconstruct particle trajectories. The NN results are
comparable with the state-of-the-art EKF reconstruction. Moreover,
our neural network framework guarantees excellent performance
when the reconstruction problem is well-posed, i.e., the number
of sensors is larger than the degree of freedom of the particle.
Compared to traditional methods, NN-based models have another
advantage that they can recognize the pattern of biased noise and
reduce it accordingly.

The current NN framework can only reconstruct a single par-
ticle trajectory. To extend its capabilities to multi-particle tracking
systems, adjustments are necessary: the output neuron vector in the
networks should be modified as a concatenation of multiple parti-
cle states. Meanwhile, the uniqueness of the output vector should
be assured as the permutation of particles will result in various
output vectors that represent the same states of multiple particles.
We can solve this by specifying the order of the particles, such as
ranking them according to momentum strength. It is also worth
noting that our data-driven NN-based approach prefers interpola-
tion rather than extrapolation, that is, a significant alteration in the
sensor positions necessitates re-training and testing of the networks.
For example, to track a particle in a much larger system, we need
to use more sensors and the network needs re-training. In addition,
the signal-to-noise ratio is usually low in a large setup. A magnetic
shield should be used to improve the data quality.
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