

1 **Geochemical evidence of drying during the 4.2 ka event in sediment cores from the**
2 **Yucatán Peninsula, Mexico**

3 Derek K. Gibson¹, Jonathan Obrist-Farner², Alex Correa-Metrio³, Alejandra Rodriguez-
4 Abaunza^{4,5}, Carlos Castañeda-Posadas⁶

5

6 ¹. School of Earth Systems and Sustainability, Southern Illinois University, Carbondale, IL, USA
7 62901

8 ². Department of Earth Sciences and Engineering, Missouri University of Science and
9 Technology, Rolla, MO, USA 65409

10 ³. Instituto de Geociencias, Universidad Nacional Autónoma de México, Querétaro, MX 76230

11 ⁴. Department of Earth and Environmental Sciences, Indiana University Indianapolis,
12 Indianapolis, IN, USA 46202

13 ⁵. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cd.
14 de México, MX 04510

15 ⁶. Laboratorio de Paleobiología, Herbario y Jardín Botánico Universitario, Ecocampus-
16 Valsequillo, Benemérita Universidad Autónoma de Puebla, Puebla, MX 72960

17

18 **Highlights**

19 • Proxy data indicate dry conditions in lowland Mesoamerica during the 4.2 ka event
20 • Yucatán hydroclimate records indicate regionally coherent drying ca. 3.8 to 4.5 ka
21 • ENSO may have contributed to widespread drying during the end of the mid-Holocene

22

23

24 **Abstract**

25

26 Tropical hydroclimate variability during the Middle and Late Holocene was investigated
27 using geochemical indicators of local-scale precipitation and evaporation preserved in sediment
28 cores from two sites in the Mexican Yucatán Peninsula. Scanning X-Ray fluorescence
29 spectroscopy data show generally decreasing precipitation trends during the Early and Middle
30 Holocene. During the transition between the Middle and Late Holocene, geochemical evidence
31 of reduced watershed erosion and increased evaporation indicate that a centennial-scale drying
32 event impacted the region between 4.3 and 4.0 ka (kilo-anum; thousand years before present).
33 These findings suggest that the 4.2 ka drying event, which has been previously recorded in
34 Europe, Asia, and North and South America, also impacted the northern Neotropics. A
35 comparison between our data and existing regional hydroclimate records suggests that dry
36 conditions during the 4.2 ka event were coherent across western Central America. The timing of
37 these regionally dry conditions coincided with a reduction in zonal sea surface temperature
38 gradients in the tropical Pacific Ocean and a consequent mean-state increase in the frequency of
39 El Niño events, suggesting that linkages between Pacific Ocean-atmosphere dynamics played a
40 significant role in the regional drying that occurred during that time. These data provide new
41 support for a Central American expression of the 4.2 ka event.

42

43 **Key words**

44

45 Holocene; Mesoamerica; Geochemistry; Paleoclimatology; Hydroclimate

46

47 **1. Introduction**

48

49 The transition from the middle to the Late Holocene was characterized by an anomalous
50 drying event that has been identified in sediment (Booth et al., 2005; Arz et al., 2006; Nakamura
51 et al., 2016), speleothem (Zhang et al., 2018), and ice core (Thompson et al., 2002) records. This
52 event, known as the “4.2 ka event,” has been recorded between 4.3 and 3.8 ka (kilo-anum;
53 thousand years before present) around the world (Bini et al., 2019) and has been implicated in
54 the societal collapse of many preindustrial societies, particularly across East Asia and the Levant
55 (Liu and Feng, 2012; Meller et al., 2015). Because of the widespread evidence of this event in
56 the geologic record, 4.2 ka was officially recognized as the stratigraphic marker between the
57 Middle and Late Holocene (Toth and Aronson, 2019; Shankar, 2021). Despite numerous records
58 of the 4.2 ka event from study sites across a broad range of geographic settings, the primary
59 drivers of widespread drying during this interval are still widely debated (Walker et al., 2012;
60 Toth and Aronson, 2019).

61 While previous work has linked mean-state hydroclimate changes during the 4.2 ka event
62 to climatic variability associated with the El Niño-Southern Oscillation (ENSO) (Li et al., 2018;
63 Marchant and Hooghiemstra, 2004), a full understanding of the synoptic origins and spatial
64 extent of the 4.2 ka event have been hindered by a paucity of records from northern tropical
65 America and the Southern Hemisphere (Railsback et al., 2018), with the former being of
66 particular importance due to ENSO’s influence on the hydroclimate of tropical America (Durán-
67 Quesada et al., 2017). In particular, study sites that record this event in the Western Hemisphere
68 have thus far been primarily confined to high latitude regions of Canada, the United States, and
69 the southern Neotropics (Booth et al., 2005; Ohlendorf et al., 2014). To evaluate the global

70 expression of the 4.2 ka event and better understand the potential ocean-atmosphere drivers of
71 hydroclimate variability during that time, additional records from the northern Neotropics are
72 necessary.

73 To address this need, we present an ~8,000-year record of hydroclimatic variability
74 developed from sediment cores recovered from two sites in the Yucatán Peninsula of Mexico.
75 Geochemical indicators of evaporation and environmental change in these watersheds are
76 compared with other hydroclimate records that span the same interval to assess the consistency
77 of regional hydrologic variability during the 4.2 ka event. Together, these datasets are
78 synthesized with Holocene records of synoptic scale ocean-atmosphere processes to provide
79 context regarding the possible driving mechanisms and spatial extent of global hydroclimate
80 change during the middle and Late Holocene.

81

82 **2. Study region**

83

84 *2.1 Modern climatology of the Yucatán Peninsula*

85 Our study sites are located in the Mexican Yucatán Peninsula between 17° 48' to 21° 35'
86 N and 86° 48' to 92° 27' W. Average near-surface air temperature in the region ranges between
87 ~24° C during the winter and ~28° C during the late spring and early summer, with an annual
88 average of ~26° C (Fig. 1, B and C; Pérez et al., 2011). The peninsula is characterized by a
89 precipitation gradient from ~600 mm/yr in the northwest to ~2500 mm/yr in the southeast (de la
90 Barreda et al., 2020). Across the region, most of the precipitation is in the form of summer and
91 early autumn convective rainstorms, driven by the northerly migration of the Inter-tropical
92 Convergence Zone (ITCZ) and intense heating and consequent easterly moisture flux from the

93 North Atlantic Warm Pool (Amador et al., 2006; Curtis, 2013; Sáenz et al., 2023). Notably, the
94 Mexican Yucatán Peninsula does not experience a strong midsummer drought, unlike many
95 other regions across Central America (Magaña et al., 1999). During winter, the southerly
96 migration of the ITCZ and expansion of the Bermuda high pressure system decreases convection
97 and increases atmospheric subsidence, resulting in decreased rainfall (de la Barreda et al., 2020).

98 Over multiannual to decadal timescales, precipitation across the Yucatán Peninsula is
99 further modulated by combined ocean-atmosphere phenomena such as ENSO and the North
100 Atlantic Oscillation (NAO) (Durán-Quesada et al., 2020; Obrist-Farner et al., 2023). In this
101 region, positive ENSO cycles are characterized by reduced precipitation due to tropospheric
102 warming generated by increased convection in the eastern tropical Pacific Ocean, which weakens
103 the Atlantic component of the ITCZ (Giannini et al., 2001; Martinez et al., 2020). However,
104 positive ENSO conditions increase tropical Atlantic sea-surface temperatures (SSTs), which
105 increase moisture flux and consequent precipitation following an El Niño event. As a result, the
106 initial phase of El Niño across the Yucatán Peninsula is anomalously dry, while the latter stages
107 are comparatively wet (Giannini et al., 2001). Despite increased precipitation during the latter
108 stages, the overall signal recorded across the Yucatán Peninsula during an El Niño event is that
109 of reduced precipitation, due to the very dry conditions during the early phase of El Niño
110 development (de la Barreda et al., 2020).

111 During the Late Holocene and through the present, precipitation responses in some
112 regions of the Yucatán Peninsula are generally antiphased with the NAO signal, with +NAO
113 conditions associated with reduced rainfall and vice versa (Bhattacharya et al., 2017; Gibson et
114 al., 2024). Under +NAO conditions, the Caribbean Low-Level Jet is strengthened and driven to
115 the south by an expanded North Atlantic Subtropical High pressure system, which cools tropical

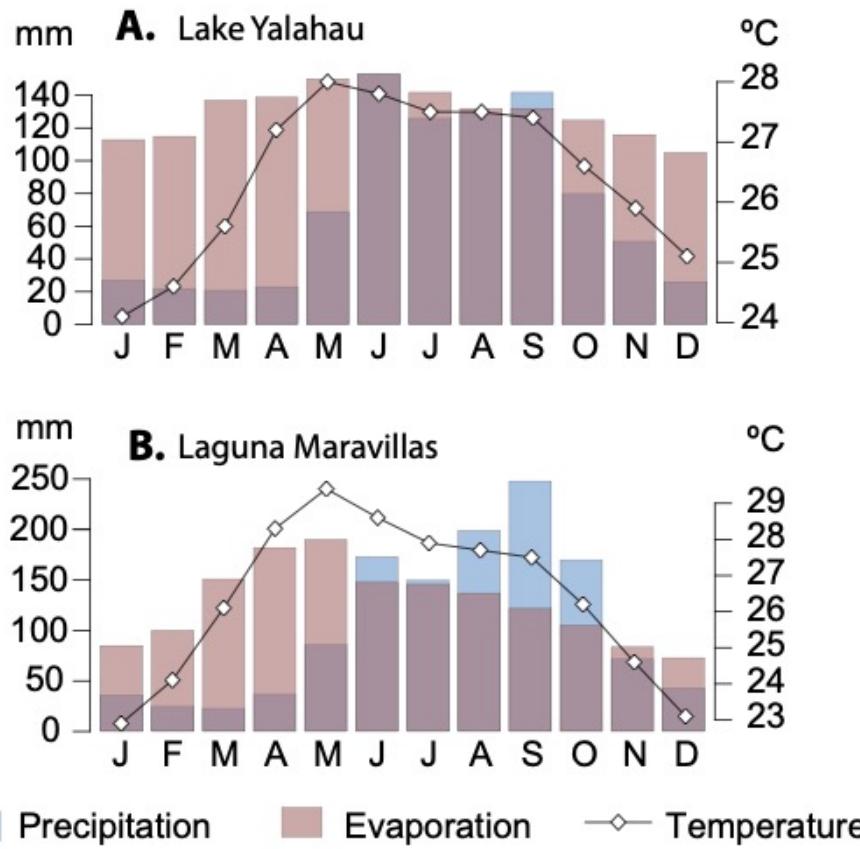
116 Atlantic SSTs and reduces moisture flux from the Caribbean Sea to Central America (Wang,
117 2007; Anderson et al., 2019). NAO oscillations occur over daily to monthly time scales (Wanner
118 et al., 2001); however, long-term shifts in the mean-state of the NAO also occur on multi-annual
119 and decadal scales (Joyce et al., 2000).

120

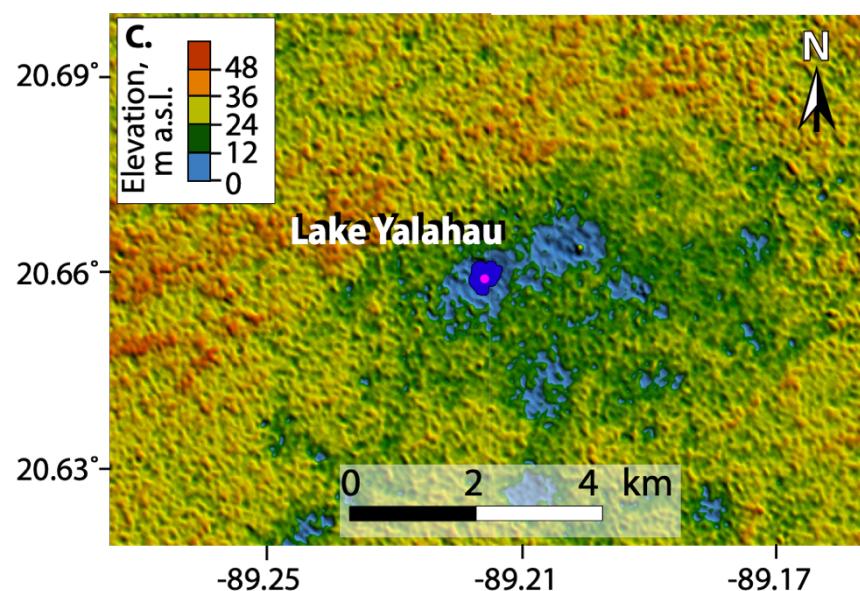
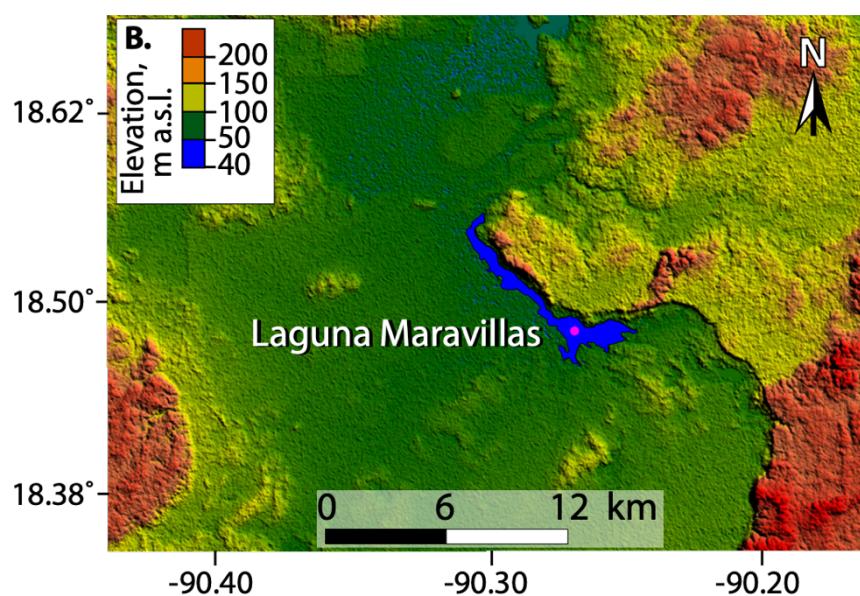
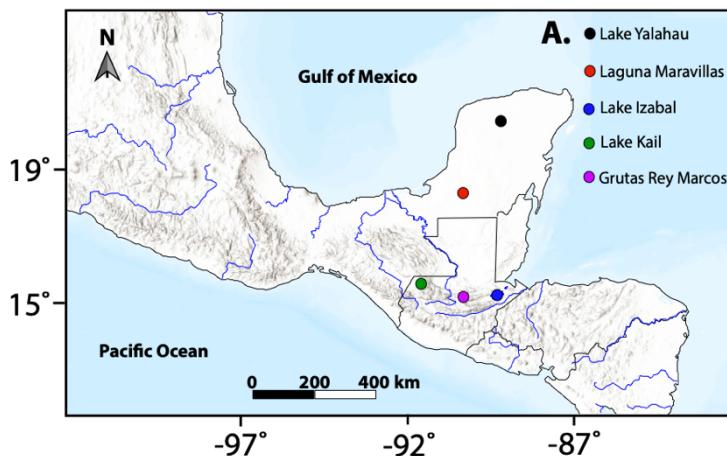
121 *2.2 Lake Yalahau*

122 Lake Yalahau ($20^{\circ}39'25.25''$ N, $89^{\circ}12'59.89''$ W; 2 m above sea level; Fig. 2) is located in
123 the northwestern Yucatán Peninsula, in the Mexican state of Yucatán. It is the largest lake in the
124 northern Yucatán Peninsula, with a surface area of 0.25 km^2 . Watershed topography at Lake
125 Yalahau is characterized by low relief and very little topographic variability, with elevations
126 ranging from 2 to 50 m above sea level (Fig. 2 C). The lake is one of the many cenotes that exist
127 across the northern Yucatán Peninsula, which were formed by sinkholes that developed in the
128 karstic bedrock and subsequently filled with water as sea levels rose during the Early Holocene
129 (Milliken et al., 2008; Rodriguez-Abaunza and Correa-Metrio, 2023). Typical of other cenotes in
130 the region, the Lake Yalahau basin has steeply sloped littoral zones and a generally flat bottom.
131 Water column depth was determined by depth measurements across the profundal zone, and
132 ranged from 9 to 12 m. While there are no surface inlets or outflows from Lake Yalahau, lake
133 level is maintained via a connection with the local water table, resulting in generally consistent
134 lake volume and levels through time, regardless of changes in precipitation.

135 Lake Yalahau is located near the driest region of the Yucatán Peninsula, with the nearest
136 meteorological station indicating a mean annual precipitation of 840 mm (data from 1986 to
137 2020, Servicio Meteorológico Nacional, 2024a; Fig 1A). The relatively low precipitation made


138 Lake Yalahau a valuable freshwater resource for local Maya communities, the populations of
139 which reached significant sizes between ~4.8 to 1 ka (Dunning et al., 2013).

140




141 *2.3 Laguna Maravillas*

142 Laguna Maravillas ($18^{\circ}29'36.49''$ N, $90^{\circ}16'25.55''$ W; 48 m above sea level; Fig. 2) is a
143 small, shallow lake located in the southwestern Yucatán Peninsula in the Mexican state of
144 Campeche. The littoral zone is less steep than at Lake Yalahau and contains abundant aquatic
145 plants. Laguna Maravillas has a surface area of 9.2 km^2 . Profundal depths were determined by
146 depth measurements around the lake basin and ranged from 0.75 to 2.1 m. The lake is situated in
147 an alluvial plain with generally low relief (surface elevation ranges from 40 to 200 m above sea
148 level; Fig. 2 B), characterized by numerous small streams and floodplains. However, the Laguna
149 Maravillas basin is not connected to any surficial inlets or outflows. As a result, the lake behaves
150 as a hydrologically closed basin and experiences large amplitude year-to-year variability in lake
151 level and volume, which are driven by the local balance of precipitation to evaporation. The
152 carbonate bedrock and the warm, humid climate have led to the development of mature karst
153 throughout the region, which has created an undulating landscape of karst depressions, many of
154 which hold surface water in the form of lakes and wetlands (Marín-Stillman et al., 2004).

155 According to the nearest meteorological station, mean annual precipitation at the site is 1210
156 mm/yr, ~70% of which is delivered during the summer rainy season (data from 1958 to 2020,
157 Servicio Meteorológico Nacional, 2024b; Fig 1B). The vegetation surrounding the lake is
158 composed mainly of medium and low semi-evergreen tropical forest. However, anthropogenic
159 land use has disturbed much of the natural primary forests in the region (Torrescano-Valle and
160 Islebe, 2015).

163 **Fig. 1.** Climographs showing average annual precipitation, evaporation, and temperature for **A.**
164 Lake Yalahau and **B.** Laguna Maravillas (Servicio Meteorológico Nacional, 2024a; Servicio
165 Meteorológico Nacional, 2024b).

168 **Fig. 2. A.** Regional map of the study area, showing the locations of Lake Yalahau and Laguna
169 Maravillas and other paleoclimate records referenced herein. Panels **B.** and **C.** show the local
170 topography surrounding Laguna Maravillas and Lake Yalahau, respectively. Sediment coring
171 locations are marked by red dots.

172

173 **3. Methods**

174

175 *3.1 Sediment core recovery*

176 Sediment cores were recovered in from Laguna Maravillas in 2022 and Lake Yalahau in
177 2023 using a modified piston corer (Colinvaux et al., 1999), hand-pushed from a floating
178 platform. In both lakes, two adjacent and overlapping cores were recovered from the deepest
179 measured point to ensure complete core recovery. At Lake Yalahau, a separate piston corer,
180 designed to capture the sediment-water interface was used to collect the uppermost, water-
181 saturated sediments. These unconsolidated sediments were extruded vertically in the field,
182 sectioned at 2.0-cm intervals, and transferred into labeled Whirl-Pak® bags, while the
183 consolidated core sections from both sites were transported to Missouri University of Science
184 and Technology and kept at ~4° C until analysis.

185

186 *3.2 Age control*

187 Age control for Laguna Maravillas was established via radiocarbon accelerator mass
188 spectroscopy (AMS ^{14}C) of detrital charcoal preserved in the cores. Macroscopic charcoal
189 samples and terrestrial leaf material in the sediment cores were identified in-situ and removed
190 with forceps, then transferred into glass vials with deionized water and shipped to the Lawrence
191 Livermore National Laboratory for $^{14}\text{C}/^{13}\text{C}/^{12}\text{C}$ analysis (Table 1). The age model for Lake

192 Yalahau was created with two radiocarbon dates, performed on detrital charcoal by the Beta
193 Analytic Testing Laboratory (Table S1), and eight previously determined radiocarbon-based age-
194 depth pairs from sediment cores collected in 2017 (core PYA17; Table S2). Equivalent depths
195 were correlated between the 2017 and 2023 cores via geochemical stratigraphy (Fig. 3; Table
196 S3). For these geochemical correlations, variability through time in the abundance of Sr was used
197 because the large-amplitude changes in Sr at Lake Yalahau resulted in easily identifiable peaks
198 in both records. The similar variability in Sr between the two cores allowed us to determine
199 which depths in the 2023 core were equivalent to depths in the 2017 core (Fig. 3). Age models
200 were created using the R package BCHRON (Haslett and Parnell, 2008), which calibrated the
201 radiocarbon ages using the IntCal20 calibration curve (Reimer et al., 2020).

202

203 **Table 1:** Age-depth relationships used to construct the Laguna Maravillas age model.

Depth	Uncalibrated yr BP	Calibrated yr BP	Error	Material Dated	Calibration
Surface	-72	N/A	0	N/A	N/A
41	170	182	30	Charcoal	IntCal20
71.5	235	290.5	35	Charcoal	IntCal20
141.5	3015	3188	35	Charcoal	IntCal20
180	3830	4230.5	35	Charcoal	IntCal20
316	5060	5814	35	Charcoal	IntCal20
349	6530	7464	35	Charcoal	IntCal20
412	6605	7474	35	Charcoal	IntCal20
462	7290	8097.5	40	Leaf	IntCal20

204

205 **Fig 3. A.** A lithological comparison between composite sediment cores recovered from Lake
206 Yalahau in 2023 (Yal23; Table S1) and 2017 (PYA17; Table S2). Calibrated radiocarbon dates
207 obtained from the 2017 core are represented by red squares, while two new radiocarbon dates
208 obtained from the 2023 core are represented by blue circles. Geochronological tie points were
209 correlated via geochemical stratigraphy (black dotted lines). Panels **B.** and **C.** show time series of

210 variability in bulk Sr through time in the 2017 and 2023 cores, respectively, with red dotted lines
211 showing the tie points used to create the age model used in this study.

212

213 *3.3 Geochemistry*

214 X-ray fluorescence (XRF) spectroscopy was performed using an Itrax XRF core scanner
215 at the University of Minnesota-Duluth Large Lakes Observatory (Laguna Maravillas) and the
216 Oregon State University Marine and Geology Repository (Lake Yalahau) to measure the
217 elemental compositions of the sediment cores. Elemental abundances – measured in counts per
218 second (cps) of element-specific fluorescent X-ray energies – were recorded at a 0.3 (Lake
219 Yalahau) and 0.5 cm (Laguna Maravillas) resolution, using a Cr source tube at 30 kV and 55
220 mA, with a 15-second dwell time. Raw elemental concentration data were reprocessed to
221 optimize peak fitting using QSpec 8.6.0 software. To account for potential bias introduced by
222 asymmetry in the raw data, elemental ratio values were log-transformed prior to analyses.

223

224 *3.4 Loss on ignition*

225 Total organic matter (TOM) and total carbonate material (TC) were calculated for both
226 cores by measuring mass loss during iterative sediment combustion. For each core,
227 approximately 1 cm³ of sediment was subsampled at a 10 cm resolution, oven-dried overnight at
228 60° C, then combusted in a muffle furnace at 550° C for 4 hours and 1000° C for two hours. The
229 subsamples were weighed between each of the above steps and the mass differences were
230 recorded. The mass lost during combustion at 550° C represented the amount of TOM, while the
231 mass lost during combustion at 1000° C represented the amount of TC (Dean, 1974; Heiri et al.,
232 2001).

233

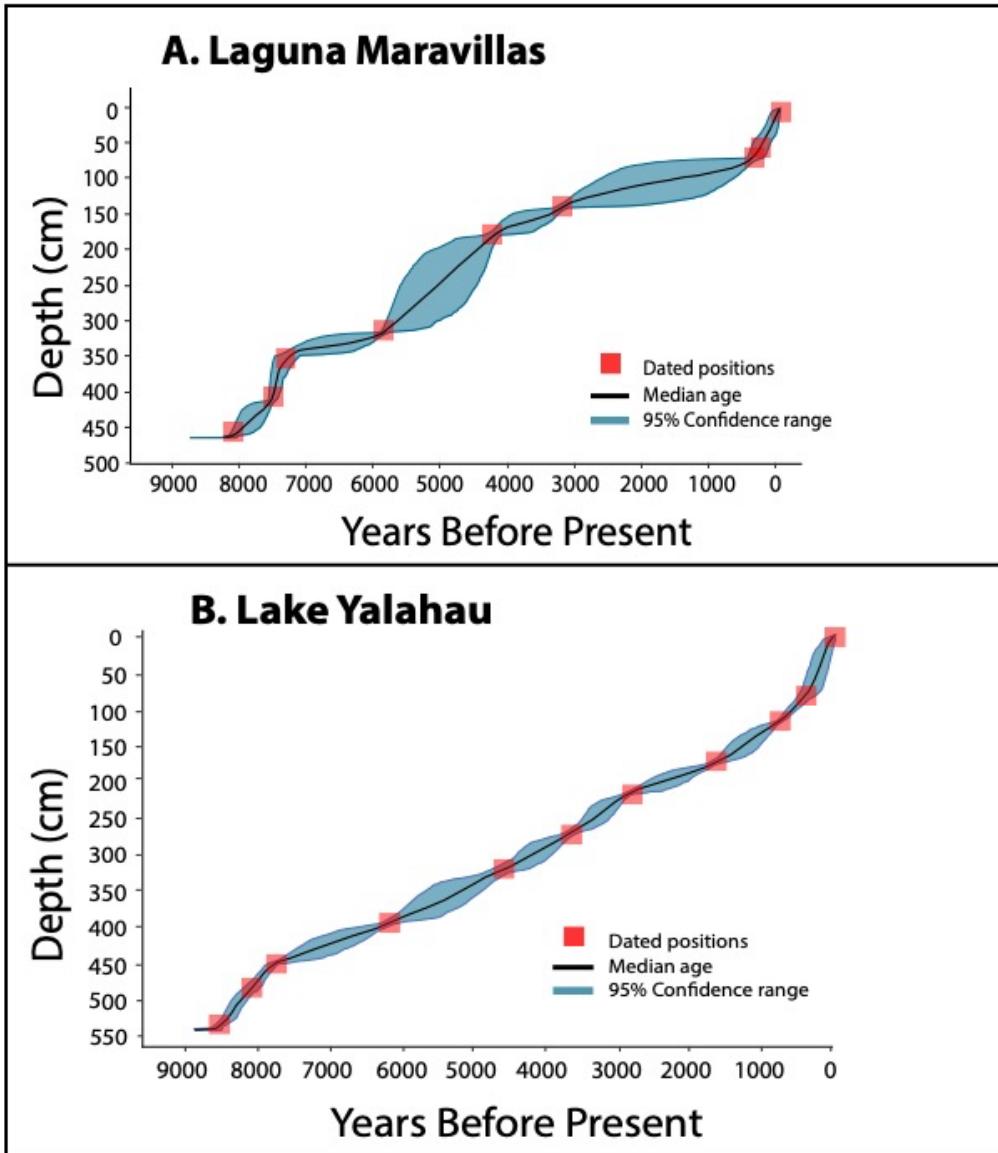
234 *3.5 Statistical analysis*

235 Principal component analysis (PCA) of the XRF geochemical data was performed to
236 reduce the dimensionality of the dataset and characterize relationships between concentrations of
237 individual elements (Jolliffe, 1986). The PCA was based on standardized elemental abundances to
238 homogenize the dimensions of the dataset, thus taking the units of all elements to standard
239 deviations. The first two statistically significant principal components (PC1 and PC2) were used
240 to explore correlations among elemental abundances because they are orthogonal, linear
241 combinations of the elements contained in the original dataset (Jolliffe, 1986). Thus, in the plane
242 defined by PC1 and PC2, angles between vectors associated with each element represent
243 correlations among them. Whereas acute and obtuse angles represent positive and negative
244 correlations, respectively, near-right angles indicate independence.

245

246 **4. Results**

247


248 *4.1 Geochronology and core lithology*

249 The 509 cm Maravillas sediment core spans from 8.7 ka to the present (Fig. 4 A). The
250 deepest stratigraphic unit of the core, spanning 509 to 480 cm, represents the period between 8.7
251 and 8.4 ka. This unit is characterized by very dense, mottled brown and gray clay. Between 480
252 and 340 cm (8.46 to 6.38 ka), the sediments transition to a homogeneous and massive unit
253 composed primarily of brown silt and clay. Organic matter content increases above this depth,
254 resulting in a stratigraphic unit characterized by dark brown clay containing macroscopic woody
255 plant debris and detrital charcoal between 340 and 240 cm (6.4 to 4.5 ka). The unit spanning 240

256 to 120 cm (4.5 to 2.3 ka) is composed of black silt and clay and abundant aquatic plant material.
257 Between 120 and 48 cm (2.3 to 0.3 ka), the sediments are characterized by mottled gray and tan
258 silt and fine sand, with abundant intact gastropod shells near the top of the unit. The uppermost
259 48 cm – spanning 0.8 ka to the present – is composed of black silt and clay and contains oxidized
260 Fe-rich nodules throughout.

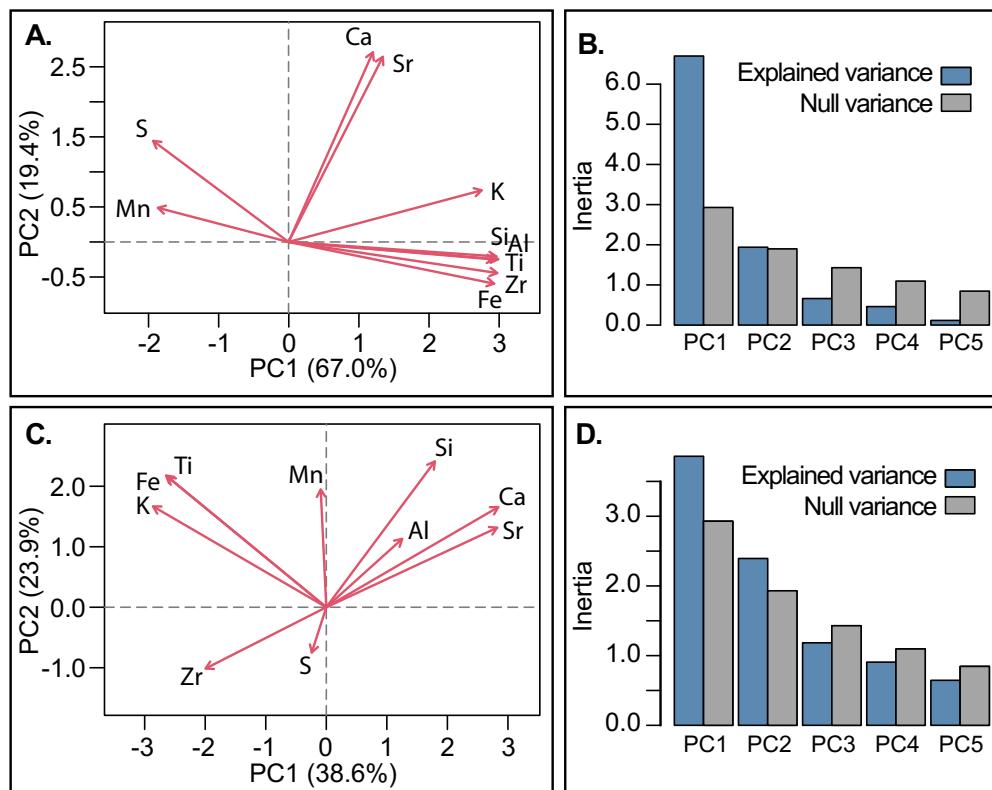
261 The 540 cm Yalahau sediment core spans from 8.4 ka to the present (Fig. 4 B). The
262 deepest stratigraphic unit of the core, from 540 to 468 cm, spans from 8.4 to 6.5 ka and is
263 composed of dark brown, peaty sediment intercalated with macroscopic woody debris and plant
264 material. Between 468 and 187 cm (6.4 to 1.1 ka), the sediments are characterized by laminae
265 made up of alternating dark and light clay. Above 187 cm (1.1 ka), the sediments transition to a
266 homogeneous and massive unit composed primarily of brown silt and clay that persists until 12
267 cm (-10 years before present). Between 12 cm and the sediment-water interface – sediments
268 deposited during the past few decades – the sediments are homogenous and water-saturated.

269

270

271 **Fig. 4.** Age models for **A.** Laguna Maravillas and **B.** Lake Yalahau. The median calibrated age-
 272 depth relationships, which were used for interpolating and plotting the data used in this study, are
 273 represented by the black line. The 95% confidence interval for these age-depth relationships is
 274 shaded in blue.

275


276 4.2 XRF geochemistry

277 For this study, we focused on element concentrations that have been previously
278 demonstrated to be indicators of precipitation at other Mesoamerican sites (e.g., Duarte et al.,
279 2021) and ratios between terrigenous and authigenic elements, which have been shown to
280 indicate the degree of local evaporation (e.g., Gibson et al., 2024) (Fig. S1). At Laguna
281 Maravillas, the first principal component (PC1) explains 67% of the variance in the XRF dataset.
282 Elements commonly associated with terrestrial sources (e.g., Fe, Ti, K, and Zr) are positively
283 correlated with PC1 (Fig. 5 A) and PC1 scores are generally antiphased with the ratio of Ca to Zr
284 (Ca/Zr) (Fig. 6, A and B). Between 8.3 ka and 5.1 ka, PC1 scores gradually decrease, while
285 Ca/Zr increases. Between 5.1 ka and 3.8 ka, both proxies show increased variability, with low
286 PC1 scores (high Ca/Zr) between 5.1 ka-4.8 ka, high PC1 scores (low Ca/Zr) between 4.8 ka-4.6
287 ka, and low PC1 scores (high Ca/Zr) between 4.3 ka-3.8 ka. During the interval spanning 4.3 ka
288 to 3.8 ka, PC1 scores reach the lowest values of the entire record (-3.4 at 3.8 ka), while Ca/Zr
289 values are higher than during any other interval. During the transition into the Late Holocene,
290 PC1 scores initially increase, then gradually decrease while remaining moderately high, until ca.
291 1.5 ka. The Ca/Zr values show generally opposite trends during this interval, with a decrease
292 between 3.7 ka and 2.3 ka and subsequent increase between 2.3 ka and 1.5 ka. A hiatus in
293 sedimentation occurred between 1.5 ka and 0.84 ka, after which point both variables remain
294 antiphased, but are highly variable and show large amplitude, centennial-scale fluctuations.

295 At Lake Yalahau, PC1 explains 38.6% of the data variance and is most strongly
296 correlated with Si and elements associated with authigenic minerals (e.g., Ca, Sr) (Fig. 5 C).
297 Lake Yalahau PC1 scores increase through the Middle Holocene, with PC1 reaching its highest
298 score (4.4) at 6.1 ka and remaining high until 4.8 ka (Fig. 5 C). Between 4.8 and 4.4 ka, PC1
299 scores decrease, then, at 4.3 ka, PC1 scores increase and reach a local maximum of 1.8, before

300 decreasing again until 4.1 ka. After 4.1 ka, PC1 scores gradually increase to 2.9 at 2.7 ka. After
 301 2.7 ka, PC1 scores decrease through the present. The Ca/Zr at Lake Yalahau show an increasing
 302 trend between 8.0 ka and 6.5 ka and decreasing values between 6.5 ka and 5.0 ka. Between 5.0
 303 and 4.1 ka, Ca/Zr values are high and reach a local maximum at 4.28 ka. After 4.1 ka, Ca/Zr
 304 values gradually decrease to the present (Fig. 6 H).

305
 306
 307
 308

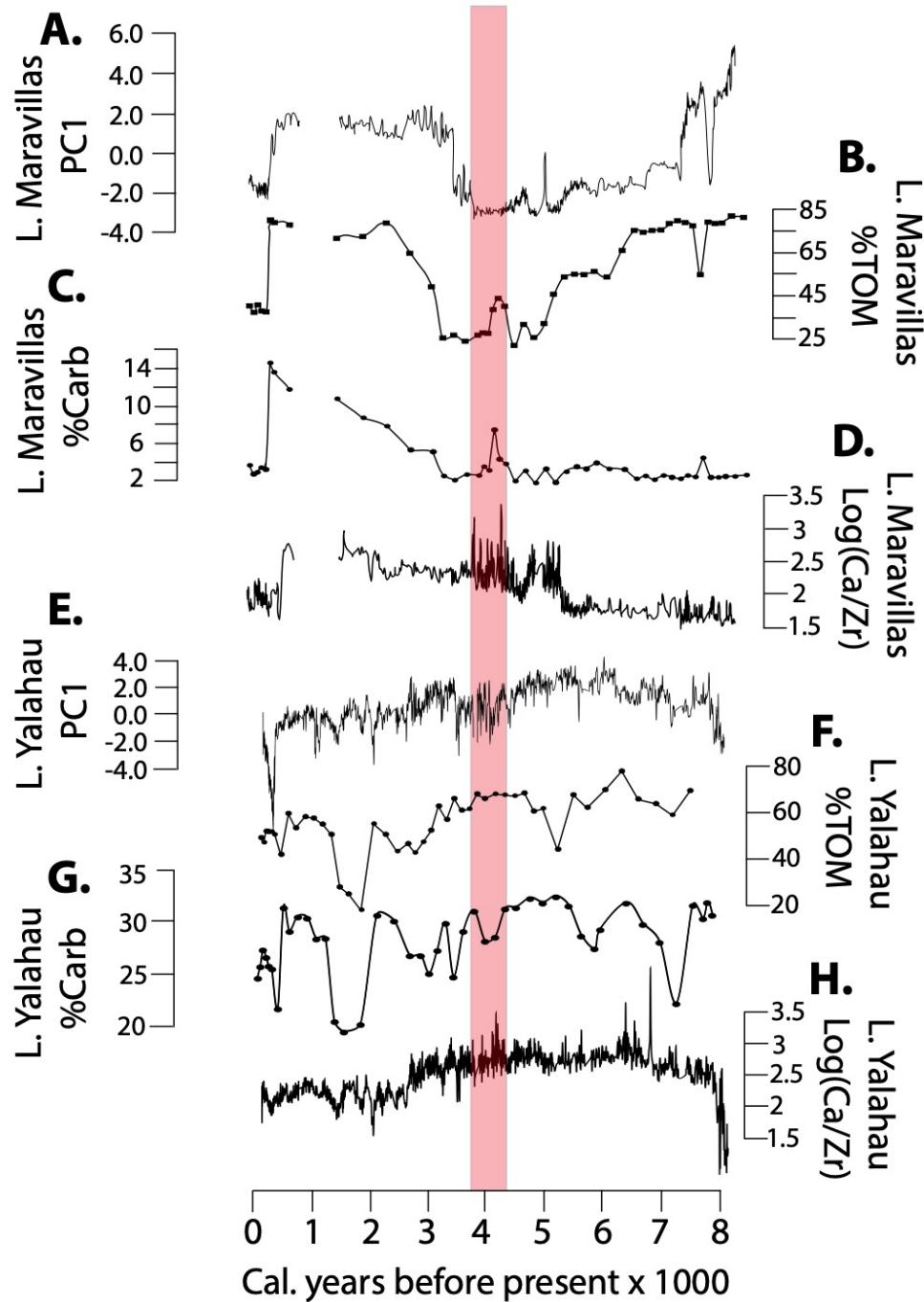
309
 310 **Fig. 5.** PCA biplots of the XRF geochemical data from **A.** Laguna Maravillas and **C.** Lake
 311 Yalahau. At Laguna Maravillas, elements associated with clastic minerals delivered via
 312 catchment weathering and erosion are positively correlated with PC1, while PC2 is positively

313 correlated with elements associated with authigenic lake production. At Lake Yalahau, PC1 is
314 positively correlated with elements associated with authigenic minerals and negatively correlated
315 with clastic minerals. PC2 values at Lake Yalahau are most strongly influenced by variability of
316 manganese (Mn) and sulfur (S), and thus likely reflects redox conditions through time. Statistical
317 significance for each of the principal components was tested using the broken stick method,
318 whereby the PCA results from **B.** Laguna Maravillas and **D.** Lake Yalahau were considered to be
319 significant if the amount of variance explained by a principal component was greater than the
320 variance explained by random variability.

321

322 *4.3 % TOM and % TC*

323 Loss on ignition results showed variability through time in the relative amounts of TOM
324 and TC for both cores. In the Laguna Maravillas sediments, % TOM is generally high between
325 8.5 and 6.5 ka, with an average of 83.5%. After 6.5 ka, % TOM gradually decreases to a local
326 minimum of 21.4% at 4.5 ka. Between 4.4 and 4.2 ka, % TOM increases and peaks at 46.1% at
327 4250 years before present. After this interval, % TOM decreases again and remains low (with an
328 average of 26.5%) until 3.1 ka. Between 3.1 and 0.4 ka, % TOM averages 74.3 %, then decreases
329 to an average of 48.3% during the last 300 years (Fig 6 B). Percent TC is generally low and
330 shows little variability between 8.5 and 4.5 ka. During this interval, % TC ranges from 1.5 to
331 4.5%. Between 4.4 and 4.2 ka, % TC increases to a local maximum of 7.9%, then decreases to
332 1.9% at 3.5 ka. Percent TC then gradually increases to 15.8% at 0.4 ka, before decreasing to an
333 average of 3.1% during the last 300 years (Fig. 6 C).


334 At Lake Yalahau, % TOM is generally high and shows little variability between 7.6 and
335 3.2 ka, with an average of 64.3%. Percent TOM gradually decreases between 3.2 and 1.9 ka,

336 where it reaches the lowest value of the entire record (18.9%). Percent TOM then increases to
337 50.5% at 1.4 ka and averages 52.1% between 1.4 ka and the present (Fig. 6 F). Percent TC at
338 Lake Yalahau is generally in phase with % TOM, with high values during the Middle Holocene
339 and gradually decreasing values during the Late Holocene. Percent TC reaches their highest
340 values between 4.9 and 4.2 ka, before decreasing through the present (Fig. 6 G).

341

342

343

344

345 **Fig. 6.** Time series of geochemical and loss on ignition data from the Laguna Maravillas and
 346 Lake Yalahau sediment cores. **(A and E)** Time series of PC1 scores at Laguna Maravillas and
 347 Lake Yalahau represent variability through time in the aggregated flux of elements associated
 348 with detrital and authigenic minerals, respectively. **(B and F)** Variability through time in the

349 relative amount of total organic matter (% TOM) in the Laguna Maravillas and Lake Yalahau
350 sediments. Changes in % TOM were interpreted to represent lake level variability such that
351 high % TOM values represent low lake levels and vice versa. **(C and G)** Variability through
352 time in the relative amount of total carbonate material (% TC) in the Laguna Maravillas and
353 Lake Yalahau sediments. During dry intervals, increased evaporation would intensify authigenic
354 carbonate production, leading to increased % TC values. **(D and H)** The ratio of Ca to Zr reflects
355 the intensity of carbonate saturation and authigenic calcite precipitation, relative to the amount of
356 terrigenous material transported to the lake basin via precipitation and runoff. When precipitation
357 was reduced and/or aridity was high, Ca/Zr values increased. When aridity was low, Ca/Zr
358 decreased.

359

360 **5. Discussion**

361

362 *5.1 Geochemical proxies of precipitation and evaporation in the Yucatán Peninsula*

363 Geochemical analysis using XRF data from sediment cores has been demonstrated to be
364 an effective way to reconstruct past climatic and environmental changes (e.g., Duarte et al.,
365 2021). However, it is often difficult to interpret local scale changes in the ratio of precipitation to
366 evaporation (P/E) from the flux of any individual element because many factors can influence
367 element delivery and cycling in a lacustrine system (Mark et al., 2022). For example, terrestrially
368 sourced elements are commonly interpreted to reflect watershed-scale precipitation-driven runoff
369 (e.g., Haug et al., 2001). However, XRF measurements of terrigenous elements in sediment cores
370 – such as Ti, Zr, and Fe – can also be influenced by the average grain size distribution and
371 specific gravity of the sediments themselves (Brown, 2015). Similarly, Si can be interpreted to
372 represent terrestrial siliceous mineral transport and deposition but is also associated with

373 biogenic silica production by diatom communities in the water column (Peinerud, 2000).
374 Evaporation proxies can also suffer from interpretative ambiguity, especially in carbonate-rich
375 regions, because increases in elements commonly associated with authigenic sources, such as Ca,
376 can be interpreted as reflecting either a decrease in lake volume (drier conditions) or an increase
377 in terrestrially sourced carbonate runoff (wetter conditions) (Lu et al., 2017). To mitigate
378 potential uncertainty associated with the flux of any single element, we focused our
379 interpretations on the aggregated total flux of elements represented by the first principal
380 components in our PCA analyses and on ratios of elements that were shown by our PCA results
381 to have opposite drivers (e.g., Ca and Zr).

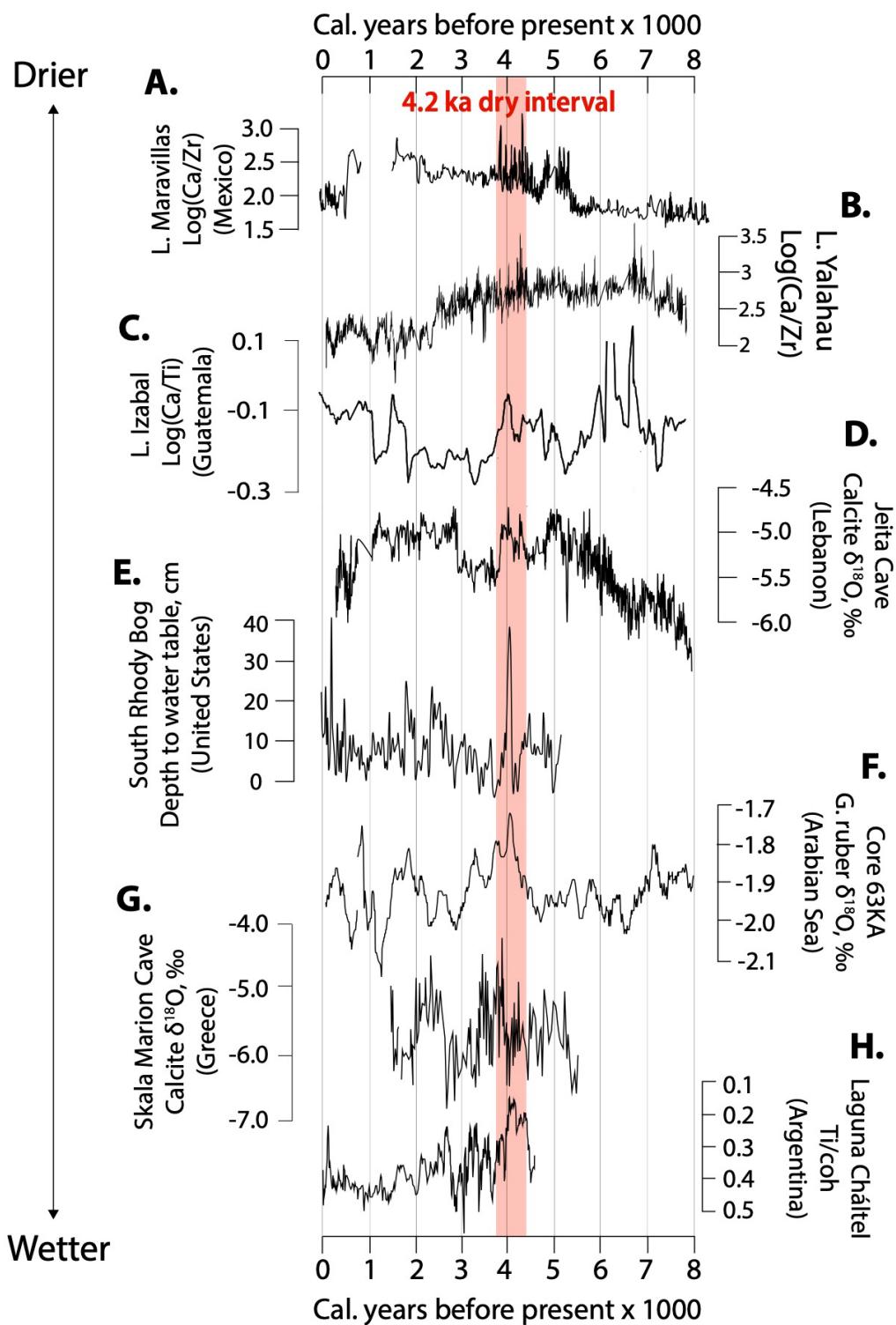
382 In both records, the contrast between lithogenic and authigenic elements define the first
383 principal component (Fig. 5), implying that the main mode of variability through time at both
384 sites was probably associated with precipitation changes. Terrestrially sourced elements define
385 PC1 of the Laguna Maravillas record (Fig. 5 A), with positive PC1 scores representing high
386 watershed erosion and transport (i.e., wetter conditions) and negative scores representing periods
387 when they were low (drier conditions). In the Lake Yalahau record, the negative scores of PC1
388 were defined by terrestrial material, whereas the positive end was defined by Si and elements
389 associated with authigenic carbonate production (Fig. 5 C), so periods characterized by high PC1
390 scores at Lake Yalahau represent either increased carbonate precipitation under dry conditions,
391 increased biogenic silica production by diatom communities, or increased watershed transport of
392 silicious minerals. The latter of those scenarios is unlikely, since the other terrigenous elements
393 were negatively correlated with PC1. Nevertheless, the addition of Si to the authigenic elements
394 in the aggregate Lake Yalahau PC1 resulted in PC1 scores that only reflected 38.6% of the

395 dataset variance and a time series that did not strongly correlate with the other P/E indicators
396 from that site.

397 The Ca/Zr ratio from both records provides additional insight into local scale hydrology.
398 The ratio of authigenic to terrigenous elements in sediment cores from karstic lakes has been
399 shown to respond to changes in aridity such that periods of increased evaporation increase water
400 column carbonate saturation and deposition (i.e., increase solid Ca and Sr precipitation) (Van der
401 Meeren et al., 2022). Arid conditions likewise reduce the rate of erosion and transport of
402 terrigenous elements into the lake (i.e., decrease Ti, Zr, and Fe deposition) (Duarte et al., 2021).
403 We chose Zr as our terrigenous end member because our XRF data showed that Zr presented the
404 same trends as Ti and Fe, but had lower overall concentrations and higher relative variability.
405 Therefore, when plotted as a ratio, the Ca/Zr data were able to best show evaporation
406 trends through time – especially during dry intervals – because the terrestrial end member
407 (Zr) was not entering the system at such a constantly high rate as Ti or Fe (Fig. S1). Changes
408 in Ca/Zr through time thus reflect local scale P/E variability, with dry intervals associated with
409 elevated Ca/Zr and vice versa.

410 Supporting our geochemical data, the variability in % TOM and % TC in the Laguna
411 Maravillas and Lake Yalahau sediments provide independent proxies for lake level changes and
412 local scale precipitation/evaporation (e.g., Dean, 1974; Shuman et al., 2001; Zhang et al., 2003).
413 While % TC is generally reflective of local changes in aridity, driven by authigenic carbonate
414 precipitation during evaporation (Zhang et al., 2003), many factors can influence % TOM in
415 sediments. In our cores, we interpret changes in % TOM to primarily reflect changes in lake
416 level through time. Due to the dense vegetation in the watersheds and littoral zones at Laguna
417 Maravillas and Lake Yalahau, reductions in lake level would bring organic matter closer to the

418 coring sites, thereby increasing % TOM in the sediments deposited during those intervals. This
419 interpretation is supported in two ways: First, % TOM and % TC in both cores were generally in
420 phase with each other. When evaporation was high (i.e., high % TC), % TOM was also high and
421 vice versa. Secondly, Laguna Maravillas shows a much greater degree of variability in % TOM,
422 which would be expected due to the hydrologically closed nature of the lake. Without permanent
423 inflows, lake levels at Maravillas are susceptible to large amplitude changes based on the local
424 balance of precipitation to evaporation. Lake Yalahau does not show the same large amplitude
425 shifts in % TOM, likely because its connection to groundwater allows lake levels to remain
426 comparatively stable, even during periods of increased aridity.


427

428 *5.2 A geochemical expression of the 4.2 ka event in the western hemisphere tropics*

429 Our geochemical analyses indicate that P/E in the central and northern Mexican Yucatán
430 Peninsula progressively decreased between 8 and 5 ka (Fig. 6; Fig 7, A and B). These
431 interpretations are consistent with other paleoclimatic reconstructions from the northern Yucatán
432 Peninsula, which also show comparatively drier conditions during the early and Middle
433 Holocene than during the Late Holocene (Carillo-Bastos et al., 2010). However, this contrasts
434 with records developed from the southern Yucatán peninsula, which show that P/E in Guatemala
435 progressively increased through the early and Middle Holocene (Winter et al., 2020; Duarte et
436 al., 2021; Obrist-Farner et al., 2022). These poorly correlated Yucatán rainfall trends during the
437 Early and Middle Holocene are in line with modern and Late Holocene analyses of regional
438 precipitation, which have previously demonstrated differential precipitation responses between
439 the northern and southern Yucatán regions (Medina-Elizalde, et al., 2010; Douglas et al., 2015).

440 Despite precipitation differences during the Early and Middle Holocene, a regionally
441 coherent hydroclimate signal emerged in the Yucatán Peninsula during the transition between the
442 Middle and Late Holocene (Fig. 6; Fig. 7, A-C; Fig. 8, A-E). Comparisons between our
443 geochemical data from Mexico and hydroclimate proxy records from sediment cores (Stansell et
444 al., 2020; Duarte et al., 2021) and speleothems (Winter et al., 2020) from Guatemala show that
445 precipitation across the region was punctuated by centennial scale dry conditions between 4.3
446 and 4.0 ka (Fig. 8, A-E). The timing of this dry interval in the Yucatán is similar to proxy records
447 of drought from North America (Booth et al., 2005), South America (Ohlendorf et al., 2014),
448 Europe (Zanchetta et al., 2016; Psomiadis et al., 2018), and Asia (Staubwasser et al., 2003; Zhang
449 et al., 2018), supporting the hypothesis that the drying recorded in our cores are local expressions
450 of global-scale drying that occurred during the end of the Middle Holocene (Fig. 7). After this
451 dry interval and through the Late Holocene, the regional coherency of hydroclimate records
452 became weak once again, suggesting that the widespread aridity that occurred during the 4.2 ka
453 event was unique in its spatial expression and driven by synoptic scale ocean-atmosphere
454 forcings capable of driving widespread hydroclimatic responses.

455

456

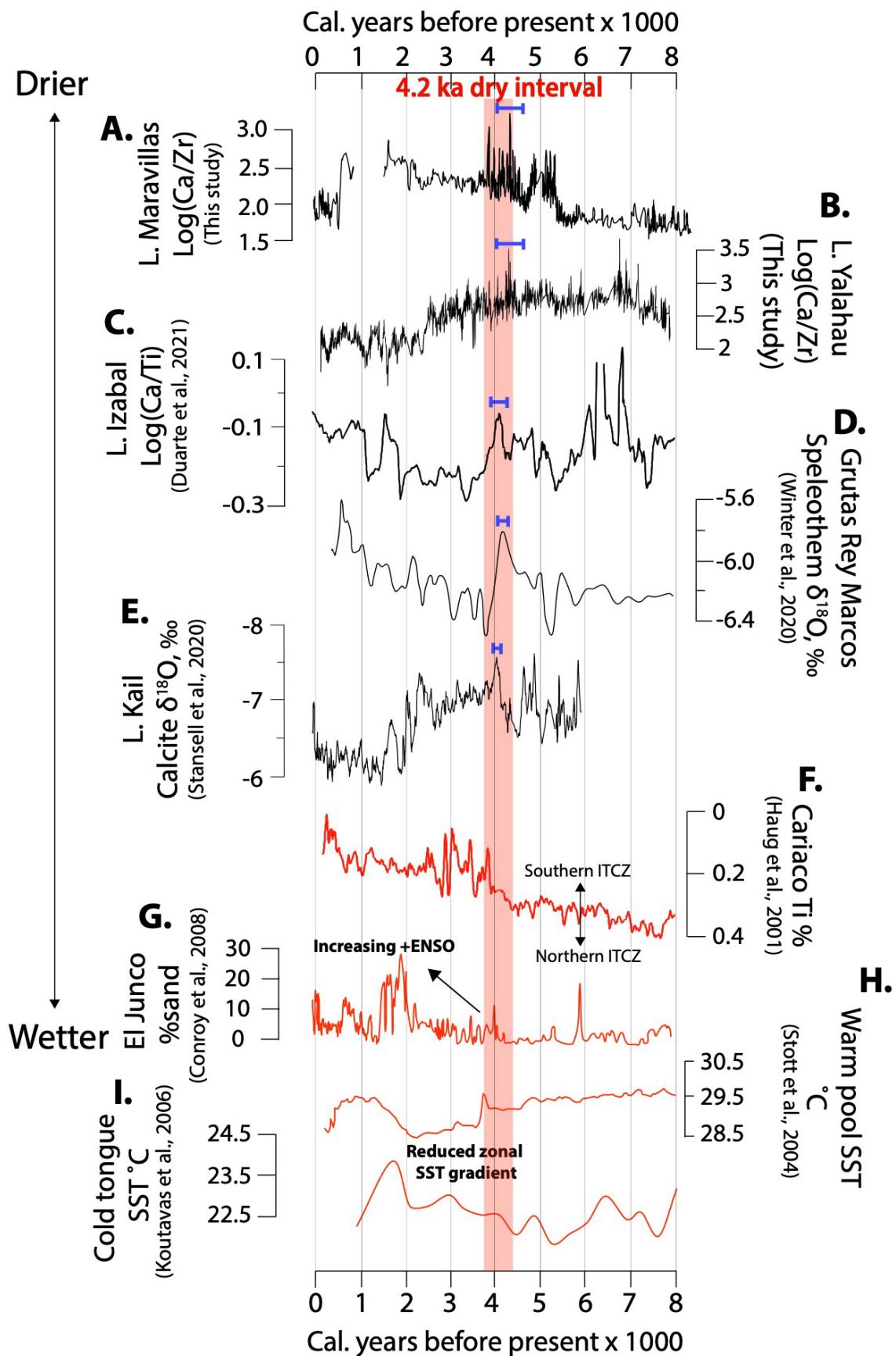
457 **Fig. 7.** Indicators of drying during the 4.2 ka event from our new records compared with existing
 458 records from selected regions around the world (for a full review of sites impacted during this

459 event, see Railsback et al., 2018 and Renssen, 2022). **(A-C)** Geochemical indicators of
460 precipitation and evaporation in the Yucatán Peninsula (from this study and Duarte et al. (2021)).
461 **(D)** Speleothem calcite $\delta^{18}\text{O}$ from Jeita Cave, Lebanon (Cheng et al., 2015). **(E)** Water table
462 depth fluctuations in the northern United States inferred from testate amoeba assemblages (Booth
463 et al., 2005). **(F)** Precipitation variability in the Arabian Sea region, based on $\delta^{18}\text{O}$ preserved in
464 *G. ruber* tests in sediment cores (Staubwasser et al., 2003). **(G)** Precipitation variability
465 reconstructed from speleothem calcite $\delta^{18}\text{O}$ in Skala Marion Cave, Greece (Psomiadis et al.,
466 2018). **(H)** Variability in precipitation-driven catchment erosion and runoff at Laguna Chátel,
467 Argentina (Ohlendorf et al., 2014).

468

469 *5.3 Synoptic origins of the 4.2 ka drying event*

470 The hydroclimate trends observed in our data occurred within the global context of
471 decreasing Northern Hemisphere insolation and mean annual temperature during the Holocene
472 (Laskar et al., 2004). This has been shown to have driven a steady southward migration of the
473 ITCZ between 9 and 4.5 ka (Haug et al., 2001). During the transition between the middle and
474 Late Holocene, Northern Hemisphere insolation and mean annual temperature continued to
475 decrease (Laskar et al., 2004; Zhang et al., 2022) and the rate of southerly displacement of the
476 ITCZ increased (Haug et al., 2001). During this time, decreasing Northern Hemisphere insolation
477 and temperature reduced the SST gradient between the eastern and western Pacific Ocean and
478 consequently weakened easterly Pacific trade winds (Koutavas et al., 2006). The decreased
479 equatorial SST gradient and subdued easterly trade winds during that time reduced upwelling
480 along the western coast of the Americas and ultimately increased the frequency and magnitude of
481 El Niño events during the middle-to-Late Holocene transition (Haug et al., 2001; Conroy et al.,


482 2008) (Fig 8, H-K). Recent climate model experiments showed that these El Niño-driven SST
483 anomalies may have worked constructively with the desertification of northern Africa and the
484 Middle East during the transition into the Late Holocene to collectively modulate global
485 precipitation patterns (Rensson, 2022). Timing of these combined ocean-atmosphere drivers
486 coincided with geochemical indicators of increased evaporation and decreased catchment erosion
487 across the Yucatán Peninsula (Fig. 6; Fig 8, A-E).

488 Mechanistically, an increase in El Niño frequency would have impacted precipitation in
489 the Yucatán Peninsula through the relationship between ENSO-driven sea level pressure (SLP)
490 anomalies and the CLLJ. Specifically, El Niño events have been shown to increase SLP over the
491 Caribbean basin during the summer (Wang, 2007). In turn, high Caribbean SLP would induce a
492 westward expansion of the North Atlantic Subtropical High pressure system (NASH),
493 strengthening the CLLJ and diverting it to the south (Gibson et al., 2024). Through this ENSO-
494 NASH-CLLJ relationship, a strong CLLJ has been shown to produce negative rainfall anomalies
495 across the circum-Caribbean region (Cook and Vizy, 2010). Our data therefore suggest that
496 increased El Niño activity, driven by reduced equatorial Pacific SST gradients related to a
497 southerly displaced ITCZ, played a role in the dry conditions associated with the 4.2 ka dry
498 interval by increasing Caribbean SLP. This likely resulted in a westward expansion of the
499 NASH, a strengthened and southerly CLLJ, and an overall reduction in precipitation in the
500 Yucatán Peninsula.

501 After the transition to the Late Holocene, the regional coherency of hydroclimate records
502 in western Central America weakened (Fig 8, A-E), suggesting that additional synoptic
503 hydroclimatic drivers began to exert controls on precipitation. For example, around 2.5 ka, lake
504 sediment cores collected from southwestern Greenland showed an increase in hypolimnetic

505 anoxia that persisted through the present (Olsen et al., 2012). These data have been used to infer
506 that a mean-state shift to persistently +NAO conditions occurred during, and persisted through,
507 the Late Holocene. These conditions may have increased the influence of the NASH, which has
508 been shown to impact precipitation delivery to western Central America in both the modern
509 instrumental and paleoclimatic records (Bhattacharya et al., 2017; Gibson et al., 2024). However,
510 ENSO and the NAO do not homogeneously affect Central American precipitation and can
511 interfere with one another, either positively or negatively (Giannini et al., 2001; Bhattacharya et
512 al., 2017). It is therefore possible that strengthening +NAO conditions during the Late Holocene
513 increased aridity at some sites in the Yucatán and western Central America more strongly than at
514 others. Nevertheless, the agreement of drying signals observed across Central America during
515 the Middle-to-Late Holocene transition, and the regional incoherency before and after that time,
516 suggest that the anomalous drying that occurred during the 4.2 ka event was due to a unique
517 combination of forces capable of causing widespread aridity across a region that is otherwise
518 notably heterogeneous in its expression of hydroclimatic conditions (Steinman et al., 2022;
519 Obrist-Farner et al., 2023). Specifically, the comparisons between our data and records of global
520 ocean-atmosphere variability indicate that an increase in the frequency of El Niño events during
521 the transition into the Late Holocene coincided with records of aridity across the Yucatán
522 Peninsula and western Central America, suggesting that changing ENSO dynamics played a
523 leading role in the widespread drying associated with the 4.2 ka event.

524

526 **Fig. 8.** Hydroclimate proxies (black lines) and synoptic climate records (red lines). **(A and B)**
527 Geochemical indicators of precipitation and evaporation from the Mexican Yucatán Peninsula.
528 **(C)** Geochemical indicators of precipitation and evaporation from Lake Izabal, located on the
529 Caribbean coast of Guatemala. **(D)** Speleothem oxygen isotope ratios from Grutas Rey Marcos,
530 central Guatemala. **(E)** Bulk sediment carbonate $\delta^{18}\text{O}$ from Lake Kail, western Guatemala. **(F)** Ti
531 flux into the Cariaco Basin, which has been interpreted as a function of fluvial discharge
532 variability associated with migrations of the ITCZ. **(G)** The El Junco Holocene ENSO record,
533 which shows an increase in the frequency of +ENSO events beginning ca. 4.2 ka. **(H and I)**
534 Records of the Pacific warm pool and cold tongue SST variability and changes in the SST
535 gradient between the eastern and western Pacific during the past 8 ka. Blue brackets above the
536 hydroclimate proxies show the 95% confidence band for the timing of peak aridity during the 4.2
537 ka event.

538

539 **6. Conclusions**

540

541 Geochemical indicators of local-scale hydrologic variability in the Yucatán Peninsula
542 provide evidence for an expression of the 4.2 ka drying event in the northern Neotropics. This
543 event has previously been identified in many climate records from the Eastern and Western
544 hemispheres. However, records of the 4.2. ka event in northern tropical America are exceedingly
545 rare, making it difficult to ascertain the synoptic drivers and full spatial extent of dry conditions
546 during this interval. Our data indicate that the 4.2 ka event caused drier conditions in the Yucatán
547 Peninsula, likely driven by a combination of oceanic and atmospheric processes controlling
548 precipitation in the region. Specifically, the dry interval coincided with a mean-state reduction in

549 zonal SST gradients in the Pacific Ocean, which increased ENSO variability and the frequency
550 of El Niño events. After the 4.2 ka event, and through the Late Holocene, the regional coherency
551 of hydroclimate records in the Yucatán region weakened, suggesting that additional synoptic
552 climatic drivers began to influence local-scale hydrology. The good agreement between Yucatán
553 proxy records during the 4.2 ka event, and their generally weak correlation before and after that
554 period, suggests that climatic forces during the transition between the Middle and Late Holocene
555 were unique in their ability to drive regionally coherent hydrologic changes across western
556 Central America. When compared with existing records of Holocene ENSO variability, our data
557 suggests that stronger and more frequent El Niño events may have played a role in forcing global
558 scale drying during the Middle-to-Late Holocene transition.

559

560 **7. Supplementary Information**

561

562 **Supplementary Table S1:** Age depth relationships and radiocarbon metadata for the new Lake
563 Yalahau cores recovered in 2023, determined via radiocarbon accelerated mass spectroscopy of
564 detrital carbon sources.

565

Depth (cm)	Uncalibrated yr BP	Error	Frac. modern	Calibrated yr BP	Calibration
411.5	7190	47	40.86	7990	IntCal20
459.5	7600	36	38.82	8400	IntCal20

566

567

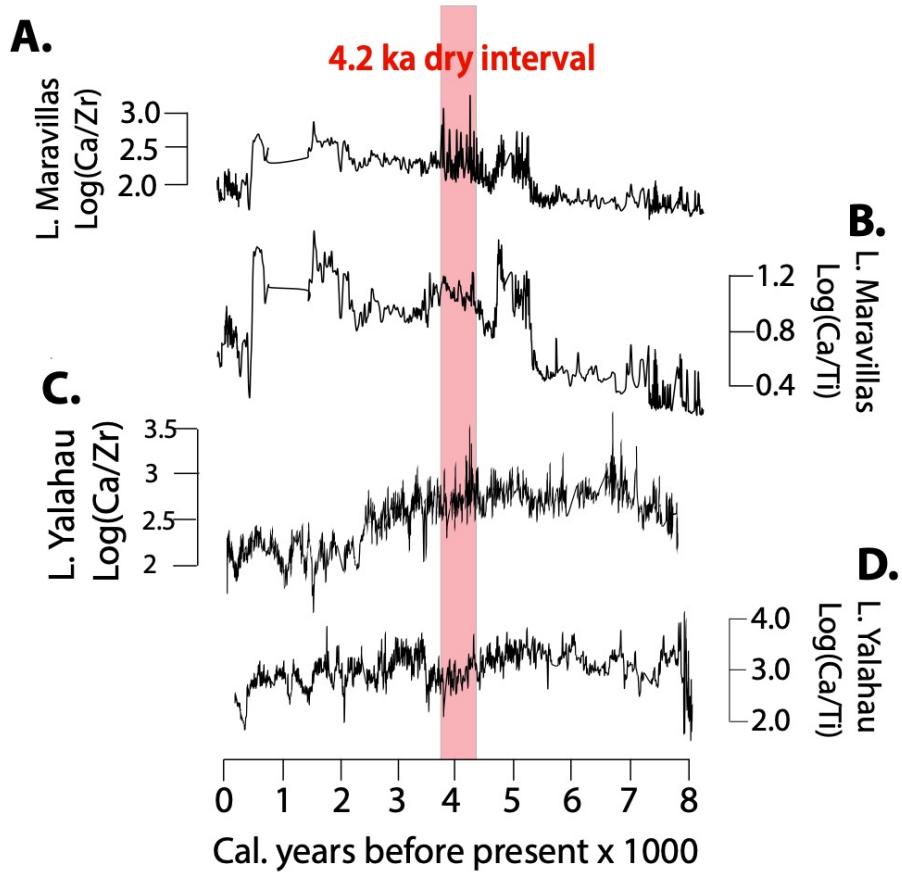
568

569

570

571 **Table S2:** Same as table S1, but for the Lake Yalahau cores recovered in 2017 core
572 (core PYA17).

573


Depth (cm)	Uncalibrated yr BP	Error	Frac. Modern	Calibrated yr BP	Calibration
Surface	-73	0	N/A	N/A	N/A
50	365	36	0.9556	459	IntCal20
82	781	30	0.9074	701	IntCal20
149	1697	29	0.8096	1578	IntCal20
219	2703	36	0.7143	2809	IntCal20
286	3334	26	0.6603	3537	IntCal20
337	4064	28	0.603	4562.5	IntCal20
421	5300	28	0.517	6060	IntCal20
503	6843	32	0.4266	7677.5	IntCal20

574

575 **Table S3:** The combined age model table for Yal23, consisting of the newly obtained radiocarbon dates
576 from Table S1 and the depth-corrected radiocarbon dates from Table S2.

Depth	Uncalibrated yr BP	Error	Frac. Modern	Calibrated yr BP	Calibration
0	-73	0	N/A	N/A	N/A
92	365	36	0.9556	459	IntCal20
120	781	30	0.9074	701	IntCal20
177	1697	29	0.8096	1578	IntCal20
220	2703	36	0.7143	2809	IntCal20
272	3334	26	0.6603	3537	IntCal20
327	4064	28	0.603	4562.5	IntCal20
395	5300	28	0.517	6060	IntCal20
451	6843	32	0.4266	7677.5	IntCal20
490	7190	47	0.4086	7990	IntCal20
537	7600	36	0.3882	8400	IntCal20

577

578

579 **Fig. S1.** A comparison between Ca/Zr and Ca/Ti ratios for (A and B) Laguna Maravillas and (C
 580 and D) Lake Yalahau.

581

582

583

584

585

586 **8. Funding**

587

588 This project was supported by funding from the following sources: the U.S. National
589 Science Foundation (award # 2204484) and the Dirección General de Asuntos del Personal
590 Académico, National Autonomous University of Mexico (DGAPA-UNAM; award # IG100722).

591

592 **9. Author Contributions**

593

594 **Derek Gibson:** Conceptualization; Data curation; Formal analysis; Funding acquisition;
595 Writing - original draft; Writing - review & editing. **Jonathan Obrist-Farner:** Writing - review
596 & editing; Methodology; Resources; Software; Supervision. **Alex Correa-Metrio:**
597 Methodology; Resources; Software; Funding acquisition; Data curation; Writing – review &
598 editing. **Alejandra Rodriguez-Abaunza:** Methodology; Data curation; Writing – review &
599 editing. **Carlos Castañeda-Posadas:** Methodology; Investigation; Writing – review & editing

600

601 **10. Acknowledgements**

602

603 The authors would like to thank the Continental Scientific Drilling Facility at the
604 University of Minnesota for allowing us to use their laboratory facilities for initial core sampling
605 and storage and the Oregon State University Marine and Geology Repository for performing
606 XRF analysis on the Lake Yalahau sediment cores.

607

608 **11. Competing interests statement**

609

610 The authors declare that they have no competing financial or other interests that could affect
611 or have the perception of affecting the author's objectivity or the content of this manuscript.

612

613 **12. Data availability**

614 Data used for this study are available in the Mendeley data repository: Gibson, Derek (2024),
615 "Laguna Maravillas and Lake Yalahau XRF geochemistry data", Mendeley Data, V3, doi:
616 10.17632/yp5yk9y2n4.3

617

618 **13. References**

619

620 Amador, J.A., Alfaro, E.J., Lizano, O.G. and Magaña, V.O., 2006. Atmospheric forcing of the
621 eastern tropical Pacific: A review. *Progress in Oceanography*, 69(2-4), pp.101-142.

622 Anderson, T.G., Anchukaitis, K.J., Pons, D. and Taylor, M., 2019. Multiscale trends and
623 precipitation extremes in the Central American Midsummer Drought. *Environmental
624 Research Letters*, 14(12), p.124016.

625 Arz, H.W., Lamy, F. and Pätzold, J., 2006. A pronounced dry event recorded around 4.2 ka in
626 brine sediments from the northern Red Sea. *Quaternary Research*, 66(3), pp.432-441.

627 Bhattacharya, T., Chiang, J.C. and Cheng, W., 2017. Ocean-atmosphere dynamics linked to 800–
628 1050 CE drying in mesoamerica. *Quaternary Science Reviews*, 169, pp.263-277.

629 Bini, M., Zanchetta, G., Peršoiu, A., Cartier, R., Català, A., Cacho, I., Dean, J.R., Di Rita, F.,
630 Drysdale, R.N., Finnè, M. and Isola, I., 2019. The 4.2 ka BP Event in the Mediterranean
631 region: an overview. *Climate of the Past*, 15(2), pp.555-577.

632 Blaauw, M. and Christen, J.A., 2011. Flexible paleoclimate age-depth models using an
633 autoregressive gamma process.

634 Booth, R.K., Jackson, S.T., Forman, S.L., Kutzbach, J.E., Bettis Iii, E.A., Kreigs, J. and Wright, D.K.,
635 2005. A severe centennial-scale drought in midcontinental North America 4200 years
636 ago and apparent global linkages. *The Holocene*, 15(3), pp.321-328.

637 Brown, E.T., 2015. Estimation of biogenic silica concentrations using scanning XRF: insights from
638 studies of Lake Malawi sediments. *Micro-XRF Studies of Sediment Cores: Applications of*
639 *a non-destructive tool for the environmental sciences*, pp.267-277.

640 Carrillo-Bastos, A., Islebe, G.A., Torrescano-Valle, N. and González, N.E., 2010. Holocene
641 vegetation and climate history of central Quintana Roo, Yucatán Península, Mexico.
642 Review of Palaeobotany and Palynology, 160(3-4), pp.189-196.

643 Cheng, H., Sinha, A., Verheyden, S., Nader, F.H., Li, X.L., Zhang, P.Z., Yin, J.J., Yi, L., Peng, Y.B.,
644 Rao, Z.G. and Ning, Y.F., 2015. The climate variability in northern Levant over the past
645 20,000 years. *Geophysical Research Letters*, 42(20), pp.8641-8650.

646 Clement, A.C., Seager, R. and Cane, M.A., 2000. Suppression of El Niño during the mid-Holocene
647 by changes in the Earth's orbit. *Paleoceanography*, 15(6), pp.731-737.

648 Colinvaux, P. A., P. E. De Oliveira, and J. E. Moreno. 1999. Amazon pollen manual and atlas.
649 Harwood Academic Press., New York.

650 Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M. and Steinitz-Kannan, M., 2008. Holocene
651 changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment
652 record. *Quaternary Science Reviews*, 27(11-12), pp.1166-1180.

653 Cook, K.H. and Vizy, E.K., 2010. Hydrodynamics of the Caribbean low-level jet and its
654 relationship to precipitation. *Journal of Climate*, 23(6), pp.1477-1494.

655 Cullen, H.M., Demenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T. and
656 Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire: Evidence
657 from the deep sea. *Geology*, 28(4), pp.379-382.

658 Curtis, S., 2013. Daily precipitation distributions over the intra-Americas sea and their
659 interannual variability. *Atmósfera*, 26(2), pp.243-259.

660 Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and
661 sedimentary rocks by loss on ignition; comparison with other methods. *Journal of*
662 *Sedimentary Research*, 44(1), pp.242-248.

663 Dearing, J.A., 1997. Sedimentary indicators of lake-level changes in the humid temperate zone:
664 a critical review. *Journal of paleolimnology*, 18, pp.1-14.

665 De la Barreda, B., Metcalfe, S.E. and Boyd, D.S., 2020. Precipitation regionalization, anomalies
666 and drought occurrence in the Yucatán Peninsula, Mexico. *International Journal of*
667 *Climatology*, 40(10), pp.4541-4555.

668 Douglas, P.M., Pagani, M., Canuto, M.A., Brenner, M., Hodell, D.A., Eglinton, T.I. and Curtis, J.H.,
669 2015. Drought, agricultural adaptation, and sociopolitical collapse in the Maya
670 Lowlands. *Proceedings of the National Academy of Sciences*, 112(18), pp.5607-5612.

671 Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I. and
672 Piccini, L., 2006. Late Holocene drought responsible for the collapse of Old World
673 civilizations is recorded in an Italian cave flowstone. *Geology*, 34(2), pp.101-104.

674 Duarte, E., Obrist-Farner, J., Correa-Metrio, A. and Steinman, B.A., 2021. A progressively wetter
675 early through Middle Holocene climate in the eastern lowlands of Guatemala. *Earth and*
676 *Planetary Science Letters*, 561, p.116807.

677 Dunning, N.P., Beach, T., Sierra, L.G., Jones, J.G., Lentz, D.L., Luzzadde-Beach, S., Scarborough,
678 V.L. and Smyth, M.P., 2013. A tale of two collapses: environmental variability and
679 cultural disruption in the Maya Lowlands. *Diálogo Andino-Revista de Historia, Geografía*
680 *y Cultura Andina*, (41), pp.171-183.

681 Durán-Quesada, A.M., Gimeno, L. and Amador, J., 2017. Role of moisture transport for Central
682 American precipitation. *Earth System Dynamics*, 8(1), pp.147-161.

683 Durán-Quesada, A.M., Sorí, R., Ordoñez, P. and Gimeno, L., 2020. Climate perspectives in the
684 intra–Americas seas. *Atmosphere*, 11(9), p.959.

685 Giannini, A., Chiang, J.C., Cane, M.A., Kushnir, Y. and Seager, R., 2001. The ENSO teleconnection
686 to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall
687 variability in the tropical Americas. *Journal of Climate*, 14(24), pp.4530-4544.

688 Gibson, D.K., Obrist-Farner, J., Birkett, B.A., Curtis, J.H., Berke, M.A., Douglas, P.M., Rice, P.M.
689 and Maurer, J., 2024. The influence of tropical Atlantic sea-surface temperatures and
690 the North Atlantic Subtropical High during the Maya Droughts. *The Holocene*,
691 p.09596836231211856.

692 Haslett, J. and Parnell, A., 2008. A simple monotone process with application to radiocarbon-
693 dated depth chronologies. *Journal of the Royal Statistical Society Series C: Applied*
694 *Statistics*, 57(4), pp.399-418.

695 Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Rohl, U., 2001. Southward migration
696 of the intertropical convergence zone through the Holocene. *Science*, 293(5533),
697 pp.1304-1308.

698 Heiri, O., Lotter, A.F. and Lemcke, G., 2001. Loss on ignition as a method for estimating organic
699 and carbonate content in sediments: reproducibility and comparability of results.
700 *Journal of paleolimnology*, 25, pp.101-110.

701 Hodell, D.A., Brenner, M., Curtis, J.H., Medina-González, R., Can, E.I.C., Albornaz-Pat, A. and
702 Guilderson, T.P., 2005. Climate change on the Yucatán Peninsula during the little ice age.
703 *Quaternary Research*, 63(2), pp.109-121.

704 Jolliffe, I. T. 1986. *Principal Component Analysis*. Springer-Verlag, Berlin.

705 Joyce, T.M., Deser, C. and Spall, M.A., 2000. The relation between decadal variability of
706 subtropical mode water and the North Atlantic Oscillation. *Journal of Climate*, 13(14),
707 pp.2550-2569.

708 Koutavas, A., Demenocal, P.B., Olive, G.C. and Lynch-Stieglitz, J., 2006. Mid-Holocene El Niño–
709 Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern
710 tropical Pacific sediments. *Geology*, 34(12), pp.993-996.

711 Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C. and Levrard, B., 2004. A long-term
712 numerical solution for the insolation quantities of the Earth. *Astronomy and*
713 *Astrophysics*, 428(1), pp.261-285.

714 Li, C.H., Li, Y.X., Zheng, Y.F., Yu, S.Y., Tang, L.Y., Li, B.B. and Cui, Q.Y., 2018. A high-resolution
715 pollen record from East China reveals large climate variability near the Northgrippian-

716 Meghalayan boundary (around 4200 years ago) exerted societal influence.

717 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 512, pp.156-165.

718 Liu, F. and Feng, Z., 2012. A dramatic climatic transition at~ 4000 cal. yr BP and its cultural
719 responses in Chinese cultural domains. *The Holocene*, 22(10), pp.1181-1197.

720 Lu, Y., Fritz, S.C., Stone, J.R., Krause, T.R., Whitlock, C., Brown, E.T. and Benes, J.V., 2017. Trends
721 in catchment processes and lake evolution during the late-glacial and early-to mid-
722 Holocene inferred from high-resolution XRF data in the Yellowstone region. *Journal of*
723 *Paleolimnology*, 58, pp.551-569.

724 Magaña, V., Amador, J.A. and Medina, S., 1999. The midsummer drought over Mexico and
725 Central America. *Journal of Climate*, 12(6), pp.1577-1588.

726 Marchant, R. and Hooghiemstra, H., 2004. Rapid environmental change in African and South
727 American tropics around 4000 years before present: a review. *Earth-Science Reviews*,
728 66(3-4), pp.217-260.

729 Mark, S.Z., Abbott, M.B., Rodbell, D.T. and Moy, C.M., 2022. XRF analysis of Laguna Pallcacocha
730 sediments yields new insights into Holocene El Niño development. *Earth and Planetary
731 Science Letters*, 593, p.117657.

732 Marín-Stillman, L.E., Pachecho-Ávila, J.G., and Méndez-Ramos, R., 2004. *Hidrogeología de la*
733 *Península de Yucatán*, in Jiménez, B., and Marín, L., eds., *El Agua en México, Vista desde*
734 *la Academia*: México, D.F., Academia Mexicana de Ciencias, p. 159–176.

735 Martinez, C., Kushnir, Y., Goddard, L. and Ting, M., 2020. Interannual variability of the early and
736 late-rainy seasons in the Caribbean. *Climate Dynamics*, 55(5), pp.1563-1583.

737 Medina-Elizalde, M., Burns, S.J., Lea, D.W., Asmerom, Y., von Gunten, L., Polyak, V., Vuille, M.
738 and Karmalkar, A., 2010. High resolution stalagmite climate record from the Yucatán
739 Peninsula spanning the Maya terminal classic period. *Earth and Planetary Science
740 Letters*, 298(1-2), pp.255-262.

741 Meller, H., Arz, H. W., Jung, R., Risch, R., (Eds.), 2200 BC - A Climatic Breakdown as a Cause for
742 the Collapse of the Old World?, Landesmuseum fur Vorgeschichte, Halle, Germany
743 (2015)

744 Menounos, B., Clague, J.J., Osborn, G., Luckman, B.H., Lakeman, T.R. and Minkus, R., 2008.
745 Western Canadian glaciers advance in concert with climate change circa 4.2 ka.
746 *Geophysical Research Letters*, 35(7).

747 Milliken, K.T., Anderson, J.B. and Rodriguez, A.B., 2008. A new composite Holocene sea-level
748 curve for the northern Gulf of Mexico. *Geological Society of America Special Papers*,
749 443(1), pp.1-11.

750 Nakamura, A., Yokoyama, Y., Maemoku, H., Yagi, H., Okamura, M., Matsuoka, H., Miyake, N.,
751 Osada, T., Adhikari, D.P., Dangol, V. and Ikehara, M., 2016. Weak monsoon event at 4.2
752 ka recorded in sediment from Lake Rara, Himalayas. *Quaternary International*, 397,
753 pp.349-359.

754 Obrist-Farner, J., Steinman, B.A., Stansell, N.D. and Maurer, J., 2023. Incoherency in Central
755 American hydroclimate proxy records spanning the last millennium. *Paleoceanography
756 and Paleoclimatology*, 38(3), p.e2022PA004445.

757 Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., Mayr,
758 C., Oehlerich, M., Mercau, J.R. and Wille, M., 2014. Late Holocene hydrology inferred

759 from lacustrine sediments of Laguna Cháltel (southeastern Argentina).

760 *Palaeogeography, palaeoclimatology, palaeoecology*, 411, pp.229-248.

761 Olsen, J., Anderson, N.J. and Knudsen, M.F., 2012. Variability of the North Atlantic Oscillation

762 over the past 5,200 years. *Nature Geoscience*, 5(11), pp.808-812.

763 Peinerud, E.K., 2000. Interpretation of Si concentrations in lake sediments: three case studies.

764 *Environmental Geology*, 40, pp.64-72.

765 Pérez, L., Bugja, R., Lorenschat, J., Brenner, M., Curtis, J., Hoelzmann, P., Islebe, G., Scharf, B.

766 and Schwalb, A., 2011. Aquatic ecosystems of the Yucatán peninsula (Mexico), Belize,

767 and Guatemala. *Hydrobiologia*, 661, pp.407-433.

768 Psomiadis, D., Dotsika, E., Albanakis, K., Ghaleb, B. and Hillaire-Marcel, C., 2018. Speleothem

769 record of climatic changes in the northern Aegean region (Greece) from the Bronze Age

770 to the collapse of the Roman Empire. *Palaeogeography, Palaeoclimatology,*

771 *Palaeoecology*, 489, pp.272-283.

772 Railsback, L.B., Liang, F., Brook, G.A., Voarintsoa, N.R.G., Sletten, H.R., Marais, E., Hardt, B.,

773 Cheng, H. and Edwards, R.L., 2018. The timing, two-pulsed nature, and variable climatic

774 expression of the 4.2 ka event: A review and new high-resolution stalagmite data from

775 Namibia. *Quaternary Science Reviews*, 186, pp.78-90.

776 Reimer, P.J., Austin, W.E., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., Cheng,

777 H., Edwards, R.L., Friedrich, M. and Grootes, P.M., 2020. The IntCal20 Northern

778 Hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon*, 62(4),

779 pp.725-757.

780 Renssen, H. (2022). Climate model experiments on the 4.2 ka event: The impact of tropical sea-
781 surface temperature anomalies and desertification. *The Holocene*, 32(5), 378-389.

782 Rodriguez-Abaunza, A. and Correa-Metrio, A. (2023). Environmental history of the northern
783 maya lowlands: evidence from a karstic lake. *PAGES*, 31 (1), 12-13

784 Rowan, D.J., Kalff, J. and Rasmussen, J.B., 1992. Estimating the mud deposition boundary depth
785 in lakes from wave theory. *Canadian Journal of Fisheries and Aquatic Sciences*, 49(12),
786 pp.2490-2497.

787 Sáenz, F., Hidalgo, H.G., Muñoz, Á.G., Alfaro, E.J., Amador, J.A. and Vázquez-Aguirre, J.L., 2023.
788 Atmospheric circulation types controlling rainfall in the Central American Isthmus.
789 *International Journal of Climatology*, 43(1), pp.197-218.

790 Servicio Meteorológico Nacional. 2024a. Normales climatológicas, Yucatán, Estación Cuzama.
791 https://smn.conagua.gob.mx/tools/RESOURCES/Normales_Climatologicas/Mensuales/yc
792 [uc/mes31048.TXT](#).

793 Servicio Meteorológico Nacional. 2024b. Normales climatológicas, Campeche, Estación Silvituc.
794 https://smn.conagua.gob.mx/tools/RESOURCES/Normales_Climatologicas/Mensuales/c
795 [amp/mes04031.TXT](#)

796 Shankar, U., 2021. Cave 'Krem Mawmluh' of Meghalaya plateau—The base of the 'Meghalayan
797 Age' and '4.2 ka BP Event' in Holocene (Anthropocene). *International Journal of Ecology
798 and Environmental Sciences*, 47(1), pp.49-59.

799 Shuman, B., Bravo, J., Kaye, J., Lynch, J.A., Newby, P. and Webb III, T., 2001. Late Quaternary
800 water-level variations and vegetation history at Crooked Pond, southeastern
801 Massachusetts. *Quaternary Research*, 56(3), pp.401-410.

802 Stansell, N.D., Steinman, B.A., Lachniet, M.S., Feller, J., Harvey, W., Fernandez, A., Shea, C.J.,

803 Price, B., Coenen, J., Boes, M. and Perdziola, S., 2020. A lake sediment stable isotope

804 record of late-middle to Late Holocene hydroclimate variability in the western

805 Guatemala highlands. *Earth and Planetary Science Letters*, 542, p.116327.

806 Staubwasser, M., Sirocko, F., Grootes, P.M. and Segl, M., 2003. Climate change at the 4.2 ka BP

807 termination of the Indus valley civilization and Holocene south Asian monsoon

808 variability. *Geophysical Research Letters*, 30(8).

809 Steinman, B.A., Stansell, N.D., Mann, M.E., Cooke, C.A., Abbott, M.B., Vuille, M., Bird, B.W.,

810 Lachniet, M.S. and Fernandez, A., 2022. Interhemispheric antiphasing of neotropical

811 precipitation during the past millennium. *Proceedings of the National Academy of*

812 *Sciences*, 119(17), p.e2120015119.

813 Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A. and Lund, S., 2004. Decline of

814 surface temperature and salinity in the western tropical Pacific Ocean in the Holocene

815 epoch. *Nature*, 431(7004), pp.56-59.

816 Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H.,

817 Zagorodnov, V.S., Mashiotta, T.A., Lin, P.N., Mikhaleko, V.N., Hardy, D.R. and Beer, J.,

818 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical

819 Africa. *science*, 298(5593), pp.589-593.

820 Torrescano-Valle, N. and Islebe, G.A., 2015. Holocene paleoecology, climate history and human

821 influence in the southwestern Yucatán Peninsula. *Review of Palaeobotany and*

822 *Palynology*, 217, pp.1-8.

823 Toth, L.T. and Aronson, R.B., 2019. The 4.2 ka event, ENSO, and coral reef development. *Climate*
824 *of the Past*, 15(1), pp.105-119.

825 Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W.,
826 Lough, J.M. and Shimmield, G.B., 2001. Variability in the El Niño-Southern Oscillation
827 through a glacial-interglacial cycle. *Science*, 291(5508), pp.1511-1517.

828 Van der Meeran, T., Verschuren, D., Sylvestre, F., Nassour, Y.A., Naudts, E.L., Aguilar Ortiz, L.E.,
829 Deschamps, P., Tachikawa, K., Bard, E., Schuster, M. and Abderamane, M., 2022. A
830 predominantly tropical influence on Late Holocene hydroclimate variation in the
831 hyperarid central Sahara. *Science Advances*, 8(14), p.eabk1261.

832 Walker, M.J., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Lowe, J.J.,
833 Newnham, R.M., Rasmussen, S.O. and Weiss, H., 2012. Formal subdivision of the
834 Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE
835 (Integration of ice-core, marine and terrestrial records) and the Subcommission on
836 Quaternary Stratigraphy (International Commission on Stratigraphy). *Journal of*
837 *Quaternary Science*, 27(7), pp.649-659.

838 Wang, C., 2007. Variability of the Caribbean low-level jet and its relations to climate. *Climate*
839 *dynamics*, 29, pp.411-422.

840 Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson,
841 D.B. and Xoplaki, E., 2001. North Atlantic Oscillation—concepts and studies. *Surveys in*
842 *geophysics*, 22, pp.321-381.

843 Winter, A., Zanchettin, D., Lachniet, M., Vieten, R., Pausata, F.S., Ljungqvist, F.C., Cheng, H.,
844 Edwards, R.L., Miller, T., Rubinetti, S. and Rubino, A., 2020. Initiation of a stable

845 convective hydroclimatic regime in Central America circa 9000 years BP. *Nature*
846 *Communications*, 11(1), p.716.

847 Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Baneschi, I. and Hellstrom, J.C., 2016. The
848 so-called “4.2 event” in the central Mediterranean and its climatic teleconnections.
849 *Alpine and Mediterranean quaternary*, 29(1), pp.5-17.

850 Zhang, J., Jin, M., Chen, F., Battarbee, R.W. and Henderson, A.C.G., 2003. High-resolution
851 precipitation variations in the Northeast Tibetan Plateau over the last 800 years
852 documented by sediment cores of Qinghai Lake. *Chinese Science Bulletin*, 48, pp.1451-
853 1456.

854 Zhang, H., Cheng, H., Cai, Y., Spötl, C., Kathayat, G., Sinha, A., Edwards, R.L. and Tan, L., 2018.
855 Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by
856 stalagmite records. *Climate of the Past*, 14(11), pp.1805-1817.

857 Zhang, W., Wu, H., Cheng, J., Geng, J., Li, Q., Sun, Y., Yu, Y., Lu, H. and Guo, Z., 2022. Holocene
858 seasonal temperature evolution and spatial variability over the Northern Hemisphere
859 landmass. *Nature Communications*, 13(1), p.5334.