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Abstract. We establish a family of isoperimetric inequalities for sets that interpolate between
intersection bodies and dual Lp-centroid bodies. This provides a bridge between the Busemann
intersection inequality and the Lutwak–Zhang inequality. The approach depends on new empirical
versions of these inequalities.
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1. Introduction

The focus of this paper is on connections between fundamental inequalities in Brunn–
Minkowski theory and dual Brunn–Minkowski theory. The former details the behavior
of the volume of Minkowski sums of convex bodies. The standard isoperimetric inequal-
ity is emblematic of deep principles within Alexandrov’s theory of mixed volumes [87].
A central line of research is on affine-invariant strengthenings of kindred isoperimetric
principles, especially around projections of convex sets; as a sample, see Lutwak’s sur-
vey [62], Schneider’s monograph [87], the fundamental papers [64, 68, 69], and [75] for
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a recent breakthrough. In dual Brunn–Minkowski theory, the emphasis is on star-shaped
sets and radial addition. Dual mixed volumes, put forth by Lutwak [57], parallel many
aspects of mixed volumes. They provide a rich framework for studying intersections of
star bodies with subspaces; for example, see [58, 59] for foundational results; the mono-
graphs by Koldobsky [51] and Gardner [27] for the resolution of the Busemann–Petty
problem and interplay with geometric tomography; the papers [7, 9, 41, 42] for striking
new developments. Establishing an important family of isoperimetric inequalities linking
the two theories has remained a principle challenge.

A common root for the inequalities we treat is the Busemann intersection inequal-
ity [15] for the volume of central slices of a compact set K ! Rn:

Z
Sn!1

jK \ u?jndu " !n

n!1

!n!1
n

jKjn!1; (1.1)

where du denotes integration with respect to the normalized Haar probability measure on
the sphere Sn!1, j#j is volume and !n is the volume of the Euclidean unit ball Bn

2
. The

result itself (with hindsight) is an invariant inequality for the volume of the intersection
body I.K/ of K, which is defined by its radial function via !.I.K/; u/ D jK \ u?j
(see Section 3.1 for notation and definitions). Intersection bodies were introduced by
Lutwak [59] in connection with the Busemann–Petty problem and play a crucial role
in dual Brunn–Minkowski theory [27, 51]. The proof of (1.1) used an essential ingre-
dient known as the Busemann random simplex inequality, which says that the expected
volume of certain random simplices in a convex body is minimal for ellipsoids. Petty
used the latter to establish a conjecture of Blaschke on the volume of centroid bod-
ies [83], which is now known as the Busemann–Petty centroid inequality. Geometrically,
given an origin-symmetric convex body K in Rn, the centroids of halves of K cut by
hyperplanes through the origin form the surface of its centroid body. Centroid bodies are
zonoids, i.e., Hausdorff limits of Minkowski sums of segments, and thus naturally belong
to Brunn–Minkowski theory. Zonoids play an important role in functional analysis and
related fields, e.g., [5, 10, 76, 88].

Lutwak raised the question of connecting the Busemann intersection inequality and
the Busemann–Petty centroid inequality in [62]. The latter is one of several fundamental
results that lead to strengthenings of the standard isoperimetric inequality; in particular, it
is equivalent to an inequality of Petty [84] on polar projection bodies, as shown in [62].
Projection bodies are also zonoids and play a central role in Brunn–Minkowski the-
ory [27].

A functional analytic perspective has shaped the development of both intersection
bodies and polar projection bodies. Early work in the isometric theory of Banach spaces,
going back to Lévy, introduced stable laws in connection with embeddings in Lp for
p 2 .0; 2". Positive definite distributions, stable laws and associated change of density
arguments play a central role [4,72,78,89]; see also the survey [43] and references therein.
Koldobsky developed a parallel theory, based on a Fourier-analytic approach, for embed-
ding in Lp , for p < 0. This led to fundamental characterizations of intersection bodies
and their higher-dimensional analogs [48, 50, 51]. With this view, intersection bodies are
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unit “balls” of finite-dimensional subspaces of L!1. At the other end, polar projection
bodies arise naturally as unit balls of subspaces of L1 [5]. In between L!1 and L1 there is
a continuum of spaces that are no longer Banach spaces. A result of Koldobsky shows that
the classes in between decrease as p varies from $1 to 1; in particular, every polar projec-
tion body is an intersection body [49,51]. A longstanding open problem of Kwapień [54],
in geometric form, asks if every intersection body is isomorphic to a polar projection
body; see work of Kalton and Koldobsky [44] for progress on this question.

A rich theory of isoperimetric inequalities has flourished around centroid bodies
and polar projection bodies. Two fundamental papers in this development are those of
Lutwak–Zhang [70] and Lutwak–Yang–Zhang [64]. For a star-shaped body K and 1 "
p " 1, the Lp-centroid body Zp.K/ is defined by its support function (see Section 3.1)
for unit vectors u by

hp.Zp.K/; u/ D 1

jKj

Z
K

jhx; uijp dx:

Equivalently, h.Zp.K/; #/ is the norm associated to the polar of Zp.K/, denoted here
by Zı

p
.K/. Lutwak and Zhang proved that for 1 " p " 1,

jZı
p

.K/j " jZı
p

.K"/j; (1.2)

where K" is the dilate of the unit ball centered at the origin of the same volume as K.
When p D 1, (1.2) is the Blaschke–Santaló inequality, which is equivalent to the affine
isoperimetric inequality [62]. When p D 1, (1.2) follows from the Busemann–Petty cen-
troid inequality. Lutwak, Yang and Zhang [64] later proved a stronger inequality for
Zp.K/ itself. These are central results within the framework of Lp-Brunn–Minkowski
theory, which is governed by a different elemental notion of summation, called Lp-addi-
tion [26, 61, 63]. This theory provides a basis for wide-ranging inequalities in geometry,
analysis and probability, e.g., [37, 38, 40, 65–67]. Campi and Gronchi developed an alter-
nate approach to isoperimetric inequalities for Lp-centroid bodies in [16,17]. In particular,
they further developed the notion and applications of shadow systems, as introduced by
Rogers and Shephard [86]. These systems generalize Steiner symmetrization and have
far-reaching extensions and applications; see, e.g., [18,19]. There is significant interest in
Lp-Brunn–Minkowski theory for the challenging setting of p < 1 [8]; see the survey [7],
and recent advances in [53, 74], and the references therein.

A common framework for polar projection bodies and intersection bodies has been
pursued from several perspectives. Drawing on [70], the notion of the dual Lp-centroid
body was extended by Gardner and Giannopoulos in [28] to p 2 .$1; 1/ via

!!p.Z}
p

.K/; u/ D 1

jKj

Z
K

jhx; uijpdx:

The bodies Z}
p

.K/ interpolate between intersection bodies and polar Lp-centroid bodies
using

!.I.K/; u/ D jK \ u?j D lim
p!!1C

p C 1

2

Z
K

jhx; uijpdxI
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see [28, 32, 34, 51]. For p < 1, Z}
p

.K/ need not be convex, which we emphasize here
by the use of the #} notation. Busemann–Petty type volume comparison problems for
Z}

p
.K/, motivated by earlier work of Grinberg and Zhang [32] and Lutwak [60], were

treated by Yaskin and Yaskina in [92]. For p < 0, these bodies have also been termed Lp-
intersection bodies and characterizations of such operators as radial valuations were estab-
lished by Haberl and Ludwig [36]; see also [35] for p > $1. Properties of Lp-intersection
bodies were further developed by Haberl in [34]. When K is an origin-symmetric convex
body, a result of Berck [3] shows that Z}

p
.K/ is actually convex for $1 < p < 1, which

extends Busemann’s seminal result for intersection bodies [14].
We develop methods to bridge the gap between the Busemann intersection inequal-

ity (1.1) and the Lutwak–Zhang theorem (1.2). Each of these can be proved using Steiner
symmetrization, but in very different ways. The former applies to the star bodies I.K/

and uses integral geometric identities (of Blaschke–Petkantschin type) that are particular
to slices of K. The latter relies on convexity of the polar centroid bodies Zı

p
.K/ for p % 1.

We develop a new approach that applies to star bodies in between these two classes, that
sees (1.1) and (1.2) from the same viewpoint. We will show that (1.1) is one of a large fam-
ily of inequalities for unit balls of finite-dimensional subspaces of Lp . We merge several
techniques that have been used for p D ˙1. These include symmetrization, embedding via
random linear operators, and a classical change of density technique used in Koldobsky’s
Fourier-analytic treatment of intersection bodies.

We follow a probabilistic approach in which Lp-centroid bodies are attached to proba-
bility densities rather than sets. This view was put forth by the second-named author [79]
in the study of high-dimensional measures and their concentration properties; see also
[46, 55]. Fundamental inequalities of Lutwak, Yang and Zhang, in [64], were extended
to probability measures by the second- and third-named authors in [80, 81]. An empirical
approach to dual Lp-centroid bodies, for p % 1, was developed in further joint work with
Cordero-Erausquin and Fradelizi [21], motivated by [18]. To fix the notation, we set

Pn D
°
f W Rn ! Œ0; 1/ W

Z
Rn

f .x/dx D 1; kf k1 < 1
±
;

where kf k1 denotes the essential supremum. For f 2 Pn, the empirical Lp-centroid
body Zp;N .f / is defined by its support function via

hp.Zp;N .f /; u/ D 1

N

NX
iD1

jhXi ; uijp; (1.3)

where X1; : : : ; XN are independent random vectors with density f . In [21], a stronger
stochastic version of (1.2) was established for radial measures # with decreasing densities,

E#.Zı
p;N

.f // " E#.Zı
p;N

.f "//; (1.4)

where f " is the symmetric decreasing rearrangement of f (see Section 3). By the law
of large numbers, (1.4) implies the Lutwak–Zhang inequalities (1.2) when N ! 1 and
f D $K=jKj.
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The empirical inequality (1.4) follows from a general theorem about random opera-
tors acting in normed spaces [21]. The random operator viewpoint is from the asymp-
totic theory of normed spaces. In seminal work [29], Gluskin used random operators to
construct counter-examples to a longstanding question on the maximal Banach–Mazur
distance between finite-dimensional spaces. The expository article of Mankiewicz and
Tomczak-Jaegermann [71] details its far-reaching extensions in Banach space theory.
This viewpoint was also fruitful in developing stochastic versions of a number of isoperi-
metric inequalities [81, 82]. However, inherent in the method was a restriction to con-
vex sets. The main new feature we develop here is its applicability to star-shaped sets.
We will show how this change provides a bridge between the aforementioned inequalities
in Brunn–Minkowski theory and dual Brunn–Minkowski theory.

2. Main results

Our first result establishes a sharp isoperimetric inequality that extends the Lutwak–Zhang
inequality (1.2) to the case p 2 .0; 1/. For f 2 Pn and p 2 .0; 1/, define the dual Lp-
centroid body Z}

p
.f / via its radial function,

!!p.Z}
p

.f /; u/ D
Z

Rn

jhx; uijpf .x/dx:

To define the empirical version Z}
p;N

.f /, we let N > n and consider independent random
vectors X1; : : : ; XN according to f as above, and set

!!p.Z}
p;N

.f /; u/ D 1

N

NX
iD1

jhXi ; uijp: (2.1)

As above, we also associate such bodies to the symmetric decreasing rearrangement f ".

Theorem 2.1. Let f 2 Pn and let 0 < p < 1. Then

jZ}
p

.f /j " jZ}
p

.f "/j: (2.2)

Moreover,
EjZ}

p;N
.f /j " EjZ}

p;N
.f "/j: (2.3)

Theorem 2.1 relies on first establishing the empirical version (2.3), while (2.2) is de-
rived as a consequence. This is a key difference from the empirical approach in [21,81,82]
in which (non-random) inequalities of Lutwak, Yang and Zhang [64, 68, 70] inspired the
development of their empirical versions (e.g., (1.2) motivated its stochastic form (1.4)).
Recently, Yaskin [91] proved (2.2) and extensions raised in [52] in the case when f D $K ,
where K is an origin-symmetric star-body sufficiently close to the Euclidean ball.

Our original inspiration is a recent volume formula for sections of finite-dimension-
al Lp-balls by Nayar and Tkocz [77] that builds on ideas involving Gaussian mixtures of
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random variables from [25]. Kindred probabilistic representations have been indispens-
able in the study of sections of convex bodies, e.g., [2,47,73]. In our case, such a formula
allows for a reduction from star-shaped sets to convex sets that interfaces well with the
empirical approach from [21,81,82]; see [1] for recent applications of related formulas in
stochastic geometry.

The methods we develop here go beyond centroid bodies to sets generated by families
of subspaces of Lp . For f 2 Pn, an origin-symmetric convex body C in Rm, m % 1, and
p 6D 0, we define Z}

p;C
.f / ! Rn by its radial function (see Section 3.1): for p 6D 0,

!!p.Z}
p;C

.f /; u/ D
Z

.Rn/m

hp.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xx; (2.4)

where d xx D dx1 # # # dxm, and for p D 0,

log !.Z}
0;C

.f /; u/ D $
Z

.Rn/m

log h.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xx:

As p decreases, the sets Z}
p;C

.f / increase with respect to inclusion and !.Z}
p;C

.f /; u/

is finite for almost every u 2 Sn!1 whenever p > $1 and f 2 Pn (see Lemma 4.1).
We also define empirical versions involving multiple bodies C and densities f. Specif-

ically, let C1; : : : ; CN be origin-symmetric convex bodies with mi D dim.Ci / % 1 for
i 2 ŒN " D &1; : : : ; N º, where N > n. Let .Xij /, i 2 ŒN ", j 2 Œmi ", be independent ran-
dom vectors with Xij distributed according to fij 2 Pn. Write C D .C1; : : : ; CN / and
F D ..fij /j /i . For p 6D 0, we define a star-shaped set Z}

p;C .F / ! Rn by

!!p.Z}
p;C .F /; u/ D 1

N

NX
iD1

hp.Ci ; .hXij ; ui/mi

j D1
/I (2.5)

for p D 0, we define Z}
0;C .F / ! Rn by its radial function

!!N .Z}
0;C .F /; u/ D

NY
iD1

h.Ci ; .hXij ; ui/mi

j D1
/: (2.6)

With these definitions, we note the following:

(i) For p % 1, the convexity of the p-norm ensures that (2.4) and (2.5) define radial
functions of origin-symmetric convex sets. Thus we may naturally define

Zp;C .f / D .Z}
p;C

.f //ı and Zp;C .F / D .Z}
p;C .F //ı:

In this way, #} coincides with usual polarity whenever Z}
p;C

.f / and Z}
p;C

.f / are
compact, convex and have non-empty interior.

(ii) For p > 0 and C D Œ$1;1", we have Z}
p

.f /D Z}
p;Œ!1;1!

.f /; similarly, if F D .f /N

iD1

and C D .Œ$1; 1"/N

iD1
, then Z}

p;N
.f / D Z}

p;C .F /. The latter identities should be
taken as definitions in the case p D 0.
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For p % 0, we have the following generalization of Theorem 2.1, going from F D .fij /

to the family of rearranged densities F # D .f "
ij

/.

Theorem 2.2. Let f 2 Pn and let p % 0. If C is an origin-symmetric convex body of
dimension m % 1, then

jZ}
p;C

.f /j " jZ}
p;C

.f "/j: (2.7)

Moreover, if F D .fij / ! Pn and C D .C1; : : : ; CN /, where each Ci is an origin-
symmetric convex body of dimension mi % 1, then

EjZ}
p;C .F /j " EjZ}

p;C .F #/j:

The theorem is new for all values of p. For p % 1, the proof uses tools that have already
been developed in [21]. The main novelty here is in techniques to deal with the star-shaped
sets Z}

p;C .F / in the range p 2 Œ0; 1/. In particular, we provide a separate treatment for
p D 0 including a new volume formula for Z}

0;C .F /. For p < 0, the expected volume of
the empirical bodies Z}

p;C .F / need not be finite when dim.Ci / < n (see Remark 5.8); here
the use of higher-dimensional convex bodies C1; : : : ; CN is essential. For certain values
of p, namely when p 2 Œ$1; 0/ and n=p is an integer, we establish the following theorem.

Theorem 2.3. Let f 2 Pn and let p 2 Œ$1;0/. Let C be an origin-symmetric convex body
with dim.C / % 1. If p > $1 and n=jpj 2 N, then

jZ}
p;C

.f /j " jZ}
p;C

.f "/j:

Furthermore, let F D .fij / ! Pn and C D .C1; : : : ; CN /, where each Ci is an origin-
symmetric convex body of dimension mi % n C 1. If p % $1 and n=jpj 2 N, then

EjZ}
p;C .F /j " EjZ}

p;C .F #/j: (2.8)

Empirical versions of isoperimetric inequalities from [21, 81, 82] have involved oper-
ations in Brunn–Minkowski theory; e.g., for p % 1, the sets Zp;N .f / in (1.3) are Lp-
sums of random line segments (see Section 3.1). Theorems 2.1–2.3 are the first to treat
empirical forms of inequalities for star-shaped sets in dual Brunn–Minkowski theory.
In particular, we develop randomized analogs of approximation results of Goodey and
Weil [30], and Kalton, Koldobsky, Yaskin and Yaskina [45], in which intersection bodies
and their Lp-analogs are limits of radial sums of ellipsoids. The use of higher-dimen-
sional bodies Ci in Theorem 2.3 is needed for this purpose and such bodies are crucial for
establishing the corresponding isoperimetric inequalities. In particular, we define a variant
of the Lp-intersection body as follows: for f 2 Pn, ˛ > 0 and p 2 Œ$1; 0/, we set

!jpj.I ˛

jpj.f /; u/ D
Z

Rn

.jhx; uij2 C ˛2kuk2

2
/!jpj=2f .x/dx:

For the empirical version, we consider N > n independent random vectors X1; : : : ; XN

from f 2 Pn and define I˛

jpj;N .f / via

!jpj.I˛

jpj;N .f /; u/ D 1

N

NX
iD1

.jhXi ; uij2 C ˛2kuk2

2
/!jpj=2:
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The star-shaped bodies I˛

jpj;N .f / are Lp-radial sums of ellipsoids (see Section 3.1).
In fact, the bodies I˛

jpj;N .f / are special (limiting) cases of Z}
p;C .F / for a suitable choice

of C and F , involving ellipsoids and uniform measures on balls.

Corollary 2.4. Let f 2 Pn, ˛ > 0, p 2 Œ$1; 0/ and n=jpj 2 N. Then

jI ˛

jpj.f /j " jI ˛

jpj.f
"/j:

Moreover,

EjI˛

jpj;N .f /j " EjI˛

jpj;N .f "/j: (2.9)

When p D $1, (2.9) is a stochastic form of the Busemann intersection inequality (1.1),
as it implies the latter when N ! 1 and ˛ ! 0. Indeed, if f 2 Pn, we write I.f / for
the intersection body of f , defined by its radial function via

!.I.f /; u/ D
Z

u?
f .x/dx;

and (2.9) implies the following functional version of (1.1).

Corollary 2.5. Let f be a continuous and compactly supported function in Pn. Then

jI.f /j " jI.f "/j:

Thus the Busemann intersection inequality (1.1) is one limiting case of a family of
extremal inequalities about Lp-radial sums in Theorem 2.3. For (non-random) functional
versions of the Busemann intersection inequality, see [22], and [39] for recent develop-
ments.

Lastly, we can further reduce inequalities to uniform measures on balls in each of the
above theorems whenever the convex bodies C and Ci are unconditional, i.e., invariant
under reflections in the coordinate hyperplanes.

Theorem 2.6. Let f 2 Pn. Suppose that p 2 Œ0; 1", or p 2 Œ$1; 0/ and n=jpj 2 N. Let C

be an unconditional convex body in Rm, m % 1. Set g D kf k1$rB
n
2

, where r > 0 satisfiesR
g D 1. Then for p > $1,

jZ}
p;C

.f /j " jZ}
p;C

.g/j;

while for p % $1 and ˛ > 0,

EjI˛

jpj;N .f /j " EjI˛

jpj;N .g/j:

Furthermore, assume that F D .fij / ! Pn and G D .gij /, where gij D kfij k1$rij B
n
2

with rij > 0 satisfying
R

gij D 1. Let C D .C1; : : : ; CN /, where each Ci is an uncondi-
tional convex body of dimension mi . If p % 0 and mi % 1, or p 2 Œ$1; 0/ and mi % n C 1,
then

EjZ}
p;C .F /j " EjZ}

p;C .G /j:



From intersection bodies to dual centroid bodies: A stochastic approach to isoperimetry 9

As with Theorem 2.3, the condition that n=jpj 2 N when p < 0 is a by-product of our
approach; we make no claim that it is a necessary condition and hope our work attracts
interest in resolving the non-integer values.

The paper is organized as follows: Section 3 introduces notation and basic tools; Sec-
tion 4 is devoted to the non-random bodies Z}

p;C
.f / and variants of Lp-intersection

bodies; Section 5 develops the randomized versions of these objects. New volume for-
mulas and representations for radial functions are developed in Section 6. The theorems
are proved in Section 7.

3. Preliminaries

3.1. Notation and definitions

For a compact set K ! Rn, we denote its convex hull by conv.K/. The set of all compact,
convex sets in Rn will be denoted by Kn. For K 2 Kn, its support function is defined by
h.K; u/ D supx2Khx; ui, u 2 Rn. The Hausdorff metric on Kn is defined by

ıH .K; L/ D sup
"2Sn!1

jh.K; %/ $ h.L; %/j;

where Sn!1 is the unit sphere. We call K 2 Kn a convex body if it has interior points.
We say that K 2 Kn is origin-symmetric if $x 2 K whenever x 2 K. The set of all
origin-symmetric convex bodies in Rn will be denoted by Kn

s
. Each K 2 Kn

s
gives rise

to a norm on Rn given by

kukK D inf&& > 0 W u 2 &Kº:

The polar body of K 2 Kn

s
is defined by Kı D &u 2 Rn W hK.u/ " 1º.

For measurable sets A ! Rn, we use jAj for the Lebesgue measure of A. By !n, we
mean the volume of the Euclidean ball in Rn with radius 1, i.e.,

!n D 'n=2

(.n=2 C 1/
:

We will call a set K in Rn star-shaped if 0 2 K and ˛x 2 K whenever x 2 K and
˛ 2 Œ0; 1". The radial function of a star-shaped set K is defined as !.K; u/ D sup&r % 0 W
ru 2 Kº for u 2 Sn!1. Throughout, we use the same symbol for the .$1/-homogeneous
extension of !.K; #/ defined for u 2 Rnn&0º by

!.K; u/ D kuk!1

2
!
!
K;

u

kuk2

"
:

Here we allow K to be unbounded and !.K; u/ may take the value C1. As our focus is
on volumetric inequalities, we are particularly interested in radial functions of star-shaped
sets K with !.K; #/ 2 Ln.Sn!1; )/; in this case, we write

k!.K; #/kn D
! Z

Sn!1

!n.K; u/du
"1=n

D !!1=n

n
jKj1=n; (3.1)
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which follows by expressing the volume in spherical coordinates (e.g., [87, p. 57]). Note
that we use du for d).u/, where ) is the normalized Haar probability measure on Sn!1.

We will call K a star-body if it is a compact, star-shaped set with the origin in its
interior and its radial function is continuous. When K 2 Kn

s
, we have for u 2 Rnn&0º,

!.K; u/ D kuk!1

K
and !.Kı; u/ D h!1.K; u/:

We recall a core notion of addition of convex bodies from Lp-Brunn–Minkowski the-
ory, e.g., [26, 61, 63]. For K; L 2 Kn containing the origin and p % 1, we will write
K Cp L for their Lp-sum, i.e.,

hp.K Cp L; u/ D hp.K; u/ C hp.L; u/ .u 2 Rn/: (3.2)

In dual Brunn–Minkowski theory (e.g., [70, 87]), for star-bodies K, L, and p 6D 0, their
Lp-radial sum K zCp L is defined by

!p.K zCp L; u/ D !p.K; u/ C !p.L; u/ .u 2 Sn!1/:

For a measurable set A in Rn with finite volume, we define its rearrangement A" to
be the (open) Euclidean ball centered at the origin satisfying jA"j D jAj. We will use the
following bracket notation for indicator functions:

Œu 2 A" D $A.u/:

For a non-negative integrable function f on Rn, its layer-cake representation is given by

f .x/ D
Z 1

0

$#f >tº.x/dt D
Z 1

0

Œx 2 &f > tº"dt:

The symmetric decreasing rearrangement of a non-negative integrable function f on Rn

is defined using rearrangement of its level sets &x 2 Rn W f .x/ > tº D &f > tº, t > 0, via

f ".x/ D
Z 1

0

$#f >tº".x/dt D
Z 1

0

Œx 2 &f > tº""dt:

For a general reference on rearrangements, we refer the reader to [56]. We will use the
fact that f and f " are equimeasurable; in particular, f " preserves all Lp-norms of f .
Note also that if f " g, then f " " g". Moreover, rearrangements satisfy the following
contractive property (see [56, Theorem 3.5]): for 1 " p " 1 and for f; g 2 Lp ,

kf " $ g"kp " kf $ gkp: (3.3)

For f 2 Pn, the marginal density of f on a subspace E of dimension k is defined as

'E .f /.x/ D
Z

E?Cx

f .y/dy; (3.4)

where E? denotes the orthogonal complement of E. Note that when f 2 Pn and has
compact support, then 'E .f / is also bounded and has compact support.
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3.2. Probabilistic tools

We will make repeated use of the following fact about uniformly integrable collections of
random variables (e.g., [90, p. 189]).

Proposition 3.1. Let *; *1; *2; : : : be non-negative random variables on a probability
space .+; M; P / such that *k ! * as k ! 1 almost surely. If &*kº is uniformly inte-
grable, then

lim
k!1

E*k D E* < 1:

Remark 3.2. A sufficient condition for uniform integrability of a family of random vari-
ables &*kº is boundedness in L1Cı.+; M; P /, for some ı > 0 [90, p. 190].

We will also use Kolmogorov’s strong law of large numbers [90, p. 391].

Proposition 3.3. Let *1; *2; : : : be independent identically distributed random variables
on a probability space .+; M; P / such that Ej*1j < 1. Then, almost surely, as N ! 1,

1

N

NX
kD1

*k ! E*1:

We will frequently use a.s. as an abbreviation for almost sure convergence; similarly,
we use i.i.d. for a sequence of independent identically distributed random variables.

3.3. Volume in terms of Gaussian integrals

We will use the following elementary lemma which relates the volume of star-shaped sets
to certain Gaussian integrals.

Lemma 3.4. Let K be a star-shaped set with 0 2 int.K/ and !.K; #/ 2 Ln.Sn!1; )/. If ,

is a standard Gaussian vector in Rn, and s 2 .0; n/, then

E#!s.K; ,/ D bn;s

Z
Sn!1

!s.K; u/du; (3.5)

where
bn;s D E#k,k!s

2
D n(..n $ s/=2/

2s=2C1(.n=2 C 1/
: (3.6)

Furthermore, if !.K; #/ is additionally the pointwise limit of an increasing sequence of
radial functions &!.K`; #/º of star-shaped sets &K`º, then

jKj D !n lim
`!1

E#!n!1=`.K`; ,/

bn;n!1=`

:

Proof. Using polar coordinates, we have for 0 < s < n,

E#!s.K; ,/ D n!n

.2'/n=2

Z 1

0

rn!s!1e!r
2

=2dr

Z
Sn!1

!s.K; u/du

D n(..n $ s/=2/

2s=2C1(.n=2 C 1/

Z
Sn!1

!s.K; u/du:
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The conditions 0 2 int.K/ and !.K; #/ 2 Ln.Sn!1; )/ ensure that !.K; u/ is positive and
finite for all u outside of a null set on Sn!1. For such u, since !.K`; u/ ! !.K; u/,
we have

!n!1=`.K`; u/ D !n.K`; u/ exp
!
$ log !.K`; u/

`

"
! !n.K; u/:

Next, since &!.K`; u/º is increasing,

!n!1=`.K`; u/ " max.1; !n.K`; u// " max.1; !n.K; u// " 1 C !n.K; u/: (3.7)

By dominated convergence and (3.5), we get

!!1

n
jKj D

Z
Sn!1

!n.K; u/du D lim
`!1

Z
Sn!1

!n!1=`.K`; u/du

D lim
`!1

E#!n!1=`.K`; ,/

bn;n!1=`

:

4. Dual Lp;C -centroid bodies

Let f 2 Pn, p > $1 and let C be an origin-symmetric convex body in Rm, m % 1. For
ease of reference, we recall that for p 6D 0,

!!p.Z}
p;C

.f /; u/ D
Z

.Rn/m

hp.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xx

and for p D 0,

log !.Z}
0;C

.f /; u/ D $
Z

.Rn/m

log h.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xx:

As noted in the introduction, the latter bodies are not convex in general. We will use the
term dual Lp;C -centroid body as these bodies fit within dual Brunn–Minkowski theory.
This agrees with the convex case when p % 1, however, the term here is meant in a broader
sense than duality for convex bodies. When p % 1, Z}

p;C
.f / D Zı

p;C
.f /.

We start by noting a few elementary properties of the bodies Z}
p;C

.f /. It will be useful
to compare Z}

p;C
.f / and Z}

p;D
.f / for C 2 Km

s
, D 2 Km1

s , where m " m1; in such cases
we use the standard embedding of Rm into Rm1 .

Lemma 4.1. Let f 2 Pn, p; p1; p2 > $1 and C 2 Km

s
, m % 1.

(a) If p1 " p2, then
Z}

p2;C
.f / ! Z}

p1;C
.f /:

(b) If D 2 Km1
s for some m1 % m, and C ! D, then

Z}
p;C

.f / ' Z}
p;D

.f /:
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(c) !.Z}
p;C

.f /; #/ 2 Ljpj.Sn!1; )/.

(d) For k 2 N such that
R

kB
n
2

f .x/dx > 0, let '.k/ D f # $kB
n
2

and -.k/ D '.k/=
R

'.k/.
Then for a.e. u 2 Sn!1,

!.Z}
p;C

.f /; u/ D lim
k!1

!.Z}
p;C

.-.k//; u/:

Proof. Part (a) is a consequence of Hölder’s inequality. For (b), the condition C ! D is
equivalent to h.C; #/ " h.D; #/, hence !.Z}

p;D
.f /;u/ " !.Z}

p;C
.f /;u/ for each u 2 Sn!1.

By using (a), it is sufficient to treat (c) for p 2 .$1; 0/. Since C 2 Km

s
, we can assume

there exists r0 > 0 such that r0Œ$e1; e1" ! C , hence

!.Z}
p;C

.f /; u/ " r!1

0
!.Z}

p;Œ!1;1!
.f /; u/

for u 2 Sn!1. For p 2 .$1; 0/, we have for each u 2 Sn!1,

kxk!jpj
2

D ˇn;p

Z
Sn!1

jhx; uij!jpjdu;

where ˇn;p D bn;jpj=b1;jpj (cf. (3.6)). Since x 7! kxk!jpj
2

is locally integrable and f 2 Pn,
we have

Z
Rn

kxk!jpj
2

f .x/dx " kf k1

Z
B

n
2

kxk!jpj
2

dx C
Z

RnnB
n
2

f .x/dx < 1:

Thus part (c) follows from
Z

Sn!1

!jpj.Z}
p;Œ!1;1!

.f /; u/du D
Z

Sn!1

Z
Rn

jhx; uij!jpjf .x/dxdu

D ˇ!1

n;p

Z
Rn

kxk!jpj
2

f .x/dx:

To prove (d), we note that part (c) implies !.Z}
p;C

.f /; u/ < 1 for a.e. u 2 Sn!1.
Since '.k/ ! f , and f 2 Pn, we have

R
'.k/ !

R
f D 1. For p 6D 0, we have by

monotone convergence,
Z

.Rn/m

hp.C; .hxi ; ui/m

iD1
/

mY
iD1

'.k/.xi /d xx

!
Z

.Rn/m

hp.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xxI (4.1)

the latter holds even when the right-hand side of (4.1) is infinite (when p > 0, this entails
!.Z}

p;C
.f /; u/ D 0). Since -.k/ D '.k/=

R
'.k/ ! f , and .

R
'.k//m ! 1 as k ! 1,

convergence in (4.1) remains valid when '.k/ is replaced by -.k/. Thus part (d) holds for
p 6D 0. To treat p D 0, we set

P1.u/ D &.xi /
m

iD1
2 .Rn/m W h.C; .hxi ; ui/m

iD1
/ > 1º
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and P2.u/ D .Rn/mnP1.u/. For u outside of a null set on Sn!1, we can apply the same
argument to each factor in

!.Z}
0;C

.-.k//; u/ D
2Y

iD1

exp
#

$
Z

Pi .u/

log h.C; .hxi ; ui/m

iD1
/

mY
iD1

-.k/.xi /d xx
$

;

to conclude that (d) holds for p D 0 as well.

4.1. L˛

p
-intersection bodies

For f 2 Pn, we write I.f / for its intersection body, defined by its radial function via

!.I.f /; u/ D
Z

u?
f .x/dx;

where the integration is with respect to Lebesgue measure on u?; for background on
intersection bodies, see [27, 51, 59]. Motivated by approximation results for intersection
bodies involving radial sums of ellipsoids [30, 32, 45], we define a variant of I.f /: for
˛ > 0 and p 2 Œ$1; 0/, the L˛

p
-intersection body of f is given by

!jpj.I ˛

jpj.f /; u/ D
Z

Rn

.jhx; uij2 C ˛2kuk2

2
/!jpj=2f .x/dx:

As mentioned, when f is the indicator of a star-body and ˛ D 0, the latter bodies were
studied in [34, 36, 92]. When p D $1 and ˛ > 0, we write I ˛.f / D I ˛

1
.f /.

Proposition 4.2. Let f be a continuous compactly supported function in Pn. For ˛ > 0,
let s˛ D sinh!1.1=˛/. Then

jI.f /j D lim
˛!0

.2s˛/!njI ˛.f /j:

We will prove this using an approximate identity, i.e., a family of non-negative func-
tions .k˛/˛2.0;1/ on R satisfying the following conditions, for each ˛ 2 .0; 1/:

(i)
R

R k˛.t/dt D 1;
(ii) for any ı > 0, lim˛!0

R
jt j>ı

k˛.t/dt D 0.

In this case, if g is continuous and supported on a compact set K, then

k.k˛ ( g/ $ gkL1.K/ ! 0I

see, e.g., [31, p. 27].

Proof of Proposition 4.2. For ˛ > 0, let

k˛.t/ D .2s˛/!1.t2 C ˛2/!1=2$Œ!1;1!.t/:

Standard computations show that .k˛/˛ is an approximate identity. Fix u 2 Sn!1 and
recall the notation for the marginal of f on Œu" D span&uº (cf. (3.4)), and set

fu.t/ D 'Œu!.f /.t/:
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Then fu is compactly supported and

.2s˛/!1!.I ˛.f /; u/ D .2s˛/!1

Z
R

.t2 C ˛2/!1=2fu.t/dt

D
Z

jt j$1

k˛.t/fu.t/dt C .2s˛/!1

Z
jt j>1

.t2 C ˛2/!1=2fu.t/dt

D .k˛ ( fu/.0/ C .2s˛/!1

Z
jt j>1

.t2 C ˛2/!1=2fu.t/dt: (4.2)

We have k˛ ( fu.0/ ! fu.0/ D !.I.f /;u/. Since
R

R fu.t/dt D 1 and s˛ ! 1 as ˛ ! 0,
we have

lim
˛!0

.2s˛/!1

Z
jt j>1

.t2 C ˛2/!1=2fu.t/dt D 0:

It follows that
.2s˛/!n!n.I ˛.f /; u/ ! !n.I.f /; u/:

Using formula (4.2), we have that the latter convergence is dominated on .Sn!1; )/ by
.supukfuk1 C .2s1/!1/n, hence

jI.f /j D !n

Z
Sn!1

lim
˛!0

!n..2s˛/!1I ˛.f /; u/du D lim
˛!0

.2s˛/!njI ˛.f /j:

5. Empirical dual Lp;C -centroid bodies

An empirical approach to Lp-centroid bodies was initiated in [81] and developed further
in [21,82]. It relies on random linear operators acting on various sets in finite-dimensional
normed spaces. In this section, we recall the main theorem from [21]. We lay the ground-
work to re-interpret the random star-shaped bodies Z}

p;C .F / of our main theorems in
terms of random sections of p̀-balls. We also develop new notions of randomly gener-
ated intersection bodies.

5.1. Tools from the empirical approach

It will be useful to fix some notation for matrices acting as linear operators. For an n ) N

matrix X D Œx1 : : : xN ", we write XT for the transpose of X and we view X W RN ! Rn

and XTWRn ! RN as linear operators. In particular, for an origin-symmetric convex body
C ! RN ,

XC D &Xc W c 2 C º D
% NX

iD1

ci xi W c D .ci / 2 C

&
:

Principal examples include

C D BN

1
D conv&˙e1; : : : ; ˙eN º and C D BN

1 D Œ$1; 1"N

in which case

XBN

1
D conv&˙x1; : : : ; ˙xN º and XBN

1 D
NX

iD1

Œ$xi ; xi ":
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Volumetric inequalities for convex hulls of random points and random zonotopes [11,33]
motivated work in [81] to interpolate between these two extremes and led to an empirical
study of Lp-centroid bodies; see the survey [82] and the references therein.

All of the theorems in Section 2 will be derived from the following result about
polars of convex bodies from [21]. It concerns radial measures with decreasing densities
(“decreasing” is meant in a non-strict sense).

Theorem 5.1. Let X and X # be n ) N random matrices with independent columns
drawn from F D .fi /

N

iD1
! Pn and F # D .f "

i
/N

iD1
, respectively. Let # be a radial

measure with a decreasing density, i.e., d#.x/ D h.kxk2/dx with hW Œ0; 1/ ! Œ0; 1/

decreasing. Then for any origin-symmetric convex body C in RN ,

E#..XC /ı/ " E#..X #C /ı/: (5.1)

Assume additionally that Z is an n ) N random matrix with independent columns drawn
from gi D kfi k1$ri B

n
2

, where ri > 0 satisfies
R

gi D 1. Then for any unconditional
convex body C in RN ,

E#..XC /ı/ " E#..ZC /ı/: (5.2)

The latter theorem relies on rearrangement inequalities of Rogers [85], Brascamp–
Lieb–Luttinger [13] and Christ [20]. It also relies on the Borell–Brascamp–Lieb inequal-
ities [6, 12]. It was motivated by the work of Campi and Gronchi on symmetrization of
polar convex bodies [18].

The following lemma is a useful re-interpretation of the bodies .XC /ı, stated in terms
of the transpose XT and the pre-image of C ı, i.e., X!TŒC ı" D &x 2 Rn W XTx 2 C ıº
(square brackets are used here to avoid multiple nested parentheses in subsequent expres-
sions).

Lemma 5.2. Let X be an n ) N matrix of full rank, viewed as a linear operator X W
RN ! Rn. Then for C 2 KN

s
,

.XC /ı D X!TŒC ı":

Proof. Observe that

.XC /ı D &x 2 Rn W hx; Xci " 1 for all c 2 C º
D &x 2 Rn W hXTx; ci " 1 for all c 2 C º
D &x 2 Rn W XTx 2 C ıº D X!TŒC ı":

Remark 5.3. The lemma will be applied for X of various dimensions. When N D n,
the full rank assumption entails that X and XT are both invertible. When N < n, .XC /ı

denotes polarity in Rn and .XC /ı may be unbounded. When N % n, XT is injective
and X!T is also the inverse of XT on Im.XT/ D ker.X/?, in which case

X!TŒC ı" D X!TŒC ı \ Im.XT/";

hence
j.XC /ıj D det.XXT/!1=2jC ı \ Im.XT/j: (5.3)
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5.2. Random slices of finite-dimensional p̀-balls

For p % 1, the centroid body Zp.f / can be viewed in terms of limits of images of finite-
dimensional `q-balls, where 1=p C 1=q D 1. To fix the notation, for p 6D 0, we denote
by BN

p
the p̀-ball in RN , i.e.,

BN

p
D

%
x 2 RN W

# NX
iD1

jhx; ei ijp
$1=p

" 1

&
;

where &e1; : : : ; eN º is the standard unit vector basis for RN . For p D 0, we set

BN

0
D

%
x 2 RN W

# NY
iD1

jhx; ei ij
$1=N

" 1

&
:

Note that BN

p
is a convex body when p 2 Œ1; 1/ and a star-body when p > 0. When

p " 0, BN

p
is unbounded but remains star-shaped.

Let X be an n ) N random matrix with independent column vectors X1; : : : ; XN

drawn from f 2 Pn. For 1 " p < 1, the empirical Lp-centroid body Zp;N .f / defined
above in (1.3) has the equivalent description

Zp;N .f / D N !1=pXBN

q
;

where 1=p C 1=q D 1. Indeed,

h.XBN

q
; u/ D h.BN

q
; XTu/ D

# NX
iD1

jhXi ; uijp
$1=p

:

Using Lemma 5.2 and 1=p C 1=q D 1, we have

Zı
p;N

.f / D N 1=pX!TŒBN

p
"; (5.4)

where, as above, X!TŒA" denotes the pre-image of A under XT. We will mimic iden-
tity (5.4) to realize the bodies Z}

p;N
.f / defined in (2.1) as sections of BN

p
for p 2 .0; 1/.

Lemma 5.4. Let X be an n ) N random matrix with independent columns distributed
according to f 2 Pn. Then for p 2 .0; 1/,

Z}
p;N

.f / D N 1=pX!TŒBN

p
":

Proof. Fix u 2 Sn!1. We have by (2.1),

!.Z}
p;N

.f /; u/ D
#

1

N

NX
iD1

jhXi ; uijp
$!1=p

D N 1=p!.BN

p
; XTu/:

On the other hand,

!.BN

p
; XT u/ D sup&r % 0 W rXTu 2 BN

p
º D sup&r % 0 W ru 2 X!TŒBN

p
"º

D !.X!TŒBN

p
"; u/:

The lemma now follows from N 1=p!.X!TŒBN

p
"; u/ D !.N 1=pX!TŒBN

p
"; u/.
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We can similarly view the bodies Z}
p;C .F / (cf. (2.5)) using random linear operators.

For C D .C1; : : : ; CN / with Ci 2 K
mi
s , we place them in orthogonal subspaces Rmi D

span&eij ºmi

j D1
, i D 1; : : : ; N . Then for p 6D 0, we define

BN

p
.C/ D

%
.x1; : : : ; xN / 2

NM
iD1

Rmi W
# NX

iD1

hp.Ci ; xi /

$1=p

" 1

&
I

when p D 1, we replace the sum by maxi h.Ci ; xi /. For p D 0, we set

BN

0
.C/ D

%
.x1; : : : ; xN / 2

NM
iD1

Rmi W
# NY

iD1

h.Ci ; xi /

$1=N

" 1

&
:

When the Ci ’s are all equal to Œ$1; 1", we have

BN

p
D BN

p
..Œ$e1; e1"; : : : ; Œ$eN ; eN "//:

As for BN

p
, the set BN

p
.C/ is a convex body, star-body or unbounded star-shaped set,

according to whether p % 1, p 2 .0; 1/ or p " 0, respectively. Note that we have de-
fined BN

p
.C/ using support functions h.Ci ; #/ rather than norms associated to the Ci ’s, as

some computations are more convenient with this convention. By standard duality argu-
ments, for 1 " p; q " 1 with 1=p C 1=q D 1, we have for C D .C1; : : : ; CN /,

.BN

p
.C//ı D BN

q
.Cı/; (5.5)

where we have set Cı D .C ı
1

; : : : ; C ı
N

/ (see [23, p. 97]). We will use the particular case
of p D 1 and q D 1, combined with Lemma 5.2 in the following form.

Lemma 5.5. Let C D .C1; : : : ; CN /, where Ci 2 K
mi
s , mi % 1, and Cı D .C ı

1
; : : : ;C ı

N
/.

Set M D m1 C # # # C mN . Let X D ŒX1 : : :XN " be an n ) M matrix with n ) mi blocks Xi

of full rank. Then
N\

iD1

.Xi Ci /
ı D .XBN

1
.Cı//ı:

Proof. By Lemma 5.2,

N\
iD1

.Xi Ci /
ı D

N\
iD1

X!T
i

ŒC ı
i

" D
N\

iD1

&u 2 Rn W XT
i
u 2 C ı

i
º;

while

.XBN

1
.Cı//ı D X!TŒBN

1.C/" D
®
u 2 Rn W max

i$N

h.Ci ; XT
i
u/ " 1

¯
:

Using the above notation, the empirical bodies Z}
p;C .F / defined in (2.5) and (2.6) can

be realized as sections of BN

p
.C/ as follows.
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Lemma 5.6. For i 2 ŒN ", let Ci 2 K
mi
s , mi % 1 and let M D m1 C # # # C mN . Let

X D ŒX1 # # # XN " be an n ) M random matrix with independent n ) mi blocks Xi D
ŒXi1 : : : Ximi

" having independent columns Xij distributed according to fij 2 Pn. Then
for p 6D 0,

Z}
p;C .F / D N 1=pX!TŒBN

p
.C/"; (5.6)

and for p D 0,
Z}

0;C .F / D X!TŒBN

0
.C/": (5.7)

Proof. For u 2 Sn!1,

XTu D .XT
1
u; : : : ; XT

N
u/ D ..hX1j ; ui/m1

j D1
; : : : ; .hXNj ; ui/mN

j D1
/:

For any set ! in RM , we have

X!TŒ! " D &u 2 Rn W XTu 2 !º:

For p 6D 0, we have

!.N 1=pX!TŒBN

p
.C/"; u/ D !.N 1=pBN

p
.C/; XTu/

D
#

1

N

NX
iD1

hp.Ci ; XT
i
u/

$!1=p

D !.Z}
p;C .F /; u/:

For p D 0, we have

!.X!TŒBN

0
.C/"; u/ D

NY
iD1

h.Ci ; XT
i
u/!1=N D !.Z}

0;C .F /; u/:

Remark 5.7. For p % 1, we have by Lemma 5.2 and (5.5)

Z}
p;C .F / D Zı

p;C .F / D N 1=pX!TŒBN

p
.C/" D N 1=p.XBN

q
.Cı//ı:

Remark 5.8. For p " 0, the bodies Z}
p;C .F / are pre-images of slices of unbounded sets

and hence need not be bounded. This is reflected in our notation as their radial functions
take the value C1. When mj D dim.Cj / < n, the matrix XT

j
has a non-trivial kernel and,

for p 6D 0,

!.X!TŒBN

p
.C/"; u/ D

# NX
iD1

h!jpj.Ci ; XT
i
u/

$1=jpj
% h!1.Cj ; XT

j
u/;

which is infinite for u 2 ker.XT
j

/ and arbitrarily large in any neighborhood of such u.
When each Ci has dimension mi % n, absolute continuity ensures that the n ) mi ma-
trix Xi has rank n a.s. This implies that h.C; XT

i
#/ > 0 a.s., hence each summand in the

radial function !.Z}
p;C .F /; #/ is necessarily finite a.s.



R. Adamczak, G. Paouris, P. Pivovarov, P. Simanjuntak 20

Let C D .C1; : : : ; CN / and D D .D1; : : : ; DN / be N -tuples of origin-symmetric
convex sets with dim.Ci / " dim.Di /. We will write

C ! D , Ci ! Di for all i D 1; : : : ; N:

Lemma 5.9. Let F D .fij / ! Pn and $1 " p; p1; p2 " 1. Let C D .C1; : : : ; CN / with
Ci 2 K

mi
s , mi % 1, for i 2 ŒN ".

(a) If p1 " p2, then
Z}

p2;C .F / ! Z}
p1;C .F /: (5.8)

(b) If D D .D1; : : : ; DN / with Di 2 K
m

0
i

s , m0
i

% mi , for i 2 ŒN ", and C ! D , then

Z}
p;C .F / ' Z}

p;D.F /: (5.9)

Proof. Part (a) is a consequence of Hölder’s inequality, which gives monotonicity of the
normalized means in the definition of !.Z}

p;C .F /; u/ (cf. (2.5) and (2.6)).
For part (b), Ci ! Di is equivalent to h.Ci ; #/ " h.Di ; #/ for each i , which im-

plies (5.9).

5.3. Convergence of volumes

The next proposition details integrability and sufficient conditions to obtain the volume
of Z}

p;C
.f / as a limit of the expected volumes of the random bodies Z}

p;C .F /.

Proposition 5.10. For i 2 N, let Ci 2 K
mi
s , mi % 1, and .fij / ! Pn, j 2 Œmi ". For

N 2 N, let CN D .C1; : : : ; CN / and FN D ..fij /
mi

j D1
/N

iD1
. Assume that

(a) there is an r0 > 0 such that r0B
mi
2

! Ci for each i ;

(b) fij are supported on a common compact set and supi;j kfij k1 < 1.

If p 2 Œ0; 1", or p 2 Œ$1; 0/ and mi % n C 1 for each i , then for any " 2 .0; 1/,

sup
N %nC1

sup
u2Sn!1

E!nC".Z}
p;CN

.FN /; u/ < 1; (5.10)

and hence
sup

N %nC1

EjZ}
p;CN

.FN /j < 1: (5.11)

Furthermore, if C1; C2; : : : are copies of a given convex body C of dimension m and fij

are identical and satisfy (5.10), then

jZ}
p;C

.f /j D lim
N !1

EjZ}
p;CN

.FN /j: (5.12)

Proof. Without loss of generality, we may assume that r0 D 1. By assumption (b), we can
fix a Gaussian density -˛ and a constant A > 0 such that for each i , j ,

1

A
fij .x/ " -˛.x/ D 1

.2'˛2/n=2
e!kxk2

2=2˛
2

.x 2 Rn/: (5.13)
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Fix " > 0 and u 2 Sn!1. Assume first that p 2 Œ0; 1". By Lemma 5.9, to prove (5.10)
we need only treat the case p D 0, mi D 1 for i D 1; : : : ; N , and CN D .Œ$ei ; ei "/

N

iD1
.

In the notation of Lemma 5.6, this means that FN D .fi1/N

iD1
and Xi D ŒXi1" are n ) 1

matrices. By Fubini’s theorem,

E!nC"
'
Z}

0;CN
.FN /; u

(
D

NY
iD1

EjhXi1; uij!.nC"/=N :

Set . D .n C "/=N . Let g1; : : : ; gN be i.i.d. standard Gaussian vectors in Rn. Fix i 2
&1; : : : ; N º. Then hgi ; ui is a standard Gaussian random variable. Assume first that N %
2.n C "/ so that . " 1=2. By Hölder’s inequality,

EXi1
jhXi1; uij!$ "

'
EjhXi1; uij!1=2

(2$
:

Using (5.13) and the notation for bn;s from (3.6), we have

A!1˛1=2EXi1
jhXi1; uij!1=2 " Egi

jhgi ; uij!1=2 D b1;1=2 < 1;

hence for N % 2.n C "/,

E!nC".Z}
0;CN

.FN /; u/ " .A˛!1=2b1;1=2/2$N D .A˛!1=2b1;1=2/2.nC"/: (5.14)

Assume now that n C 1 " N < 2.n C "/. Then . belongs to the interval J D .1=2;

.n C "/=.n C 1/" and b1;$ " b D sup%2J b1;% < 1. Using (5.13), we have

A!1˛$ EXi1
jhXi1; uij!$ " Egi

jhgi ; uij!$ D b1;$ " b:

Writing ˛ D min.˛; 1/ and using . < 1, we have for n C 1 " N < 2.n C "/,

E!nC"
'
Z}

0;CN
.FN /; u

(
" .A˛!$ b/N " max.1; .A˛!1b/2.nC"//: (5.15)

Bounds (5.14) and (5.15) are independent of u and N , so we obtain (5.10) for p 2 Œ0; 1".
Assume now that p 2 Œ$1; 0/. By Lemma 5.9, we can assume that p D $1, mi D

n C 1, for i D 1; : : : ; N and CN D .BnC1

2
/N

iD1
. By Jensen’s inequality,

!nC".Z}
!1;CN

.FN /; u/ " 1

N

NX
iD1

kXT
i
uk!.nC"/

2
:

For i 2 ŒN ", let Gi be i.i.d. n ) .n C 1/ random matrices with i.i.d. standard Gaussian
entries. By (5.13), for i 2 ŒN ", we have

A!.nC1/˛nC"EXi
kXT

i
uk!.nC"/

2
" EGi

kG T
i
uk!.nC"/

2
D bnC1;nC":

Thus (5.10) now follows from

EX !nC".Z}
!1;CN

.FN /; u/ " AnC1˛!.nC"/bnC1;nC"I

here we have used that mi D dim.Ci / D n C 1, which ensures finiteness of bnC1;nC".
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To justify (5.11), for general CN and FN , set ı D "=n so that n.1 C ı/ D n C ".
By Hölder’s inequality,

! Z
Sn!1

E!n.Z}
p;CN

.FN /; u/du
"1Cı

"
Z

Sn!1

.E!n.Z}
p;CN

.FN /; u//1Cıdu

"
Z

Sn!1

E!nC".Z}
p;CN

.FN /; u/du:

Therefore, (5.11) follows from

.EjZ}
p;CN

.FN /j/1Cı " !1Cı

n
sup

u2Sn!1

E!nC".Z}
p;CN

.FN /; u/: (5.16)

Towards proving (5.12), we fix u 2 Sn!1, identical bodies Ci D C of dimension m

and fij D f . For p 6D 0, the family of i.i.d. random variables &hp.C; XT
i
u/ºi2N has finite

first moment, i.e.,

Ehp.C; XT
i
u/ D

Z
.Rn/m

hp.C; .hxi ; ui/m

iD1
/

mY
iD1

f .xi /d xx < 1: (5.17)

Indeed, for p > 0, this is a direct consequence of f being bounded and compactly sup-
ported. For p < 0, the function Ehp.C; XT

i
#/ D !!p.Z}

p;C
.f /; #/ is integrable by part (c)

of Lemma 4.1; in particular, (5.17) holds for all u outside of a null set on Sn!1 (henceforth
disregarded). Thus by Proposition 3.3, for our fixed u 2 Sn!1,

1

N

NX
iD1

hp.C; XT
i
u/ ! Ehp.C; XT

i
u/ D !!p.Z}

p;C
.f /; u/ (a.s.)I

similarly, for p D 0, as f has compact support, the i.i.d. collection &log h.C; XT
i
u/ºi2N

satisfies

Ejlog h.C; XT
i
u/j D

Z
.Rn/m

jlog h.C; .hxi ; ui/m

iD1
/j

mY
iD1

f .xi /d xx < 1;

hence
1

N

NX
iD1

log h.C; XT
i
u/ ! E log h.C; XT

i
u/ (a.s.):

In all cases, we have

!n.Z}
p;CN

.FN /; u/!!n.Z}
p;C

.f /; u/ (a.s.):

Using (5.10), the collection &!n.Z}
p;CN

.FN /;u/ W N % n C 1º (for our fixed u) is bounded
in L1Cı , where, as above, ı D "=n. By Proposition 3.1 and Remark 3.2, as N ! 1,

E!n.Z}
p;CN

.FN /; u/ ! E!n.Z}
p;C

.f /; u/ D !n.Z}
p;C

.f /; u/: (5.18)
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Lastly, the collection &E!n.Z}
p;CN

.FN /; #/ W N % n C 1º is uniformly integrable on
.Sn!1; )/ (by the inequality preceding (5.16)). Using (5.18), Proposition 3.1 and Fubini’s
theorem, we get

jZ}
p;C

.f /j D !n

Z
Sn!1

!n.Z}
p;C

.f /; u/du D !n lim
N !1

Z
Sn!1

E!n.Z}
p;CN

.FN /; u/du

D lim
N !1

EjZ}
p;CN

.FN /j;

which establishes (5.12) and completes the proof of the proposition.

5.4. Empirical Lp-intersection bodies

In this section, we show how particular choices of C and F in the bodies Z}
p;C .F / lead

naturally to empirical versions of Lp-intersection bodies. As mentioned, unit balls of
normed spaces that embed in Lp , p 2 Œ$1; 1" can be obtained as limits of p-radial sums
of ellipsoids [30, 45]. Here we treat complementary volumetric random approximations.
Since our main interest is when p D $1, we develop this only for p 2 Œ$1; 0/; similar
considerations lead to analogous results for p > 0.

As in Section 2, for f 2 Pn, p 2 Œ$1; 0/ and ˛ > 0, the empirical L˛

p
-intersection

body I˛

jpj;N .f / is defined for i.i.d. random vectors X1; : : : ; XN with density f by

!jpj.I˛

jpj;N .f /; u/ D 1

N

NX
iD1

.jhXi ; uij2 C ˛2kuk2

2
/!jpj=2:

Forming the ellipsoids E˛.Xi / D .Œ$Xi ; Xi " C2 ˛Bn

2
/ı (cf. (3.2)), we have

!jpj.I˛

jpj;N .f /; u/ D 1

N

NX
iD1

!jpj.E˛.Xi /; u/:

To link I˛

jpj;N .f / to Z}
p;C .F /, we replace each E˛.Xi / by the approximate ellipsoid

.Œ$Xi ; Xi " C2 ˛ŒBn

2
"i;m/ı;

where ŒBn

2
"i;m D conv&˙Zi1; : : : ; ˙Zimº, and the Zij are i.i.d. random vectors with

density !
!1=n

n $B
n
2

. The bodies Z}
p;C .F / naturally accommodate these approximate ellip-

soids, as we specify in the next proposition.

Proposition 5.11. Let f be a compactly supported function in Pn. Let p 2 Œ$1; 0/ and
˛ > 0. Then for N % n C 1,

EjI˛

jpj;N .f /j D lim
m!1 EjZ}

p;C˛
m

.Fm/j;

where C˛

m
D .C ˛

m
/N

iD1
and Fm D ..fij /mC1

j D1
/N

iD1
are given by

C ˛

m
D Œ$e1; e1" C2 ˛ conv&˙ej ºmC1

j D2
; fij D

´
f if i 2 ŒN "; j D 1;

!!1

n
$B

n
2

if i 2 ŒN "; j > 1:



R. Adamczak, G. Paouris, P. Pivovarov, P. Simanjuntak 24

Proof. Let .Xi1/1
iD1

and .Zij /1
i;j D1

be independent collections of i.i.d. random vectors
such that Xi1 has density f and Zij has density !

!1=n

n $B
n
2

. For i D 1; : : : ; N and m % n,
we let Xi;m D ŒXi1Zi1 # # # Zim". Then

Xi;mC ˛

m
D Œ$Xi1; Xi1" C2 ˛ŒBn

2
"i;m

and, as m ! 1, the latter converges a.s. in the Hausdorff metric to Œ$Xi1; Xi1" C2 ˛Bn

2

(see, e.g., [24, Corollary 1]). For u 2 Sn!1, we have as m ! 1

1

N

NX
iD1

h!jpj.Xi C
˛

m
; u/ ! 1

N

NX
iD1

h!jpj.Œ$Xi1; Xi1" C2 ˛Bn

2
; u/ (a.s.);

and hence

!n.Z}
p;C˛

m
.Fm/; u/ ! !n.I˛

jpj;N .f /; u/ (a.s.):

For m % n, we have C ˛

m
' C ˛

n
, so (5.9) implies that the latter convergence is dominated

by !n.Z}
p;C˛

n
.Fn/; u/, which is independent of m. The inradius of C ˛

n
is min.1; ˛=

p
n/.

Using Proposition 5.10 with fixed N % n C 1,
Z

Sn!1

E!n.Z}
p;C˛

n
.Fn/; u/du < 1:

By dominated convergence, we get

E
Z

Sn!1

!n.I˛

jpj;N .f /; u/du D lim
m!1 E

Z
Sn!1

!n.Z}
p;C˛

m
.Fm/; u/du:

Proposition 5.12. Let f 2 Pn, p 2 Œ$1; 0/, and ˛ > 0. Then

jI ˛

jpj.f /j D lim
N !1

EjI˛

jpj;N .f /j:

Proof. Fix u 2 Sn!1. Since f 2 Pn, the random variables .jhXi ; uij2 C ˛2kuk2

2
/!jpj=2

have finite first moment. By the law of large numbers, as N ! 1, we have

1

N

NX
iD1

.jhXi ; uij2 C ˛2kuk2

2
/!jpj=2 !

Z
Rn

.jhx; uij2 C ˛2kuk2

2
/!jpj=2f .x/dx (a.s.);

hence

!n.I˛

jpj;N .f /; u/ ! !n.I ˛

jpj.f /; u/ (a.s.):

Since !.I ˛

jpj;N .f /; u/ " 1=˛ for each u, we can use dominated convergence to get

!nE
Z

Sn!1

!n.I˛

jpj;N .f /; u/du ! !nE
Z

Sn!1

!n.I ˛

jpj.f /; u/du D jI ˛

jpj.f /j:
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6. Volume formulas

As mentioned, our work is inspired by a formula for the volume of sections of BN

p
,

p 2 .0; 2/, due to Nayar and Tkocz [77]. We will recall the basic ingredients and then
derive a formula for the volume of the random sets Z}

p;C .F /. For p " 0, we will present
an alternative path and complementary volume formulas.

6.1. Volume via Gaussian mixtures for p > 0

Recall that for 0 < ˛ < 1, a positive random variable w is called normalized positive
˛-stable if

Ee!tw D e!t
˛

.t > 0/:

We will denote the density of such a random variable by g˛; for background on stable ran-
dom variables, see [93]. The following Nayar–Tkocz volume formula was proved in [77],
where it is stated explicitly for p D 1 and explained how the same method applies to
p 2 .0; 2/.

Proposition 6.1. Let 0 < p < 2 and let X be an n ) N matrix with columns x1; : : : ; xN

spanning Rn. Let W D .w1; : : : ; wN / be a random vector with i.i.d. entries wi having
common density proportional to s 7! s!1=2gp=2.s/. Then

jBN

p
\ Im.XT/j

det.XXT/1=2
D aN;n;p'n=2EW

p
w1 # # # wN

#
det

# NX
iD1

wi xi x
T
i

$$!1=2

; (6.1)

where
aN;n;p D '!N=2

!
2(

!
1 C 1

p

""N

(
!
1 C n

p

"!1

:

The proof of the formula relies on two ingredients. The first is that the volume of
a star-body K in Rn with radial function !.K; #/ is given by

jKj D cn;p

Z
Rn

exp.$!!p.K; x//dx; (6.2)

where cn;p D (.1 C n=p/!1. The second ingredient is the following fact from [25,
Lemma 23]: if , is a standard Gaussian random variable, independent of a positive ran-
dom variable w with density proportional to t 7! t!1=2gp=2.t/, then ,=

p
2w has density

Œ2(.1 C 1=p/"!1e!jt jp and

e!jxjp D dpEw

p
we!wx

2
.x 2 R/; (6.3)

where dp D 2(.1 C 1=p/=
p

' (as can be seen by integrating (6.3) on R).
We will adapt the Nayar–Tkocz argument to derive a volume formula for Z}

p;C .F /

for p 2 .0; 2/, using the pre-image interpretation in (5.6).
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Proposition 6.2. Let C D .C1; : : : ;CN /, F and X be as in Lemma 5.6. Let 0 < p < 2 and
let W D .w1; : : : ;wN / be a random vector with i.i.d. entries wi having a common density
proportional to s 7! s!1=2gp=2.s/. Set Cı

W
D ..

p
w1C1/ı; : : : ; .

p
wN CN /ı/. Then

jZ}
p;C .F /j D aN;n;pc!1

n;2
N n=pEW

p
w1 # # # wN j

'
XBN

2
.Cı

W
/
(ıj:

Proof. By Lemma 5.6,

Z}
p;C .F / D N 1=pX!TŒBN

p
.C/": (6.4)

Applying (5.5) with CW D .
p

w1C1; : : : ;
p

wN CN /, we have .BN

2
.Cı

W
//ı D BN

2
.CW /.

Thus by Lemma 5.2,

.XBN

2
.Cı

W
//ı D X!TŒBN

2
.CW /": (6.5)

As in the proof of Lemma 5.6,

!!p.X!TŒBN

p
.C/"; u/ D !!p.BN

p
.C/; XTu/ D

NX
iD1

hp.Ci ; XT
i
u/;

while

!!2.X!TŒBN

2
.CW /"; u/ D !!2.BN

2
.CW /; XTu/ D

NX
iD1

h2.
p

wi Ci ; XT
i
u/:

Using the volume representation (6.2) and change of density (6.3) with the latter radial
functions, we have

c!1

n;p
jX!TŒBN

p
.C/"j D

Z
Rn

NY
iD1

exp.$hp.Ci ; XT
i
u//du

D d N

p

Z
Rn

EW

NY
iD1

p
wi exp.$wi h

2.Ci ; XT
i
u//du

D d N

p

Z
Rn

EW

p
w1 # # # wN exp

#
$

NX
iD1

h2.
p

wi Ci ; XT
i
u/

$
du

D c!1

n;2
d N

p
EW

p
w1 # # # wN jX!TŒBN

2
.CW /"j:

Thus the proposition follows from (6.4), (6.5) and the identity aN;n;p D cn;pd N

p
.

Remark 6.3. To see that the latter (pointwise) proof also implies (6.1), we take Ci D
Œ$ei ; ei " and write XW D Œ

p
w1X1; : : : ;

p
w

N
XN " so that XW BN

2
D XBN

2
.Cı

W
/.

By (5.3),

j.XW BN

2
/ıj D !n

#
det

# NX
iD1

wi Xi X
T
i

$$!1=2

:

When p D 1 in (6.1), wi is the reciprocal of an exponential random variable [77] and
we have maintained this convention here, though the exact normalization is immaterial in
what follows.
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6.2. Volume via Gaussian measure for p D 0

The set Z}
0;C .F / can be treated as a limiting case of Z}

p;C .F / when p ! 0 but it will
be handy to derive a different volume formula using the pre-image representation (5.7)
directly. This approach will also be helpful for p < 0. The formula involves standard
Gaussian measure /n and negative moments of the Gaussian random vectors bn;s defined
in (3.6).

Proposition 6.4. Let C D.C1; : : : ;CN /, F and X be as in Lemma 5.6. For t D.t1; : : : ; tN /

in RN

C and s > 0, set Cı
s;t

D ..t
N=s

1
C1/ı; : : : ; .t

N=s

N
CN /ı/. Then

EjZ}
0;C .F /j D !n lim

s!n! b!1

n;s

Z
RN

C
EX /n..XBN

1
.Cı

s;t
//ı/dt: (6.6)

Proof. We will first show that for u 2 Rnn&0º,

!s.Z}
0;C .F /; u/ D

Z
RN

C
Œu 2 .XBN

1
.Cı

s;t
//ı"dt: (6.7)

Note that

!s.Z}
0;C .F /; u/ D

NY
iD1

h!s=N .Ci ; XT
i
u/ D

Z
RN

C

NY
iD1

Œu 2 &h!s=N .Ci ; XT
i
#/ > ti º"dt:

For each i D 1; : : : ; N , we have (up to a null set)

&h!s=N .Ci ; XT
i
#/ > ti º D &tN=s

i
h.Xi Ci ; #/ < 1º D .t

N=s

i
Xi Ci /

ı:

By Lemma 5.5,

N\
iD1

.t
N=s

i
Xi Ci /

ı D .XBN

1
.Cı

s;t
//ı:

Therefore,

!s.Z}
0;C .F /; u/ D

Z
RN

C

)
u 2

N\
iD1

&h!s=N .Ci ; XT
i
y/ > ti º

*
dt

D
Z

RN
C

Œu 2 .XBN

1
.Cı

s;t
//ı"dt:

Let , be a standard Gaussian vector in Rn and s 2 .0; n/. By (6.7), we have

E#!s.Z}
0;C .F /; ,/ D

Z
RN

C
/n..XBN

1
.Cı

s;t
//ı/dt: (6.8)

Assume first that

EjZ}
0;C .F /j D !nE

Z
Sn!1

!n.Z}
0;C .F /; u/du < 1:
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Then !.Z}
0;C .F /; #/ 2 Ln.Sn!1;)/ a.s. Arguing as in the proof of Lemma 3.4, as s ! n!,

Z
Sn!1

!s.Z}
0;C .F /; u/du !

Z
Sn!1

!n.Z}
0;C .F /; u/du (a.s.); (6.9)

and the convergence is dominated by 1 C !!1

n
jZ}

0;C .F /j (cf. (3.7)). Thus, by (3.5),

EjZ}
0;C .F /j D !nEX lim

s!n!

Z
Sn!1

!s.Z}
0;C .F /; u/du

D !n lim
s!n! EX

Z
Sn!1

!s.Z}
0;C .F /; u/du

D !n lim
s!n! b!1

n;s
EX E#!s.Z}

0;C .F /; ,/:

Applying (6.8) gives the proposition when EjZ}
0;C .F /j is finite. If EjZ}

0;C .F /j is infi-
nite, we can replace Sn!1 in (6.9) by its subset &!.Z}

0;C .F /; #/ % 1º, in which case the
convergence is monotone and both sides of (6.6) are divergent.

6.3. Volume via Gaussian measure for p < 0

We will start with a volume formula for the non-random bodies Z}
p;C

.f /.

Proposition 6.5. Let f 2 Pn and C 2 Km

s
, where m % 1. Let p 2 .$1;0/ and set n.p/ D

n=jpj 2 N. Let X be an n ) n.p/m random matrix with independent columns distributed
according to f . For ` 2 N, let p` D p.1 $ 1=.`n// 2 .$1; 0/. For t1; : : : ; tn.p/ > 0 and
` 2 N, let Cı

t;p`
D ..t

1=jp`j
1

C /ı; : : : ; .t
1=jp`j
n.p/

C /ı/. Then

jZ}
p;C

.f /j D !n lim
`!1

b!1

n;n!1=`

Z
Rn.p/

C
EX /n..XBn.p/

1
.Cı

t;p`
//ı/dt:

Proof. Fix k 2 N. Let X1; : : : ; Xk be independent n ) m random matrices with indepen-
dent columns drawn from f . We will first show that for u 2 Rnn&0º,

!kjpj.Z}
p;C

.f /; u/ D
Z

Rk
C

EX Œu 2 .XBk

1
.Cı

t;p
//ı"dt: (6.10)

Note that

!kjpj.Z}
p;C

.f /; u/ D .EX1
h!jpj.C; XT

1
u//k D EX1

# # # EXk

kY
iD1

h!jpj.C; XT
i
u/

and
kY

iD1

h!jpj.C; XT
i
u/ D

Z
Rk

C

kY
iD1

Œu 2 &h!jpj.C; XT
i
#/ > ti º"dt:

For each i D 1; : : : ; k, we have (up to a null set)

&h!jpj.C; XT
i
#/ > ti º D &h.Xi C; #/ < t

!1=jpj
i

º D .t
1=jpj
i

Xi C /ı:
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By Lemma 5.5,
k\

iD1

.t
1=jpj
i

Xi C /ı D .XBk

1
.Cı

t;p
//ı:

Therefore,

EX1
# # # EXk

kY
iD1

h!jpj.C; XT
i
u/ D

Z
Rk

C
EX Œu 2 .XBk

1
.Cı

t;p
//ı"dt;

which implies (6.10). If , is a standard Gaussian vector in Rn, then

E#!kjpj.Z}
p;C

.f /; ,/ D
Z

Rk
C

EX /n..XBk

1
.Cı

t;p
//ı/dt: (6.11)

Note that n.p/ D n=jpj D .n $ 1=`/=jp`j. It remains to apply Lemma 3.4 with K D
Z}

p;C
.f / and the increasing sequence K` D Z}

p`;C
.f / (cf. Lemma 4.1 (a)). With an eye

on (6.11) with p` and n.p/ in place of p and k, respectively, we conclude by

jZ}
p;C

.f /j D !n lim
`!1

b!1

n;n!1=`
E#!n.p/jp`j.Z}

p`;C
.f /; ,/:

6.4. Radial function representation for p < 0

The volume formulas for Z}
0;C .F / and Z}

p;C
.f / each rely on a representation of the radial

function as a mixture of indicator functions of origin-symmetric convex bodies. In this
subsection, we develop an analogous representation for the radial function of the empirical
bodies Z}

p;C .F / for p < 0 and n=jpj 2 N. A similar volume formula for Z}
p;C .F / holds

but the notation becomes lengthy, so we will derive only the radial function for later use.
To fix the notation, for k 2 N, we set Œk"0 D &0;1; : : : ;kº. For k D .k1; : : : ;kN / 2 Œk"N

0
,

we define S.k/ D k1 C # # # C kN and m.k/ D &i 2 ŒN " W ki ¤ 0º; we write jm.k/j for the
cardinality of m.k/.

Proposition 6.6. Let C D .C1; : : : ; CN /, F and X be as in Lemma 5.6. Let p 2 .$1; 0/

and k 2 N. Then for u 2 Rnn&0º,

!kjpj.Z}
p;C .F /; u/ D N !k

X
k2Œk!

N
0

S.k/Dk

#
k

k

$ Z
Rjm.k/j

C
Œu 2 .XkB

jm.k/j
1

.Cı
k;t;p

//ı"dt;

where
'

k

k
(

D k0=.k10 # # # kN 0/, Xk D ŒXki
"i2m.k/ and Cı

k;t;p
D ..t

1=.ki jpj/
i

Ci /
ı/i2m.k/.

Proof. By Lemma 5.6, we have Z}
p;C .F /D N 1=pX!TŒBN

p
.C/". Using the fact that k 2N,

we have for any u 2 Rn,

!kjpj.X!TŒBN

p
.C/"; u/ D

X
k2Œk!

N
0

S.k/Dk

#
k

k

$ Y
i2m.k/

h!ki jpj.Ci ; XT
i
u/:
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Fix k D .k1; : : : ; kN / with S.k/ D k. Then
Y

i2m.k/

h!ki jpj.Ci ; XT
i
u/ D

Z
Rjm.k/j

C

Y
i2m.k/

Œu 2 &h!ki jpj.Ci ; XT
i
#/ > ti º"dt:

For each i 2 m.k/, we have (up to a null set)

&h!ki jpj.Ci ; XT
i
#/ > ti º D &h.Xi Ci ; #/ < t

!1=.ki jpj/
i

º D .t
1=.ki jpj/
i

Xi Ci /
ı:

By Lemma 5.5,
\

i2m.k/

.t
1=.ki jpj/
i

Xi Ci /
ı D .XkB

jm.k/j
1

.Cı
k;t;p

//ı:

Thus the proposition follows from
Y

i2m.k/

h!ki jpj.Ci ; XT
i
u/ D

Z
Rjm.k/j

C
Œu 2 .XkB

jm.k/j
1

.Cı
k;t;p

//ı"dt:

Each of the proofs of Propositions 6.5 and 6.6 uses a tensorization argument that relies
on the condition n=jpj 2 N. It would be of great interest to find an approach that extends
to non-integer values.

7. Main proofs

Proof of Theorem 2.2. Suppose that X and X # are n ) M random matrices with inde-
pendent columns drawn from F D .fij / ! Pn and F # D .f "

ij
/ respectively, where M D

m1 C # # # C mN . Suppose that each fij is supported on a Euclidean ball RBn

2
. Denote the

expectation in X and X # by EX and EX# , respectively.
For p % 1, we have by Remark 5.7 and Theorem 5.1,

EjZ}
p;C .F /j D EX jN 1=p.XBN

q
.Cı//ıj " EX# jN 1=p.X #BN

q
.Cı//ıj

D EjZ}
p;C .F #/j:

For p 2 .0; 1/, using Proposition 6.2, Fubini’s theorem and Theorem 5.1,

EjZ}
p;C .F /j D aN;n;pc!1

n;2
N n=pEW EX

p
w1 # # # wN j.XBN

2
.Cı

W
//ıj

" aN;n;pc!1

n;2
N n=pEW EX#

p
w1 # # # wN j.X #BN

2
.Cı

W
//ıj

D EjZ}
p;C .F #/j:

For p D 0, we apply Proposition 6.4 and Theorem 5.1 to get

EjZ}
0;C .F /j D !n lim

s!n! b!1

n;s

Z
RN

C
EX /n..XBN

1
.Cı

s;t
//ı/dt

" !n lim
s!n! b!1

n;s

Z
RN

C
EX#/n..X #BN

1
.Cı

s;t
//ı/dt

D EjZ}
0;C .F #/j:
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When the Ci ’s are identical, we have by (5.12) of Proposition 5.10,

jZ}
p;C

.f /j D lim
N !1

EjZ}
p;CN

.FN /j;

which proves (2.7) for f compactly supported. For a general f 2 Pn, we define '.k/ D
f # $kB

n
2

and -.k/ D '.k/=
R

'.k/. By Lemma 4.1 (d) with Fatou’s lemma combined with
the volume formula (3.1), we have by the compactly supported case,

jZ}
p;C

.f /j " lim inf
k!1

jZ}
p;C

.-.k//j " lim inf
k!1

jZ}
p;C

..-.k//"/j D jZ}
p;C

.f "/jI

here we have used that each set Z}
p;C

..-.k//"/ is a Euclidean ball and (3.3) ensures that
k.'.k//" $ f "k1 ! 0, which together with monotonicity in k, gives the final equality.

Lastly, we turn to the case when F D .fij / consists of functions that are not supported
on a common compact set. In the notation of Lemma 4.1 (d), we set '

.k/

ij
D fij # $kB

n
2

and -
.k/

ij
D '

.k/

ij
=

R
'

.k/

ij
, and set Fk D .-

.k/

ij
/. Then

EjZ}
p;C

.Fk/j

D !n

Z
..Rn/m/N

Z
Sn!1

#
1

N

NX
iD1

hp.C; .hxij ; ui/mi

j D1
/

$!n=p Y
i;j

-
.k/

ij
.xij /dud xx:

Using
R

'
.k/

ij
!

R
fij D 1 and monotone convergence for '

.k/

ij
,

EjZ}
p;C .F /j D lim

k!1
EjZ}

p;C .Fk/j " lim
k!1

EjZ}
p;C .F #

k
/j D EjZ}

p;C .F #/j:

Proof of Theorem 2.1. Taking C D Ci D Œ$1;1" and F D .f / gives Z}
p;N

.f / D Z}
p;C .F /

and Z}
p;C

.f / D Z}
p

.f /, hence Theorem 2.1 follows from Theorem 2.2.

Proof of Theorem 2.3. Let X and X # be n ) n.p/m random matrices with i.i.d. columns
drawn from f and f ", respectively. By Proposition 6.5 and Theorem 5.1,

jZ}
p;C

.f /j D !n lim
`!1

b!1

n;n!1=`

Z
Rn.p/

C
EX /n..XBn.p/

1
.Cı

t;p`
//ı/dt

" !n lim
`!1

b!1

n;n!1=`

Z
Rn.p/

C
EX#/n..X #Bn.p/

1
.Cı

t;p`
//ı/dt

D jZ}
p;C

.f "/j:

Next, we prove (2.8). Fix origin-symmetric convex bodies C1; : : : ;CN with dim.Ci /D
mi % n C 1. Set M D m1 C # # # C mN . Suppose that X and X # are n ) M random
matrices with independent columns drawn from F D .fij / and F # D .f "

ij
/, respectively.

Fix k 2 N and p 2 Œ$1; 0/ with kjpj < n.
Assume first that .fij / are supported on a Euclidean ball RBn

2
. By Proposition 5.10,

EjZ}
p;C .F /j D !nEX

Z
Sn!1

!n.Z}
p;C .F /; u/du < 1: (7.1)
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Applying Proposition 6.6 for a standard Gaussian random vector , in Rn, we have

E#!kjpj.Z}
p;C .F /; ,/ D

X
k2Œk!

N
0

S.k/Dk

#
k

k

$ Z
Rjm.k/j

C
/n..XkB

jm.k/j
1

.Cı
k;t

//ı/dt:

Fix k D .k1; : : : ;kN / 2 Œk"N
0

with S.k/ D k and ti 2 .0;1/ for i 2 m.k/. By Theorem 5.1,

EXk/n..XkB
jm.k/j
1

.Cı
k;t

//ı/ " EX#
k
/n..X #

k B
jm.k/j
1

.Cı
k;t

//ı/:

Consequently,

EX E#!kjpj.Z}
p;C .F /; ,/ " EX#E#!kjpj.Z}

p;C .F #/; ,/: (7.2)

As in the proof of Proposition 6.5, when n=jpj 2 N, we choose p` 2 Q \ .p; 0/ such that
n.p/ D n=jpj D .n $ 1=`/=jp`j for ` 2 N. For u 2 Sn!1, we have

!.Z}
p`;C .F /; u/ ! !.Z}

p;C .F /; u/ (a.s.):

As in the proof of Lemma 3.4, using (3.7) with K` D Z}
p`;C .F /, we have

Z
Sn!1

!n.p/jp`j.Z}
p`;C .F /; u/du !

Z
Sn!1

!n.Z}
p;C .F /; u/du (a.s.)

and the convergence is dominated by 1 C !!1

n
jZ}

p;C .F /j, which is integrable by (7.1).
Thus

EjZ}
p;C .F /j D !nEX lim

`!1

Z
Sn!1

!n.p/jp`j.Z}
p`;C .F /; u/du

D !n lim
`!1

EX

Z
Sn!1

!n!1=`.Z}
p`;C .F /; u/du

D !n lim
`!1

b!1

n;n!1=`
EX E#!n!1=`.Z}

p`;C .F /; ,/;

where bn;n!1=` is the constant in (3.6). The same identities apply for X # and F #. Thus,
applying (7.2) with k D n.p/ and p D p`, we get

EjZ}
p;C .F /j " EjZ}

p;C .F #/j:

Lastly, we can remove the assumption that the functions are compactly supported by
arguing as in the proof of Theorem 2.2.

Proof of Corollary 2.4. By Proposition 5.11 and Theorem 2.3,

EjI˛

jpj;N .f /j D lim
m!1 EjZ}

p;C˛
m

.Fm/j " lim
m!1 EjZ}

p;C˛
m

.F #
m

/j D EjI˛

jpj;N .f "/j: (7.3)

Using (7.3) with Proposition 5.12, we get

jI ˛

jpj.f /j D lim
N !1

EjI˛

jpj;N .f /j " lim
N !1

EjI˛

jpj;N .f "/j D jI ˛

jpj.f
"/j: (7.4)

This completes the proof.
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Proof of Corollary 2.5. We apply Proposition 4.2 and (7.4) for p D $1 to obtain

jI.f /j D lim
˛!0C

j.2s˛/!1I˛.f /j " lim
˛!0C

j.2s˛/!1I˛.f "/j D jI.f "/j:

Proof of Theorem 2.6. We have reduced Theorems 2.1–2.3 and Corollaries 2.4 and 2.5
to a suitable application of (5.1) in Theorem 5.1. If the convex bodies C1; : : : ; CN are
unconditional, we can instead apply (5.2) in Theorem 5.1.
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