
Leviathan: A Unified System for General-Purpose Near-Data Computing

Brian C. Schwedock∗

Samsung

b.schwedock@samsung.com

Nathan Beckmann

Carnegie Mellon University

beckmann@cs.cmu.edu

AbstractÐThe rising cost of data movement poses a significant
challenge to future computing systems. The call to arms for novel
data-centric systems has spawned a wave of near-data computing
(NDC) architectures that move compute closer to data. Despite
large benefits promised by NDC, prior designs suffer from limited
applicability and difficult programming.

This paper identifies the commonalities and differences across
NDC designs to develop Leviathan, a unified architecture and
programming interface for near-cache NDC. We build a taxonomy
of NDC and identify the key dimensions as what, where, and when
to compute. Leviathan provides a simple reactive-programming
interface and automatically executes actions near data at the
right time and place. The ability to integrate multiple NDC
paradigms makes Leviathan the only general-purpose system to
support a variety of specialized NDC designs. Across a range of
NDC-specialized applications, Leviathan improves performance
by 1.5×±3.7× and reduces energy by 22%±77% vs. a baseline
multicore, while adding only ≈6% area compared to the last-level
cache.

Index TermsÐnear-data computing, data-centric computing,
data locality, cache hierarchy

I. INTRODUCTION

Computer systems are increasingly bottlenecked by the

rising cost of data movement [20, 28, 32, 44, 84]. The

inclusion of data-movement accelerators in recent commercial

processors [15, 41, 72] indicates that traditional CPU scaling

can no longer meet processing demands. Addressing the

data-movement challenge has sparked a wave of architecture

innovation on data-centric computing. A popular approach is

near-data computing (NDC), which reduces data movement by

moving compute closer to data, unlike conventional memory

hierarchies that pull data closer to compute.

Traditional near-memory NDC shows large benefits for

applications with little data reuse, but it fails to exploit the

locality present in most workloads. Blindly moving all compute

to main memory can actually harm performance [4, 34, 47,

76, 91]. This limitation is addressed by near-cache NDC [1, 2,

5, 6, 8, 18, 22, 24, 33, 37, 38, 42, 43, 47, 48, 52, 56, 57, 64,

66, 69, 74, 77, 85, 88±90, 92±95], which augments a cache

hierarchy with processing capability. Near-cache NDC allows

systems to move compute closer to data while also exploiting

locality, unlocking the full potential of data-centric computing.

The problem: Prior NDC is too limited and hard to use.

Despite the large benefits promised by NDC, there remain

significant roadblocks to its practical adoption in general-

purpose systems. Most proposals target a narrow range of

∗This work was completed while the author was affiliated with Carnegie
Mellon University.

L1dL1i

L2

LLC Bank

Engine

Core

NoC

Code

Fig. 1: We divide prior near-data computing (NDC) into four
paradigms. Leviathan supports all paradigms, executing code
on near-data engines at the time and location dictated by the
paradigm. Programmers write Leviathan programs via a simple
reactive-programming interface, and Leviathan hardware ensures
that objects are efficiently packed within cache banks.

application domains and only support a subset of NDC’s design

paradigms (Table I). But it is not scalable or practical to add new

hardware for every potential application domain. Some recent

work has started to address this challenge via programmable

NDC, where software can configure the operations that execute

near data [6, 11, 47, 54, 66, 79, 81, 90]. However, existing

programmable NDC is still insufficient because it only targets

a limited subset of the broad NDC design space.

Beyond limited scope, prior designs also expose too many

microarchitectural details to the programmer. Specifically, since

existing NDCs rely on the underlying caches or DRAM for

data storage, their designs often require data to fit within and

align to cache lines [18, 31, 47, 52, 66, 94, 95]. Exposing

such microarchitectural details to software, let alone forcing

programmers to reason about them, increases programming

difficulty and makes NDC unapproachable.

Opportunity and insight. We observe that neither of these

issues is fundamental to NDC. With the goal of designing a

practical NDC system, we first perform an extensive study on

prior NDC proposals and build a taxonomy that captures their

similarities and differences (Sec. II). We find that prior designs

largely fall into only one of four main paradigms (Fig. 1), but

many applications require multiple paradigms to see the full

benefits of NDC.

Prior work has treated each paradigm separately, but we

observe that a similar structure underlies them. Each paradigm

can be roughly broken down into three components: what to

execute, where to execute, and when to execute. By placing

general-purpose hardware near caches, programmable NDC

addresses ªwhat,º but ªwhenº and ªwhereº remain unsolved.

1 class Actor: # Combines data and near-data action
2 int data
3
4 # Action executes near ‘‘data’’ in the hierarchy
5 void action(int update):
6 atomicAdd(data, update)
7
8 # Core offloads an action to execute on an ‘‘actor’’
9 invoke actor->action(newUpdate)

Fig. 2: Example implementation of a remote memory operation
(RMO) in Leviathan using the actor interface. The actor
encompasses a near-data action and the data which the action
accesses. A core (or other action) explicitly invokes the action to
execute near the data.

A system can support all paradigms only if it has flexibility to

trigger computation at the right time and place.

The other challenge is to avoid exposing microarchitectural

details to the programmer. The main issue is that NDC requires

data to be entirely within a single cache bank to maximize

locality. Prior work put this burden on the programmer [18, 31,

47, 52, 66, 94, 95], requiring them to be aware of and optimize

for the cache microarchitecture, but this need not be the case.

Instead, the programmer can tell the NDC system the structure

of its data, and the system itself can optimize locality.

Our approach. We propose Leviathan, a polymorphic cache

hierarchy that unifies a wide range of prior NDC designs

under a simple, actor-based reactive-programming interface.

Fig. 1 illustrates a Leviathan system executing exemplar

NDC workloads from each paradigm in our taxonomy. Task

offload involves short tasks explicitly invoked by a core

(or another NDC action) to execute near a target object

in the hierarchy. Long-lived workloads perform large tasks

independently from cores and run near memory or cache

to avoid polluting cores’ caches. Data-triggered actions are

implicitly executed on objects as they move through the

cache hierarchy. And streaming allows a decoupled, near-data

producer to continually feed a core with data.

To support all paradigms, Leviathan provides a reactive-

programming interface. In actor-based reactive programming,

an actor is an object associated with specific actions that are

invoked by external triggers [61]. In Leviathan, actions are NDC

functions executed near data in response to paradigm-specific

triggers. Fig. 2 shows an example actor which implements

a remote memory operation (RMO). The actor includes the

data to be accessed and a function that implements the desired

RMO (atomic add in this example).

Leviathan provides data locality transparently to program-

mers. Leviathan can manage data itself because it knows an

action’s access granularity Ð i.e., the actor’s object. Leviathan’s

memory allocator ensures that objects are located entirely

within one cache bank to maximize locality (right of Fig. 1).

Leviathan hardware takes inspiration from prior NDCs

that incorporate programmable compute within the cache

hierarchy [11, 47, 66, 80] by distributing near-data engines to

execute actions on actors. The engines also contain hardware

scheduling logic that, in combination with microarchitectural

support in the cores and caches, execute code near data at the

right time and place. We explain how each NDC paradigm

maps to a combination of actions and triggers, and describe

the necessary runtime and microarchitectural support.

The end result is a polymorphic cache hierarchy that unifies

prior NDC systems on the same hardware while providing a

simple-to-use programming interface. Leviathan is the first

system to support all NDC paradigms. Unifying all paradigms

in a single system is essential to reach the true potential of NDC,

particularly on applications that require multiple paradigms

(see Sec. IV).

Contributions. This paper contributes the following:

• NDC taxonomy. We analyze prior NDCs to identify their

similarities and differences. This leads us to the necessary

mechanisms for a practical, unified NDC system.

• Programming interface. We propose a simple and flexible

reactive-programming interface which allows programmers

to implement a wide range of NDC applications without

worrying about hardware details.

• Architecture. We propose a single architecture that supports

all four NDC paradigms and provides microarchitectural

support to control data placement so that objects reside

entirely within the same cache bank.

• Evaluation. We demonstrate Leviathan’s benefits through

four diverse case studies, across which Leviathan provides

1.5×±3.7× speedup and 22%±77% energy savings.

Summary of results. We evaluate Leviathan on four case studies

to demonstrate (i) the importance of supporting multiple NDC

paradigms on a single system, (ii) the ease of developing a

Leviathan application with its unified programming interface,

and that (iii) Leviathan improves performance while hiding

microarchitectural details from the programmer.

• Commutative scatter-updates: Leviathan implements

PHI [52], an accelerator which uses multiple NDC

paradigms to improve the performance of commutative

scatter-updates in graph applications. Leviathan is the first

system to provide all the necessary NDC support in a

general-purpose way, achieving 3.7× speedup.

• Near-cache data transformation: Leviathan decompresses

objects as they move through the hierarchy. Leviathan’s

programming interface abstracts away microarchitectural

details to handle objects of any size without added program-

ming complexity, and Leviathan achieves 2.4× speedup.

• Hash-table lookups: Leviathan reduces on-chip network

overheads when traversing hash-table buckets by accelerat-

ing lookups near cache. Leviathan performs well across a

wide range of object sizes, achieving up to 2.0× speedup.

• Decoupled graph traversals: Leviathan implements

HATS [51], a complex decoupled streaming application,

achieving 1.7× speedup. Leviathan’s streaming interface al-

lows arbitrary data access patterns, unlike prior affine-based

designs [80, 81], and its stream interface is much simpler

to program and more effective than prior general-purpose

NDC designs that do not explicitly support streams [66].

Leviathan adds just ≈6% area overhead compared to a baseline

multicore’s last-level cache, similar to prior NDC systems, and

achieves performance within 4.8% of using an idealized near-

data engine.

2

TABLE I: Taxonomy of prior work on near-data computing (NDC) within the memory hierarchy.

NDC paradigm Small

tasks?

Talks to

cores?

Prior work

Task offload ✓ ✓ Remote memory operations (RMOs) [39, 67], Minnow [89, 90], hash tables [95], memoization [94],
BSSync [43], pointer chasing [31, 35], data remapping [7], Compute Caches [1], Livia [47], Dist-DA [11]

Long-lived workloads ✗ ✗ PageForge [71], SerDes [37, 58], garbage collection [48], COREx [26]

Data-triggered actions ✓ ✗ Prefetching [5, 6, 74, 88], compression [8, 24, 56, 57, 64, 77], HTM [92], coherence and synchronization [2,
22, 33, 42, 59, 69, 85, 93], Impulse [18], Relational Memory [62], Tvarak [38], PHI [52], täkÅo [66]

Streaming ✗ ✓ Stream Dataflow [54], Stream ISA [79], Stream Floating [81], Near-Stream Computing [80], Task
Stream [19], Infinity Stream [78], HATS [51], SpZip [86], Cohort [82]

(a) Paradigms differ in when/where
actions execute as well as commu-
nication patterns with cores.

Core

L1dL1i

LLC Bank

NDC

Hardware

NoC

Offload

RMW

1

Atomic

RMW

2

Offload

RMW

1

L2

(b) Task offload: cores
push short operations to
caches, e.g., atomic add.

NoC

Core

L1i

L2
NDC

Hardware
L1d

Serialize

packet

LLC Bank

(c) Long-lived: near-data
thread avoids cache pol-
lution, e.g., serialization.

Core

L1dL1i

L2 NDC

Hardware

NoC

Miss2

Load1

Load

from LLC

3a

Inform

NDC

3b

Prefetch4

LLC Bank

(d) Data-triggered: com-
pute when data moves,
e.g., prefetching.

NoC

Core

L1dL1i

L2
NDC

Hardware

Consume

stream &

compute

Produce

stream

NDC Buffer

LLC Bank

(e) Streaming: caches
push data to cores, e.g.,
CSR traversal.

Fig. 3: Breakdown of NDC taxonomy across paradigms.

II. BACKGROUND

With the goal of developing a unified NDC system (Fig. 3a),

our first step was exploring the diverse prior work on near-data

computing. We found that prior designs largely fall into one

of four main paradigms:

• Task offload. A core explicitly offloads a small amount of

work into the memory hierarchy (e.g., atomic read-modify-

write) and often expects a response quickly.

• Long-lived workloads. A long-lived thread runs within the

memory hierarchy, typically processing a large amount of

data (e.g., packet serialization) without frequent communi-

cation to or from cores.

• Data-triggered tasks. Computation is triggered when data

moves through the hierarchy (e.g., prefetching). Tasks are

short-lived and do not communicate at all with cores.

• Streaming. A near-data producer generates a stream of data

to be processed by a separate consumer (e.g., decoupled

access-execute). Tasks are long-lived and communicate

continuously with cores.

Table I provides examples of recent NDC designs and where

they fit in this taxonomy.

A. A Taxonomy of Near-Data Computing

Task offload. Task offload encompasses designs where a core

or other near-data task offloads a small amount of work

into the memory hierarchy to execute closer to a specific

piece of data. The traditional example is remote memory

operations (RMOs), where a core requests a single atomic

operation to execute directly on the data within the cache or

main memory [39, 67] (Fig. 3b). This avoids the expensive

ping-ponging of data between cores for heavily shared data.

Over time, offloaded tasks have become increasingly complex,

potentially involving many operations, multiple locations in

the memory hierarchy, and tasks spawning additional tasks

(e.g., for pointer chasing [31, 35]). A major challenge in these

designs is dynamically determining the right location to execute

a task; e.g., where is the data now?

Long-lived workloads. In contrast to task offload, long-lived

workloads execute long computations that operate on large

amounts of data. They run independently of cores without

direct communication (Fig. 3c). Typically, applications in this

paradigm perform some background processing and run low in

the cache hierarchy to avoid polluting private caches. One

example is serialization/deserialization (SerDes), where an

object is transformed near memory while the core continues to

operate asynchronously [37, 58]. Long-lived workloads often

want to execute at a fixed location in the memory hierarchy (e.g.,

LLC or memory controller). Accordingly, the system needs to

allow software to request a specific location for execution.

Data-triggered actions. These are actions triggered implicitly

by data movement within the memory hierarchy, not explicitly

by software. Typically, the triggering mechanism is when data

is inserted in or evicted from a cache bank. A popular example

is hardware prefetching (Fig. 3d), where the prefetcher monitors

cache misses and optionally triggers additional data requests

before the underlying core needs the data.

The benefits of data-triggered actions are increased visibility

and control over data movement. For example, hardware

compression has been proposed to decompress data as it moves

from main memory to the core, improving the effective capacity

3

of main memory while avoiding the need to decompress data

on cache hits [8, 24, 56, 57, 64, 77].

The unique characteristic of data-triggered actions is that

they execute when data moves, which is traditionally invisible

to software. Hardware support is required to trigger actions

when data moves across levels of the memory hierarchy.

Streaming. Streaming is when applications access data in a

pattern that can be decoupled from other application logic.

Typically confined to simple affine patterns, recent work has

proposed general-purpose streaming engines [54, 79±81] and

sophisticated stream logic that supports complex, irregular

access patterns [51, 88]. The benefits of streaming are that

the stream producer can run ahead of the consumer to hide

memory latency, control flow is regularized on the consumer,

and stream generation can often use simplified hardware logic.

The unique characteristic of streaming as an NDC paradigm

is that the stream is long-lived within the memory hierarchy

and communicates frequently with cores (Fig. 3e), pushing

data and waiting for an acknowledgment that data has been

consumed. Streams benefit from explicit ISA support for this

frequent communication [79].

B. Applications need multiple NDC paradigms

Fig. 3 separates the four NDC paradigms, but they often

interact and do not operate independently. Prior work shows

significant benefits from combining multiple paradigms.

PHI [52], discussed further below (Sec. IV), combines task

offload and data-triggered paradigms. PHI offloads atomic

updates near data (task offload) to avoid ping-ponging of data

between private caches, which is important because frequent,

concurrent updates are expected. It also modifies cache insertion

and eviction (data-triggered) to initialize data and decide upon

eviction how to apply updates, saving memory bandwidth.

Similarly, Near-Stream Computing (NSC) [80] combines

both task offload and streaming. NSC observed that it is

more efficient to process stream output near the cache than on

a core. So NSC offloads tasks to the stream’s location, reducing

data movement and avoiding pollution of cores’ private caches.

Finally, Dist-DA [11] provides a flexible design for sup-

porting task offload and long-lived workloads by providing a

common mechanism for cores to offload work near caches.

C. Limitations of prior work

Despite providing large benefits, prior NDC designs suffer

two major deficiencies: scope and software abstraction. They

benefit too few applications to justify integration in a general-

purpose system, and they expose inessential hardware details

to software, complicating the programming interface.

Limited scope. Every NDC design requires new hardware

and interfaces across the system stack. The simplest designs

are ISA extensions that enable single operations on cached

data (e.g., RMOs); these are broadly useful and easy to

implement. However, more complex tasks (e.g., SerDes) cannot

be efficiently reduced to RMOs and require much more

disruptive changes that benefit fewer applications. Recent

programmable designs require the most disruptive changes

of all and still only target a subset of the NDC design space [6,

11, 47, 54, 66, 79, 81, 90]. Many only support a single

paradigm: e.g., task offload [47], streams [54, 79, 81], or data-

triggered [6, 66, 90]. A few support two paradigms (Sec. II-B),

but no prior NDC system supports all paradigms.

To justify the cost of adding new features to a general-

purpose processor, features must benefit a wide range of

applications. It is simply infeasible to re-design hardware and

software for every potential application of NDC. However,

that is exactly the trend in prior work (accelerators for

graphs, compression, etc), and the reason it is unlikely to

see widespread adoption.

Poor hardware abstraction. One of the consistent lessons in the

history of computer architecture is the importance of ease of

programming to the real-world success of hardware. Hardware

details are typically abstracted away from application software,

so that the programmer can focus on developing application

features and only rarely worry about microarchitecture for

performance-critical code. Exposing microarchitectural details,

such as the cache’s line size, is unnatural for a programming

interface, but that is exactly what prior work on NDC does.

Since near-cache NDCs are co-located with cache banks, it

is highly desirable for an action’s data to reside entirely in one

cache bank or tile. Prior NDCs have placed that burden on

the programmer, forcing applications to properly align and pad

data to cache lines or suffer massive performance penalties [18,

31, 47, 52, 66, 94, 95]. This low-level programming interface

limits NDC to a narrow subset of programmers and adds burden

when porting code across microarchitectures.

Incompatibility of programming interfaces. Prior NDC inter-

faces are ad hoc and make paradigms mutually incompatible.

For a rough analogy, task-offload is akin to calling a function;

long-lived is like spawning a thread; data-triggered is like

registering an interrupt handler; and streaming is like opening

a network socket. These are all different beasts. We aim to

bring them under one roof and let them work together, which

is essential for applications that require multiple paradigms

and to enable rapid exploration of different paradigms.

D. Actor-based reactive programming

Reactive programming is a model for designing event-driven

applications [10]. While traditionally geared towards large-

scale distributed applications [61], reactive programming can

be a good fit for any application that breaks down into units

of work that often execute asynchronously from each other.

Accordingly, we find that reactive programming enables a clean

description of NDC functions.

There are different variations of reactive programming,

including, but not limited to, actor-based [29, 61], object-

oriented [63, 65], functional [25], and imperative [23]. In actor-

based reactive programming, messages are sent to actors to

trigger actions on the actors’ data. Each NDC paradigm involves

triggering actions, typically on a specific piece of data, which

aligns with the design of actors. Also, the flexibility permitted

in message creation (e.g., core-triggered vs. data-triggered) and

composition (e.g., variable number of arguments) enable all

4

TABLE II: Actions associated with each NDC paradigm.

Paradigm Actions

Task offload Arbitrary actor-specific function
Long-lived Arbitrary actor-specific function
Data-triggered Actor constructor & destructor
Streaming Actor-specific producer function

NDC paradigms to fit within the model. Consequently, we

find that actor-based reactive programming is a good fit for

unifying NDC paradigms.

III. LEVIATHAN OVERVIEW

Leviathan’s goal is to provide a polymorphic cache hierarchy

that unifies prior NDC paradigms and is easy to program.

Like recent programmable NDC systems [6, 11, 47, 54, 66, 79,

81, 90], Leviathan adds general-purpose engines near the cache

banks of a multicore, letting software run arbitrary compute

near data. To support all four NDC paradigms, Leviathan further

adds microarchitectural support to execute software at the right

time and place. And Leviathan exposes all this capability to

programmers via a simple programming interface that hides

unnecessary microarchitectural detail from software.

Programming interface. The programming model comprises an

object-oriented memory allocator and an actor-based interface

for each of the NDC paradigms. Each paradigm operates

on actors provided by the allocator to ensure that Leviathan

maintains intra-bank data locality.

NDC paradigms mainly consist of three components: what

action to execute, when to execute it, and where to execute it. In

Leviathan, the application provides the actions to execute and

indicates the NDC paradigm to use. It is the responsibility of

Leviathan’s runtime and hardware support to correctly execute

the action, depending on the paradigm.

Table II breaks down the actions associated with each

paradigm, and Fig. 2 gives pseudocode for an example task-

offload actor. Task offload and long-lived workloads both

involve actor-specific actions explicitly triggered by a core

or another near-data action, so Leviathan needs to execute

the action when requested at the appropriate location. Data-

triggered NDC involves two actions Ð actor constructors

and destructors Ð that are triggered on specified actors when

they are either inserted in or evicted from the cache. And

streaming involves a producer (long-lived workload) and

consumer (regular thread) along with additional support to

push and pop objects from a shared communication channel.

Hardware. On top of a baseline, cache-coherent multicore,

each tile is augmented with a near-data engine (Fig. 1).

The commonality across NDC paradigms is executing an

application-defined action on a specified object, so Leviathan’s

engine contains a lightweight, programmable processor to

execute actions. The difference across paradigms is the way in

which actions are triggered. This is handled by the engine’s

hardware scheduler, which provides microarchitectural support

for each paradigm. The other main engine components are a

small, coherent cache and a task-context buffer to manage local

state for currently running actions. Additional minor support

is also added to the cores and caches.

IV. MOTIVATION

We demonstrate the power of a unified NDC system by

implementing a design that requires functionality from multiple

paradigms. Leviathan’s unification of all four paradigms is

essential to providing a truly polymorphic cache hierarchy.

A. Accelerating commutative scatter-updates

PHI [52] is a push-based cache hierarchy optimized for

commutative scatter-updates, e.g., in graph applications. In PHI,

the cache is a large write-combining buffer for commutative

operations (e.g., addition) that contains partial updates (i.e.,

deltas) instead of raw data. When cache lines are evicted, PHI

either immediately applies the updates in-place or logs them

for later processing [14, 40], dynamically choosing the policy

that minimizes memory bandwidth.

PHI spans multiple NDC paradigms. PHI’s key mechanism

is data-triggered: PHI changes cache insertion to initialize

lines and changes eviction to perform updates in-place or log

them. However, a large portion of PHI’s benefits come from

task offload by using remote memory operations (RMOs) [39,

67] to execute read-modify-write (RMW) operations within

the cache. Offloading RMW operations to the shared cache

both reduces ping-ponging of data between cores and avoids

expensive fenced atomics on the cores. This aspect of PHI is

not emphasized in prior work, which assumed that the cache

supports whichever RMOs are needed. Given the diversity of

graph applications [13], it is essential that NDC systems support

multiple paradigms to make techniques like PHI practical.

LLC Bank

Engine

Core

NoC

Fig. 4: Leviathan implements
PHI [52] by enabling multiple
NDC paradigms to work to-
gether. The figure demonstrates
how an offloaded RMW task
leads to a data-triggered action
that implements PHI’s insertion
semantics. A similar process
happens on cache evictions.

B. Leviathan’s implementation of PHI

Fig. 4 illustrates Leviathan’s implementation of PHI, where

task offload and data-triggered actions work together to treat

the LLC cache as a write-combining buffer. 1 A core offloads

a RMW task to this LLC bank to perform an atomic RMW

on an object; e.g., updating a vertex’s rank in PageRank (see

Fig. 2 for pseudocode). 2 The RMW task loads an object

which is not cached. 3 The cache miss triggers an insertion

action; several objects are packed into one cache line. 4 The

insertion action (i.e., object constructor) initializes each object

with zero and completes the cache insertion. 5 The RMW

task now updates the object.

As long as the objects remain cached, subsequent RMW

tasks will directly update the same objects without triggering

further insertion actions. And when the objects are finally

evicted, the destructor action will either update the values

in-place, or log them for later (not shown).

5

C. Why Leviathan?

PHI’s proposed design requires significant hardware and

software changes to a multicore system to benefit a single

application domain. Cache-triggered operations, RMOs, and a

new CPU instruction are all needed to support just a subset of

graph processing applications. No prior general-purpose system

can fully support PHI’s design. Leviathan’s multiparadigm

design makes it the only general-purpose system that can

implement PHI, along with other multiparadigm NDCs.

D. Evaluation

We evaluate Leviathan to demonstrate the benefits of multi-

paradigm support. The comparisons are a baseline implementa-

tion of push-based PageRank and täkÅo’s [66] implementation of

PHI. täkÅo is a programmable NDC for data-triggered actions.

Since täkÅo does not support task offload, it approximates RMOs

by assuming cores support atomic instructions without memory

fences (i.e., relaxed atomics [9, 70]). We evaluate täkÅo with

and without relaxed atomics to demonstrate the importance of

this dimension of PHI.

Base täk
Fence

täk
Relax

Levi Ideal
0

1

2

3

4

S
pe

ed
up

Base täk
Fence

täk
Relax

Levi Ideal
0.0

0.5

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Core
Engine

L2
LLC

NoC
Mem

Fig. 5: PHI results for PageRank on a 4M vertex, 40M edge
synthetic graph. Leviathan improves performance by 3.7×.

Fig. 5 shows results for PageRank with 16 threads. (Method-

ology in Sec. VII.) Leviathan achieves 3.7× speedup, whereas

täkÅo gets 3.1× speedup with relaxed atomics and 1.4× without.

Leviathan also reduces energy by 22%, vs. 12% for täkÅo.

Finally, Leviathan comes within 1.3% speedup and energy of

an idealized engine, demonstrating that Leviathan’s modest

engines are sufficient for performant NDC.

Leviathan achieves its benefits by (i) reducing memory

accesses with data-triggered actions; (ii) eliminating memory-

fence overheads with task offload; and (iii) reducing NoC

traffic with task offload. Both Leviathan and täkÅo reduce

memory accesses by conditionally binning updates on cache

evictions using data-triggered actions. The benefit of eliminat-

ing memory fences is shown by comparing täkÅo Fence and täkÅo

Relax. Fences serialize memory accesses and impose a severe

performance penalty; relaxed atomics are essential for täkÅo to

realize large benefits. Meanwhile, Leviathan simply offloads

tasks near data, eliminating the need for relaxed atomics while

also reducing NoC traffic by 40% vs. täkÅo. These benefits are

unachievable in täkÅo because it does not support task offload.

Discussion. All in all, Leviathan’s ability to support multiple

NDC paradigms enables a variety of performance optimizations

that are unsupported by prior NDC systems. Leviathan is the

only multi-paradigm, general-purpose NDC system, and thus

the first truly polymorphic cache hierarchy.

V. LEVIATHAN PROGRAMMING INTERFACE

Leviathan’s programming interface works to overcome the

two major limitations of prior work: scope and hardware

abstraction. Leviathan extracts the commonalities across NDC

paradigms while supporting their differences. The commonali-

ties are actors with paradigm-specific, near-data actions that

execute asynchronously from the main thread and communicate

results via futures. The key differences across paradigms are

when and where to execute the actions. Leviathan’s interface

abstracts hardware by letting applications specify the data

it wants to access, and then Leviathan performs all data

management behind the scenes via a custom memory allocator.

A. Building blocks

1) Actors

The underlying mechanism for implementing all paradigms

is the actor model [29, 61]. An actor is an object (i.e., class)

associated with one or more near-data actions (i.e., methods).

Note that we distinguish ªactorº and ªobjectº, where object

just refers to data, because not all objects in Leviathan are

actors (specifically, with streams, as discussed in Sec. V-B3).

A programmer uses Leviathan by defining an actor class

which implements the necessary actions for the paradigm of

interest (e.g., Fig. 2). All actor instances are allocated with

Leviathan’s allocator (Sec. V-A3) so that data management

is hidden from the application. Near-data actions are then

executed on allocated actor instances at a time and place in the

cache hierarchy according to the designated NDC paradigm.

2) Communicating results with Futures

1 class Future<R>:
2 R wait() # for receiver
3 void send(R result) # for sender

Fig. 6: Leviathan’s Future interface.

Task offload and streaming require the ability to commu-

nicate results from near-data actions back to a core. For this

functionality, Leviathan provides a Future<R> (Fig. 6) which

is filled with an object of type R from an action running

asynchronously from the core. To receive a result, the core

simply waits on the Future<R> until the object is available.

3) Memory allocator

The purpose of Leviathan’s memory allocator is to abstract

away microarchitectural details so that the application can

specify the actors it wants to operate on, and Leviathan manages

packing and padding of their data into cache lines.

1 class Allocator <T>:
2 T* allocate()
3 void deallocate(T* object)

Fig. 7: Leviathan’s object-oriented memory allocator.

Application interface. Leviathan’s Allocator<T> (Fig. 7) pro-

vides simple methods to allocate and deallocate objects of type

T. Depending on the NDC paradigm, applications may not use

the allocator directly; data-triggered actors are allocated and

freed implicitly by hardware.

6

0 64 128
24-byte objects

Action loses locality

Action

Normal array Objects split over LLC banks

(a) Allocating a normal array of objects splits objects across LLC
banks, losing data locality for NDC actions.

0 64 128
24-byte objects

Objects always local

w/ Leviathan allocator Objects padded automatically
Action

(b) Leviathan’s allocator pads objects to maintain data locality for
NDC actions.

Fig. 8: Padding objects in the cache is necessary to maintain data
locality for NDC actions. This example demonstrates allocating
24B objects for a cache with 64B lines.

Implementation. The allocator has three jobs: padding objects

to be cache-aligned; mapping large objects to the same LLC

bank; and packing objects to not waste main memory.

Small objects. When objects smaller than a cache line do not

evenly divide the line size, allocating an array of objects

normally will result in some objects spanning multiple lines

(see Fig. 8a). This hurts NDC because actions are forced to

fetch part of the object from another cache bank, rather than

finding all data locally. To avoid this issue, Leviathan’s allocator

pads objects to the next power-of-two size (see Fig. 8b).

Large objects. Objects larger than a cache line reside on

multiple banks because consecutive cache lines typically map

to distinct banks [87]. Mapping such objects to a single bank

is impossible to achieve in software alone. Leviathan solves

this problem by modifying the LLC’s bank-index function to

ignore LSBs of an address, depending on the object size, in

addition to padding as described above. For example, for an

object that is four cache lines in size, ignoring two (log(4) = 2)

LSBs will map all lines of the object to the same bank.

Memory compaction. Padding causes fragmentation that wastes

memory. Our insight is that padding matters for NDC in the

cache, but is unnecessary in memory. Leviathan thus aligns

objects to cache lines in the cache, but packs them densely in

memory to avoid fragmentation.

Leviathan uses a one-to-one translation between cache

address and memory address, similar to a phantom address

or memory overlay [18, 66, 68]. The translation is a simple

computation which only requires the object size and array base

address both for cache and memory (see Fig. 14). Such dynamic

padding is impossible in software alone because software has

no control over the cache-to-memory interface.

This design requires contiguous address ranges in both

cache and memory. Accordingly, Leviathan’s allocator is pool-

based and allocates from a large, contiguous physical memory

range. Alternatively, one could add an additional page-level

translation layer between the LLC and memory at some

additional overhead and complexity [68].

B. NDC paradigms in Leviathan

1) Task offload & long-lived NDC

The first NDC paradigms we discuss are task offload and

long-lived workloads. We observe that, although their usage

and underlying hardware can differ, the software interface is

essentially the same [11]. They both involve a core or action

explicitly invoking another action, be it short- or long-lived.

Accordingly, we group both paradigms into a single interface

with options to distinguish the aforementioned differences.

1 class A: # example actor
2 U f(...) # action 1
3 V g(...) # action 2
4
5 # invoke creates a future, holding return value
6 A* a = Allocator <A>::allocate()
7 Future<U> u = invoke a->f(...) # location is dynamic
8 Future<V> v = invoke[REMOTE] a->g(...) # vs. static

Fig. 9: Leviathan’s task offload actor interface.

Invoking tasks. Offloaded tasks operate on an object, which is

expressed in Leviathan as actions on an actor. The application

first allocates an actor and triggers an action using the invoke

keyword (see Fig. 9), similarly to Livia [47]. In the figure,

invoke offloads the method f to execute near the actor a,

returning a Future<U> that is filled when the task completes.

Offloaded tasks can take any number of arguments and

return any type, including void (no return value). The optional

[location] parameter indicates in which level of cache hierarchy

the task should execute. There are three options:

• LOCAL: The invoker’s local engine.

• REMOTE: The engine near the object’s LLC bank.

• DYNAMIC (default): Leviathan probes down the cache

hierarchy to locate the object, and executes the task nearby.

The user can also indicate a task wants EXCLUSIVE (i.e., write)

permissions as hint to DYNAMIC scheduling.

Offloaded tasks can themselves invoke further tasks in

continuation-passing style, eventually sending a single value

back to the original caller using return (which the compiler

translates into executing send on the future.

2) Data-triggered actions

Data-triggered NDC interposes on cache misses and evictions

to perform application-specific handling of the data being

moved. As prior work identified [66], letting software handle

insertions and evictions (instead of fetching from or evicting

to the next level of the hierarchy) unlocks many NDC

optimizations that otherwise require custom hardware. This

ªphantomº data only resides in cache and is not backed by off-

chip memory [18, 66], since it is constructed when filling

a cache line and destructed when evicting the cache line.

Accordingly, in Leviathan, the actors are the phantom data

themselves, and the actions are constructors and destructors

(Fig. 11), which are invoked implicitly by the cache controller.

For example, in Leviathan’s implementation of PHI

(Sec. IV-B), the actor’s data is initialized with zero on a cache

miss and conditionally logged or written back to memory

on a cache eviction. Later, in Sec. VIII-A, we will show a

data-triggered constructor for near-cache data decompression.

7

Implemented by Leviathan
Hidden from app programmer
T::T(Morph<T>* view):
 bufferEntry = view->buffer |
 (this & view->mask)
 this->data = *bufferEntry

Stream generator
Written by app programmer
void genStream():
 while True:
 nextObject = ...
 push(nextObject)

Regular thread
Written by app programmer
Stream<T> stream(bufferSize)

while True:
 Future<T> future = stream.next()
 nextObject = future.wait()
 processObject(nextObject)

Phantom

stream
Circular

buffer

Cache EngineCore

Consumer
Producer

(long-lived)

Actor constructor

(data-triggered)

Load

Pop

Copy

Push

Fig. 10: Leviathan supports streaming through a combination of long-lived and data-triggered NDC. The programmer implements
the producer (long-lived NDC thread) and consumer (regular thread), while Leviathan’s API handles the data-triggered thread.

1 class A: # example actor
2 # actions
3 A(Morph<A>* view) # constructor
4 ~A(Morph<A>* view, bool isDirty) # destructor
5
6 class Morph<T>: # T is an actor type
7 TPadded* actors # base address of padded actors
8 int size # number of actors
9 Morph<T>[] views # per-engine local state

10
11 T& getActor(int offset) # for use by cores
12 int getOffset(T* actor) # for use by actions
13
14 Morph<T>* register(Type morphType , CacheLevel level,
15 int numActors)
16 void unregister(Morph<T>* morph)

Fig. 11: Leviathan’s data-triggered actor interface.

Registration. Data-triggered functionality is encapsulated in

a Morph object, which gathers state for an address range of

phantom actors. Applications register a Morph to allocate an

address range for the actors’ phantom data. Actors are allocated

via Leviathan’s Allocator to maintain intra-bank locality. Since

a Morph’s address range may span LLC banks, each engine

has a separate view (i.e., copy) of the Morph, which may

contain engine-local state for actions running on that engine.

Actions. The two data-triggered actions are an actor’s con-

structor and destructor (similar to täkÅo’s onMiss and onEvic-

tion/onWriteback [66]), triggered on insertions/evictions at

the registered CacheLevel. Both actions are provided a pointer

to the engine’s Morph::view. The destructor is also passed a

boolean denoting whether the cache line(s) containing the actor

is clean or dirty. The major advantage over prior work [66]

is that code can be much simpler because actions execute on

objects, not cache lines. The application just needs to handle

construction and deconstruction of single objects, vs. worrying

about layout and alignment of data within cache lines.

3) Streaming

Leviathan’s streaming interface takes inspiration from de-

coupled streaming accelerators in which a near-data thread

pushes data to a core [51, 79±81, 86]. But, unlike prior work,

Leviathan is not restricted to a specific data size for stream

entries, and streams can execute arbitrary logic for any desired

pattern (vs. pre-defined affine or indirect patterns).

Streams are essentially long-lived NDC threads, but they are

so ubiquitous and their communication pattern with cores so

regular that it is worth treating them as a separate paradigm with

a custom interface and architectural support. In fact, Leviathan’s

stream implementation uses both long-lived and data-triggered

paradigms under the hood.

Fig. 10 demonstrates how Leviathan implements streaming.

The crux of the stream is a long-lived thread on an engine

(ªProducerº) that pushes new entries onto a circular buffer

in shared memory. Consuming the stream, however, involves

data-triggered actions (ªActor constructorº) to copy the stream

into a phantom address space, where it can be consumed by

an application thread on a core (ªConsumerº). This approach

simplifies stream consumption because (i) the core merely

issues sequential loads, which are prefetchable and involve

very regular control, and (ii) the cache controller can easily

stall phantom loads if the core runs past the end of the stream.

Importantly, Leviathan’s interface hides all the data-triggered

details from the application, exposing only a simple Future-

based API to consume stream entries.

1 class Stream<T> extends Morph<T>: # base class
2 # Consumer interface
3 Stream<T>(int bufferSize)
4 Future<T> next() # consume stream
5 void terminate()
6
7 # Producer interface
8 void genStream() # action: generate stream
9 void push(T object) # called by genStream , blocks

10 # when the buffer is full

Fig. 12: Leviathan’s stream actor interface.

Initialization. A stream is initialized by specifying the object

type and the size of the stream buffer (Fig. 12). The buffer is

a circular queue in shared memory that contains objects, using

the Leviathan allocator.

Producer. Data is pushed onto the stream by a long-lived thread,

genStream, running on the tile’s local engine. genStream calls

push, a blocking function, to push onto the stream buffer. When

the buffer is full, push blocks until the core consumes an entry.

Consumer. next provides a Future<T> which will contain

the next stream entry when available. Under the hood, next

performs two actions: (i) initializes the Future<T> with the

next entry and (ii) pops the entry off the stream. To fill the

8

Future<T>, next loads from a phantom address range. The load

causes T’s data-triggered constructor to read from the stream

buffer, which blocks if empty. After the load is issued, next

pops the entry off the stream by incrementing the core’s stream

head pointer and sends a message to the engine when the head

pointer has incremented to a new cache line, unblocking push

to allow the producer to continue.

4) Leviathan supports interaction across paradigms

One of Leviathan’s major strengths is that it allows multiple

NDC paradigms to directly interact with each other. We already

demonstrated an example with PHI [52], which combines task

offload with data-triggered actions (Sec. IV). It is possible

to further combine PHI with streaming by decoupling the

graph traversal from the cores to improve cache locality

(see Sec. VIII-C). And Leviathan’s streams themselves are

implemented through a combination of long-lived workloads

and data-triggered actions. Leviathan is the first system to

support all paradigms, and its interface is carefully designed

to enable interaction across paradigms.

VI. LEVIATHAN ARCHITECTURE

Leviathan’s hardware support includes a near-cache engine

for executing each NDC paradigm’s actions along with core,

cache, and memory-controller modifications to assist in both

executing actions at the right time and place, and managing

object placement throughout the memory hierarchy.

A. Shared infrastructure

1) Near-cache engines

rTLB

Task-offload

scheduler

Programmable

compute logic

Engine

Execute action

Task-context

buffer

L1d

TLB

Data-triggered

scheduler

Stream

scheduler

Fig. 13: Each near-cache engine
contains programmable compute
to execute actions, a task context
for each running action, sched-
ulers for each NDC paradigm,
and an L1d, TLB, and rTLB.

Similar to recent NDC ar-

chitectures [6, 47, 55, 66, 81,

90], Leviathan extends a base-

line multicore processor with

near-cache engines (Fig. 13).

The compute logic, which

can be any programmable

resource (e.g., core, FPGA,

dataflow fabric), executes all

application-provided NDC ac-

tions. We evaluate Leviathan

with dataflow fabrics due to

their high performance-per-

area on short, repeated func-

tions [66]. The L1d and TLB

give engines coherent access to the shared memory space.

Engine L1ds are implemented using clustered coherence

within each tile to avoid increasing the LLC’s directory

state [16, 27, 45, 49]. The engine L1d and L2 on the same

tile both snoop on coherence traffic within the tile so that they

look like one combined cache to the LLC directory.

The rTLB (reverse TLB) translates cached physical addresses

back to virtual addresses, and it is needed specifically for

data-triggered actions. Cache insertions and evictions trigger

the actions, but whereas the caches operate on physical

addresses, actions are user-space functions that operate on

Padded 96B objects in cache

Cache offset

Requested cache line

Cache

layout

Object offset

DRAM

layout

Compressed 96B objects in DRAM

DRAM offset Object offset

0 64 128 192 256

0 64 128 192 256

DRAM line

needed

Fig. 14: Leviathan pads objects in the cache but stores them
compressed in DRAM. Simple computation translates between
the cache and DRAM addresses for an object.

virtual addresses. Leviathan’s engines require an object’s virtual

address before invoking its constructor or destructor.

Finally, a task-context buffer stores local state for all

executing actions. To prevent deadlock, there must always

be at least one task context not reserved by an offloaded task.

Otherwise, all tasks might be waiting for a data-triggered

constructor to execute, but the constructor is waiting for a free

context. In our evaluation, we evenly split contexts between

offloaded and data-triggered actions.

2) Support for Futures

The Future::send function communicates a result from a

near-data task to the thread waiting on the future through a

store-update instruction [30, 47]. store-update, which executes

on an engine, sends a message containing the future pointer

and value over the NoC to the waiting thread. The message

instructs the thread to perform the store itself so that the

result becomes immediately available without waiting for any

additional coherence traffic.

3) Support for data mapping and packing

There are three main hardware mechanisms in support of

Leviathan’s data management: LLC object mapping, DRAM

object compaction, and a memory controller cache.

LLC object mapping. As discussed in Sec. V-A3, it is important

for objects larger than a cache line to map entirely to the same

LLC bank. Thus, Leviathan modifies the input to the index

function such that every cache line of an object provides the

same input. This is accomplished by zeroing out the LSBs of

the address that equate to the object offset (e.g., for objects

spanning two cache lines, zeroing out one LSB is sufficient).

In our evaluation, Leviathan supports objects up to four

cache lines in size (see Sec. VI-C), so two bits are needed

to indicate the number of LSBs that should be ignored. Page

table entries and L2 tags are augmented with these two bits,

which are passed along with cache requests up to the LLC.

DRAM object compaction. Although we pad objects in the

cache to improve locality, we do not want to waste DRAM

capacity. Prior NDCs required software to manually pad data,

leading to an unattractive tradeoff between locality and memory

fragmentation. However, since Leviathan has full control over

9

TABLE III: Per-paradigm microarchitecture support across the
system.

Paradigm Core Cache Engine

Task offload invoke instr & buf N/A DYNAMIC scheduling
Data-triggered flush instr, TLB bits tag bits actor buffer, vtable map
Streaming pop instr N/A push instr, stream metadata

data management, it can eliminate DRAM fragmentation with

minor hardware support, invisibly to applications.

On an LLC miss or writeback, the LLC controller checks

a small translation buffer to determine if the address needs

translating. Fig. 14 shows the breakdown for determining the

DRAM address of an object based on its cache address. Since

all objects of a given type are addressed contiguously both

in the cache and DRAM (see Sec. V-A3), the translation is

simply a matter of calculating offsets, which adds no latency by

running in parallel with the LLC tag lookup. Each translation

buffer entry contains the cache address base and bound, DRAM

address base, and object size, totaling 25 B.

Memory controller cache. Because we store objects compacted

in DRAM, lines fetched from DRAM will frequently contain

portions of multiple objects. For example, see the second

DRAM line in Fig. 14. When an application iterates through

objects sequentially, loading the second and third cache lines

will both incur a memory access to the same DRAM line. To

alleviate these excess DRAM accesses, we place a small FIFO

cache (32 lines) at each memory controller. This small cache

can reduce DRAM accesses by up to ≈ 3×.

B. Support for NDC paradigms

Table III breaks down the microarchitecture additions that

support each paradigm, which are explained as follows.

1) Task offload

invoke. A new ISA instruction corresponding to the invoke

function is added to the cores. If the location is designated

as LOCAL, then the core sends a message to the engine on

the local tile; if it is REMOTE, then the core maps the object

pointer to its LLC bank and sends a message to its engine.

If the location is DYNAMIC, then invoke dynamically locates

the actor in the cache hierarchy [47]. invoke first probes the

L1D and executes the action locally if the data is cached.

Otherwise, invoke sends a packet containing a data pointer

(actor), function pointer (action), flags, and arguments to the

local engine, whose task-offload scheduler checks whether the

actor is cached in the local L2. If so, the L2 engine executes the

action, otherwise it forwards the packet to the actor’s LLC bank.

If the invoke has the EXCLUSIVE flag, then the LLC engine

checks whether another L2 already has exclusive permissions

in the directory, and forwards the packet to the remote L2 if

so. Otherwise, the LLC engine executes the action.

Backpressure. Each core contains a small ªinvoke bufferº to

apply backpressure when cores offload tasks faster than they

can execute. The invoke buffer is similar to a store buffer:

task-offload requests first enter the invoke buffer and drain to

engines. If a task-offload request arrives at an engine with no

space in its task-context buffer, the engine NACKs the invoke,

spilling the task back to the core [47]. Otherwise, the engine

ACKs the request, and it is removed from the invoke buffer.

Finally, invoke instructions cannot commit in the core until

there is space in the invoke buffer. However, when offloaded

tasks include a Future, the invoke buffer is skipped because

waiting on futures generally provides sufficient backpressure.

Migrating data. In order to allow objects to settle at their

natural location in the cache hierarchy, whenever a DYNAMIC

task would be executed remotely, the scheduler will instead

with small probability (1/32) execute locally to pull the data up

the hierarchy. This allows objects with high temporal locality

to gradually move to the private caches.

2) Data-triggered actions

Data-triggered actions are executed when and where data

moves, so most of the changes are in the cache controllers.

The data-triggered scheduler in the engine manages a buffer

containing the actors with pending actions, since the actors

cannot be accessible by any other threads during that time.

The scheduler also contains a small cache that maps address

ranges to their associated actions, i.e., the Morph’s vtable.

Core modifications. One new flush ISA instruction is required

for sending a message to the caches to flush the objects in a

Morph’s address range when unregistered. Additionally, two

extra bits are added to TLB entries to indicate (i) whether a

Morph is registered on the data, and (ii) if so, whether the

location is L2 or LLC.

Cache modifications. Cache requests are augmented with the

two TLB bits indicating if a cache miss should trigger the

data’s constructor at the L2 or LLC, respectively. The L2 and

LLC tags are augmented with one extra bit to indicate whether

the destructor should trigger on eviction.

With this extra information, the cache controller triggers

actions when data is inserted or evicted. For small objects, the

scheduler executes the actions on all the objects within the

line in parallel. For large objects, only one action is triggered,

which inserts (or evicts) multiple lines at once. Construction

inserts multiple lines to fit the entire object, and destruction

evicts all lines corresponding to the object.

3) Streams

As discussed in Sec. V-B3, whereas the stream’s data is

stored in a circular buffer in shared memory, the core reads

from the stream by accessing a contiguous phantom address

range that maps to the buffer through data-triggered actions.

Managing the stream and buffer involves support at both the

core (consumer) and engine (producer).

Core modifications. Streams require a new ISA instruction

to pop the stream in Stream::next. pop increments a register

containing the head pointer for the phantom stream. When the

head pointer increments to a new cache line, it sends a request

(a new message type) to the local engine (where the stream

is generated) to bump the stream’s head pointer forward. The

request also invalidates the old stream head at the L2 since it

will not be used anymore.

10

TABLE IV: Hardware overhead (state per LLC bank).

LLC tags 8K lines × 3 bits = 3 KB
LLC translation buffer 8 entries × 25 B = 200 B

Engine L1d, TLB, rTLB 8 KB + 2 KB + 2 KB = 12 KB
Data-triggered buffer 16 objects × 256 B = 4 KB

Dataflow fabric [66] 13.6 KB

Total per LLC bank 32.8 KB / 512 KB = 6.4%

Engine stream scheduler. For each active stream, the engine

needs to track the buffer size and phantom head/tail pointers.

The tail pointer is used to stall the core if it loads data after the

tail (i.e., stream entries not yet pushed), and the head pointer

is used to NACK prefetches and throw exceptions on loads

to data before the head (i.e., stream entries already popped).

When the core sends a pop message, the head is incremented,

and, if an NDC action is blocked on push, it is unblocked.

Deadlock prevention. Out-of-order cores must be careful to

avoid deadlock with streams. Speculatively reordered loads

could reserve all L1 MSHRs, without any load able to proceed

if they all are past the end of the currently generated stream.

This condition is rare, but possible in principle. To prevent

this, systems could NACK speculative loads to addresses past

the end of the current stream buffer, and re-execute them on

commit, when they must point to the current stream head.

C. Handling very large objects

Leviathan can only support objects up to a microarchitec-

turally defined size, as it is impractical to support individual

objects of many KBs, MBs, or GBs with lightweight hardware

extensions. (Supporting larger objects requires larger buffers

and metadata state.) It is also impossible to preserve the benefits

of near-cache NDC as object sizes continue to scale.

Without requiring any changes to the programming interface,

Leviathan offers a functionally correct fallback implementation

of each NDC paradigm for arbitrary object sizes. Task offload-

ing works like normal, except the allocator just resorts to malloc,

so objects are spread across LLC banks and padded in DRAM.

For data-triggered actions, all constructors are triggered on

the core when a page of objects is paged in, and destructors

are triggered on the core when paged out. For streams, the

producer and consumer are spawned as conventional threads

with a message-passing queue between them.

In our evaluation, we present hardware overheads with

support for up to 256 B objects (i.e., four cache lines), which

is more than sufficient for our case studies.

D. Putting it all together

Leviathan adds relatively small area overheads to a baseline

multicore. The total per-tile storage cost, when modeling a

dataflow fabric with parameters from prior work [66], totals

32.8 KB, or 6.4% compared to the data array of an LLC bank

(Table IV). This is similar to recent work [53, 60, 66, 83].

Importantly, Leviathan’s hardware additions do not impact

the performance of non-NDC workloads. We consciously

designed Leviathan to be minimally disruptive to the baseline

system and have negligible impact on non-NDC workloads

TABLE V: System parameters in our experimental evaluation.

Cores
16 cores, x86-64 ISA, 2.4 GHz, OOO Skylake
µarch [3], 4-entry invoke buffer

Engines
16 engines, dataflow fabric, 15 int FUs (1-cycle
latency), 10 mem FUs, 8 KB L1d, 256-entry rTLB,
32 thread contexts

L1 32 KB, 8-way set-assoc, split data and instr. caches

L2
128 KB, 8-way set-assoc, 2-cycle tag, 4-cycle data
array, tr̃rîp repl. [66], strided prefetcher

LLC
8 MB (512 KB per tile), 16-way set-assoc, 3-cycle
tag, 5-cycle data array, inclusive, tr̃rîp repl. [66]

NoC
mesh, 128-bit flits and links, 2/1-cycle router/link
delay

Memory
4 controllers, 100-cycle latency, 11.8 GB/s per
controller, 32 entry FIFO cache

by leaving the underlying cache hierarchy largely unchanged.

An early iteration of Leviathan involved radical changes

to the hierarchy, where caches compactly stored objects

without any padding to avoid wasting cache space. While

this design improved cache utilization, the amount of changes

to a traditional cache hierarchy, and potential impact on non-

NDC workloads, did not seem worth the NDC benefits. We

instead opted for a design that provides large benefits to NDC

workloads without negatively impacting non-NDC workloads.

VII. EXPERIMENTAL METHODOLOGY

Simulation framework. We evaluate Leviathan in execution-

driven microarchitectural simulation, using the same simulation

infrastructure as recent NDC work [47, 66]. The simulator is

based on SwarmSim [36], with extensive modifications to

support cycle-level timing throughout the memory hierarchy

as well as Leviathan’s interface and near-cache engines.

System parameters. Except where specified otherwise, our

system parameters are given in Table V. We model a tiled

multicore system with 16 cores connected in a mesh on-chip

network. Each tile contains a conventional out-of-order core

(modeled after Intel Skylake), one bank of the shared LLC,

and Leviathan engines (to ease implementation, our simulator

models engines at both the L2 and LLC bank). Sec. IX varies

these parameters and shows that Leviathan is effective across

a variety of system configurations.

We model the near-cache engine as a dataflow fabric of

processing elements (PE), where each PE can execute one

instruction per cycle. The engines contain a 5 × 5 dataflow

fabric (15 integer PEs and 10 memory PEs) with 1-cycle PE

latency. All NDC systems are evaluated with single-issue PEs

in the engines to compare systems with iso-compute resources.

For simulation convenience, instructions are mapped onto a

specific PE when they first execute, but one could compile

code statically [73, 83]. Once mapped, instructions execute

whenever all inputs are available. We also evaluate an idealized

engine with unlimited, 0-cycle latency and energy-free PEs;

i.e., latency is only affected by memory latency and data

dependencies.

Metrics. We present speedup and dynamic execution en-

ergy. Core, cache, memory, and NoC energy parameters are

11

1 class Decompressor extends Leviathan::Morph<Pixel >:
2 uint16* bases[3]
3 uint8* deltas[3]
4
5 # Actor with data (colors) and an action (constructor)
6 class Pixel: # Leviathan is agnostic to object size
7 uint16 colors[3] # 3 uints do not divide cache line
8
9 Pixel(Decompressor* decomp): # action: constructor

10 idx = decomp->getOffset(this)
11 bases = decomp->bases
12 deltas = decomp->deltas
13
14 for i in range(len(colors)):
15 base = bases[i][idx >> 3] # 1 base per 8 pixels
16 delta = deltas[i][idx]
17 mantissa = delta & 0b1111
18 exponent = delta >> 4
19 colors[i] = base + (mantissa << exponent)

Fig. 15: Leviathan uses data-triggered actions to decompress
objects when their data is loaded by the core.

from [75], while engine energy parameters are from [60].

Additional metrics are also provided to breakdown performance

benefits when helpful.

VIII. EVALUATION Ð CASE STUDIES

Leviathan is a polymorphic cache hierarchy that unifies prior

NDC paradigms without exposing microarchitectural details to

the programmer. We now evaluate three more applications, in

addition to PHI in Sec. IV, to demonstrate:

• Leviathan provides strong performance and energy benefits

across NDC paradigms.

• Leviathan’s actor-based interface is intuitive to program

and provides benefits across object sizes.

• Leviathan scales well across system and data sizes (Sec. IX)

and is close to an idealized design.

A. Near-cache data transformation

Prior work on hardware compression has shown significant

memory and cache savings [8, 24, 56, 57, 64, 77]. But prior

designs fix the (de)compression mechanism in hardware, so

there is no flexibility of scheme or data sizes. In this study,

we analyze Leviathan’s ability to transform data using data-

triggered actions to decompress objects of arbitrary size as

they are brought into a core’s private cache.

Decompression with Leviathan. Fig. 15 shows the code for a

data-triggered NDC application that uses a Morph to decom-

press data stored in a lossy, compressed format in memory as

a base plus offset, similar to [57]. The application registers the

Morph at the L2 (not shown). The actor’s constructor is then

triggered when each object is accessed by the core.

To decompress data of different types, the programmer imple-

ments the constructor to perform the appropriate decompression.

Prior work requires decompressed data to evenly fit into cache

lines, restricting the programmer to a limited subset of data

types and requiring careful alignment and padding. By contrast,

Leviathan simply asks the programmer to provide the data type

of interest (see line 6). Fig. 15 decompresses a 6 B Pixel, which

does not evenly divide a cache line.

Application. Leviathan improves performance, saves energy,

and reduces redundant work even on objects that do not evenly

divide a cache line. We analyze an application which computes

an average over an array of 16 K decompressed 6 B Pixels

Base OL No Pad Levi Ideal
0

1

2

S
pe

ed
up

Base OL No Pad Levi Ideal
0.0

0.5

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Core
Engine

L2
LLC

NoC
Mem

Fig. 16: Results when decompressing 6B objects. Leviathan
improves performance by 2.4× and reduces energy by 65%.

(Fig. 15). The array is indexed using a Zipfian distribution [17]

of 32 K accesses.

We evaluate a baseline software implementation that decom-

presses on every access, an NDC version that uses task offload

(OL) to decompress at the local engine, and Leviathan with and

without padding, which accesses decompressed data through

the Morph in Fig. 15. The results without padding are similar

to täkÅo [66], which does not provide any data-layout support

for the programmer. Results are shown in Fig. 16.

Observation: Not all NDC paradigms are right for every

application. Although task-offload performs decompressions at

the local engine like data-triggered NDC, it does not retain the

decompressed data in the private cache. In fact, it is actually

worse by 2.8× because decompressing at the L2 loses locality

in the L1s, without reducing overall work.

Observation: Padding is necessary. Data-triggered actions do

not work without padding. Since 6 B does not evenly divide

a 64 B cache line, lines would contain partial objects, but

constructors cannot initialize a portion of an object. This is

the outcome of prior work such as täkÅo [66] that do not

provide implicit data-layout support, forcing the programmer

to explicitly account for the system’s microarchitecture.

Observation: Leviathan boosts performance. Leviathan ad-

dresses both issues while significantly outperforming the

baseline. Leviathan improves performance by 2.4× and reduces

energy by 65% by decompressing data while it traverses the

cache hierarchy, allowing the core to reuse decompressed data

in the L1. Moreover, Leviathan comes within 1.6% speedup

and 1.5% energy of ideal.

B. Hash table lookups via task offload

Hash tables are a popular data structure due to theoretical

O(1) lookup time. However, practical lookup time is determined

by collision resolution because multiple keys may hash to the

same value [50]. Collisions are commonly resolved via a linked-

list per hash bucket. Unfortunately, linked lists are notoriously

slow due to their sequential, pointer-chasing search. Prior work

offloads lookups into the memory hierarchy, avoiding constant

round-trips between core and cache.

Pointer chasing of hash-table buckets with Leviathan. Fig. 17

shows the code for an application that uses task offloading

for hash-table pointer chasing with Leviathan. Lines 8-13

implement an offloaded task that compares a single hash-table

node with a key, near the node’s location. If the node contains

the key, a Future is notified that the key was found (by returning

the node’s value). Otherwise, if the node is not at the end of

the list, the task invokes another Lookup task on the next node.

12

1 # Actor with data and an action (Lookup)
2 class Node:
3 int64 key, value
4 int64 metadata[N] # large objects are fine
5 Node* next
6 # int64 padding[LINE_SIZE -3-N] # no padding needed
7
8 int64 Lookup(key): # action: runs near ‘‘this’’ Node
9 if this->key == key:

10 return value
11 if next == nullptr:
12 return -1
13 return invoke next->Lookup(key)

Fig. 17: Leviathan uses task offloading to traverse linked nodes
in a hash-table bucket, without concern for node size.

24B 64B 128B
Object size (bytes)

0

1

2

S
pe

ed
up

Baseline
Without pad/map

Leviathan
Ideal

B W L I B W L I B W L I
24B 64B 128B

Object size (bytes)

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Core
Engine

L2
LLC

NoC
Mem

B W L I B W L I B W L I

Fig. 18: Results when performing hash-table lookups across differ-
ent object sizes with a uniform distribution over keys. Leviathan
performs well across object sizes, improving performance up to
2.0× and reducing energy by up to 77%.

Each node must reside entirely within a single tile to maintain

the locality benefits of NDC (see Fig. 8). As a result, prior

work required the application to manually pad and align nodes

to cache lines, an unnecessary exposure of microarchitecture to

programmers. Instead, with Leviathan, the application simply

allocates each node using Leviathan’s allocator (not shown)

without concern for object size or alignment. Prior NDCs

cannot provide spatial locality for nodes larger than a cache

line, whereas Leviathan’s LLC mapping mechanism easily

maps large objects to the same cache bank (Sec. VI-A3).

Application. We evaluate an application with 16 threads each

performing 1 K hash-table lookups across different object sizes

(24 B, 64 B, and 128 B) by varying line 4 in Fig. 17. We

initialize a hash table with an average of 32 nodes per bucket

whose (padded) size totals 4 MB. To perform a lookup, we

generate a key from a uniform distribution, hash the key, and

scan the corresponding bucket. (Results are similar with a

Zipfian [17] distribution.) We evaluate a baseline software

implementation and Leviathan, with and without Leviathan’s

padding and LLC object mapping support. The results without

padding and mapping are similar to Livia [47], which does not

provide any data-layout support for the programmer.

Observation: Leviathan performs well across object sizes.

Leviathan performs similarly across all object sizes (Fig. 18),

achieving up to 2.0× speedup and 77% energy savings. A

majority of the benefits come from reducing NoC traffic by

offloading a chain of tasks within the LLC, instead of constant

round-trips to the caches to fetch each Node. The buckets fit

in the LLC, but not L1d or L2, so almost all lookups in the

baseline require pulling data from the LLC.

Observation: Padding improves object locality. Without

padding, 24 B performance is reduced to 1.5× due to extra

NoC traffic, as many offloaded tasks have only part of the

1 struct Edge { uint src, dst } # obj. can be anything
2
3 # Actor with an action (genStream)
4 class LeviathanHATS extends Leviathan::Stream<Edge>:
5 Stack bdfs = {Vertex* vec, uint top}
6
7 void genStream(): # action: fill stream
8 while True:
9 if bdfs.top == 0:

10 root = G.getNextRootVertex()
11 if root == INVALID: return
12 bdfs.vec[++bdfs.top] = root
13 active[root++] = false
14
15 dst = bdfs.vec[bdfs.top]
16 while dst.nextNeigh < dst.inDegree:
17 src = dst.neighbors[dst.nextNeigh++]
18 push(Edge(src, dst)) # stalls when full
19
20 if bdfs.top < depth and !active[src]:
21 bdfs.vec[++bdfs.top] = src
22 active[src] = false
23
24 --bdfs.top
25
26 # Main thread reads off stream
27 for range(G.numEdges):
28 # Get future for next edge and process when ready
29 Future<Edge> future = stream.next()
30 processEdge(future.wait())

Fig. 19: Leviathan implements HATS with streams.

Node locally.

Observation: LLC object mapping improves object locality.

Without LLC mapping, 128 B performance is reduced to 0.91×

(worse than the baseline) because nearly all offloaded tasks

need to fetch part of its node remotely. Note that prior work

does not support objects larger than a cache line.

Leviathan reduces memory fragmentation. Another quanti-

tative benefit of Leviathan is compact storage in DRAM for

nodes padded in the cache. Specifically, padding the 24 B nodes

to 32 B would cause 25% memory fragmentation in prior work.

Leviathan performs padding in-cache and compacts objects in

DRAM, getting the best of both worlds.

C. Decoupled graph traversal via streaming

Lastly, we demonstrate streaming on HATS [51], a recent

optimization for locality in graphs. HATS observed that, without

expensive pre-processing, it is inefficient to process the edges

in the order they are laid out in memory. Many graphs exhibit

strong community structure [12, 46], so it is much better

to process graphs one community at a time. A bounded,

depth-first search (BDFS) is a simple traversal order that

significantly improves locality. The challenge is that BDFS

executes inefficiently on cores due to unpredictable control

flow and coupling of the graph traversal with vertex processing.

Additionally, BDFS is infeasible for many prior streaming NDC

designs because it cannot be easily reduced to a combination

of simple affine or indirect patterns.

BDFS streaming with Leviathan. Fig. 19 shows how Leviathan

implements HATS using the streaming interface. The applica-

tion registers a Stream with an Edge type, without worrying

about padding, alignment, or size of the Edge. genStream

is populated with the BDFS algorithm, which continually

generates Edges and pushes them onto the stream. The main

thread running on the core processes edges with next.

Application. We compare baseline PageRank, software BDFS,

BDFS in täkÅo, and Leviathan. täkÅo [66] only supports data-

13

Base BDFS täk Levi Ideal
0.0

0.5

1.0

1.5

S
pe

ed
up

Base BDFS täk Levi Ideal
0.0

0.5

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Core
Engine

L2
LLC

NoC
Mem

Fig. 20: HATS results for one iteration of PageRank on uk-2002
graph [21]. Leviathan improves performance by 1.7× and reduces
energy by 26% vs. the software baseline.

Ba BD Ta Le Id
0.0

0.5

1.0

N
or

m
. M

em
 A

cc
s

Edges Vertices

Ba BD Ta Le Id
0.000

0.025

0.050

0.075

0.100

B
ra

nc
h

P
re

d.
M

is
se

s
P

er
 E

dg
e

täk Levi
0

5

10

15

20

E
ng

in
e

In
st

rs
 P

er
 E

dg
e

Fig. 21: HATS performance breakdown. Left: DRAM accesses
split by PageRank phase. Middle: core branch mispredictions
per graph edge processed. Right: average engine instructions per
edge.

triggered actions and implements HATS by having constructors

on cache misses trigger BDFS traversal (instead of stream

pushing). The täkÅo version of BDFS is more complex and

has unintuitive corner cases; e.g., it cannot guarantee that the

stream is generated sequentially, since it depends on the order

of misses generated by the core. Fig. 20 presents speedup and

energy results for one iteration of PageRank.

Observation: Leviathan outperforms prior designs. Whereas

software BDFS and täkÅo achieve modest speedups of 1.2×

and 1.4×, Leviathan achieves 1.7× speedup (nearly identical

to ideal). Additionally, Leviathan reduces energy by 26%.

This speedup is due to (i) better cache locality; (ii) regu-

larizing control flow on the core; (iii) an efficient push-based

streaming interface; and (iv) decoupling of stream producer and

consumer. Fig. 21 quantifies the first three points. All versions

incur the same number of memory accesses during the vertex

phase, but the versions that execute the BDFS traversal reduce

total accesses by 40%. täkÅo and Leviathan both eliminate

branch mispredictions by turning the complex BDFS traversal

into a simple loop over a sequential array.

Observation: Dedicated streaming support matters. täkÅo’s

pseudo-streaming requires more engine instructions per edge

generated. Since täkÅo’s implementation triggers a new action to

resume the BDFS traversal every eight edges (one cache line),

it must ªreinitializeº the BDFS stack each time. In contrast,

Leviathan’s stream is a continually running action, reducing

average instructions per edge. Leviathan also lets the stream

run far ahead, whereas täkÅo streams are implicitly triggered

by loads and thus dependent on the consumer.

IX. EVALUATION Ð SENSITIVITY STUDIES

Invoke buffer. PHI is the most sensitive to the invoke buffer

because it offloads tasks rapidly and does not wait for them to

1 2 4 8 16
Invoke buffer entries

0

1

2

3

S
pe

ed
up

Fig. 22: Sensitivity to invoke
buffer with PHI.

8 16 32 64 128 256
Stream buffer size (# entries)

0.0

0.5

1.0

1.5

S
pe

ed
up

Fig. 23: Sensitivity to stream
buffer with HATS.

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

Input size (w/Levi padding)

0

1

2

S
pe

ed
up

24B 64B 128B

Fig. 24: Sensitivity to input size
with hash table.

24B 64B 128B
Object size (bytes)

0

1

2

S
pe

ed
up

16 tiles
36 tiles

64 tiles
100 tiles

Fig. 25: Sensitivity to number
of tiles with hash table.

complete. Fig. 22 evaluates Leviathan across buffer sizes. With

one or two entries, Leviathan slows due to queueing effects

causing backpressure, but performance plateaus after four.

Stream buffer. Fig. 23 evaluates HATS’ performance across

stream-buffer sizes. Performance plateaus at 64 entries. Note

that the stream buffer resides in memory, not a separate

hardware structure, so its overhead is negligible.

Input size. Fig. 24 evaluates hash-table lookups across total

hash-table size. As long as most of the data fits in the LLC,

Leviathan performs well. Once the data is larger than the LLC,

Leviathan’s performance drops as NoC savings are swamped

by DRAM latency. Future work on incorporating near-memory

engines can further improve performance for non-cache-fitting

workloads, as evidenced by prior work [31, 35, 47].

System size. Finally, Fig. 25 evaluates hash table lookups

across system sizes. Leviathan performs even better with larger

systems due to the increased NoC savings.

X. CONCLUSION

Near-data computing is essential to tackle the rising cost of

data movement. Prior work has proven that NDC yields large

gains in performance and energy efficiency. Unfortunately, prior

designs do not provide a holistic approach to NDC because

they have limited applicability and unintuitive programming

models. Leviathan overcomes these challenges by unifying

prior NDC techniques in a single, polymorphic cache hierarchy

with a simple, actor-based reactive programming interface.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Nikhil Agarwal, Jennifer

Brana, Mitchell Fream, Souradip Ghosh, Sara McAllister, and

Tony Nowatzki for their feedback. This work was supported

by NSF grant CCF-1845986 and a gift from AMD.

14

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, ªCompute caches,º in Proc. of the 23rd IEEE intl. symp. on

High Performance Computer Architecture (Proc. HPCA-23), 2017.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, ªThe MIT
Alewife machine: architecture and performance,º Proc. of the 22nd annual

Intl. Symp. on Computer Architecture, 1995.

[3] Agner Fog, ªThe microarchitecture of Intel, AMD and VIA CPUs,º
https://www.agner.org/optimize/microarchitecture.pdf, 2020.

[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, ªPim-enabled instructions: a low-
overhead, locality-aware processing-in-memory architecture,º in Proc. of

the 42nd annual Intl. Symp. on Computer Architecture (Proc. ISCA-42),
2015.

[5] S. Ainsworth and T. M. Jones, ªGraph prefetching using data structure
knowledge,º in Proc. of the Intl. Conf. on Supercomputing (Proc. ICS’16),
2016.

[6] S. Ainsworth and T. M. Jones, ªAn event-triggered programmable
prefetcher for irregular workloads,º in Proc. of the 23rd intl. conf.

on Architectural Support for Programming Languages and Operating

Systems (Proc. ASPLOS-XXIII), 2018.

[7] B. Akin, F. Franchetti, and J. C. Hoe, ªData reorganization in memory
using 3d-stacked dram,º in Proc. of the 42nd annual Intl. Symp. on

Computer Architecture (Proc. ISCA-42), 2015.

[8] A. R. Alameldeen and D. A. Wood, ªAdaptive cache compression for
high-performance processors,º in Proc. of the 31st annual Intl. Symp. on

Computer Architecture (Proc. ISCA-31), 2004.

[9] A. Asgharzadeh, J. M. Cebrian, A. Perais, S. Kaxiras, and A. Ros, ªFree
atomics: Hardware atomic operations without fences,º in Proc. of the

49th annual Intl. Symp. on Computer Architecture (Proc. ISCA-49), 2022.

[10] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d.
Meuter, ªA survey on reactive programming,º ACM Computing Surveys

(CSUR), 2013.

[11] S. Baskaran, M. T. Kandemir, and J. Sampson, ªAn architecture interface
and offload model for low-overhead, near-data, distributed accelerators,º
in Proc. of the 55th annual IEEE/ACM intl. symp. on Microarchitecture

(Proc. MICRO-55), 2022.

[12] S. Beamer, K. Asanovic, and D. Patterson, ªLocality exists in graph
processing: Workload characterization on an Ivy Bridge server,º in Proc.

of the IEEE Intl. Symp. on Workload Characterization (Proc. IISWC),
2015.

[13] S. Beamer, K. AsanoviÂc, and D. Patterson, ªThe GAP benchmark suite,º
arXiv preprint arXiv:1508.03619, 2015.

[14] S. Beamer, K. AsanoviÂc, and D. Patterson, ªReducing pagerank com-
munication via propagation blocking,º in Proc. of the 31st IEEE Intl.

Parallel and Distributed Processing Symp. (Proc. IPDPS), 2017.

[15] A. Biswas, ªSapphire rapids,º in 2021 IEEE Hot Chips 33 Symposium

(HCS), 2021.

[16] J. Brana, B. C. Schwedock, Y. A. Manerkar, and N. Beckmann, ªKobold:
Simplified cache coherence for cache-attached accelerators,º IEEE

Computer Architecture Letters, 2023.

[17] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ªWeb caching and
Zipf-like distributions: Evidence and implications,º in IEEE INFOCOM,
1999, pp. 126±134.

[18] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama, ªImpulse: Building a smarter memory controller,º in Proc.

of the 5th IEEE intl. symp. on High Performance Computer Architecture

(Proc. HPCA-5), 1999.

[19] V. Dadu and T. Nowatzki, ªTaskstream: Accelerating task-parallel
workloads by recovering program structure,º in Proc. of the 27th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems (Proc. ASPLOS-XXVII), 2022.

[20] W. J. Dally, ªGPU Computing: To Exascale and Beyond,º in Supercom-

puting ’10, Plenary Talk, 2010.

[21] T. A. Davis and Y. Hu, ªThe University of Florida sparse matrix
collection,º ACM TOMS, vol. 38, no. 1, 2011.

[22] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, ªUnderstanding and
optimizing asynchronous low-precision stochastic gradient descent,º in
Proc. of the 44th annual Intl. Symp. on Computer Architecture (Proc.

ISCA-44), 2017.

[23] C. Demetrescu, I. Finocchi, and A. Ribichini, ªReactive imperative
programming with dataflow constraints,º in Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems

Languages and Applications, 2011.

[24] M. Ekman and P. Stenstrom, ªA robust main-memory compression
scheme,º in Proc. of the 32nd annual Intl. Symp. on Computer

Architecture (Proc. ISCA-32), 2005.

[25] C. Elliott and P. Hudak, ªFunctional reactive animation,º in Proceedings

of the Second ACM SIGPLAN International Conference on Functional

Programming, 1997.

[26] A. Fuchs and D. Wentzlaff, ªScaling datacenter accelerators with compute-
reuse architectures,º in Proc. of the 45th annual Intl. Symp. on Computer

Architecture (Proc. ISCA-45), 2018.

[27] A. Gupta, W.-D. Weber, and T. Mowry, ªReducing memory and traffic
requirements for scalable directory-based cache coherence schemes,º in
Scalable shared memory multiprocessors. Springer, 1992, pp. 167±192.

[28] J. Hennessy and D. Patterson, ªA new golden age for computer
architecture: Domain-specific hardware/software co-design, enhanced
security, open instruction sets, and agile chip development,º in Turing

Award Lecture, 2018.

[29] C. Hewitt, P. Bishop, and R. Steiger, ªA universal modular actor formalism
for artificial intelligence,º in Proceedings of the 3rd International Joint

Conference on Artificial Intelligence, 1973.

[30] H. Hoffmann, D. Wentzlaff, and A. Agarwal, ªRemote store program-
ming,º in Proc. of the 5th intl. conf. on High Performance Embedded

Architectures and Compilers (Proc. HiPEAC), 2010.

[31] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, ªAccelerating
linked-list traversal through near-data processing,º in Proc. of the 25th

Intl. Conf. on Parallel Architectures and Compilation Techniques (Proc.

PACT-25), 2016.

[32] M. Horowitz, ªComputing’s energy problem (and what we can do about
it),º in ISSCC, 2014.

[33] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith, ªInforming
memory operations: Providing memory performance feedback in modern
processors,º 1996.

[34] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler, ªTransparent Offloading and Mapping
(TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems,º in Proc. of the 43rd annual Intl. Symp. on Computer

Architecture (Proc. ISCA-43), 2016.

[35] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose,
and O. Mutlu, ªAccelerating pointer chasing in 3d-stacked memory:
Challenges, mechanisms, evaluation,º in Proc. of the 34th Intl. Conf. on

Computer Design (Proc. ICCD), 2016.

[36] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, ªA
scalable architecture for ordered parallelism,º in Proc. of the 48th annual

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-48), 2015.

[37] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,
K. Asanovic, and P. Ranganathan, ªA hardware accelerator for proto-
col buffers,º in Proc. of the 54th annual IEEE/ACM intl. symp. on

Microarchitecture (Proc. MICRO-54), 2021.

[38] R. Kateja, N. Beckmann, and G. R. Ganger, ªTvarak: software-managed
hardware offload for redundancy in direct-access nvm storage,º in Proc.

of the 47th annual Intl. Symp. on Computer Architecture (Proc. ISCA-47),
2020.

[39] R. E. Kessler and J. L. Schwarzmeier, ªCRAY T3D: A new dimension
for Cray Research,º in Compcon Spring’93, Digest of Papers., 1993.

[40] V. Kiriansky, Y. Zhang, and S. Amarasinghe, ªOptimizing indirect
memory references with milk,º in Proc. of the 25th Intl. Conf. on Parallel

Architectures and Compilation Techniques (Proc. PACT-25), 2016.

[41] R. Kuper, I. Jeong, Y. Yuan, R. Wang, N. Ranganathan, N. Rao, J. Hu,
S. Kumar, P. Lantz, and N. S. Kim, ªA quantitative analysis and guidelines
of data streaming accelerator in modern intel xeon scalable processors,º
in Proc. of the 29th intl. conf. on Architectural Support for Programming

Languages and Operating Systems, 2024.

[42] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy, ªThe Stanford FLASH multiprocessor,º in Proc. of

the 21st annual Intl. Symp. on Computer Architecture (Proc. ISCA-21),
1994.

[43] J. H. Lee, J. Sim, and H. Kim, ªBssync: Processing near memory for
machine learning workloads with bounded staleness consistency models,º
in Proc. of the 24th Intl. Conf. on Parallel Architectures and Compilation

Techniques (Proc. PACT-24), 2015.

15

[44] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, ªThere’s plenty of room at the
top: What will drive computer performance after moore’s law?º Science,
vol. 368, no. 6495, 2020.

[45] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, ªThe
directory-based cache coherence protocol for the dash multiprocessor,º
1990.

[46] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, ªStatistical
properties of community structure in large social and information
networks,º in Proc. of the intl. World Wide Web conf. (WWW-17), 2008.

[47] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, ªLivia: Data-centric computing throughout
the memory hierarchy,º in Proc. of the 25th intl. conf. on Architectural

Support for Programming Languages and Operating Systems (Proc.

ASPLOS-XXV), 2020.

[48] M. Maas, K. Asanovic, and J. Kubiatowicz, ªA hardware accelerator for
tracing garbage collection,º in Proc. of the 45th annual Intl. Symp. on

Computer Architecture (Proc. ISCA-45), 2018.

[49] M. Martin, M. D. Hill, and D. J. Sorin, ªWhy on-chip cache coherence
is here to stay,º Commun. ACM, 2012.

[50] W. D. Maurer and T. G. Lewis, ªHash table methods,º ACM Computing

Surveys (CSUR), 1975.

[51] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
ªExploiting Locality in Graph Analytics through Hardware-Accelerated
Traversal Scheduling,º in Proc. of the 51st annual IEEE/ACM intl. symp.

on Microarchitecture (Proc. MICRO-51), 2018.

[52] A. Mukkara, N. Beckmann, and D. Sanchez, ªPHI: Architectural
Support for Synchronization- and Bandwidth-Efficient Commutative
Scatter Updates,º in Proc. of the 52nd annual IEEE/ACM intl. symp. on

Microarchitecture (Proc. MICRO-52), 2019.

[53] Q. M. Nguyen and D. Sánchez, ªFifer: Practical acceleration of irregular
applications on reconfigurable architectures,º in Proc. of the 54th annual

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-54), 2021.

[54] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, ªStream-
dataflow acceleration,º in ISCA 44, 2017.

[55] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, ªOpportunistic computing in gpu
architectures,º in Proc. of the 46th annual Intl. Symp. on Computer

Architecture (Proc. ISCA-46), 2019.

[56] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, ªLinearly compressed pages: a low-
complexity, low-latency main memory compression framework,º in Proc.

of the 46th annual IEEE/ACM intl. symp. on Microarchitecture (Proc.

MICRO-46), 2013.

[57] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, ªBase-delta-immediate compression: Practical data
compression for on-chip caches,º in Proc. of the 21st Intl. Conf. on

Parallel Architectures and Compilation Techniques (Proc. PACT-21),
2012.

[58] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.
Drumond, B. Falsafi, and C. Koch, ªOptimus prime: Accelerating data
transformation in servers,º in Proc. of the 25th intl. conf. on Architectural

Support for Programming Languages and Operating Systems (Proc.

ASPLOS-XXV), 2020.

[59] S. K. Reinhardt, J. R. Larus, and D. A. Wood, ªTempest and Typhoon:
User-level shared memory,º in Proc. of the 21st annual Intl. Symp. on

Computer Architecture (Proc. ISCA-21), 1994.

[60] T. J. Repetti, J. P. Cerqueira, M. A. Kim, and M. Seok, ªPipelining a
triggered processing element,º in Proc. of the 50th annual IEEE/ACM

intl. symp. on Microarchitecture (Proc. MICRO-50), 2017.

[61] R. Roestenburg, R. Williams, and R. Bakker, Akka in action. Simon
and Schuster, 2016.

[62] S. Roozkhosh, D. Hoornaert, J. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, ªRelational memory:
Native in-memory accesses on rows and columns,º in 26th International

Conference on Extending Database Technology, 2023.

[63] G. Salvaneschi and M. Mezini, Towards Reactive Programming for

Object-Oriented Applications, 2014.

[64] S. Sardashti and D. A. Wood, ªDecoupled compressed cache: exploiting
spatial locality for energy-optimized compressed caching,º in Proc. of the

46th annual IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-

46), 2013.

[65] C. Schuster and C. Flanagan, ªReactive programming with reactive vari-
ables,º in Companion Proceedings of the 15th International Conference

on Modularity, 2016.

[66] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, ªtäkÅo:
A polymorphic cache hierarchy for general-purpose optimization of
data movement,º in Proc. of the 49th annual Intl. Symp. on Computer

Architecture (Proc. ISCA-49), 2022.

[67] S. L. Scott, ªSynchronization and communication in the T3E multi-
processor,º in Proc. of the 7th intl. conf. on Architectural Support for

Programming Languages and Operating Systems (Proc. ASPLOS-VII),
1996.

[68] V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, T. C. Mowry, and T. Chilimbi, ªPage overlays: An enhanced
virtual memory framework to enable fine-grained memory management,º
in Proc. of the 42nd annual Intl. Symp. on Computer Architecture (Proc.

ISCA-42), 2015.

[69] O. Shacham, Z. Asgar, H. Chen, A. Firoozshahian, R. Hameed,
C. Kozyrakis, W. Qadeer, S. Richardson, A. Solomatnikov, D. Stark,
M. Wachs, and M. Horowitz, ªSmart memories polymorphic chip
multiprocessor,º in Proc. of the 46th Design Automation Conf. (Proc.

DAC-46), 2009.

[70] M. D. Sinclair, J. Alsop, and S. V. Adve, ªChasing away rats: Semantics
and evaluation for relaxed atomics on heterogeneous systems,º in Proc.

of the 44th annual Intl. Symp. on Computer Architecture (Proc. ISCA-44),
2017.

[71] D. Skarlatos, N. S. Kim, and J. Torrellas, ªPageforge: a near-memory
content-aware page-merging architecture,º in Proc. of the 50th annual

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-50), 2017.

[72] Y. Sugawara, D. Chen, R. A. Haring, A. Kayi, E. Ratzlaff, R. M. Senger,
K. Sugavanam, R. Bellofatto, B. J. Nathanson, and C. Stunkel, ªData
movement accelerator engines on a prototype power10 processor,º IEEE

Micro, 2023.

[73] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, ªWavescalar,º
in Proc. of the 36th annual IEEE/ACM intl. symp. on Microarchitecture

(Proc. MICRO-36), 2003.

[74] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis,
T. Verma, L. Li, B. Nguyen, J. Sun et al., ªProdigy: Improving the
memory latency of data-indirect irregular workloads using hardware-
software co-design,º in Proc. of the 27th IEEE intl. symp. on High

Performance Computer Architecture (Proc. HPCA-27), 2021.

[75] P.-A. Tsai, N. Beckmann, and D. Sanchez, ªJenga: Software-Defined
Cache Hierarchies,º in Proc. of the 44th annual Intl. Symp. on Computer

Architecture (Proc. ISCA-44), 2017.

[76] P.-A. Tsai, C. Chen, and D. Sanchez, ªAdaptive Scheduling for Systems
with Asymmetric Memory Hierarchies,º in Proc. of the 51st annual

IEEE/ACM intl. symp. on Microarchitecture (Proc. MICRO-51), 2018.

[77] P.-A. Tsai and D. Sanchez, ªCompress objects, not cache lines: An object-
based compressed memory hierarchy,º in Proc. of the 24th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems (Proc. ASPLOS-XXIV), 2019.

[78] Z. Wang, C. Liu, A. Arora, L. John, and T. Nowatzki, ªInfinity stream:
Portable and programmer-friendly in-/near-memory fusion,º in Proc. of

the 28th intl. conf. on Architectural Support for Programming Languages

and Operating Systems (Proc. ASPLOS-XXVIII), 2023.

[79] Z. Wang and T. Nowatzki, ªStream-based memory access specialization
for general purpose processors,º in Proc. of the 46th annual Intl. Symp.

on Computer Architecture (Proc. ISCA-46), 2019.

[80] Z. Wang, J. Weng, S. Liu, and T. Nowatzki, ªNear-stream computing:
General and transparent near-cache acceleration,º 2022.

[81] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, ªStream
floating: Enabling proactive and decentralized cache optimizations,º in
Proc. of the 27th IEEE intl. symp. on High Performance Computer

Architecture (Proc. HPCA-27), 2021.

[82] T. Wei, N. Turtayeva, M. Orenes-Vera, O. Lonkar, and J. Balkind, ªCohort:
Software-oriented acceleration for heterogeneous socs,º in Proc. of the

28th intl. conf. on Architectural Support for Programming Languages

and Operating Systems (Proc. ASPLOS-XXVIII), 2023.

[83] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, ªA hybrid systolic-
dataflow architecture for inductive matrix algorithms,º in Proc. of the

26th IEEE intl. symp. on High Performance Computer Architecture (Proc.

HPCA-26), 2020.

[84] W. A. Wulf and S. A. McKee, ªHitting the memory wall: implications
of the obvious,º ACM SIGARCH computer architecture news, vol. 23,
no. 1, 1995.

16

[85] Q. Yang, G. Thangadurai, and L. Bhuyan, ªDesign of an adaptive cache
coherence protocol for large scale multiprocessors,º IEEE Transactions

on Parallel and Distributed Systems, vol. 3, no. 3, 1992.
[86] Y. Yang, J. S. Emer, and D. Sanchez, ªSpzip: Architectural support for

effective data compression in irregular applications,º in Proc. of the 48th

annual Intl. Symp. on Computer Architecture (Proc. ISCA-48), 2021.
[87] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, ªMapping the intel

last-level cache,º Cryptology ePrint Archive, 2015.
[88] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, ªIMP: Indirect memory

prefetcher,º in Proc. of the 48th annual IEEE/ACM intl. symp. on

Microarchitecture (Proc. MICRO-48), 2015.
[89] D. Zhang, X. Ma, and D. Chiou, ªWorklist-directed Prefetching,º IEEE

Computer Architecture Letters, 2016.
[90] D. Zhang, X. Ma, M. Thomson, and D. Chiou, ªMinnow: Lightweight of-

fload engines for worklist management and worklist-directed prefetching,º
in Proc. of the 23rd intl. conf. on Architectural Support for Programming

Languages and Operating Systems (Proc. ASPLOS-XXIII), 2018.

[91] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, ªTop-pim: Throughput-oriented programmable processing
in memory,º in Proc. HPDC, 2014.

[92] G. Zhang, V. Chiu, and D. Sanchez, ªExploiting Semantic Commutativity
in Hardware Speculation,º in Proc. of the 49th annual IEEE/ACM intl.

symp. on Microarchitecture (Proc. MICRO-49), 2016.

[93] G. Zhang, W. Horn, and D. Sanchez, ªExploiting commutativity to reduce
the cost of updates to shared data in cache-coherent systems,º in Proc.

of the 48th annual IEEE/ACM intl. symp. on Microarchitecture (Proc.

MICRO-48), 2015.

[94] G. Zhang and D. Sanchez, ªLeveraging Hardware Caches for Memoiza-
tion,º Computer Architecture Letters (CAL), vol. 17, no. 1, 2018.

[95] G. Zhang and D. Sanchez, ªLeveraging caches to accelerate hash tables
and memoization,º in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, 2019, pp. 440±452.

17

