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Abstract. We establish a family of isoperimetric inequalities for sets that interpolate between
intersection bodies and dual Lp-centroid bodies. This provides a bridge between the Busemann
intersection inequality and the Lutwak—Zhang inequality. The approach depends on new empirical
versions of these inequalities.
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1. Introduction

The focus of this paper is on connections between fundamental inequalities in Brunn—
Minkowski theory and dual Brunn—Minkowski theory. The former details the behavior
of the volume of Minkowski sums of convex bodies. The standard isoperimetric inequal-
ity is emblematic of deep principles within Alexandrov’s theory of mixed volumes [87].
A central line of research is on affine-invariant strengthenings of kindred isoperimetric
principles, especially around projections of convex sets; as a sample, see Lutwak’s sur-
vey [62], Schneider’s monograph [87], the fundamental papers [64, 68,69], and [75] for
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a recent breakthrough. In dual Brunn—Minkowski theory, the emphasis is on star-shaped
sets and radial addition. Dual mixed volumes, put forth by Lutwak [57], parallel many
aspects of mixed volumes. They provide a rich framework for studying intersections of
star bodies with subspaces; for example, see [58, 59] for foundational results; the mono-
graphs by Koldobsky [51] and Gardner [27] for the resolution of the Busemann—Petty
problem and interplay with geometric tomography; the papers [7,9, 41,42] for striking
new developments. Establishing an important family of isoperimetric inequalities linking
the two theories has remained a principle challenge.

A common root for the inequalities we treat is the Busemann intersection inequal-
ity [15] for the volume of central slices of a compact set K € R”:

w
/Sn_1|Kmul|"du < w—1|1<|"—1, (1.1)

n
n—
=
where du denotes integration with respect to the normalized Haar probability measure on
the sphere S”!, |-| is volume and w, is the volume of the Euclidean unit ball BY. The
result itself (with hindsight) is an invariant inequality for the volume of the intersection
body 1(K) of K, which is defined by its radial function via p(I(K),u) = |K N ut]|
(see Section 3.1 for notation and definitions). Intersection bodies were introduced by
Lutwak [59] in connection with the Busemann—Petty problem and play a crucial role
in dual Brunn—Minkowski theory [27, 51]. The proof of (1.1) used an essential ingre-
dient known as the Busemann random simplex inequality, which says that the expected
volume of certain random simplices in a convex body is minimal for ellipsoids. Petty
used the latter to establish a conjecture of Blaschke on the volume of centroid bod-
ies [83], which is now known as the Busemann—Petty centroid inequality. Geometrically,
given an origin-symmetric convex body K in R”, the centroids of halves of K cut by
hyperplanes through the origin form the surface of its centroid body. Centroid bodies are
zonoids, i.e., Hausdorff limits of Minkowski sums of segments, and thus naturally belong
to Brunn—Minkowski theory. Zonoids play an important role in functional analysis and
related fields, e.g., [5, 10,76, 88].

Lutwak raised the question of connecting the Busemann intersection inequality and
the Busemann—Petty centroid inequality in [62]. The latter is one of several fundamental
results that lead to strengthenings of the standard isoperimetric inequality; in particular, it
is equivalent to an inequality of Petty [84] on polar projection bodies, as shown in [62].
Projection bodies are also zonoids and play a central role in Brunn—Minkowski the-
ory [27].

A functional analytic perspective has shaped the development of both intersection
bodies and polar projection bodies. Early work in the isometric theory of Banach spaces,
going back to Lévy, introduced stable laws in connection with embeddings in L, for
p € (0,2]. Positive definite distributions, stable laws and associated change of density
arguments play a central role [4,72,78,89]; see also the survey [43] and references therein.
Koldobsky developed a parallel theory, based on a Fourier-analytic approach, for embed-
ding in L,, for p < 0. This led to fundamental characterizations of intersection bodies
and their higher-dimensional analogs [48, 50, 51]. With this view, intersection bodies are
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unit “balls” of finite-dimensional subspaces of L_;. At the other end, polar projection
bodies arise naturally as unit balls of subspaces of L; [5]. In between L_; and L there is
a continuum of spaces that are no longer Banach spaces. A result of Koldobsky shows that
the classes in between decrease as p varies from —1 to 1; in particular, every polar projec-
tion body is an intersection body [49,51]. A longstanding open problem of Kwapien [54],
in geometric form, asks if every intersection body is isomorphic to a polar projection
body; see work of Kalton and Koldobsky [44] for progress on this question.

A rich theory of isoperimetric inequalities has flourished around centroid bodies
and polar projection bodies. Two fundamental papers in this development are those of
Lutwak—Zhang [70] and Lutwak—Yang—Zhang [64]. For a star-shaped body K and 1 <
p < oo, the L,-centroid body Z,(K) is defined by its support function (see Section 3.1)
for unit vectors u by

1
WZp(K)) = o [ I

Equivalently, h(Z,(K), -) is the norm associated to the polar of Z,(K), denoted here
by Z;(K). Lutwak and Zhang proved that for 1 < p < oo,

|Zp(K)| = |Z,(K™)I, (1.2)

where K* is the dilate of the unit ball centered at the origin of the same volume as K.
When p = oo, (1.2) is the Blaschke—Santal6 inequality, which is equivalent to the affine
isoperimetric inequality [62]. When p = 1, (1.2) follows from the Busemann—Petty cen-
troid inequality. Lutwak, Yang and Zhang [64] later proved a stronger inequality for
Z,(K) itself. These are central results within the framework of L ,-Brunn—Minkowski
theory, which is governed by a different elemental notion of summation, called L ,-addi-
tion [26,61, 63]. This theory provides a basis for wide-ranging inequalities in geometry,
analysis and probability, e.g., [37, 38,40, 65-67]. Campi and Gronchi developed an alter-
nate approach to isoperimetric inequalities for L ,-centroid bodies in [16,17]. In particular,
they further developed the notion and applications of shadow systems, as introduced by
Rogers and Shephard [86]. These systems generalize Steiner symmetrization and have
far-reaching extensions and applications; see, e.g., [18, 19]. There is significant interest in
L ,-Brunn—-Minkowski theory for the challenging setting of p < 1 [8]; see the survey [7],
and recent advances in [53, 74], and the references therein.

A common framework for polar projection bodies and intersection bodies has been
pursued from several perspectives. Drawing on [70], the notion of the dual L,-centroid
body was extended by Gardner and Giannopoulos in [28] to p € (—1, 1) via

1
—-p (7% -
p P (Z,(K).u) = K| /Kl(x,u)l"’dx

The bodies Z 1? (K) interpolate between intersection bodies and polar L,-centroid bodies
using

1
p(I(K)ou) = |K nut| = tim 2F1 f (e u)lPdx:
p>—1+ 2 Jx
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see [28,32,34,51]. For p < 1, ZI?(K) need not be convex, which we emphasize here
by the use of the -© notation. Busemann—Petty type volume comparison problems for
ZI?(K), motivated by earlier work of Grinberg and Zhang [32] and Lutwak [60], were
treated by Yaskin and Yaskina in [92]. For p < 0, these bodies have also been termed L -
intersection bodies and characterizations of such operators as radial valuations were estab-
lished by Haberl and Ludwig [36]; see also [35] for p > —1. Properties of L ,-intersection
bodies were further developed by Haberl in [34]. When K is an origin-symmetric convex
body, a result of Berck [3] shows that ZI?(K ) is actually convex for —1 < p < 1, which
extends Busemann’s seminal result for intersection bodies [14].

We develop methods to bridge the gap between the Busemann intersection inequal-
ity (1.1) and the Lutwak—Zhang theorem (1.2). Each of these can be proved using Steiner
symmetrization, but in very different ways. The former applies to the star bodies /(K)
and uses integral geometric identities (of Blaschke—Petkantschin type) that are particular
to slices of K. The latter relies on convexity of the polar centroid bodies Z,(K) for p > 1.
We develop a new approach that applies to star bodies in between these two classes, that
sees (1.1) and (1.2) from the same viewpoint. We will show that (1.1) is one of a large fam-
ily of inequalities for unit balls of finite-dimensional subspaces of L,. We merge several
techniques that have been used for p = £1. These include symmetrization, embedding via
random linear operators, and a classical change of density technique used in Koldobsky’s
Fourier-analytic treatment of intersection bodies.

‘We follow a probabilistic approach in which L ,-centroid bodies are attached to proba-
bility densities rather than sets. This view was put forth by the second-named author [79]
in the study of high-dimensional measures and their concentration properties; see also
[46, 55]. Fundamental inequalities of Lutwak, Yang and Zhang, in [64], were extended
to probability measures by the second- and third-named authors in [80, 81]. An empirical
approach to dual Lj-centroid bodies, for p > 1, was developed in further joint work with
Cordero-Erausquin and Fradelizi [21], motivated by [18]. To fix the notation, we set

Py = {f:]Rn 5 [0,00) : /R Fx)dx =1, | flloo < oo},

where || |l denotes the essential supremum. For f € &,, the empirical L,-centroid
body Z, n (f) is defined by its support function via

N
1
WP (Zpn (f) ) = 55 > (X)), (1.3)
i=1
where X1, ..., Xy are independent random vectors with density f. In [21], a stronger
stochastic version of (1.2) was established for radial measures v with decreasing densities,
Ev(Z, y(f)) SEv(Z, y(f7), (1.4)

where f* is the symmetric decreasing rearrangement of f (see Section 3). By the law
of large numbers, (1.4) implies the Lutwak—Zhang inequalities (1.2) when N — oo and

f=xx/IK].
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The empirical inequality (1.4) follows from a general theorem about random opera-
tors acting in normed spaces [21]. The random operator viewpoint is from the asymp-
totic theory of normed spaces. In seminal work [29], Gluskin used random operators to
construct counter-examples to a longstanding question on the maximal Banach—-Mazur
distance between finite-dimensional spaces. The expository article of Mankiewicz and
Tomczak-Jaegermann [71] details its far-reaching extensions in Banach space theory.
This viewpoint was also fruitful in developing stochastic versions of a number of isoperi-
metric inequalities [81, 82]. However, inherent in the method was a restriction to con-
vex sets. The main new feature we develop here is its applicability to star-shaped sets.
We will show how this change provides a bridge between the aforementioned inequalities
in Brunn—Minkowski theory and dual Brunn—Minkowski theory.

2. Main results

Our first result establishes a sharp isoperimetric inequality that extends the Lutwak—Zhang
inequality (1.2) to the case p € (0, 1). For f € $#, and p € (0, 1), define the dual L,-
centroid body Z 1<1> (f) via its radial function,

P20 = [ Il fdx.

To define the empirical version ZI? ~(f), welet N > n and consider independent random
vectors X1, ..., Xy according to f as above, and set

1 N
PIZy N () = 5 31X )l 1)

i=1
As above, we also associate such bodies to the symmetric decreasing rearrangement f*.

Theorem 2.1. Let f € P, andlet 0 < p < 1. Then

1ZS(NN < 1Z5 (f ). (22)

Moreover,

E|ZS v ()] < EIZS 5 (f)]. (2.3)

Theorem 2.1 relies on first establishing the empirical version (2.3), while (2.2) is de-
rived as a consequence. This is a key difference from the empirical approach in [21,81,82]
in which (non-random) inequalities of Lutwak, Yang and Zhang [64, 68, 70] inspired the
development of their empirical versions (e.g., (1.2) motivated its stochastic form (1.4)).
Recently, Yaskin [91] proved (2.2) and extensions raised in [52] in the case when f = yg,
where K is an origin-symmetric star-body sufficiently close to the Euclidean ball.

Our original inspiration is a recent volume formula for sections of finite-dimension-
al L,-balls by Nayar and Tkocz [77] that builds on ideas involving Gaussian mixtures of
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random variables from [25]. Kindred probabilistic representations have been indispens-
able in the study of sections of convex bodies, e.g., [2,47,73]. In our case, such a formula
allows for a reduction from star-shaped sets to convex sets that interfaces well with the
empirical approach from [21,81,82]; see [1] for recent applications of related formulas in
stochastic geometry.

The methods we develop here go beyond centroid bodies to sets generated by families
of subspaces of L. For f € #,, an origin-symmetric convex body C in R™, m > 1, and
p # 0, we define Z;?,C (f) € R” by its radial function (see Section 3.1): for p # 0,

(20 (f) ) = / o 1€ () H fedE @4
where dX = dx ---dxy,, and for p = 0,
log pZ5c (£ = [ Togh(C (b)) 1‘[ fi)dx.

As p decreases, the sets Z OC (f) increase with respect to inclusion and p(Z¢ C (f),u)
is finite for almost every u € S™~! whenever p > —1 and f € £, (see Lemma 4.1).
We also define empirical versions involving multiple bodies C and densities f. Specif-

ically, let Cy, ..., Cy be origin-symmetric convex bodies with m; = dim(C;) > 1 for
i e[N]={l,...,N}, where N > n.Let (X;;),i € [N], j € [m;], be independent ran-
dom vectors with X;; distributed according to f;; € $#,. Write € = (Cy,...,Cy) and

F = ((fij);)i. For p # 0, we define a star-shaped set ZI?,‘C’ (F) S R" by

1 ¥ _
PP Zy e (F)u) = = 3 hP(Ci (X u)) L) 2.5)

for p = 0, we define Z° t,(?7 ) € R” by its radial function

_N(Z rf(f') u) = Hh(cl, Xij,u )) i=1 (2.6)

With these definitions, we note the following:

(1) For p > 1, the convexity of the p-norm ensures that (2.4) and (2.5) define radial
functions of origin-symmetric convex sets. Thus we may naturally define

Zpc(f) = (Z3c(f)° and  Zpe(F) = (Z5e(F))°.

In this way, - coincides with usual polarity whenever Z 1<7>, c(f) and Z;?,C( f) are
compact, convex and have non-empty interior.

(ii) For p >0and C=[-1,1], wehaveZo(f) [ 11](f) 51m11arly,1ffi7—(f)l_1
and € = ([-1, 1])l |» then ZON(f) Zof(f%“) The latter identities should be
taken as definitions in the case p = 0.
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For p > 0, we have the following generalization of Theorem 2.1, going from ¥ = (f;;)
to the family of rearranged densities ## = (f ])

Theorem 2.2. Let [ € P, and let p > 0. If C is an origin-symmetric convex body of
dimension m > 1, then

1Z3 e (DI <1Zge ()] 2.7

Moreover, if ¥ = (fij) € Pn and € = (Cy, ..., Cy), where each C; is an origin-
symmetric convex body of dimension m; > 1, then

E|Z9e(F)| < E|ZS e (F)].

The theorem is new for all values of p. For p > 1, the proof uses tools that have already
been developed in [21]. The main novelty here is in techniques to deal with the star-shaped
sets Zot,(}f' ) in the range p € [0,1). In particular we provide a separate treatment for
p = 0 including a new volume formula for a4 E(J’T ). For p < 0, the expected volume of
the empirical bodies Zﬁf (¥) need not be ﬁnite when dim(C;) < n (see Remark 5.8); here
the use of higher-dimensional convex bodies Cy, ..., Cy is essential. For certain values
of p, namely when p € [—1,0) and n/ p is an integer, we establish the following theorem.

Theorem 2.3. Let [ € P, and let p € [—1,0). Let C be an origin-symmetric convex body
withdim(C) > 1. If p > —l and n/|p| € N, then

IZQC(f)I 1Z3c(f)].

Furthermore, let ¥ = (fij) € $p and € = (Cy, ..., Cn), where each C; is an origin-
symmetric convex body ofdtmenswn mi>n+1.Ifp>—landn/|p| € N, then
E|ZS o (%) < E|Z5e (%), (2.8)

Empirical versions of isoperimetric inequalities from [21, 81, 82] have involved oper-
ations in Brunn—Minkowski theory; e.g., for p > 1, the sets Z, y(f) in (1.3) are L,-
sums of random line segments (see Section 3.1). Theorems 2.1-2.3 are the first to treat
empirical forms of inequalities for star-shaped sets in dual Brunn—Minkowski theory.
In particular, we develop randomized analogs of approximation results of Goodey and
Weil [30], and Kalton, Koldobsky, Yaskin and Yaskina [45], in which intersection bodies
and their L,-analogs are limits of radial sums of ellipsoids. The use of higher-dimen-
sional bodies C; in Theorem 2.3 is needed for this purpose and such bodies are crucial for
establishing the corresponding isoperimetric inequalities In particular, we define a variant
of the L p-intersection body as follows: for f € #,, ¢ > 0 and p € [-1,0), we set

PP 10 = [ v+ a2 f .

For the empirical version, we consider N > n independent random vectors X, ..., Xy
from f € £, and define J oI, N (f) via

N

1
PP N (o) = 5 D (K ? + @ u3) 71712,

i=1
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The star-shaped bodies Jll o, N (f) are Lp-radial sums of ellipsoids (see Section 3.1).
In fact, the bodies Jl LN (f) are special (limiting) cases of Z<> ¢ (F) for a suitable choice
of € and ¥, involving ellipsoids and uniform measures on balls

Corollary 2.4. Let f € $y, ¢ >0, p € [-1,0) andn/|p| € N. Then

5 (O < U5 ()]

Moreover,

Eld7, 5 (O = EIIf, v (I (2.9)

When p = —1, (2.9) is a stochastic form of the Busemann intersection inequality (1.1),
as it implies the latter when N — oo and o — 0. Indeed, if f € $,, we write I(f) for
the intersection body of f, defined by its radial function via

p(I(f).u) = / .

and (2.9) implies the following functional version of (1.1).

Corollary 2.5. Let f be a continuous and compactly supported function in P,. Then

IO =)

Thus the Busemann intersection inequality (1.1) is one limiting case of a family of
extremal inequalities about L ,-radial sums in Theorem 2.3. For (non-random) functional
versions of the Busemann intersection inequality, see [22], and [39] for recent develop-
ments.

Lastly, we can further reduce inequalities to uniform measures on balls in each of the
above theorems whenever the convex bodies C and C; are unconditional, i.e., invariant
under reflections in the coordinate hyperplanes.

Theorem 2.6. Let | € P,. Suppose that p € [0,1], or p € [-1,0) andn/|p| € N. Let C
be an unconditional convex body in R™, m > 1. Set g = || f ||oo)(,33, where r > 0 satisfies
/& = 1. Then for p > —1,

1Z3c (N = 1Z5 (@),

while for p > —1 and o > 0,

B[4} n (] = E[d v (@]

Furthermore, assume that ¥ = (fij) S $p and § = (gij), where gij = || fijlloo X, B2
with ri; > 0 satisfying [ gij = 1. Let € = (Cy, ..., Cn), where each C; is an uncondi-
tional convex body of dimensionm;. If p > 0andm; > 1, or p € [-1,0) and m; > n + 1,
then

E|Z} ()| < E|Zye(9)].
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As with Theorem 2.3, the condition that n/| p| € N when p < 0 is a by-product of our
approach; we make no claim that it is a necessary condition and hope our work attracts
interest in resolving the non-integer values.

The paper is organized as follows: Section 3 introduces notation and basic tools; Sec-
tion 4 is devoted to the non-random bodies Z:zc (f) and variants of L ,-intersection
bodies; Section 5 develops the randomized versions of these objects. New volume for-
mulas and representations for radial functions are developed in Section 6. The theorems
are proved in Section 7.

3. Preliminaries

3.1. Notation and definitions

For a compact set K € R”, we denote its convex hull by conv(K). The set of all compact,
convex sets in R” will be denoted by K. For K € K", its support function is defined by
h(K,u) = sup,cg{x,u), u € R". The Hausdorff metric on K" is defined by

§H(K,L)y= sup |h(K,0)—h(L,0),
fesn—l1
where §”~! is the unit sphere. We call K € K" a convex body if it has interior points.
We say that K € K" is origin-symmetric if —x € K whenever x € K. The set of all
origin-symmetric convex bodies in R” will be denoted by K. Each K € K gives rise
to a norm on R” given by

lullx = inf{X > 0:u € AK}.

The polar body of K € K is defined by K° = {u € R" : hg(u) < 1}.
For measurable sets A C R”, we use | A| for the Lebesgue measure of A. By w,, we
mean the volume of the Euclidean ball in R” with radius 1, i.e.,
7.L,n/2

We will call a set K in R” star-shaped if 0 € K and ax € K whenever x € K and
a € [0, 1]. The radial function of a star-shaped set K is defined as p(K,u) = sup{r > 0:
ru € K} foru € S"~!. Throughout, we use the same symbol for the (—1)-homogeneous
extension of p(K, -) defined for u € R"\{0} by

_ u
p(K,u) = ||u||21p(K, )
[lull2

Here we allow K to be unbounded and p(K, u) may take the value +o00. As our focus is
on volumetric inequalities, we are particularly interested in radial functions of star-shaped
sets K with p(K,-) € L,(S™!,0); in this case, we write

1/n
oKl = ( [ " Kedu) " = a1 6.
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which follows by expressing the volume in spherical coordinates (e.g., [87, p. 57]). Note

that we use du for do(u), where o is the normalized Haar probability measure on S"~1.
We will call K a star-body if it is a compact, star-shaped set with the origin in its

interior and its radial function is continuous. When K € X', we have for u € R"\{0},

p(K,u) = |lulg' and p(K°,u)=h""(K,u).

We recall a core notion of addition of convex bodies from L ,-Brunn—-Minkowski the-
ory, e.g., [26,61,63]. For K, L € K" containing the origin and p > 1, we will write
K +, L for their L,-sum, i.e.,

hP(K +p L,u) = h?(K.u) + h?(L.u) (u € R"). (3.2)

In dual Brunn—Minkowski theory (e.g., [70, 87]), for star-bodies K, L, and p # 0, their
Lp-radial sum K ¥, L is defined by

p? (K Fp Lou) = pP (K, u) + pP(Lou)  (u e S"7.

For a measurable set A in R” with finite volume, we define its rearrangement A* to
be the (open) Euclidean ball centered at the origin satisfying |A*| = |A|. We will use the
following bracket notation for indicator functions:

[u € A] = xa(w).

For a non-negative integrable function f on R”, its layer-cake representation is given by

(o]

£x) = /0 Kipon ()i = /0 [x e {f > n)]dr.

The symmetric decreasing rearrangement of a non-negative integrable function f on R”
is defined using rearrangement of its level sets {x € R" : f(x) >t} ={f >}, > 0, via

Fro) = /0 Xipoey ()i = /0 [x e {f > 1}*]dr.

For a general reference on rearrangements, we refer the reader to [56]. We will use the
fact that f and f™* are equimeasurable; in particular, f* preserves all L,-norms of f.
Note also that if f < g, then f* < g*. Moreover, rearrangements satisfy the following
contractive property (see [56, Theorem 3.5]): for 1 < p < co and for f,g € L,

If*—g*llp < IIf —gllp- (3.3)

For f € #,, the marginal density of f on a subspace E of dimension k is defined as
we (N = [ o G4
El+x

where E-L denotes the orthogonal complement of E. Note that when f € %, and has
compact support, then g ( f) is also bounded and has compact support.



From intersection bodies to dual centroid bodies: A stochastic approach to isoperimetry 11

3.2. Probabilistic tools

We will make repeated use of the following fact about uniformly integrable collections of
random variables (e.g., [90, p. 189]).

Proposition 3.1. Let n, ny, 12, ... be non-negative random variables on a probability
space (2, M, P) such that np — n as k — oo almost surely. If {ng} is uniformly inte-
grable, then

lim Eng = En < oo.

k—o00

Remark 3.2. A sufficient condition for uniform integrability of a family of random vari-
ables {1y} is boundedness in L145(€2, M, P), for some § > 0 [90, p. 190].

We will also use Kolmogorov’s strong law of large numbers [90, p. 391].

Proposition 3.3. Let 11, 12, ... be independent identically distributed random variables
on a probability space (2, M, P) such that E|ny| < co. Then, almost surely, as N — o0,

LN
N > m — En.
k=1

We will frequently use a.s. as an abbreviation for almost sure convergence; similarly,
we use i.i.d. for a sequence of independent identically distributed random variables.

3.3. Volume in terms of Gaussian integrals

We will use the following elementary lemma which relates the volume of star-shaped sets
to certain Gaussian integrals.

Lemma 3.4. Let K be a star-shaped set with 0 € int(K) and p(K,-) € L,(S"1,0). If§
is a standard Gaussian vector in R, and s € (0, n), then

Eep® (K, &) = by s - p* (K, u)du, (3.5)

where

_ nl'((n—s)/2)
bys =E § = .
n,s E”E“Z 25/2+1F(l/l/2+ 1)
Furthermore, if p(K,-) is additionally the pointwise limit of an increasing sequence of
radial functions {p(Ky, )} of star-shaped sets {K}, then

Eeo" 14Ky, §)
bn,n—l/( .

(3.6)

|K| = w, lim
{—o00

Proof. Using polar coordinates, we have for 0 < s < n,

E:p* (K, &) = nOn oor"_s_le_’z/za’r 0° (K, u)du
ST a2 ), L

_ nl'((n—1)/2)
22K (/2 4+ 1) Jgnm

o° (K, u)du.
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The conditions 0 € int(K) and p(K,-) € L,(S"™!, o) ensure that p(K, u) is positive and
finite for all u outside of a null set on S”~!. For such u, since p(K¢, u) — p(K, u),
we have

o2 oK) i

o' (Keou) = p (Kew) exp (- ==L

Next, since {p(K¢, u)} is increasing,
" V(K u) < max(1, p" (K¢ u)) < max(1, p"(K.u)) <1+ p"(K.u).  (3.7)

By dominated convergence and (3.5), we get

;'K =/S”7 ot (K, u)du = hm . "V (K, u)du
. JEgp"‘”(M)
= lim —/————>~, [
{—o00 bn,n—l/l

4. Dual L, ¢ -centroid bodies

Let f € $,, p > —1 and let C be an origin-symmetric convex body in R™, m > 1. For
ease of reference, we recall that for p # 0,

P(ZE () = / R CRY o1 s

i=1

and for p = 0,

g pZge (P == [ ogh(C. (b [ £
i=1

As noted in the introduction, the latter bodies are not convex in general. We will use the
term dual L, c-centroid body as these bodies fit within dual Brunn—-Minkowski theory.
This agrees with the convex case when p > 1, however, the term here is meant in a broader
sense than duality for convex bodies. When p > 1, OC (=22 Hel .

We start by noting a few elementary properties of the bodles c (f). It will be useful
to compare ZOC (f)and ZOD(]’) forC € X™, D € Xy' Where m < my;in such cases
we use the standard embedding of R” into R™!.

Lemmad4.1. Let f € Py, p, p1.p2>—1land C € X', m > 1.

(@) If p1 < pa, then
Z$ () S Z8 ()

(b) If D € X3! for some my > m, and C < D, then

Z3 ()2 Z3p(f).
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© P(Zye(f):) € Lip|(S",0).

(d) Fork €N such thatkan f(x)dx >0, let %) = f - yypn and §® = p®)/ [ 9®.
Then for a.e. u € S~

P(Zyc(f).u) = lim p(Zc(@®).u).

Proof. Part (a) is a consequence of Holder’s inequality. For (b), the condition C C D is
equivalent to h(C,-) < h(D,-), hence IO(Z;)),D(f)’ u) < p(Z;ZC (f).u) foreachu € S"1.

By using (a), it is sufficient to treat (c) for p € (—1,0). Since C € K}", we can assume
there exists ro > 0 such that ro[—ey, e1] € C, hence

PZE e (f)ow) < 13 p(Z2 Ly (F)o0)

foru € S*1. For p € (—1,0), we have for each u € sn—1
I+ = By [ I,

where B, p = by |/ b1, p| (cf. (3.6)). Since x — ||x||;|‘”| is locally integrable and f € &,
we have

/ 115" f(o)dx < 1 £ lloo / Ixll; " dx + / f(x)dx < 0.
R B R"\BY
Thus part (c) follows from
/S” pPUZE () w)du _/ / (x. u)| 7P f(x)dxdu
S M

To prove (d), we note that part (c) implies p(ZOC (f),u) < oo for ae. u € S" 1.
Since ¢®) — £, and f € P,, we have f(p(k) — ff = 1. For p # 0, we have by
monotone convergence,

[, (€ G o [T wa

i=1
- WP (C, (ki) [T f(xid @.1)

(R i=1

the latter holds even when the right-hand side of (4.1) is infinite (when p > 0, this entails
,o(ZOC(f) u) = 0). Since p® = p®/ [o® — £ and ([ e®)" — 1 as k — oo,
convergence in (4.1) remains valid when ¢®) is replaced by ¢*). Thus part (d) holds for
p # 0. To treat p = 0, we set

Pr(u) = {(xi)iLy € R")™ :h(C. ((xi,u))iLy) > 1}
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and P>(u) = (R™)™\ Py(u). For u outside of a null set on S”~!, we can apply the same
argument to each factor in

P(Z e (9),u) = Hexp( / | Tozh(C. ({1 ,_1)1‘[¢“‘><x>dx)

i=1 i=1

to conclude that (d) holds for p = 0 as well. ]

4.1. L“-intersection bodies

For f € $,, we write I(f') for its intersection body, defined by its radial function via
o1 = [ | feodx,
ul

where the integration is with respect to Lebesgue measure on u=; for background on
intersection bodies, see [27,51, 59]. Motivated by approximation results for intersection
bodies involving radial sums of ellipsoids [30, 32, 45], we define a variant of 7(f): for
o > 0and p € [—1,0), the LZ-intersection body of f is given by

PP (). u) = / ()P + 2ul2) 7172 £ (x)dox.

As mentioned, when f is the indicator of a star-body and & = 0, the latter bodies were
studied in [34,36,92]. When p = —1 and o > 0, we write /%(f) = If‘(f).

Proposition 4.2. Let f be a continuous compactly supported function in . For o > 0,
let s = sinh~'(1/c). Then

()] = lim 2s0) (/).

We will prove this using an approximate identity, i.e., a family of non-negative func-
tions (ko )ae(0,1) on R satisfying the following conditions, for each o € (0, 1):

() fR ko(t)dt = 1;
(i) for any § > 0, limg_so fiz|>8 ko(t)dt = 0.
In this case, if g is continuous and supported on a compact set K, then
(ke * &) = gllLoo(x) = O:
see, e.g., [31, p. 27].
Proof of Proposition 4.2. For a > 0, let
ka(t) = (250) 71 (0% + &) 2y @),

Standard computations show that (kg)q is an approximate identity. Fix u € S"! and
recall the notation for the marginal of f on [u] = span{u} (cf. (3.4)), and set

Ju(®) = mp (f)(@0).
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Then f,, is compactly supported and
s () = @)™ [ 024 a2 fuordr
R
— [ kO f0d+ s [ @ ety fwr
lr]=1

|t]>1

= (ka * £)(0) + (252)"" /

lt]>

2+ ) V2f,(0)dt. (4.2)
1

We have ko * f,,(0) = £, (0) = p(I(f).u). Since [ fu(t)dt =1and sy — coasa — 0,
we have

MnQMY4/1 2+ V2 f,()dt =0
a—0 |£]>1

It follows that

2sa) """ (f)su) = p"(I(f), u).
Using formula (4.2), we have that the latter convergence is dominated on (S"~!, o) by
(supy, || fulloo + (251)™1)™, hence

1 =an [ lim g (@5 1 ))du = fim G 11N m

5. Empirical dual L, ¢ -centroid bodies

An empirical approach to L,-centroid bodies was initiated in [81] and developed further
in [21,82]. It relies on random linear operators acting on various sets in finite-dimensional
normed spaces. In this section, we recall the main theorem from [21]. We lay the ground-
work to re-interpret the random star-shaped bodies Zz?,f (F) of our main theorems in
terms of random sections of £,-balls. We also develop new notions of randomly gener-
ated intersection bodies.

5.1. Tools from the empirical approach

It will be useful to fix some notation for matrices acting as linear operators. For an n x N
matrix X = [x;...xy], we write X for the transpose of X and we view X:RY — R”
and XT:R” — R¥ as linear operators. In particular, for an origin-symmetric convex body
C C RV,

N
XC ={Xc:ce(C}= {Zcixi te=(¢) EC}.
i=1
Principal examples include
C = va = conv{te;,..., ey} and C = BOA; =[-1, 1]N

in which case
N

XBIN = conv{*txy,...,+xy} and XBOIZ = Z[—xi,xi].

i=1
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Volumetric inequalities for convex hulls of random points and random zonotopes [11,33]
motivated work in [81] to interpolate between these two extremes and led to an empirical
study of L,-centroid bodies; see the survey [82] and the references therein.

All of the theorems in Section 2 will be derived from the following result about
polars of convex bodies from [21]. It concerns radial measures with decreasing densities
(“decreasing” is meant in a non-strict sense).

Theorem 5.1. Let X and X* be n x N random matrices with independent columns
drawn from ¥ = (f,)lN=1 C Py and F¥ = (fi*)lNzl, respectively. Let v be a radial
measure with a decreasing density, i.e., dv(x) = h(||x||2)dx with h: [0, co) — [0, c0)

decreasing. Then for any origin-symmetric convex body C in RV,
Ev((XC)°) < Ev((X*C)°). (5.1

Assume additionally that Z is an n x N random matrix with independent columns drawn
from g; = ||fi||oo)(,,.Bg, where r; > 0 satisfies [ gi = 1. Then for any unconditional

convex body C in RY,
Ev((XC)°) <Ev((ZC)°). (5.2)

The latter theorem relies on rearrangement inequalities of Rogers [85], Brascamp—
Lieb—Luttinger [13] and Christ [20]. It also relies on the Borell-Brascamp—Lieb inequal-
ities [6, 12]. It was motivated by the work of Campi and Gronchi on symmetrization of
polar convex bodies [18].

The following lemma is a useful re-interpretation of the bodies (X C)°, stated in terms
of the transpose X and the pre-image of C°, ie, X '[C°] = {x e R" : X"x € C°}
(square brackets are used here to avoid multiple nested parentheses in subsequent expres-
sions).

Lemma 5.2. Let X be an n x N matrix of full rank, viewed as a linear operator X:
RN — R". Then for C € XV,

(XC)>=X"T[C°].
Proof. Observe that

(XC)={xeR": (x,Xc) <Ilforallc € C}
={xeR":(X"x,c) <1 forallc € C}
={xeR": X"xeC°y=X""[C"] "
Remark 5.3. The lemma will be applied for X of various dimensions. When N = n,
the full rank assumption entails that X and X T are both invertible. When N < n, (X C)°
denotes polarity in R” and (X C)° may be unbounded. When N > n, X7 is injective
and X 7 is also the inverse of X T on Im(XT) = ker(X)=, in which case

XT[C°] = XT[C° NIm(XT)].

hence
(XC)°| = det(XX )" V?|C° N Im(XT)|. (5.3)
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5.2. Random slices of finite-dimensional £ ,-balls

For p > 1, the centroid body Z,( /) can be viewed in terms of limits of images of finite-
dimensional £,-balls, where 1/p + 1/q = 1. To fix the notation, for p # 0, we denote
by BY the £,-ball in RYi.c.,

N 1/p
B;V:{xeRN:(ZHx,ei)lp) El},

i=1

where {ey, ..., ey} is the standard unit vector basis for R¥ . For p =0, we set

BY = {x e RN : (]f[1 |(x,e,~)|)l/N < 1}.

Note that BIZ,V is a convex body when p € [1, 00) and a star-body when p > 0. When
p <0, B}I)V is unbounded but remains star-shaped.

Let X be an n x N random matrix with independent column vectors X, ..., Xy
drawn from f € %#,. For 1 < p < oo, the empirical L,-centroid body Z, n(f) defined
above in (1.3) has the equivalent description

Zyn(f) = NVPXBY,
where 1/p 4+ 1/¢ = 1. Indeed,

N 1/p
h(XBN,u)zh(BN,XTu)z(Z |(X;,u)]| ) .

Using Lemma 5.2 and 1/p + 1/q = 1, we have
Zy y(f) = NYPX7T[B)], (5.4)

where, as above, X ~T[A] denotes the pre-image of A under X'. We will mimic iden-
tity (5.4) to realize the bodies ZX y (f) defined in (2.1) as sections of BIJ,V for p € (0, 1).

Lemma 5.4. Let X be an n x N random matrix with independent columns distributed
according to f € Py. Then for p € (0, 1),

Z0 y(f) = NYPXT[BY].
Proof. Fix u € S"~!. We have by (2.1),

-1/p

N

i=1
On the other hand,
oBY XTu)y=sup{r >0:rX"u e BI},V} =sup{r>0:ruce X_T[BIIJV]}
= p(XT[B)]. ).
The lemma now follows from Nl/l’p(X_T[BIﬂV], u) = p(Nl/I’X_T[B]ﬁV], u). n
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We can similarly view the bodies ZI?.C, (¥) (cf. (2.5)) using random linear operators.
For € = (Cy,...,Cy) with C; € K, we place them in orthogonal subspaces R =
span{e,-j};";l, i =1,...,N.Then for p # 0, we define

N

N 1/p
8N e) = {(xl,...,xN)e@Rmf : (th(C,-,x,-)) < 1};
i=1

i=1

when p = oo, we replace the sum by max; £(C;, x;). For p = 0, we set

N N 1/N
8Y ) = {(xl,...,xN) e Prm: (Hh(C,-,x,-)) < 1}.
i=1 i=1
When the C;’s are all equal to [—1, 1], we have

BY = 8) ((—e1.eil.....[-en.en])).

As for BIIJV , the set 311,\’ (€) is a convex body, star-body or unbounded star-shaped set,
according to whether p > 1, p € (0,1) or p < 0, respectively. Note that we have de-
fined B;,V (€) using support functions 4 (C;, -) rather than norms associated to the C;’s, as
some computations are more convenient with this convention. By standard duality argu-
ments, for 1 < p,qg <ocowith1/p + 1/q = 1, we have for € = (Cy,...,Cy),

(B, (€))° = B) (€°). (5.5)

where we have set €° = (C7, ..., Cy) (see [23, p. 97]). We will use the particular case
of p = 1 and ¢ = oo, combined with Lemma 5.2 in the following form.

Lemma 5.5. Let € = (Cy,...,Cn), where C; € Xg'', m; > 1, and €° = (Cy,...,Cx).
Set M =my+---+mpy.Let X =[X1 ...Xy]| be an n x M matrix with n x m; blocks X;
of full rank. Then

N
((XiC)° = (X B (€°))°.
i=1

Proof. By Lemma 5.2,

N N N
(\XiC)° = (X, "IC7] = [ueR": X]u € C},

i=1 i=1 i=1

while
(XBY () =XT[B8Y (@) ={ueR": max /(C;, XTu) < 1}. "
1<

Using the above notation, the empirical bodies Zz?,f (F) defined in (2.5) and (2.6) can
be realized as sections of BIZ,V (€) as follows.
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Lemma 5.6. For i € [N], let C; € X', m; > 1 and let M = my + --- + my. Let
X =[X1:-- Xn] be an n x M random matrix with independent n x m; blocks X; =
[Xi1 ... Xim;] having independent columns X;; distributed according to f;j € P,. Then

for p #0,
Z0e(F) = NYPXT[B) (e)], (5.6)

and for p = 0,
Zge(F) = X7[8g'(€)] (5.7)
Proof. Foru € sn—1
X'w=(XJu,...,Xqu) = (((le,u));"zll,...,((XNj,u));"le).
For any set § in RM | we have
X TS]={ueR": Xues).
For p # 0, we have

IO(Nl/pX_T[o@II,V(E)],M) — p(Nl/P:BI])V(f)’XTM)
N

1 T -1/p
- (ﬁ > WP (Ci. X] u))

i=1
= p(ZS (7). u).

For p = 0, we have

N
p(XTTBY (©)].u) = [ h(Ci. X[u) TN = p(Z8 o (F).u). .

i=1
Remark 5.7. For p > 1, we have by Lemma 5.2 and (5.5)
ZSe(F) = Zp o(F) = NYPXTT[B) (€)] = NP (X B (€°))°.

Remark 5.8. For p < 0, the bodies Zgg(? ) are pre-images of slices of unbounded sets
and hence need not be bounded. This is reflected in our notation as their radial functions
take the value +00. When m; = dim(C;) < n, the matrix XjT has a non-trivial kernel and,

for p # 0,

N 117l
PO o = (LX) = G X,

i=1

which is infinite for u € ker(X jT) and arbitrarily large in any neighborhood of such wu.
When each C; has dimension m; > n, absolute continuity ensures that the n x m; ma-
trix X; has rank n a.s. This implies that #1(C, X iT-) > 0 a.s., hence each summand in the
radial function p(Zl?’t, (), ) is necessarily finite a.s.
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Let € = (Cy,...,Cy) and D = (Dy, ..., Dy) be N-tuples of origin-symmetric
convex sets with dim(C;) < dim(D;). We will write

CCD & C;CD; foralli=1,...,N.
Lemmas5.9. Let ¥ = (fij) € Pnand —1 < p, p1, pp < 00. Let € = (Cy,...,Cn) with
C; e X", m; > 1, fori € [N].
(@) If p1 < pa, then
Z0 o(F) S Z5 o (F). (5.8)
(b) IfD = (Dy,...,Dy) with D; € Ky, m) >m;, fori € [N], and € C D, then

Z o (F) 2 Z% 5 (F). (5.9)

Proof. Part (a) is a consequence of Holder’s inequality, which gives monotonicity of the
normalized means in the definition of 'O(Zz?,t’ (F),u) (cf. (2.5) and (2.6)).

For part (b), C; C D; is equivalent to h(C;,-) < h(D;, ) for each i, which im-
plies (5.9). [

5.3. Convergence of volumes

The next proposition details integrability and sufficient conditions to obtain the volume
of Z 1? ¢ (f) as alimit of the expected volumes of the random bodies Z;)e (F).

Proposition 5.10. For i € N, let C; € K", m; > 1, and (fij) C Pu, j € [m;]. For
N eN,let€y =(Cy,...,Cn)and Fy = ((f,]);";1 N_|. Assume that

(a) thereis an rg > 0 such that roB;” C C; foreachi;

(b) fij are supported on a common compact set and sup; ;|| fijlloo < 00

If pel0,1],0or p e [-1,0) and m; > n + 1 for each i, then for any ¢ € (0, 1),

sup  sup Epn+8(Z;>~€ (FN),u) < oo, (5.10)
Nzn+1yesn—1 N
and hence
sup E[Z8. (Fw)| < 0. (5.11)
Nent1 DN
Furthermore, if C1, Cs, ... are copies of a given convex body C of dimension m and f;;

are identical and satisfy (5.10), then
Zc (N = Jim E|Z7e (FN)]. (5.12)

Proof. Without loss of generality, we may assume that 7o = 1. By assumption (b), we can
fix a Gaussian density ¢, and a constant A > 0 such that for each i, j,

1 1 2
i (%) = pa(x) = We*”x”ﬁ/z"‘ (x € R"). (5.13)
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Fix ¢ > 0 and u € S, Assume first that p € [0, 1]. By Lemma 5.9, to prove (5.10)
we need only treat the case p =0, m; = 1fori =1,...,N,and €y = ([—e,-,e,-])lN:l.
In the notation of Lemma 5.6, this means that ¥y = (f,-l)f\;l and X; = [Xj1] aren x 1
matrices. By Fubini’s theorem,

N
Epn+8(ZOQ’€N (Fn), u) = 1_[ E|(X;1,u) |—(n+s)/N.

i=1

Sett = (n+¢)/N.Let g1,...,gn be iid. standard Gaussian vectors in R”. Fix i €
{1,...,N}. Then (g;, u) is a standard Gaussian random variable. Assume first that N >
2(n + ¢) so that T < 1/2. By Holder’s inequality,

Ex,, [(Xin, 1) |77 < (BI{Xe1,u)|71/2)*".
Using (5.13) and the notation for b, ; from (3.6), we have
A_lal/ZEXH [(Xir,u)| 72 < Eg, (gi,u)| 7Y% = bi,1/2 < 00,
hence for N > 2(n + ¢),
Ep" (Z e, (FN), 1) < (Aa™2by172)>™N = (Aa™ 2y 12?7 H). (5.14)

Assume now that n + 1 < N < 2(n + ¢). Then 7 belongs to the interval J = (1/2,
(n+e¢e)/(n+1]and by r < b = sup,cy b1, < 00. Using (5.13), we have

A_la’]EX“ (X1 u)| 7" < Eg|(gi.u)|™" = b1, <b.
Writing @ = min(«, 1) and using t < 1, we have forn + 1 < N < 2(n + ¢),

]Epn-‘rb‘(z<>

ey (PN u) < (A b)Y < max(1, (g~ 'b)>" ). (5.15)

Bounds (5.14) and (5.15) are independent of u and N, so we obtain (5.10) for p € [0, 1].
Assume now that p € [—1,0). By Lemma 5.9, we can assume that p = —1, m; =
n+1,fori =1,...,Nand €y = (B;’H)fvzl. By Jensen’s inequality,

N
[rod 1 —
PEES, ey, () ) < o > || XTull; .

i=1

For i € [N], let G; be i.i.d. n x (n 4+ 1) random matrices with i.i.d. standard Gaussian
entries. By (5.13), for i € [N], we have

AT Ry | XTull; " < Eg 1GTul; " = bysrnse
Thus (5.10) now follows from
Exp" (2% ¢\ (F)u) < A" a0 b,y

here we have used that m; = dim(C;) = n + 1, which ensures finiteness of b, 41 n+¢.
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To justify (5.11), for general €y and Fy, set § = ¢/n so that n(1 + §) = n + ¢.
By Holder’s inequality,

146
([, B @e, o) " < [ @@, )
+
= ./Sn 1 P S(ZPEN(?’N)’M)du'
Therefore, (5.11) follows from

(E|Z8 (FND'T <wp™ sup Ep"T8(Z°

ueSn—1

(Fn). ). (5.16)

P,EN D.EN

Towards proving (5.12), we fix u € S n=1 jdentical bodies C; = C of dimension m
and f;; = f.For p # 0, the family of i.i.d. random variables {#?(C, X u)};en has finite
first moment, i.e.,

Eh?(C. X]u) =/ W2 (C. (i u)fep) [ f(i)dT < o0 (5.17)
(R7m)m

i=1

Indeed, for p > 0, this is a direct consequence of f being bounded and compactly sup-

ported. For p < 0, the function EA?(C, X[-) = p~?(Z C(f) -) is integrable by part (c)
of Lemma 4.1; in particular, (5.17) holds for all u out51de of anull set on §7~1 (henceforth
disregarded). Thus by Proposition 3.3, for our fixed u € S n—1

N
% Y hP(C. X[u) - ERP(C. X[u) = p P (Z3 o (f)u)  (as.);

i=1
similarly, for p = 0, as f has compact support, the i.i.d. collection {log h(C, X u)};ien
satisfies

Ellogh(C. Xl = [ Jlogh(C. ({xi.u))y) H Fi)dT < o0,
(R’l)m

hence

N
1
~ Zlogh(C, Xu) - Elogh(C, X u) (as.).
i=1
In all cases, we have

P (Ze,, (W) )0 (Z3(f)ow)  (as.).

Using (5.10), the collection {p" (Zp ey (Fn),u): N =n + 1} (for our fixed u) is bounded
in L145, where, as above, § = ¢/n. By Proposition 3.1 and Remark 3.2, as N — oo,

Ep"(Zge\ (FN),u) = Ep"(Z5 o (f),u) = p"(Z3 o (f), ). (5.18)
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Lastly, the collection {Ep"(Z% N (¥N),:) : N = n + 1} is uniformly integrable on
(S™71,0) (by the inequality preceding (5.16)). Using (5.18), Proposition 3.1 and Fubini’s

theorem, we get

Z5eD=on [ #Zethwdu=w, fim [ BB F)d
= Jim ]E|Z°t, (Fn)l,
which establishes (5.12) and completes the proof of the proposition. ]

5.4. Empirical Ly-intersection bodies

In this section, we show how particular choices of € and ¥ in the bodies Z;?,‘C (F) lead
naturally to empirical versions of L ,-intersection bodies. As mentioned, unit balls of
normed spaces that embed in L,, p € [—1, 1] can be obtained as limits of p-radial sums
of ellipsoids [30,45]. Here we treat complementary volumetric random approximations.
Since our main interest is when p = —1, we develop this only for p € [—1,0); similar
considerations lead to analogous results for p > 0.

As in Section 2, for f € #,, p € [-1,0) and @ > 0, the empirical Lg-intersection
body Jﬁ‘p"N (f) is defined for i.i.d. random vectors X1, ..., X with density f by

1 N
PPN (1)) = = 3 (KXe ) 2 + o uf3)772.
i=1

Forming the ellipsoids §%(X;) = ([—X;, X;] +2 aB})° (cf. (3.2)), we have

| N
P‘pl(‘}ﬁ)l,N(f)’”) =¥ Zp'”'(@“(X,-),u).

i=1

To link J ﬁvl, y(f)to Z;z.e (F), we replace each §%(X;) by the approximate ellipsoid
([=Xi, Xi] +2 @[B3]i,m)°,

where [B]im = conv{£Z;1,..., £Z;;}, and the Z;; are i.i.d. random vectors with
density w,, 1n x Bz - The bodies Zz?f (F) naturally accommodate these approximate ellip-

soids, as we specify in the next proposition.

Proposition 5.11. Let f be a compactly supported function in Py,. Let p € [—1,0) and
o > 0. Thenfor N >n+ 1,

Elffp n ()] = lim E|Z<>*€Ot(f'm)|

where €7 = (C"‘)l_1 and ¥, = ((f,,)'”H)N | are given by

Co = [—e1.e1] +2 aconv{te;

m+1 f”_{f ifi €[N], j =1,
=2 LY _ . .
’ w, ' gy ifi €[N], j > 1
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Proof. Let (X;1)72, and (Z;;)$° =1 be independent collections of i.i.d. random vectors

such that X;; has density f and Z;; has density w, 1n

we let X,',m = [X,-lz,-l sz] Then

)(Bg.Fori =1,...,Nandm >n,

XimCy = [-Xi1, Xi1] +2 o[BS im

and, as m — oo, the latter converges a.s. in the Hausdorff metric to [—X;1, Xj1] +2 aBY
(see, e.g., [24, Corollary 1]). Foru € S"~1 we have as m — 00

N N
1 1
5 2T XKiCw) — 2 3 HTPN (=X, Xanl 42 aBY L u) (@),

i=1 i=1

and hence

p (ZOED‘ (Fm).u) = p (J\m N(f),u) (a.s.).

For m > n, we have C D Cf, so (5.9) implies that the latter convergence is dominated
by p (Zot,a (#2), u), which is independent of m. The inradius of C¥ is min(1, &/ /n).
Using Proposmon 5.10 with fixed N > n + 1,

/ Ep"(ZS ea (Fu). u)du < o0.
sn—1 p,Cn
By dominated convergence, we get
T n <O
B[ oD di = lim B[ 0@ F .
Proposition 5.12. Let f € #,, p € [-1,0), and « > 0. Then
|I|p|(f)| = 11m ]E|J|p\ (DI

Proof. Fix u € S"~!. Since f € £, the random variables (|(X;, u)|*> + ?|u|3)~ pl/2
have finite first moment. By the law of large numbers, as N — oo, we have

N
%Z(uxi,unz+a2||u||§)—‘f"/2e / ((xu)]> + 2 [ul3) PV f(x)dx  (as),
i=1 Ry

hence

p (lel N)u)— pn(l‘oa(f),u) (a.s.).

Since p(llp‘ n(f),u) < 1/a for each u, we can use dominated convergence to get

wp /S"— Y (J|p\ () uwdu — w,E /Sn_l p"([l‘;l(f),u)du = |[‘¢;|(f)|. -
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6. Volume formulas

As mentioned, our work is inspired by a formula for the volume of sections of BII,v ,
p € (0,2), due to Nayar and Tkocz [77]. We will recall the basic ingredients and then
derive a formula for the volume of the random sets Zﬁf (). For p < 0, we will present
an alternative path and complementary volume formulas.

6.1. Volume via Gaussian mixtures for p > 0

Recall that for 0 < o < 1, a positive random variable w is called normalized positive
a-stable if
Ee ™ = ¢ (1 > 0).

We will denote the density of such a random variable by g, ; for background on stable ran-
dom variables, see [93]. The following Nayar—Tkocz volume formula was proved in [77],
where it is stated explicitly for p = 1 and explained how the same method applies to
p €(0,2).

Proposition 6.1. Let 0 < p < 2 and let X be an n x N matrix with columns x1,...,xXnN
spanning R". Let W = (wy, ..., wn) be a random vector with i.i.d. entries w; having
common density proportional to s +— s_l/zgp/z(s). Then

N T
|BY N Im(XT))|

N ~1/2
R OLE =aN,n,pn"/2EW./w1---wN(det(Zw,-x,-xiT)) , (6.1

i=1

where e .
ANn.p = ”_N/2<2F<1 + _)) F<1 + 2) '
p p

The proof of the formula relies on two ingredients. The first is that the volume of
a star-body K in R” with radial function p(K, -) is given by

K| = cup / exp(—p~P (K. x))dx. 6.2)
]Rn

where ¢, = I'(1 + n/p)~!. The second ingredient is the following fact from [25,
Lemma 23]: if £ is a standard Gaussian random variable, independent of a positive ran-
dom variable w with density proportional to ¢ > ¢~1/2 8p/2(t), then &/ V2w has density
[2I(1 + 1/p)]"'e " and

eT” = deEIw«/Ee_w"2 (x € R), (6.3)

where d, = 2I'(1 + 1/p)/ /7 (as can be seen by integrating (6.3) on R).
We will adapt the Nayar-Tkocz argument to derive a volume formula for ,‘Zlgse(ff7 )
for p € (0,2), using the pre-image interpretation in (5.6).
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Proposition 6.2. Let € = (Cy,...,Cn), ¥ and X be as in Lemma 5.6. Let 0 < p <2 and
let W = (w1, ..., wy) be a random vector with i.i.d. entries w; having a common density
proportional to s +— s_l/zgp/z(s). Set €y, = (VwiCr)°, ..., (JwNCN)®). Then
1Z8 e (F)| = ann,pcy AN PEw w1 - wn (X BY (€5))°).
Proof. By Lemma 5.6,
Z0 e (F) = NYPX T [B) (€)]. (6.4)

Applying (5.5) with €y = (wiC1.. ... JwyCn), we have (BL (€5,))° = BL (Ew).
Thus by Lemma 5.2,

(XBY(ep))° = X[BY (ew)). (6.5)

As in the proof of Lemma 5.6,

N
PP (XTTBY (©)].u) = p7P(B) (€). XTu) = > hP(Ci. X[ ).
i=1

while

N
p (X TT[BY (Cw)lu) = p2(BY (Cw). X Tu) = > h*(JwiCi. X[ u).
i=1

Using the volume representation (6.2) and change of density (6.3) with the latter radial
functions, we have

N
c,Zi,IX—T[ﬁj,V(‘G)H = /l‘{” 1_[ exp(—hp(ci,XlTu))du

i=1

N
= de /Rn Ew 1_[ \/w_ieXP(—wihz(Ci,XlTu))du

i=1

N
- d,;V/ Ewme){p(—zhz(«/w_i Ci,Xz-Tu))du
RVL

i=1
= ey 5d N Ew i wy | X (B (ew)]l.

Thus the proposition follows from (6.4), (6.5) and the identity an,,,p = ca, pdlfv . [

Remark 6.3. To see that the latter (pointwise) proof also implies (6.1), we take C; =
[—ei. ¢;] and write Xy = [Jw1X1. ..., JwyXn] so that Xy BY = XBY(€y)).
By (5.3),

N —-1/2
|(Xw BY)°| :wn(det(Zw,-X,-XiT)) .

i=1
When p = 1 in (6.1), w; is the reciprocal of an exponential random variable [77] and
we have maintained this convention here, though the exact normalization is immaterial in
what follows.
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6.2. Volume via Gaussian measure for p = 0

The set Zfi.e (¥) can be treated as a limiting case of Z;?,t’ () when p — 0 but it will
be handy to derive a different volume formula using the pre-image representation (5.7)
directly. This approach will also be helpful for p < 0. The formula involves standard
Gaussian measure y, and negative moments of the Gaussian random vectors b, ; defined
in (3.6).

Proposition 6.4. Let € =(Cy,...,Cy), ¥ and X be as in Lemma 5.6. Fort =(ty,...,tN)
in ]Rﬂ\r’ and s > 0, set €3, = ((IN/SC1)° (tN/SCN)°). Then

BIZG ()] = o lim ;) [ By (X8 €5t (6.6)
+
Proof. We will first show that for u € R”\{0},
p*(Ze(F).u) = /R Jue (X BY (€;5,))°)dt. (6.7)
+

Note that

P (Z3e(F).u) = l_[h SIN(Cy, X[u) = / l—[ue{h SIN(Cy, X > 1;)]dt.

+ll

Foreachi = 1,..., N, we have (up to a null set)
NG XT) > 6y = X Gy < 1 = VX6
By Lemma 5.5,

N
N XiC = (X8 (€3,)"

i=1

Therefore,

N
0 (Z e(F)u) = /]1;” |:u € ﬂ{h_s/N(Ci,XiT)’) > ti}i|dt

+ i=1

— [ e xs e yla.
RY ’

+

Let & be a standard Gaussian vector in R” and s € (0, n). By (6.7), we have
E¢p’(Zge(F).€) = / Ya((X By (€5,))°)dt. (6.8)

Assume first that

E|Z§e(F)| = 0. E /Sn_l P (ZS e (F). u)du < oo.
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Then p(Z .e(f ).-) € L,(S""!,0) a.s. Arguing as in the proof of Lemma 3.4, as s — n~,

/A;nil pS(Zg’.e(?),u)du — /L;nil p"(Zfi.e(?),u)du (a.s.), (6.9)

and the convergence is dominated by 1 + ;! |Zo<>,€ (F)] (cf. (3.7)). Thus, by (3.5),

E|Z$ ()| = o,Ex lim /S_ P (Z e (F).u)du

= wp lim_]EX[ p (Z €(f') u)du
sn—1

s—>n

= wp lim b, ExEep’ (z$ e(F).6).

Applying (6.8) gives the proposition when ]E|Z e(F )| is finite. If IE|Z (¥ )| is infi-
nite, we can replace S”~! in (6.9) by its subset {,o(Z<>€ (#),-) = 1}, in which case the
convergence is monotone and both sides of (6.6) are divergent. ]

6.3. Volume via Gaussian measure for p < 0
We will start with a volume formula for the non-random bodies Z;?C f).

Proposition 6.5. Let f € P, and C € X", wherem > 1. Let p € (—1,0) and set n(p) =
n/|p| € N. Let X be ann x n( p)m random matrix with independent columns distributed
according to f. For L € N, let py = p(1 —1/({n)) € (=1,0). Forty,... typ) > 0 and
LeN, lercy, = ((1;/"C). .. (1)/1C)°). Then

128 (] = on Jim 7L, / Exyn (X 817 (€7 ,))°)dr.

( )

Proof. Fixk € N. Let Xq,..., X§ be independent n x m random matrices with indepen-
dent columns drawn from f. We will first show that for u € R”\{0},

PMPUZS (f)u) = // Ex[u € (X Bf (€ ) ldt. (6.10)
RY

Note that

k
PPNZE(f)u) = Bx, hTP1(C, XTw)F = Ex, - Ex, [ [17171(C, XTu)
i=1

and
Hh Plc, x[u) = / H[u e {(h7P\(C, X > 1;}]dr.
i=1 + i=1

Foreachi = 1,...,k, we have (up to a null set)

{h_‘Pl(C,XlT.) > tl} = {h(XlC’ .) < ti_l/‘pl} — (Zil/lplxiC)o.
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By Lemma 5.5,

k
N@7'x:0)° = (x Bt (€7 ).
i=1

Therefore,

k
Ex, - Ex, [[7177(C. X[u) = /Rk Ex[u € (XB5(€,))°ldr,
i=1 T

which implies (6.10). If £ is a standard Gaussian vector in R”, then

Eep?/(Z00 (f).6) = /Rk Exya (X BE(E ,))°)dt. 6.11)
+

Note that n(p) = n/|p| = (n — 1/£)/|pe|. It remains to apply Lemma 3.4 with K =
Z[?,C (f) and the increasing sequence K, = Z;Z’C (f) (cf. Lemma 4.1 (a)). With an eye
on (6.11) with py and n(p) in place of p and k, respectively, we conclude by

125 c (Dl = wn lim b Eep™PIPUZE (1), 8). .

6.4. Radial function representation for p < 0

The volume formulas for Zg,f (¥)and Z : ¢ (f) eachrely on a representation of the radial
function as a mixture of indicator functions of origin-symmetric convex bodies. In this
subsection, we develop an analogous representation for the radial function of the empirical
bodies ZZE () for p <0andn/|p| € N. A similar volume formula for ZI?,‘C (¥) holds
but the notation becomes lengthy, so we will derive only the radial function for later use.

To fix the notation, for k € N, we set [k]o ={0,1,...,k}. Fork=(kq1,....kn) € [k](l)v,
we define S(k) = k; +---+ ky and m(k) = {i € [N]: k; # 0}; we write |m (k)| for the
cardinality of m (k).

Proposition 6.6. Let € = (Cy,...,Cx), F and X be as in Lemma 5.6. Let p € (—1,0)
and k € N. Then for u € R*\{0},

k
k <& _ Nk [m®| oo °
PIPNZS o (F) o)y = NTF ) (k) [lew[u € (Xy B, (€, ) dt,
kelkly 7 T
Sk)=k

° ki o
where (£) = k1/(ky!- k), X = [Xiliemao and €2, , = (1“7 C))iemao-

Proof. By Lemma 5.6, we have Z:it, (F)=N 1/I’X_T[JG’II,v (©)]. Using the fact that k € N,
we have for any u € R”,

— k —k:
pk\pl(X T[B;V(‘G)],u) = Z (k) 1_[ h k’lp‘(Ci,XiTu).
kelk]) "7 iem®
SK)=k
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Fixk = (kq,...,kxn) with S(k) = k. Then

—k;i|pl T ki|pl T
[T » " xTu) = /‘mw [T weth™Pic. X[ > 13]ar.
iem(k) iem(k)

For each i € m(k), we have (up to a null set)

(RIPI(C XT) > 1) = (X Cr) < 780y = (/6D X, ¢,

By Lemma 5.5,
k; ° k o o
ﬂ (til/( ‘pDXiCi) = (Xk3|1m0|(€k,t,p)) :
iem(k)
Thus the proposition follows from
H hkilel(c; XTu) = /\ LES (Xkﬂllm(k)l(\eﬁ,t,p))o]dt' "
iem(k) )

Each of the proofs of Propositions 6.5 and 6.6 uses a tensorization argument that relies
on the condition n/| p| € N. It would be of great interest to find an approach that extends
to non-integer values.

7. Main proofs

Proof of Theorem 2.2. Suppose that X and X* are n x M random matrices with inde-
pendent columns drawn from ¥ = (f;j) € P and F* = ( fl}*) respectively, where M =
my + -+ + my. Suppose that each f;; is supported on a Euclidean ball RBJ. Denote the
expectation in X and X* by Ex and E y+, respectively.

For p > 1, we have by Remark 5.7 and Theorem 5.1,

E|Zge(F)] = Ex [N (X B (€)°] < Exe|N'/7 (X" 85 (€°))°|
=E|Z3 o (F").
For p € (0, 1), using Proposition 6.2, Fubini’s theorem and Theorem 5.1,
E|ZS e (F)] = annpcy s N PEwEx ur - wy |(X B (€5,))°]
< annpCuaN"PEwExs Jwr - wy| (X8 (€5))°]
= E|Z) o (F")].

For p = 0, we apply Proposition 6.4 and Theorem 5.1 to get

E|Z§e(F)] = wn lim by [ Exya (X BN (€2,))°)d1

<wn lim by | Exeyn(X*8Y(€7,)°)dt
R

s—n— S
+

= E|Z§ ().
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When the C;’s are identical, we have by (5.12) of Proposition 5.10,
Zpc ()l = Jim E|Z7e (Fv)l.

which proves (2.7) for f compactly supported. For a general f € #,, we define %) =
f- Xkpy and p®) = )/ / ¢® . By Lemma 4.1 (d) with Fatou’s lemma combined with
the volume formula (3.1), we have by the compactly supported case,

1ZS (N < hmmf|z<>c<¢<">)| < hmmf|z<>c (@) =1ZSc(f):

here we have used that each set Z © ((¢(k)) ) is a Euclidean ball and (3.3) ensures that
(@®)* — f*||; — 0, which together with monotonicity in k, gives the final equality.
Lastly, we turn to the case when ¥ = ( f;;) consists of functions that are not supported

on a common compact set. In the notation of Lemma 4.1 (d), we set go( ) = = fij Xk B

and qb(k) (k) /[ <pl(Jk), and set 7 = (¢(k)) Then

E|ZS (7]
N

1 —n/p _

i=1 i,j

(k)

Using [ ¢lgjl;) — [ fij = 1 and monotone convergence for ¢;;”,

E|ZS ()| = Jim IEJ|Z<>€($k)| < hm ]E|z<>€(37,f)| = E|ZJ (5. "

Proof of Theorem 2.1. Taking C = C; =[—1,1] and ¥ = (f) gives Z;?,N(f) = 238(3‘7)
and Z OC (=2 1? (f), hence Theorem 2.1 follows from Theorem 2.2. |

Proof of Theorem 2.3. Let X and X* be n x n(p)m random matrices with i.i.d. columns
drawn from f and f*, respectively. By Proposition 6.5 and Theorem 5.1,

28 ()] = o lim bl /  Exm(X B, )
+

+

=1Z3c ().
Next, we prove (2.8). Fix origin-symmetric convex bodies Cy, . ..,Cy withdim(C;) =
m; >n+1.Set M = my + --- + my. Suppose that X and X* are n x M random
matrices with independent columns drawn from ¥ = (f;;) and F* = (/¥ ), respectively.

Fix k € N and p € [-1,0) with k|p| < n.
Assume first that ( f;;) are supported on a Euclidean ball RBJ. By Proposition 5.10,

E|ZSe (%) = wn]EX/S . P (Z5e(F), u)du < oc. (7.1)
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Applying Proposition 6.6 for a standard Gaussian random vector & in R”, we have

k
EepPI(Z8 o (7) 6) = 3 (k
kelkl) T
Sk)=k

)/Im(k)| y”((XKi'}llm(K)l('eg,t))o)dl-
R+ =

Fixk = (k1,...,kn) € [k]g’ with S(k) =k and #; € (0, 00) fori € m(k). By Theorem 5.1,
Ex, v (X 8" (€2,)°) = Expya(X{ 8" (€2,))).
Consequently,
ExEeoMP(ZS o (F), €) < ExoBeo"P1(Z9 0 (F), 8). (7.2)

As in the proof of Proposition 6.5, when n/|p| € N, we choose p; € Q N (p,0) such that
n(p) =n/|p| = (n—1/£)/|p¢| for £ € N. Foru € S"~!, we have

p(Z;} e(F)u) — P(zﬁg(}v),u) (a.s.).

14

As in the proof of Lemma 3.4, using (3.7) with K, = Zl?e e(F), we have

/SH p"PIP(ZE (). u)du — /S L PESe(@)wdu (as)

and the convergence is dominated by 1 + w;,! |Zﬁ€ (#)|, which is integrable by (7.1).
Thus

E|ZSe(F)| = ouEx Jim p"PIPNZE o (F), u)du

oo Jgn—1

= w, lim Ex /S”_l p"TVUZS, o (F), u)du

{—o00

L—oo ’

where by, ,,_1/¢ is the constant in (3.6). The same identities apply for X #and F*. Thus,
applying (7.2) with k = n(p) and p = py, we get

E|Z0¢(F)] < E[Z (5.

Lastly, we can remove the assumption that the functions are compactly supported by
arguing as in the proof of Theorem 2.2. ]

Proof of Corollary 2.4. By Proposition 5.11 and Theorem 2.3,
EJf y (O = lim E|Z0co (Fn)| < lim E|ZSca (F)] = E|Jf v (f5)]. (7.3)
Using (7.3) with Proposition 5.12, we get
|I|(;,|(f)| = IJEHOOEMT);\,N(](N = NIEHOO]EMF;"N(](*N = |I|‘;|(f*)|- (7.4)

This completes the proof. u
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Proof of Corollary 2.5. We apply Proposition 4.2 and (7.4) for p = —1 to obtain

1) = lim [250) " ()] = lim |25a)" Ta(f)] = [I(f)]. u

a—0+ a—0t
Proof of Theorem 2.6. We have reduced Theorems 2.1-2.3 and Corollaries 2.4 and 2.5
to a suitable application of (5.1) in Theorem 5.1. If the convex bodies Cy, ..., Cy are
unconditional, we can instead apply (5.2) in Theorem 5.1. ]
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