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Abstract
Let the viscosity 𝜀 → 0 for the 2D steady Navier-Stokes
equations in the region 0 ≤ 𝑥 ≤ 𝐿 and 0 ≤ 𝑦 < ∞ with no
slip boundary conditions at 𝑦 = 0. For 𝐿 << 1, we justify
the validity of the steady Prandtl layer expansion for scaled
Prandtl layers, including the celebrated Blasius boundary
layer. Our uniform estimates in 𝜀 are achieved through a
fixed-point scheme:

[
𝑢0, 𝑣0

] DNS−1
⟶ 𝑣

−1

⟶
[
𝑢0, 𝑣0

]
for solving the Navier-Stokes equations, where [𝑢0, 𝑣0] are
the tangential and normal velocities at 𝑥 = 0, DNS stands
for 𝜕𝑥 of the vorticity equation for the normal velocity 𝑣,
and  the compatibility ODE for [𝑢0, 𝑣0] at 𝑥 = 0.

CONTENTS
1. INTRODUCTION AND NOTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . 3150
2. −1 AND BOUNDARY ESTIMATES FOR [𝑢0, 𝑣0] . . . . . . . . . . . . . . . . . . . . 3161
3. FORMULATION OF DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3171
4. A-PRIORI ESTIMATES FOR DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3182
5. SOLUTION TO DNS AND NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3208
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3223
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3223
APPENDIX A: ASYMPTOTIC EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . 3225

1 INTRODUCTION AND NOTATION

We consider the steady, incompressible Navier-Stokes equations on the two-dimensional domain,
(𝑥, 𝑌) ∈ Ω = (0, 𝐿) × (0,∞). Denoting the velocity 𝐔𝑁𝑆 ∶= (𝑈𝑁𝑆, 𝑉𝑁𝑆), the equations read for
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𝜀 > 0:

𝐔𝑁𝑆 ⋅ ∇𝐔𝑁𝑆 + ∇𝑃𝑁𝑆 = 𝜀Δ𝐔𝑁𝑆

∇ ⋅ 𝐔𝑁𝑆 = 0

}
in Ω (1.1)

The system above is taken with the no-slip boundary condition on {𝑌 = 0}:[
𝑈𝑁𝑆, 𝑉𝑁𝑆

]|𝑌=0 = [0, 0]. (1.2)

In this article, we fix an outer Euler shear flow of the form [𝑢0𝑒 (𝑌), 0, 0], (satisfying generic
smoothness and decay assumptions). Such a shear flow solves the Euler equations ((1.1) with
𝜀 = 0). A fundamental question is to describe the asymptotic behavior of solutions to (1.1) as the
viscosity, 𝜀, vanishes (or equivalently, as the Reynolds number goes to infinity). Generically, there
is a mismatch of the tangential velocity at the boundary {𝑌 = 0} of the viscous flows, (1.2), and
inviscid flows. Thus, one cannot expect [𝑈𝑁𝑆, 𝑉𝑁𝑆] → [𝑢0𝑒 , 0] in a sufficiently strong norm (for
instance, 𝐿∞).
To rectify this mismatch, it was proposed in 1904 by Ludwig Prandtl that there exists a thin

fluid layer of size
√
𝜀 near the boundary 𝑌 = 0 that bridges the velocity of 𝑈𝑁𝑆|𝑌=0 = 0 with the

nonzero Eulerian velocity ([44]). This layer is known as the Prandtl boundary layer, and math-
ematically corresponds to an asymptotic expansion in 𝜀 as shown below in (1.5). We emphasize
that Prandtl’s original hypothesis was made in the 2D, stationary setting, which is precisely the
setting we are addressing in this paper.
We work with the scaled boundary layer variable and the corresponding scaled differential

operators:

𝑦 =
𝑌√
𝜀
, ∇𝜀 = (

√
𝜀𝜕𝑥, 𝜕𝑦), Δ𝜀 ∶= 𝜀𝜕𝑥𝑥 + 𝜕𝑦𝑦. (1.3)

Define the scaled Navier-Stokes velocities:

𝑈𝜀(𝑥, 𝑦) = 𝑈𝑁𝑆(𝑥, 𝑌), 𝑉𝜀 =
𝑉𝑁𝑆(𝑥, 𝑌)√

𝜀
, 𝑃𝜀(𝑥, 𝑦) = 𝑃𝑁𝑆(𝑥, 𝑌). (1.4)

Equation (1.1) now becomes:

𝑈𝜀𝑈𝜀
𝑥 + 𝑉𝜀𝑈𝜀

𝑦 + 𝑃𝜀𝑥 = Δ𝜀𝑈
𝜀

𝑈𝜀𝑉𝜀
𝑥 + 𝑉𝜀𝑉𝜀

𝑦 +
𝑃𝜀𝑦

𝜀
= Δ𝜀𝑉

𝜀

𝑈𝜀
𝑥 + 𝑉𝜀

𝑦 = 0

(1.5)

We expand the solution in 𝜀 as:

𝑈𝜀 = 𝑢0𝑒 + 𝑢0𝑝 +

𝑛∑
𝑖=1

√
𝜀
𝑖
(𝑢𝑖𝑒 + 𝑢𝑖𝑝) + 𝜀𝑁0𝑢(𝜀) ∶= 𝑢𝑠 + 𝜀𝑁0𝑢(𝜀),

𝑉𝜀 = 𝑣0𝑝 + 𝑣1𝑒 +

𝑛−1∑
𝑖=1

√
𝜀
𝑖
(𝑣𝑖𝑝 + 𝑣𝑖+1𝑒 ) +

√
𝜀
𝑛
𝑣𝑛𝑝 + 𝜀𝑁0𝑣(𝜀) ∶= 𝑣𝑠 + 𝜀𝑁0𝑣(𝜀),

𝑃𝜀 = 𝑃0𝑒 + 𝑃0𝑝 +

𝑛∑
𝑖=1

√
𝜀
𝑖
(𝑃𝑖𝑒 + 𝑃𝑖𝑝) + 𝜀𝑁0𝑃(𝜀) ∶= 𝑃𝑠 + 𝜀𝑁0𝑃(𝜀),

(1.6)
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3152 GUO and IYER

where the coefficients are independent of 𝜀. Here [𝑢𝑖𝑒, 𝑣𝑖𝑒] are Euler correctors, and [𝑢𝑖𝑝, 𝑣
𝑖
𝑝] are

Prandtl correctors. These are constructed in the paper [26], culminating in Theorem A.3. For our
analysis, we will take 𝑛 = 4 and 𝑁0 = 1+. Let us also introduce the following notation:

𝑢̄𝑖𝑝 ∶= 𝑢𝑖𝑝 − 𝑢𝑖𝑝|𝑦=0, 𝑣𝑖𝑝 ∶= 𝑣𝑖𝑝 − 𝑣𝑖𝑝|𝑦=0, 𝑣𝑖𝑒 ∶= 𝑣𝑖𝑒 − 𝑣𝑖𝑒|𝑌=0. (1.7)

The profile 𝑢̄0𝑝, 𝑣0𝑝 from (1.7) is classically known as the “boundary layer”; one sees from (1.6)
that it is the leading order approximation to the Navier-Stokes velocity,𝑈𝜀. Wewill sometimes use
the notation 𝑢∥ ∶= 𝑢̄0𝑝, and 𝑣∥ ∶= 𝑣0𝑝. The final layer,

[𝑢(𝜀), 𝑣(𝜀), 𝑃(𝜀)] = [𝐮(𝜀), 𝑃(𝜀)]

are called the “remainders” and importantly, they depend on 𝜀. Controlling the remainders
uniformly in 𝜀 is the fundamental challenge in order to establish the validity of (1.6), and the
centerpiece of our article.
Thanks to the elliptic feature of the steady Navier-Stokes equations, the set-up of our program is

to assume the remainders [𝑢(𝜀), 𝑣(𝜀)] are bounded in a suitable sense at the boundaries {𝑥 = 0} and
{𝑥 = 𝐿} and to prove that they remain bounded for 𝑥 ∈ (0, 𝐿). It is important to note that there are
no natural boundary conditions for the Navier-Stokes equations in a channel at {𝑥 = 0}, {𝑥 = 𝐿},
and thus part of themathematical challenge is to impose boundary conditions for [𝑢(𝜀), 𝑣(𝜀)]which
ensure its solvability for 𝑥 ∈ (0, 𝐿).
We begin by briefly discussing the approximations, [𝑢𝑠, 𝑣𝑠]. The particular equations satisfied

by each term in [𝑢𝑠, 𝑣𝑠] is derived in the appendix. Theorem A.3 summarizes the estimates avail-
able for each of the approximate terms, and is proven in [26]. We are prescribed the shear Euler
flow, 𝑢0𝑒 . The profiles [𝑢𝑖𝑝, 𝑣𝑖𝑝] are Prandtl boundary layer correctors. Importantly, these layers are
rapidly decaying functions of the boundary layer variable, 𝑦. At the leading order, [𝑢0𝑝, 𝑣0𝑝] solve
the nonlinear Prandtl equation:

𝑢̄0𝑝𝑢
0
𝑝𝑥 + 𝑣0𝑝𝑢

0
𝑝𝑦 − 𝑢0𝑝𝑦𝑦 + 𝑃0𝑝𝑥 = 0,

𝑢0𝑝𝑥 + 𝑣0𝑝𝑦 = 0, 𝑃0𝑝𝑦 = 0, 𝑢0𝑝|𝑥=0 = 𝑈0
𝑃, 𝑢0𝑝|𝑦=0 = −𝑢0𝑒 |𝑌=0. (1.8)

Soon after Prandtl’s seminal 1904 paper, Blasius discovered the celebrated self-similar solution
to (1.8) (with zero pressure). This solution reads

[𝑢̄0𝑝, 𝑣
0
𝑝] =

[
𝑓′(𝜂),

1

2
√
𝑥 + 𝑥0

{𝜂𝑓′(𝜂) − 𝑓(𝜂)}

]
, where 𝜂 =

𝑦√
𝑥 + 𝑥0

, (1.9)

where 𝑓 satisfies

𝑓𝑓′′ + 2𝑓′′′ = 0, 𝑓′(0) = 0, 𝑓′(∞) = 1,
𝑓(𝜂)

𝜂

𝑛→∞
%%%%%→ 1. (1.10)

Here, 𝑥0 > 0 is a free parameter. It is well known that 𝑓′′(𝜂) has a Gaussian tail, and that the
following hold:

0 ≤ 𝑓′ ≤ 1, 𝑓′′(𝜂) ≥ 0, 𝑓′′(0) > 0, 𝑓′′′(𝜂) < 0.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3153

Such a Blasius profile has been confirmed by experiments with remarkable accuracy as the
main validation of the Prandtl theory (see [47] for instance). These profiles are also canonical
from a mathematical standpoint in the following sense: the work, [48], has proven that when
𝑥 gets large (downstream), solutions to the Prandtl equation, (1.8), converge to an appropriately
renormalized Blasius profile. Validating the expansions (1.6) for the Blasius profile is the main
objective and motivation in our study.
It is well known that the Prandtl equations (1.8) admit the two parameter scaling invariance:

[
𝑢̄𝜆,𝜎, 𝑣𝜆,𝜎

]
∶=

[
𝜆2

𝜎
𝑢̄0𝑝(𝜎𝑥, 𝜆𝑦), 𝜆𝑣

0
𝑝(𝜎𝑥, 𝜆𝑦)

]
, (1.11)

meaning that if [𝑢̄0𝑝, 𝑣0𝑝] solve (1.8), then so do [𝑢̄𝜆,𝜎, 𝑣𝜆,𝜎] (with appropriatelymodified initial data).
Typically in boundary layer analyses, the centralmathematical analysis concerns the linearized

Navier-Stokes operator. Such an operator has coefficients [𝑢𝑠, 𝑣𝑠], which are the approximate
Navier-Stokes solutions defined as in (1.6). The unknown that this operator acts on is the
“remainders”, [𝑢(𝜀), 𝑣(𝜀), 𝑃(𝜀)]. In vorticity formulation, the operator reads

−𝑅[𝑞(𝜀)] − 𝑢
(𝜀)
𝑦𝑦𝑦 + 2𝜀𝑣

(𝜀)
𝑥𝑦𝑦 + 𝜀2𝑣

(𝜀)
𝑥𝑥𝑥 + 𝑣𝑠Δ𝜀𝑢

(𝜀) − 𝑢(𝜀)Δ𝜀𝑣𝑠

= 𝜀𝑁0{𝑢(𝜀)Δ𝜀𝑣
(𝜀) − 𝑣(𝜀)Δ𝜀𝑣

(𝜀)} + 𝐹𝑅,
(1.12)

Here, 𝐹𝑅 is a forcing term defined in (A.22), and where we have defined the Rayleigh operator

𝑅
[
𝑞(𝜀)

]
= 𝜕𝑦

{
𝑢2𝑠 𝜕𝑦𝑞

(𝜀)
}
+ 𝜀𝜕𝑥

{
𝑢2𝑠 𝑞

(𝜀)
𝑥

}
, 𝑞(𝜀) ∶=

𝑣(𝜀)

𝑢𝑠
. (1.13)

We define the (unknown) functions

𝑢(𝜀)|𝑥=0 = 𝑢0(𝑦), 𝑣(𝜀)|𝑥=0 = 𝑣0(𝑦). (1.14)

The boundary condition we take are the following

𝑣
(𝜀)
𝑥 |𝑥=𝐿 = 𝑎𝜀1(𝑦), 𝑣

(𝜀)
𝑥𝑥|𝑥=0 = 𝑎𝜀2(𝑦), 𝑣

(𝜀)
𝑥𝑥𝑥|𝑥=0 = 𝑎𝜀3(𝑦)

𝑣0𝑦 + 𝑢0 = ℎ(𝑦) ∈ 𝐶∞(𝑒𝑦), ℎ(0) = 0,

𝑣(𝜀)|𝑦=0 = 𝑣
(𝜀)
𝑦 |𝑦=0 = 𝑢(𝜀)|𝑦=0 = 0, 𝑣

(𝜀)
𝑦 |𝑦↑∞ = 0.

(1.15)

Here, the 𝑎𝜀
𝑖
(𝑦) are prescribed boundary data which we assume satisfy

‖𝜕𝑗𝑦𝑎𝜀𝑖
{

1

𝜀
1

2

⟨𝑦⟩⟨𝑌⟩𝑚}‖ ≤ 𝑜(1) for 𝑗 = 0,… , 4, and𝑚 large, (1.16)

which is a quantitative statement that the expansion (1.6) is valid at {𝑥 = 0} and {𝑥 = 𝐿}.
We are now able to state our main result, so long as we remain vague regarding the space 

that appears below. A discussion of this norm will be in Subsection 1.2.
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3154 GUO and IYER

Theorem 1.1 (Main Theorem). Assume boundary data for the approximate layers in 𝑢𝑠 are pre-
scribed as in Theorem A.3, boundary data for the remainders are prescribed satisfying (1.15) and
(1.16). Assume 0 < 𝜎 << 1 in (1.11). Then let 0 < 𝜀 << 𝐿 << 1. Take 𝑁0 = 1+ and 𝑛 = 4 in (1.6).
Then the remainders, [𝑢(𝜀), 𝑣(𝜀)] exists uniquely in the space  and satisfy

‖𝐮(𝜀)‖ ≲ 1. (1.17)

The Navier-Stokes solutions satisfy

‖𝑈𝑁𝑆 − 𝑢0𝑒 − 𝑢0𝑝‖∞ ≲
√
𝜀 and ‖𝑉𝑁𝑆 −

√
𝜀𝑣0𝑝 −

√
𝜀𝑣1𝑒‖∞ ≲ 𝜀. (1.18)

Theorem A.3 establishes that all terms in the expansion (1.6) exist and are regular:‖𝑢𝑠, 𝑣𝑠‖𝑊𝑘,∞ ≲ 1 for a large, universal 𝑘. Upon establishing the uniform bound (1.17), the result

(1.18) follows from the following inequalities: ‖𝑣(𝜀)‖∞ ≲ 𝜀
−

1

2 ‖𝐮(𝜀)‖ , and ‖𝑢(𝜀)‖∞ ≲ ‖𝐮(𝜀)‖ .
These are established in Lemmas 2.4, 5.4 together with the definitions in (1.22).
Our main result thus ensures a local in space (𝐿 << 1) validity for the Prandtl expansion, (1.6).

This marks an important first step to study the optimal bound for sup 𝐿. Such a study would
address the phenomenon of “boundary layer detachment” (which would correspond to sup 𝐿 <

∞) versus global in 𝑥 validity (in the sense of [32–34]).
Regarding our scaling, (1.11), it is important to note that 𝜆 can be arbitrary. This covers rich

structures in the Prandtl equation. In particular, when 𝜆2 = 𝜎, the scaling of 𝜆 << 1 is equivalent
to 𝑥0 >> 1 in (1.9). Letting 𝜂𝜆 denote the rescaled self-similar variable, one has by definition

𝜂𝜆 ∶=
𝜆𝑦√

𝜆2𝑥 + 𝑥0
=

𝑦√
𝑥 + 𝜆−2𝑥0

.

For this reason, we interpret our main theorem as being asymptotic, that is for large values of 𝑥0:
in the particular case of 𝜆 = 𝜎2, setting 𝜎 small is equivalent to taking 𝑥0 large. Moreover, in light
of [52], general solutions to the Prandtl equation converge to the Blasius profile as 𝑥0 → ∞. We
thus expect that the validity of (1.6) holds for generic Prandtl data without rescaling, for 𝑥0 >> 1.
Furthermore, we remark the 𝐿may not necessarily need to be small in this case.

1.1 Notation

Before we state the main ideas of the proof, we will discuss our notation. Since we use the 𝐿2
norm extensively in the analysis, we use ‖ ⋅ ‖ to denote the 𝐿2 norm. It will be clear from context
whether we mean 𝐿2(ℝ+) or 𝐿2(Ω). When there is a potential confusion (e.g., when changing
coordinates), we will take care to specify with respect to which variable the 𝐿2 norm is being taken
(for instance, 𝐿2𝑦 means with respect to d𝑦, whereas 𝐿2𝑌 will mean with respect to d𝑌). Similarly,
when there is potential confusion, we will distinguish 𝐿2 norms along a one-dimensional surface
(say {𝑥 = 0}) by ‖ ⋅ ‖𝑥=0. Analogously, we will often use inner products (⋅, ⋅) to denote the 𝐿2 inner
product. When unspecified, it will be clear from context if we mean 𝐿2(ℝ+) or 𝐿2(Ω). When there
is potential confusion, we will distinguish inner products on a one-dimensional surface (say {𝑥 =

0}) by writing (⋅, ⋅)𝑥=0. Given a weight function 𝑤, we use the notation ‖ ⋅ ‖𝐿2(𝑤) ∶= ‖ ⋅ 𝑤‖, and
𝐿2(𝑤) to refer to the corresponding weighted 𝐿2 space.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3155

We will often use scaled differential operators

∇𝜀 ∶= (𝜕𝑥,
√
𝜀𝜕𝑦), Δ𝜀 ∶= 𝜕𝑦𝑦 + 𝜀𝜕𝑥𝑥.

Define also the integration operator, 𝐼𝑥[𝑔] ∶= ∫ 𝑥

0
𝑔(𝑥′) d𝑥′. For functions𝑤 ∶ ℝ+ → ℝ, we dis-

tinguish between 𝑤′ which means differentiation with respect to its argument versus 𝑤𝑦 which
refers to differentiation with respect to 𝑦.
Regarding unknowns, the central object of study in our paper are the remainders, [𝑢(𝜀), 𝑣(𝜀)]. By

a standard homogenization argument, we may move the inhomogeneous boundary terms 𝑎𝜀
𝑖
to

the forcing and consider the homogeneous problem. Specifically, we homogenize 𝑣(𝜀) to 𝑣 using
the following:

𝑣 ∶= 𝑣0 + 𝑥

{
𝑎𝜀1 − 𝐿𝑎𝜀2 −

𝐿2

2
𝑎𝜀3

}
+ 𝑥2

𝑎𝜀2
2

+ 𝑥3
𝑎𝜀3
6

=∶ 𝑣0 + 𝑎𝜀(𝑥, 𝑦),

𝑣 ∶= 𝑣𝜀 − 𝑣 = 𝑣𝜀 − 𝑣0 − 𝑎𝜀, 𝑢 ∶= 𝑢𝜀 + ∫
𝑥

0

𝑣𝑦 = 𝑢𝜀 + 𝑥𝑣0𝑦 + 𝐼𝑥[𝑎
𝜀
𝑦].

(1.19)

We call the new unknowns [𝑢, 𝑣] (= 𝐮), and these are actually the objects we will analyze
throughout the paper.
When we write 𝑎 ≲ 𝑏, we mean there exists a number 𝐶 < ∞ such that 𝑎 ≤ 𝐶𝑏, where 𝐶 is

independent of small 𝐿, 𝜀 but could depend on [𝑢𝑠, 𝑣𝑠]. We write 𝑜𝐿(1) to refer to a constant that is
bounded by some unspecified, perhaps small, power of 𝐿: that is, 𝑎 = 𝑜𝐿(1) if |𝑎| ≤ 𝐶𝐿𝛿 for some
𝛿 > 0.
We will, at various times, require localizations. All such localizations will be defined in terms

of the following fixed 𝐶∞ cutoff function:

𝜒(𝑦) ∶=

{
1 on 𝑦 ∈ [0, 1)

0 on 𝑦 ∈ (2,∞)
𝜒′(𝑦) ≤ 0 for all 𝑦 > 0. (1.20)

We will use ‖ ⋅ ‖𝑙𝑜𝑐 to mean localized 𝐿2 norms. More specifically we take for concreteness‖ ⋅ ‖𝑙𝑜𝑐 ∶= ‖ ⋅ 𝜒( 𝑦

10
)‖. We adopt the notation that ⟨𝑎⟩ = 1 + 𝑎. Define the weight

𝑤0 ∶= ⟨𝑦⟩⟨𝑌⟩𝑚, for𝑚 sufficiently large, universal number. (1.21)

We will define now the key norms that appear throughout our analysis:

Definition 1.2. Given a weight function 𝑤 = 𝑤(𝑦), define:

‖𝑣‖𝑋𝑤
∶= 𝜀

−
3

16 ||||𝑣||||𝑤 + |||𝑞|||𝑤,
‖𝑣‖𝑌𝑤

∶= ||||𝑣||||𝑤 +
√
𝜀|||𝑞|||𝑤,

[𝑢0, 𝑣0]𝐵 ∶= ‖𝑢0‖ + ‖𝑢0𝑦‖ + ‖𝑢0𝑦𝑦𝑤‖ + ‖𝑢0𝑦𝑦𝑦𝑤‖ + ‖𝑞0𝑦‖ + ‖𝑞0
𝑦
‖

+‖√𝑢𝑠𝑞
0
𝑦𝑦𝑤0‖ + ‖𝑞0𝑦‖𝑦=0 + ‖𝑣0𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖,
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3156 GUO and IYER

‖𝐮‖ (= ‖𝑣, 𝑢0, 𝑣0‖ ) ∶= [𝑢0, 𝑣0]𝐵 + 𝜀
1

4 ‖𝑣‖𝑋1
+ 𝜀

1

4 ‖𝑣‖𝑌𝑤0
,

|||𝑞|||𝑤 ∶= ‖∇𝜀𝑞𝑥 ⋅ 𝑢𝑠𝑤‖ + ‖√𝑢𝑠{𝑞𝑦𝑦𝑦, 𝑞𝑥𝑦𝑦,
√
𝜀𝑞𝑥𝑥𝑦, 𝜀𝑞𝑥𝑥𝑥}𝑤‖ + |𝑞|𝜕,2,𝑤

||||𝑣||||𝑤 ∶= ‖{𝑣𝑦𝑦𝑦𝑦,
√
𝜀
√
𝑢𝑠𝑣𝑥𝑦𝑦𝑦, 𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀

3

2 𝑣𝑥𝑥𝑥𝑦, 𝜀
2𝑣𝑥𝑥𝑥𝑥

}
𝑤‖ + |𝑣|𝜕,3,𝑤

|𝑞|𝜕,2,𝑤 ∶= ‖𝑢𝑠𝑞𝑥𝑦𝑤‖𝑥=0 + ‖𝑞𝑥𝑦𝑤‖𝑦=0 + ‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖𝑥=𝐿 + ‖𝑞𝑦𝑦𝑤‖𝑦=0
|𝑣|𝜕,3,𝑤 ∶= ‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥𝑤‖𝑥=0 + ‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=0 + ‖𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑤‖𝑥=𝐿. (1.22)

Note above that we identify the vector 𝐮 with the triple (𝑣, 𝑢0, 𝑣0). We will use the above set of
norms with either the choice 𝑤 = 1 or 𝑤 = 𝑤0 (see (1.21). We also define now the space  :
Definition 1.3. The space  is defined via

 ∶=
{
(𝑣, 𝑢0, 𝑣0) ∈ 𝐿2(Ω) × 𝐿2(ℝ+) × 𝐿2(ℝ+) ∶ ‖𝑣, 𝑢0, 𝑣0‖ < ∞,

𝑣|𝑦=0 = 𝑣𝑦|𝑦=0 = 𝑣𝑥|𝑥=𝐿 = 𝑣𝑥𝑥|𝑥=0 = 𝑣𝑥𝑥𝑥|𝑥=𝐿 = 𝑣|𝑦=∞ = 0,

𝑣0(0) = 𝑣0𝑦(0) = 𝜕𝑘𝑦𝑣(∞) = 0 for 𝑘 ≥ 1, 𝑢0 + 𝑣0𝑦 = ℎ(𝑦), 𝑢0(0) = 0.
} (1.23)

1.2 Overview of proof

Let us first recap the ideas introduced in [27], which treated the case when the boundary {𝑦 = 0}

was moving with velocity 𝑢𝑏 > 0. First, let us extract:

Leading order operators in (1.12) = −𝑅[𝑞] − 𝑢𝑦𝑦𝑦. (1.24)

Due to the nonzero velocity at the {𝑦 = 0} boundary, the quantity 𝑢̄|𝑦=0 > 0. A central idea
introduced by [26] is the coercivity of 𝑅[𝑞] over ‖∇𝜀𝑞‖.This coercivity relied on the fact that 𝑞 =
𝑣

𝑢𝑠
= 1 ∉ Ker(𝑅), thanks to the non-zero boundary velocity of 𝑢̄|𝑦=0. Extensive efforts without

success have been made to extracting coercivity from 𝑅[𝑞] in the present, motionless boundary,
case. However, it appears that this procedure interacts poorly with the operator 𝜕𝑦𝑦𝑦𝑢, producing
singularities too severe to handle. In fact, the natural multiplier for the Rayleigh operator is 𝑞
itself, which produces (𝑅[𝑞], 𝑞) = ‖𝑢𝑠𝑞𝑦‖2. However, due to the degeneracy of 𝑢𝑠 at 𝑦 = 0 (which
is notably absent when 𝑢𝑠|𝑦=0 > 0 as in [24]) this is too weak of a contribution to control the
interaction term (𝑢𝑦𝑦, 𝑞𝑦).
Our main idea is based on the observation that the 𝑥 derivative of (1.24) produces, at leading

order:

−𝜕𝑥𝑅[𝑞] + 𝑣𝑦𝑦𝑦𝑦. (1.25)

Unlike (1.24), these two operators enjoy better interaction properties. To see this on a prelim-
inary level, consider the interaction between 𝑣𝑦𝑦𝑦𝑦 and the multiplier −𝑞𝑥𝑥 (ignoring boundary

 10970312, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22109 by B

row
n U

niversity Library, W
iley O

nline Library on [29/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3157

contributions at 𝑥 = 0, 𝑥 = 𝐿):

(𝑣𝑦𝑦𝑦𝑦, −𝑞𝑥𝑥) ∼ − (𝑣𝑦𝑦𝑦𝑥, 𝑞𝑥𝑦)

∼ − (𝑢𝑠𝑞𝑦𝑦𝑦𝑥 + 3𝑢𝑠𝑦𝑞𝑦𝑦𝑥 + 3𝑢𝑠𝑦𝑦𝑞𝑦𝑥 + 𝑢𝑠𝑦𝑦𝑦𝑞𝑥, 𝑞𝑥𝑦)

∼‖√𝑢𝑠𝑞𝑦𝑦𝑥‖2 + 3

2
‖√𝑢𝑠𝑦𝑞𝑥𝑦‖2𝑦=0, (1.26)

which is a crucial favorable boundary contribution at {𝑦 = 0} as 𝑢𝑠𝑦|𝑦=0 ∼ 𝑢̄0𝑝𝑦 > 0.
To this end, we split the equation (1.12) into two pieces that are linked together. First, we study

the boundary trace, [𝑢0, 𝑣0] = [𝑢, 𝑣]|𝑥=0. By evaluating the vorticity equation (1.12) at {𝑥 = 0} and
using the relation (1.15), we obtain the following system for 𝑣0:

𝑣0 = 𝐹(𝑣) + 𝐹𝑎
𝑅 + +,

𝑣0 ∶= 𝑣0𝑦𝑦𝑦𝑦 − 𝜕𝑦{𝑢
2
𝑠 𝑞

0
𝑦} − {𝑣𝑠𝑣

0
𝑦𝑦𝑦 − 𝑣0𝑦𝑣𝑠𝑦𝑦} + 𝜀𝑢𝑠𝑥𝑥𝑣

0 + 𝜀𝑣𝑠𝑥𝑥𝑣
0
𝑦,

𝐹(𝑣) ∶= −2𝜀𝑢𝑠𝑢𝑠𝑥𝑞𝑥|𝑥=0 − 2𝜀𝑣𝑥𝑦𝑦|𝑥=0 − 𝜀2𝑣𝑥𝑥𝑥|𝑥=0 − 𝜀𝑣𝑠𝑢𝑥𝑥|𝑥=0,
𝑣0(0) = 0, 𝑣0𝑦(0) = 0, 𝜕𝑘𝑦𝑣

0(∞) = 0 for 𝑘 ≥ 1,

𝑣0𝑦 + 𝑢0 = ℎ(𝑦).

(1.27)

The 𝐹𝑎
𝑅 + + terms above contain contributions of ℎ(𝑦), quadratic nonlinearities in 𝑣0, and

pure forcing terms. We refrain from discussing these terms further in the introduction; the full
equations are specified in (A.23). The important point is that the forcing term𝐹(𝑣) in (1.27) depends
on (derivatives of 𝑣)|𝑥=0.
Second, we take 𝜕𝑥 of (1.12) (call this “DNS” for Derivative Navier-Stokes) to obtain:

DNS(𝑣) ∶= −𝜕𝑥𝑅[𝑞] + Δ2
𝜀𝑣 + 𝐽(𝑣) = −𝐵𝑣0 + 𝜀𝑁0 + 𝐹(𝑞)

𝑣|𝑥=0 = 𝑣𝑥|𝑥=𝐿 = 𝑣𝑥𝑥|𝑥=0 = 𝑣𝑥𝑥𝑥 = 0.

𝑣|𝑦=0 = 𝑣|𝑦=0 = 0.

(1.28)

Here, the 𝜀𝑁0 + 𝐹(𝑞) terms are quadratic and forcing termswhich shall remainunspecified for
themoment. Note the change in notation as we have dropped the superscript 𝜀, and homogenized
the boundary conditions on the sides {𝑥 = 0}, {𝑥 = 𝐿}. Above,𝐵𝑣0 is the result of homogenizing the
boundary condition 𝑣|𝑥=0 = 𝑣0 as well as using 𝑢 = 𝑢0 − 𝐼𝑥[𝑣𝑦]. The operators 𝐽, 𝐵𝑣0 are defined:

𝐽(𝑣) ∶= −𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦] − 𝑣𝑠𝑣𝑦𝑦𝑦 − 𝜀𝑣𝑠𝑥𝑣𝑥𝑦

− 𝜀𝑣𝑠𝑣𝑥𝑥𝑦 + 𝑣𝑦Δ𝜀𝑣𝑠 + 𝐼𝑥[𝑣𝑦]Δ𝜀𝑣𝑠𝑥, (1.29)

𝐵𝑣0 ∶= 𝑣0𝑦𝑦𝑦𝑦 − 2𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞
0
𝑦} + [𝑣0𝑦𝑦𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠}

− 𝑣0𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}] − 𝜀𝑣0𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}. (1.30)

Thus, the approach we take is to analyze (1.27) in order to control the boundary trace [𝑢0, 𝑣0]
in terms of 𝑣, and subsequently analyze (1.28) to control 𝑣 in terms of the boundary trace, [𝑢0, 𝑣0].
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3158 GUO and IYER

We may schematize this procedure via:

[𝑢0, 𝑣0]
DNS−1
%%%%%%→ 𝑣

−1

%%%→ [𝑢0, 𝑣0]. (1.31)

We then recover a solution to the original Navier-Stokes equation (NS) via a fixed point of (1.31).
This structure of analysis gives rise to a linked set of inequalities which we summarize here:

[𝑢0, 𝑣0]2𝐵 ≲ 𝜀‖𝑣‖2𝑌𝑤0
+ 𝜀

1

2
+

3−

16 ‖𝑣‖2𝑋1
+ Data

‖𝑣‖2𝑋1
≲ 𝜀

−
1

2 [𝑢0, 𝑣0]2𝐵 + Data

‖𝑣‖2𝑌𝑤0
≲ ‖𝑣‖2𝑋1

+ [𝑢0, 𝑣0]2𝐵 + Data.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (1.32)

Above 𝑤0 is the specific weight given in (1.21). Since the above inequalities imply [𝑢0, 𝑣0]𝐵 ≲

𝜀
3

16
−‖𝐮‖𝑋 + Data, it is clear that the above scheme of estimates closes to yield control over ‖𝐮‖ .
As shown in Section 5 that 𝐵(𝑣0) (Lemma 5.2), 𝐹(𝑣) (Lemma 5.3) and the nonlinearity

(Lemma 5.4) can be controlled with a small constant. We therefore turn our attention to the
following two linear problems.

Section 2: Study of linear problem 𝑣0 = 𝐹

Let us turn now to the system, (1.27). The main estimate we prove is:

[𝑢0, 𝑣0]𝐵 ≲ ‖𝐹(𝑣)𝑤0‖ + Data. (1.33)

Upon recalling the terms in 𝐹(𝑣) shown in (1.27) and analyzing the resulting expressions, such
an estimate produces the first bound shown in (1.32).
By evaluating the vorticity equation, (1.12) at {𝑥 = 0}, one obtains a compatibility equation that

must be satisfied by the tuple, [𝑢0, 𝑣0]. However, it is important to realize that we have the
freedom to prescribe the relationship between these two boundary data. We do so by selecting
𝑢0 + 𝑣0𝑦 = ℎ(𝑦) as shown in (1.15). This boundary condition is natural from the setup of our pro-
gram, since both 𝑢0 and 𝑣0𝑦 should be individually bounded in Sobolev norms. The selection of
this boundary condition results in a fourth order equation 𝑣0𝑦𝑦𝑦𝑦 − 𝜕𝑦{𝑢

2
𝑠 𝑞

0
𝑦}, which enjoys similar

favorable properties to DNS and similar corresponding quotient estimates as in (1.26).
Estimate (1.33) is obtained in two steps. The first step is to apply the multiplier 𝑞0 = 𝑣

𝑢𝑠
, and the

second is to apply themultiplier 𝑣𝑦𝑦𝑦𝑦𝑤2
0 . Themultiplier 𝑞

0 leads to a delicate interaction between
the 𝜕4𝑦 operator and the Rayleigh term −𝜕𝑦{𝑢

2
𝑠 𝜕𝑦𝑞

0}. The key estimate we prove in this direction
is the positivity

(𝜕4𝑦𝑣
0 − 𝜕𝑦{𝑢

2
𝑠 𝑞

0
𝑦}, 𝑞

0) ≳ ‖√𝑢𝑠𝑞
0
𝑦𝑦‖2 + ‖𝑢𝑠𝑞0𝑦‖2 + ‖𝑞0𝑦‖2𝑦=0.

It is for this lower bound that we require the assumption that 𝜎 << 1 in (1.11). Once this is
established, the remaining termsmaybe treated perturbatively.Overall, the upshot of the selection
of boundary condition (1.15) is to capitalize on similar favorable structures to the DNS analysis.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3159

Section 3 and 4: Study of linear problem DNS(𝑣) = 𝐹

We now turn our attention to (1.28). The goal is to establish control over the norms ‖ ⋅ ‖𝑌𝑤0
, ‖ ⋅‖𝑌1

, ‖ ⋅ ‖𝑋1
. Consulting (1.22), the basic building blocks of these norms are the fourth and third

order norms, |||| ⋅ ||||𝑤, ||| ⋅ |||𝑤. Hence, our discussion will be centered on the control of |||| ⋅||||𝑤, ||| ⋅ |||𝑤. Let us also emphasize that we require 𝐿 << 1 to establish these controls and
ultimately solve the DNS equation.
Based on the crucial quotient estimate (1.26), we perform a cascade of five estimates which

culminate in the following:

||||𝑣||||21 ≲ 𝜀
3

8 |||𝑞|||21 + Data,

|||𝑞|||21 ≲ ||||𝑣||||21 + Data.
(1.34)

Let us discuss the important features of the above scheme. The top (fourth order) bound in
(1.34) consists of two estimates, first using the multiplier 𝜀2𝑣𝑥𝑥𝑥𝑥 and second using the multiplier
𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦 . These estimates are possible due to carefully designed boundary conditions at 𝑥 = 0

and 𝑥 = 𝐿 for 𝑣 (see (1.28)). Our central observation at this level is that the 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦 estimate is
essentially standalone at the top order, up to |||𝑞|||, thanks to the crucial weight 𝑢𝑠.
The bottom (third order) bound in (1.34) consists of three delicate estimates, using themultipli-

ers successively 𝑞𝑥, 𝑞𝑥𝑥, 𝑞𝑦𝑦 . First, we emphasize that themultipliers at this stage are derivatives of
the quotient, 𝑞. This is because the main coercivity is extracted from the Rayleigh operator, 𝑅[𝑞].
The key feature we capitalize on in this scheme is that the estimates using multipler 𝑞𝑥, 𝑞𝑦𝑦 are
standalone up to 𝑜𝐿(1) contributions. It is important to note that since 𝑞 =

𝑣

𝑢𝑠
, despite the presence

of
√
𝑢𝑠 weight in |||𝑞|||𝑤 (see (1.22)), this is still significantly stronger at {𝑦 = 0} than a classi-

cal scaled 𝐻4
𝑙𝑜𝑐

norm to measure 𝑣 itself. In turn, to facilitate estimates near {𝑦 = 0}, we establish
careful embedding estimates in (3.2).
The weighted analog of the scheme (1.34) is, for any given 𝑤(𝑦) (satisfying reasonable

hypotheses):

||||𝑣||||2𝑤 ≲ 𝜀
3

8 |||𝑞|||21 + 𝜀|||𝑞|||2𝑤 +
√
𝜀|||𝑞|||𝑤|||𝑞|||𝑤𝑦

+ Data,

|||𝑞|||2𝑤 ≲ 𝑜𝐿(1)||||𝑣||||2𝑤 + 𝑜𝐿(1)‖𝑞𝑥𝑥‖2𝑤𝑦
+ Data.

(1.35)

Apart from the key elements discussed above in the unweighted case, the new features here is
a gain of 𝜀 when going from ||||𝑣||||𝑤 to |||𝑞|||𝑤. This crucial gain of 𝜀 is what ultimately enables
us to relate the weighted estimate for ‖𝑣‖𝑌𝑤

back to the ‖𝑣‖𝑋1
unweighted norm.

As a final remark, we note that the appendix of this paper contains the summary of the
construction of the profiles, [𝑢𝑠, 𝑣𝑠], in Theorem A.3. This theorem is proven in [26].

1.3 Other works

Let us now place this result in the context of the existing literature. To organize the discussion,
we will focus on the setting of stationary flows in dimension 2. This setting in particular occu-
pies a fundamental role in the theory, as it was the setting in which Prandtl first formulated and
introduced the idea of boundary layers for Navier-Stokes flows in his seminal 1904 paper [48].
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3160 GUO and IYER

In this context, one fundamental problem is to establish the validity of the expansions (1.6).
This was first achieved under the assumption of a moving boundary in [27] for 𝑥 ∈ [0, 𝐿], for
𝐿 sufficiently small. The method of [27] is to establish a positivity estimate to control ||∇𝜀𝑣||𝐿2 ,
which crucially used the assumed motion of the boundary. Several generalizations were obtained
in [30-34]. First, [30] considered flows over a rotating disk, in which geometric effects were seen
[31-33], considered flows globally in the tangential variable, and [34] considered outer Euler flows
that are non-shear. All of these works are under the crucial assumption of a moving boundary.
The classical setting of a motionless boundary with the no-slip condition is treated by the

present work, as well as the exciting result of [17]. It is our understanding that our present work
is mutually exclusive with the work of [17]. Our work here, and main concern, treats the classi-
cal self-similar Blasius solution which appears to not be covered by [17]. On the other hand, our
result does not cover a pure shear boundary layer of the form (𝑈0(𝑦), 0) since such shears are not
a solution to the homogeneous Prandtl equation.
A related question is that of wellposedness of the Prandtl equation (the equation for 𝑢̄0𝑝, as

defined in (1.7)). This investigation was by Oleinik in [46, 47]. In the 2D, stationary setting, it is
shown that under local monotonicity assumptions, solutions exist in [0, 𝐿]. In the case where the
pressure gradient is favorable, it is shown that 𝐿 can be taken arbitrarily large. The recent work
of [8] addresses the related issue of blowup of the Prandtl equation under the assumption of an
unfavorable pressure gradient. The regularity results obtained in the present paper can be viewed
as an extension of Oleinik’s local-in-𝑥 result: assuming strong decay at 𝑦 → ∞, we can obtain
enhanced regularity of Oleinik’s solutions.
For unsteady flows, expansions of the form (1.6) have been verified in the analyticity framework:

[45, 46], in the Gevrey setting: [14], for the initial vorticity distribution assumed away from the
boundary: [39]. The reader should also see [2, 11, 34, 54], [40, 51, 52] for related results. There have
also been several works ([17-22, 25]) establishing generic invalidity of expansions of the type (1.6)
in Sobolev spaces in the unsteady setting.
In the unsteady setting, there is again the related matter of wellposedness of the Prandtl equa-

tion. This was also initiated by Oleinik, who under themonotonicity assumption, 𝜕𝑦𝑈(𝑡 = 0) > 0,
obtained global-in-time regular solutions on [0, 𝐿] × ℝ+ for 𝐿 small, and local-in-time solutions
on [0, 𝐿] × ℝ+ for arbitrarily large by finite 𝐿. Global-in-timeweak solutions were obtained by [53]
for arbitrary 𝐿 under the monotonicity assumption and a favorable pressure gradient of the Euler
flow: 𝜕𝑥𝑃𝐸(𝑡, 𝑥) ≤ 0 for 𝑡 ≥ 0.
The worksmentioned above use the Crocco transform, which is available in themonotonic set-

ting. Still assumingmonotonicity, local wellposednesswas proven in [1] and [41]without using the
Crocco transform, and in [35] formultiplemonotonicity regions. [41] introduced a good unknown
which enjoys a crucial cancelation, whereas [1] performed energy estimates on a transformed
quantity together with a Nash-Moser iteration.
When the assumption of monotonicity is removed, the wellposedness results are largely in the

analytic orGevrey setting. The reader should consult [8, 13, 28, 37, 39, 47, 48] for some results in this
direction. In the Sobolev setting without monotonicity, the equations are linearly and nonlinearly
ill-posed (see [12] and [16]). A finite-time blowup result was obtained in [10] when the outer Euler
flow is taken to be zero, in [38] for a particular, periodic outer Euler flow, and in [27] for both the
inviscid and viscous Prandtl equations.
The related question of 𝐿2 (in space) convergence of Navier-Stokes flows to an Euler flow has

been studied by several authors. We refer the reader to [4–7, 36], and [53] for some works in
this direction.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3161

The above discussion is not comprehensive; we refer the reader to the review articles, [9, 50]
and references therein for a more thorough review of the wellposedness theory.

2 
−𝟏 AND BOUNDARY ESTIMATES FOR [𝒖𝟎, 𝒗𝟎]

2.1 Setup and basic inequalities

In this section we analyze [𝑢0, 𝑣0]. Recall (A.23) and the definition of 𝑤0, (1.21). We thus consider

𝑣0 = 𝐹 ∈ 𝐿2(𝑤0),

𝑣0 ∶= 𝑣0𝑦𝑦𝑦𝑦 − {𝑢𝑠𝑣
0
𝑦𝑦 − 𝑢𝑠𝑦𝑦𝑣

0} − {𝑣𝑠𝑣
0
𝑦𝑦𝑦 − 𝑣0𝑦𝑣𝑠𝑦𝑦}

+ 𝜀𝑢𝑠𝑥𝑥𝑣
0 + 𝜀𝑣𝑠𝑥𝑥𝑣

0
𝑦,

𝑣0(0) = 𝑣0𝑦(0) = 0, 𝜕𝑘𝑦𝑣
0(∞) = 0 for 𝑘 ≥ 1.

(2.1)

Above, we take 𝐹 as an abstract forcing term. We also write  as shown in (1.27). Define the
unknown 𝑞0 = 𝑣0

𝑢𝑠
, which satisfies the boundary condition 𝑞0(0) = 0. As all of the analysis in this

section will be on {𝑥 = 0}, we will use (⋅, ⋅) to refer to the 𝐿2(𝑥 = 0) inner product for this section.
We now introduce norms in which we control [𝑢0, 𝑣0] (recall the definition (1.21)):

[[𝑞0]] ∶= ‖√𝑢𝑠𝑞
0
𝑦𝑦‖ + ‖𝑢𝑠𝑞0𝑦‖ + ‖√𝑢𝑠𝑦𝑞

0
𝑦‖𝑦=0, (2.2)

[[[𝑣0]]] ∶= ‖𝑢𝑠𝑣0𝑦𝑦𝑤0‖ + ‖√𝑢𝑠𝑣
0
𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖. (2.3)

We also now define the [⋅]𝐵 norms in which we control the solution:

[𝑢0, 𝑣0]𝐵 ∶= ‖𝑢0‖ + ‖𝑢0𝑦‖ + ‖𝑢0𝑦𝑦𝑤0‖ + ‖𝑢0𝑦𝑦𝑦𝑤0‖ + ‖𝑞0𝑦‖ + ‖𝑞0
𝑦
‖ (2.4)

+ ‖√𝑢𝑠𝑞
0
𝑦𝑦𝑤0‖ + ‖𝑞0𝑦‖𝑦=0 + ‖𝑣0𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖.

We also define the space 𝐵 via

𝐵 =

{[
𝑢0, 𝑣0

]
∈ 𝐿2 × 𝐿2

(
1⟨𝑦⟩

)
∶ 𝑢0 + 𝑣0𝑦 = ℎ(𝑦),

[
𝑢0, 𝑣0

]
𝐵
< ∞

}
(2.5)

The main result of Section 2 is

Proposition 2.1. There exists a unique solution 𝑣0 (and thus 𝑢0 according to (1.15)) to (2.1) such
that [𝑢0, 𝑣0] ∈ 𝐵, and the following estimate holds

[𝑢0, 𝑣0]2𝐵 ≲ |(𝐹, 𝑞0)| + ‖𝐹𝑤0‖2. (2.6)

Note that the quantity |(𝐹, 𝑞0)| is finite for [𝑢0, 𝑣0] ∈ 𝐵 and 𝐹 ∈ 𝐿2(𝑤0) by Hardy’s inequality.
The first task is to generate inequalities relating the norms (2.2), (2.3), and (2.4) to various other

quantities that will arise in the analysis.
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3162 GUO and IYER

Lemma 2.2. For any 0 < 𝜎 << 1 in (1.11),

‖𝑞0𝑦‖ ≲ 𝜎2∕3𝜆−2[[𝑞0]], (2.7)

|𝑞0| ≤ 𝜎2∕3𝜆−2⟨𝑦⟩1∕2[[𝑞0]]. (2.8)

Proof. Fix a 𝛿 << 1 to be selected later. We split at scale 𝜆𝑦 = 𝛿 via

‖𝑞0𝑦‖ ≤‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖ + ‖𝑞0𝑦{1 − 𝜒(
𝜆𝑦

𝛿
)

}‖
=‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖ + ‖ 1

𝑢𝑠
𝑢𝑠𝑞

0
𝑦

{
1 − 𝜒

(
𝜆𝑦

𝛿

)}‖
≲‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖ + 𝜎

𝜆2𝛿
‖𝑢𝑠𝑞0𝑦‖.

Above, we have used that 𝑢𝑠 ≳
𝜆2𝛿

𝜎
when 𝜆𝑦 ≥ 𝛿 by (1.11).

It thus remains to examine the localized contribution, for which we integrate by parts:

‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖2 =(
𝜕𝑦{𝑦}𝑞

0
𝑦, 𝑞

0
𝑦𝜒

(
𝜆𝑦

𝛿

)2
)

= −

(
2𝑦𝑞0𝑦, 𝑞

0
𝑦𝑦𝜒

(
𝜆

𝛿
𝑦

)2
)
−

(
2𝑦𝑞0𝑦, 𝑞

0
𝑦
𝜆

𝛿
𝜒′

(
𝜆

𝛿
𝑦

)
𝜒

(
𝜆

𝛿
𝑦

))
(2.9)

≲

√
𝜎𝛿

𝜆2
‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖‖√𝑢𝑠𝑞
0
𝑦𝑦‖ + 𝜎2

𝜆4𝛿2
‖𝑢𝑠𝑞0𝑦‖2

≤1

2
‖𝑞0𝑦𝜒(𝜆𝑦

𝛿

)‖2 + (1)
{
𝜎𝛿

𝜆4
‖√𝑢𝑠𝑞

0
𝑦𝑦‖2 + 𝜎2

𝜆4𝛿2
‖𝑢𝑠𝑞0𝑦‖2}.

Above, for the first term from (2.9), we used that in the support of the cut-off 𝜒(𝜆
𝛿
𝑦), one has

𝑦 ≤ 𝛿

𝜆
, so recalling (1.11) we obtain

𝑦𝜒

(
𝜆

𝛿
𝑦

)
≤ √

𝑦

√
𝛿

𝜆
𝜒

(
𝜆

𝛿
𝑦

)
≤

√
𝜎

𝜆
3

2

√
𝑢𝑠

√
𝛿√
𝜆
.

For the second term from (2.9), we have used

𝑦
𝜆

𝛿
𝜒′

(
𝜆

𝛿
𝑦

)
∼ 1 and 𝑢2𝑠 𝜒′

(
𝜆

𝛿
𝑦

)
≳

𝜆4𝛿2

𝜎2
𝜒′

(
𝜆

𝛿
𝑦

)
.

In summary, we have

‖𝑞0𝑦‖ ≲ 𝑜(1)‖𝑞0𝑦‖ + √
𝜎𝛿

𝜆2
‖√𝑢𝑠𝑞

0
𝑦𝑦‖ + 𝜎

𝜆2𝛿
‖𝑢𝑠𝑞0𝑦‖.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3163

We optimize above using 𝛿 = 𝜎1∕3 which gives:

‖𝑞0𝑦‖ ≲ 𝜎2∕3𝜆−2[[𝑞0]]. (2.10)

To conclude the proof, the 𝑞0 bound, (2.8), follows via integration

𝑞0 = ∫
𝑦

0

𝑞0𝑦 ≤ √
𝑦‖𝑞0𝑦‖ ≤ √

𝑦𝜎2∕3𝜆−2[[𝑞0]].

□

Lemma 2.3. The following estimates hold

‖𝑣0𝑦𝑦𝑦𝑤0‖ ≲ 𝜎1∕3𝜆−1[[[𝑣0]]], (2.11)

‖𝑣0𝑦‖ ≲ (𝜎−1∕3𝜆1∕2 + 1)[[𝑞0]] (2.12)

‖𝑣0𝑦𝑦‖ ≲

(
𝜆

3

2 𝜎
−

1

3 + 𝜆𝜎
−

1

3 + 1

)
[[𝑞0]]. (2.13)

Proof. Proof of (2.11): We again let 𝛿<<1 to be selected below, and localize to regions 𝜆𝑦 ≥ 𝛿 and
𝜆𝑦 ≤ 𝛿 by introducing the cutoff 𝜒(𝜆

𝛿
𝑦):

‖𝑣0𝑦𝑦𝑦𝑤0‖ ≤‖𝑣0𝑦𝑦𝑦𝑤0𝜒

(
𝜆

𝛿
𝑦

)‖ + ‖𝑣0𝑦𝑦𝑦𝑤0

{
1 − 𝜒

(
𝜆

𝛿
𝑦

)}‖
=‖𝑣0𝑦𝑦𝑦𝑤0𝜒

(
𝜆

𝛿
𝑦

)‖ + ‖ 1√
𝑢𝑠

√
𝑢𝑠𝑣

0
𝑦𝑦𝑦𝑤0

{
1 − 𝜒

(
𝜆

𝛿
𝑦

)}‖
≤‖𝑣0𝑦𝑦𝑦𝑤0𝜒

(
𝜆

𝛿
𝑦

)‖ + √
𝜎

𝜆
√
𝛿

‖‖‖‖‖√𝑢𝑠𝑣
0
𝑦𝑦𝑦𝑤0

{
1 − 𝜒

(
𝜆

𝛿
𝑦

)}‖‖‖‖‖
≲
‖‖‖‖‖𝑣0𝑦𝑦𝑦𝑤0𝜒

(
𝜆

𝛿
𝑦

)‖‖‖‖‖ +
√
𝜎

𝜆
√
𝛿

‖‖‖‖‖√𝑢𝑠𝑣
0
𝑦𝑦𝑦𝑤0

{
1 − 𝜒

(
𝜆

𝛿
𝑦

)}‖‖‖‖‖.
Above, we have used that 𝑢𝑠 ≳

𝜆2

𝜎
𝜆𝑦 ≳

𝜆2

𝜎
𝛿 on the region where 𝜆𝑦 ≥ 𝛿.

For the first integral above, we integrate by parts(
𝜕𝑦{𝐼𝑦[𝑤

2
0]}|𝑣0𝑦𝑦𝑦|2, 𝜒(𝜆

𝛿
𝑦

)2
)

= −

(
2𝐼𝑦[𝑤

2
0]𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦𝑦𝜒

(
𝜆

𝛿
𝑦

)2
)
−

(
𝐼𝑦[𝑤

2
0]|𝑣0𝑦𝑦𝑦|2, 𝜆𝛿𝜒′

(
𝜆

𝛿
𝑦

)
𝜒

(
𝜆

𝛿
𝑦

))
(2.14)

≲
𝛿

𝜆
‖√𝑢𝑠𝑣

0
𝑦𝑦𝑦𝜒

(
𝜆

𝛿
𝑦

)
𝑤0‖‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖ + 𝜎

𝜆2𝛿
‖√𝑢𝑠𝑣

0
𝑦𝑦𝑦𝑤0‖2.
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3164 GUO and IYER

In the first term of (2.14), we have used that 𝑦 ≤ 𝛿

𝜆
on the support of the cut-off function. For

the second term, we have used that |𝑦 𝜆

𝛿
| ≲ 1 on the support of 𝜒′(

𝜆

𝛿
𝑦). Moreover, we have used by

(1.11) that 𝑢𝑠 ≳
𝜆2𝛿

𝜎
when 𝜆𝑦 ≥ 𝛿. We thus take 𝛿 =

√
𝜆. We now optimize the constant 𝛿

𝜆
+

√
𝜎

𝜆
√
𝛿

with a choice of 𝛿 = 𝜎1∕3

Proof of (2.12): We have, upon recalling (2.8) and (1.11),

‖𝑣0𝑦‖ =‖{𝑢𝑠𝑞0}𝑦‖ ≤ ‖𝑢𝑠𝑦𝑞0‖ + ‖𝑢𝑠𝑞0𝑦‖
≤‖𝑢𝑠𝑦√𝑦‖∞𝜎2∕3𝜆−2[[𝑞0]] + [[𝑞0]]

≲

(
𝜆3

𝜎
𝜆−1∕2𝜎2∕3𝜆−2 + 1

)
[[𝑞0]]

≲(𝜎−1∕3𝜆1∕2 + 1)[[𝑞0]].

Proof of (2.13): We have, upon recalling (2.8) and (1.11),

‖𝑣0𝑦𝑦‖ ≤‖𝑢𝑠𝑦𝑦𝑞0‖ + 2‖𝑢𝑠𝑦𝑞0𝑦‖ + ‖𝑢𝑠𝑞0𝑦𝑦‖
≲‖𝑢𝑠𝑦𝑦√𝑦‖∞𝜎2∕3𝜆−2[[𝑞0]] + ‖𝑢𝑠𝑦‖∞𝜎2∕3𝜆−2[[𝑞0]] + [[𝑞0]]

≲

(
𝜆4

𝜎
𝜆−1∕2𝜎2∕3𝜆−2 +

𝜆3

𝜎
𝜎2∕3𝜆−2 + 1

)
[[𝑞0]]

=

(
𝜆

3

2 𝜎
−

1

3 + 𝜆𝜎
−

1

3 + 1

)
[[𝑞0]].

□

We will also need the following embedding results for later use:

Lemma 2.4. The following inequality is valid

𝜀
1

4 ‖𝑣0‖∞ ≤ 𝐶𝜆,𝜎[𝑢
0, 𝑣0]𝐵. (2.15)

Proof. We compute by Sobolev interpolation, Hardy’s inequality (as 𝑣0(0) = 0), and using
√
𝜀𝑦 =

𝑌,

‖𝑣0‖∞ ≤‖𝑣0
𝑦
‖ 1

2 ‖𝑦𝑣0𝑦‖ 1

2 ≲ ‖𝑣0𝑦‖ 1

2 ‖𝑦𝑣0𝑦‖ 1

2 ≲ ‖𝑣0𝑦‖ 1

2 ‖𝑦2𝑣0𝑦𝑦‖ 1

2

≲𝜀
−

1

4 ‖𝑣0𝑦‖ 1

2 ‖⟨𝑦⟩⟨𝑌⟩𝑣0𝑦𝑦‖ 1

2 ≲ 𝜀
−

1

4 [𝑢0, 𝑣0]𝐵. □

For later use, we shall record the following:

Corollary 2.5. For a constant 𝐶 = 𝐶𝜆,𝜎 depending on the parameters (𝜆, 𝜎),

[𝑢0, 𝑣0]𝐵 ≤ 𝐶𝜆,𝜎

(
[[𝑞0]] + [[[𝑣0]]]

)
+ 𝐶(ℎ). (2.16)
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2.2 Estimates for [[𝒒𝟎]] and [[[𝒗𝟎]]]

Define the following:

𝑎0 ∶=
3

2
𝑢𝑠𝑦𝑣𝑠 −

3

2
𝑢𝑠𝑣𝑠𝑦, 𝑎1 ∶=

1

2
𝑢𝑠𝑦𝑣𝑠𝑦𝑦 −

1

2
𝑢𝑠𝑦𝑦𝑦𝑣𝑠. (2.17)

Recall the estimates available on 𝑢𝑠, 𝑣𝑠 according to Theorem A.3.

Lemma 2.6. The following estimates are valid‖𝑢𝑠𝑦𝑦𝑦𝑦⟨𝑦⟩‖1 ≲ 𝜆4𝜎−1, (2.18)

‖𝑎0‖∞ + ‖𝑎1⟨𝑦⟩‖1 ≲ 𝜆4𝜎−1. (2.19)

Proof. We decompose the profiles

𝑢𝑠 = 𝑢̄0𝑝 + 𝑢̄0𝑒 +
√
𝜀𝑢𝑒 +

√
𝜀𝑢𝑝,

𝑣𝑠 = 𝑣0𝑝 + 𝑣1𝑒 +
√
𝜀𝑣𝑝 +

√
𝜀𝑣𝑒.

(2.20)

The quantities 𝑢𝑒, 𝑢𝑝, 𝑣𝑒, 𝑣𝑝 have been defined according to (1.6). The chief properties are that
𝑢𝑒, 𝑣𝑒 and 𝑢𝑝 decay rapidly in their arguments, whereas 𝑣𝑝 is bounded.
Using the decompositions (2.20), we have

‖𝑢𝑠𝑦𝑦𝑦𝑦⟨𝑦⟩‖1 ≤‖𝑢̄0𝑝𝑦𝑦𝑦𝑦⟨𝑦⟩‖1 + ‖𝜀2𝑢̄0𝑒𝑌𝑌𝑌𝑌⟨𝑦⟩‖1
+ ‖𝜀5∕2𝑢𝑒𝑌𝑌𝑌𝑌⟨𝑦⟩‖1 + ‖√𝜀𝑢𝑝𝑦𝑦𝑦𝑦⟨𝑦⟩‖1

≲𝜆4𝜎−1 +
√
𝜀.

Above, we have used the scaling

‖𝑢̄0𝑝𝑦𝑦𝑦𝑦⟨𝑦⟩‖1 =‖𝜕4𝑦{𝜆2

𝜎
𝑢𝑝(𝜎𝑥, 𝜆𝑦)

}⟨𝑦⟩‖1 = 𝜆6

𝜎
𝜆−2 =

𝜆4

𝜎
.

Recall the definition of 𝑎1 in (2.17). Recall further the expansions given in (2.20).

‖𝑣𝑠𝑢𝑠𝑦𝑦𝑦⟨𝑦⟩‖1 =‖[𝑣0𝑝 + 𝑣1𝑒 +
√
𝜀𝑣𝑝 +

√
𝜀𝑣𝑒]

× [𝑢̄0𝑝𝑦𝑦𝑦 + 𝜀3∕2𝑢̄0𝑒𝑌𝑌𝑌 + 𝜀2𝑢𝑒𝑌𝑌𝑌 +
√
𝜀𝑢𝑝𝑦𝑦𝑦]⟨𝑦⟩‖1

≤ ‖𝑣0𝑝𝑢̄0𝑝𝑦𝑦𝑦⟨𝑦⟩‖1 + ‖𝜀3∕2𝑣1𝑒 𝑢̄0𝑒𝑌𝑌𝑌⟨𝑦⟩‖1 +√
𝜀

≲ 𝜆4𝜎−1 +
√
𝜀.

Note above that

‖𝑣1𝑒 𝑢̄0𝑝𝑦𝑦𝑦⟨𝑦⟩‖1 ≤‖𝑣1𝑒 𝑢̄0𝑝𝑦𝑦𝑦⟨𝑦⟩𝜒(𝑌)‖1 + ‖𝑣1𝑒 𝑢̄0𝑝𝑦𝑦𝑦⟨𝑦⟩{1 − 𝜒(𝑌)}‖1
≲
√
𝜀‖𝑢̄0𝑝𝑦𝑦𝑦⟨𝑦⟩2‖1 + 𝜀∞,

since 𝑣1𝑒 ≲
√
𝜀 for 𝑌 ≲ 1 while 𝑢̄0𝑝𝑦𝑦 ≲ 𝜀∞ for 𝑌 ≳ 1.
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Next,

‖𝑢𝑠𝑦𝑣𝑠𝑦𝑦⟨𝑦⟩‖1 =‖[𝑢̄0𝑝𝑦 +√
𝜀𝑢̄0𝑒𝑌 + 𝜀𝑢𝑒𝑌 +

√
𝜀𝑢𝑝𝑦]

× [𝑣0𝑝𝑦𝑦 + 𝜀𝑣1𝑒𝑌𝑌 +
√
𝜀𝑣𝑝𝑦𝑦𝑦 + 𝜀3∕2𝑣𝑒𝑌𝑌]⟨𝑦⟩‖1

≲ ‖𝑢̄0𝑝𝑦𝑣0𝑝𝑦𝑦⟨𝑦⟩‖1 + ‖𝜀3∕2𝑢̄0𝑒𝑌𝑣1𝑒𝑌𝑌⟨𝑦⟩‖1 +√
𝜀

≲ 𝜆4𝜎−1 +
√
𝜀.

The above computations account for all of the terms in 𝑎1.
We move now to the pointwise bound of 𝑎0, from whose definition we obtain

|𝑎0| ≲ |𝑢𝑠𝑦𝑣𝑠| + |𝑢𝑠𝑣𝑠𝑦|
≲ |[𝑢̄0𝑝𝑦 +√

𝜀𝑢̄0𝑒𝑌 + 𝜀𝑢𝑒𝑌 +
√
𝜀𝑢𝑝𝑦]| × |[𝑣∥ + 𝑣1𝑒 +

√
𝜀𝑣𝑝 +

√
𝜀𝑣𝑒]|

≲ |𝑢̄0𝑝𝑦||𝑣0𝑝 + 𝑣1𝑒 | +√
𝜀

≲ 𝜆4𝜎−1 + |𝑢̄0𝑝𝑦𝑣1𝑒 |𝜒(𝑌) + |𝑢̄0𝑝𝑦𝑣1𝑒 |{1 − 𝜒(𝑌)}

≲ 𝜆4𝜎−1 +
√
𝜀 + 𝜀∞.

□

We will use these estimates to prove the following lemma.

Lemma 2.7. Let 𝑣0 be a solution to (2.1). Let 𝜎 << 1 in (1.11). Then the following estimate holds

[[𝑞0]]2 ≲ |(𝐹, 𝑞0)|. (2.21)

Proof. We use the expression in (1.27). First,

(𝑣0𝑦𝑦𝑦𝑦 − {𝑢2𝑠 𝑞
0
𝑦}𝑦, 𝑞

0) =(𝑢𝑠𝑞
0
𝑦𝑦, 𝑞

0
𝑦𝑦) + (𝑢2𝑠 𝑞

0
𝑦, 𝑞

0
𝑦) + (𝑢𝑠𝑦𝑞

0
𝑦, 𝑞

0
𝑦)𝑦=0

− 2(𝑢𝑠𝑦𝑦𝑞
0
𝑦, 𝑞

0
𝑦) +

1

2
(𝑢𝑠𝑦𝑦𝑦𝑦𝑞

0, 𝑞0) (2.22)

≳[[𝑞0]]2.

Above, we have used (1.11), (2.7), and (2.8) paired with (2.18) and (2.19) to estimate the last two
terms by

|(2.22.4)| + |(2.22.5)| ≲ 𝜆4

𝜎
(𝜎

2

3 𝜆−2[[𝑞0]])2 = 𝜎
1

3 [[𝑞0]]2 = 𝑜(1)[[𝑞0]]2,

upon invoking the assumption that 𝜎 << 1.
To prove the identity (2.22) we record

(𝑣0𝑦𝑦𝑦𝑦, 𝑞
0) = − (𝑣0𝑦𝑦𝑦, 𝑞

0
𝑦)

=(𝑣0𝑦𝑦, 𝑞
0
𝑦𝑦) + (𝑣0𝑦𝑦, 𝑞

0
𝑦)𝑦=0
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=(𝜕𝑦𝑦{𝑢𝑠𝑞
0}, 𝑞0𝑦𝑦) + (2𝑢𝑠𝑦𝑞

0
𝑦, 𝑞

0
𝑦)𝑦=0

=(𝑢𝑠𝑞
0
𝑦𝑦 + 2𝑢𝑠𝑦𝑞

0
𝑦 + 𝑢𝑠𝑦𝑦𝑞

0, 𝑞0𝑦𝑦) + (2𝑢𝑠𝑦𝑞
0
𝑦, 𝑞

0
𝑦)𝑦=0

=(𝑢𝑠𝑞
0
𝑦𝑦, 𝑞

0
𝑦𝑦) − (𝑢𝑠𝑦𝑦𝑞

0
𝑦, 𝑞

0
𝑦) − (𝑢𝑠𝑦𝑞

0
𝑦, 𝑞

0
𝑦)𝑦=0

− (𝑢𝑠𝑦𝑦𝑞
0
𝑦, 𝑞

0
𝑦) − (𝑢𝑠𝑦𝑦𝑦𝑞

0, 𝑞0𝑦) + (2𝑢𝑠𝑦𝑞
0
𝑦, 𝑞

0
𝑦)𝑦=0

=(𝑢𝑠𝑞
0
𝑦𝑦, 𝑞

0
𝑦𝑦) + (𝑢𝑠𝑦𝑞

0
𝑦, 𝑞

0
𝑦)𝑦=0 − (2𝑢𝑠𝑦𝑦𝑞

0
𝑦, 𝑞

0
𝑦) +

1

2
(𝑢𝑠𝑦𝑦𝑦𝑦𝑞

0, 𝑞0).

For the next term from (1.27), we record the integration by parts identity and estimate due to
(2.7), (2.8), and (2.19)

| − ({𝑣𝑠𝑣
0
𝑦𝑦𝑦 − 𝑣0𝑦𝑣𝑠𝑦𝑦}, 𝑞

0)| =|(𝑎0𝑞0𝑦, 𝑞0𝑦) + (𝑎1𝑞
0, 𝑞0)| (2.23)

≲ 𝜆4𝜎−1
(
𝜆−2𝜎

2

3 [[𝑞0]]

)2

=𝜎
1

3 [[𝑞0]]2 = 𝑜(1)[[𝑞0]]2,

upon invoking the assumption that 𝜎 << 1.
To prove the equality in (2.23), we record the following integrations by parts:

−(𝑣𝑠𝑣
0
𝑦𝑦𝑦, 𝑞

0) =(𝑣𝑠𝑦𝑣
0
𝑦𝑦, 𝑞

0) + (𝑣𝑠𝑣
0
𝑦𝑦, 𝑞

0
𝑦)

=(𝑣𝑠𝑦[𝑢𝑠𝑞
0
𝑦𝑦 + 2𝑢𝑠𝑦𝑞

0
𝑦 + 𝑢𝑠𝑦𝑦𝑞

0], 𝑞0)

+ (𝑣𝑠[𝑢𝑠𝑞
0
𝑦𝑦 + 2𝑢𝑠𝑦𝑞

0
𝑦 + 𝑢𝑠𝑦𝑦𝑞

0], 𝑞0𝑦)

= − ((𝑣𝑠𝑦𝑢𝑠)𝑦𝑞
0
𝑦, 𝑞

0) − (𝑢𝑠𝑣𝑠𝑦𝑞
0
𝑦, 𝑞

0
𝑦) − ((𝑢𝑠𝑦𝑣𝑠𝑦)𝑦𝑞

0, 𝑞0)

+ (𝑣𝑠𝑦𝑢𝑠𝑦𝑦𝑞
0, 𝑞0) −

1

2
((𝑢𝑠𝑣𝑠)𝑦𝑞

0
𝑦, 𝑞

0
𝑦) + 2(𝑢𝑠𝑦𝑣𝑠𝑞

0
𝑦, 𝑞

0
𝑦)

−
1

2
((𝑢𝑠𝑦𝑦𝑣𝑠)𝑦𝑞

0, 𝑞0)

=
1

2
((𝑣𝑠𝑦𝑢𝑠)𝑦𝑦𝑞

0, 𝑞0) − (𝑢𝑠𝑣𝑠𝑦𝑞
0
𝑦, 𝑞

0
𝑦) − ((𝑢𝑠𝑦𝑣𝑠𝑦)𝑦𝑞

0, 𝑞0)

+ (𝑣𝑠𝑦𝑢𝑠𝑦𝑦𝑞
0, 𝑞0) −

1

2
((𝑢𝑠𝑣𝑠)𝑦𝑞

0
𝑦, 𝑞

0
𝑦) + 2(𝑢𝑠𝑦𝑣𝑠𝑞

0
𝑦, 𝑞

0
𝑦)

−
1

2
((𝑢𝑠𝑦𝑦𝑣𝑠)𝑦𝑞

0, 𝑞0)

=
1

2
({𝑢𝑠𝑣𝑠𝑦𝑦𝑦 − 𝑣𝑠𝑢𝑠𝑦𝑦𝑦}𝑞

0, 𝑞0) +
3

2
({𝑢𝑠𝑦𝑣𝑠 − 𝑣𝑠𝑦𝑢𝑠}𝑞

0
𝑦, 𝑞

0
𝑦) (2.24)

We record the second integration by parts:

(𝑣𝑠𝑦𝑦𝑣
0
𝑦, 𝑞

0) =(𝑣𝑠𝑦𝑦𝑢𝑠𝑦𝑞
0, 𝑞0) + (𝑣𝑠𝑦𝑦𝑢𝑠𝑞

0
𝑦, 𝑞

0)

=(𝑣𝑠𝑦𝑦𝑢𝑠𝑦𝑞
0, 𝑞0) −

1

2
(𝜕𝑦{𝑢𝑠𝑣𝑠𝑦𝑦}𝑞

0, 𝑞0). (2.25)
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3168 GUO and IYER

Combining (2.24) and (2.25) with the definition of 𝑎0, 𝑎1 given in (2.17) proves the equality in
(2.23).
We now treat the final two terms in (1.27). First, we insert (2.8) to obtain

|(𝜀𝑢𝑠𝑥𝑥𝑢𝑠𝑞0, 𝑞0)| ≤(𝜀𝑢𝑖𝑝𝑥𝑥𝑢𝑠𝑞0, 𝑞0) + (𝜀3∕2𝑢𝑖𝑒𝑥𝑥𝑢𝑠𝑞
0, 𝑞0)

≲ (‖𝜀𝑢𝑖𝑝𝑥𝑥⟨𝑦⟩‖1 + 𝜀3∕2‖𝑢𝑖𝑒𝑥𝑥⟨𝑦⟩‖1)[[𝑞0]]2
≲
√
𝜀[[𝑞0]]2.

A similar estimate is available for the final term upon integrating by parts:

(𝜀𝑣𝑠𝑥𝑥𝑣
0
𝑦, 𝑞

0) =(𝜀𝑣𝑠𝑥𝑥𝑢𝑠𝑦𝑞
0, 𝑞0) + (𝜀𝑣𝑠𝑥𝑥𝑢𝑠𝑞

0
𝑦, 𝑞

0)

=(𝜀𝑣𝑠𝑥𝑥𝑢𝑠𝑦𝑞
0, 𝑞0) −

( 𝜀
2
𝜕𝑦{𝑣𝑠𝑥𝑥𝑢𝑠}𝑞

0, 𝑞0
)
.

The right-hand side clearly contributes |(𝐹, 𝑞0)|. This completes the proof. □

Lemma 2.8. Let 𝑣0 be a solution to (2.1). Then the following estimate holds

[[[𝑣0]]]2 ≲ [[𝑞0]]2 + ‖𝐹𝑤0‖2. (2.26)

Proof. We take the inner product of 𝑣0𝑦𝑦𝑦𝑦𝑤2
0 with (2.1). Clearly, the 𝑣0𝑦𝑦𝑦𝑦 term in  produces

coercivity over ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖2.
According to (2.1), the next term from  is

−(𝑢𝑠𝑣
0
𝑦𝑦, 𝑣

0
𝑦𝑦𝑦𝑦𝑤

2
0) =(𝑢𝑠𝑤

2
0𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦) + ({𝑢𝑠𝑤

2
0}𝑦𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦𝑦)

=(𝑢𝑠𝑤
2
0𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦) + (𝑢𝑠𝑦𝑤

2
0𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦𝑦) + (𝑢𝑠{𝑤

2
0}𝑦𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦𝑦)

=(𝑢𝑠𝑤
2
0𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦) + (𝑢𝑠𝑦𝑤

2
0𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦𝑦) −

1

2
(𝑢𝑠𝑦{𝑤

2
0}𝑦𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦)

−
1

2
(𝑢𝑠{𝑤

2
0}𝑦𝑦𝑣

0
𝑦𝑦, 𝑣

0
𝑦𝑦)

≳‖√𝑢𝑠𝑣
0
𝑦𝑦𝑦𝑤0‖2 − ‖𝑢𝑠𝑦𝑤0‖∞‖𝑣0𝑦𝑦‖‖𝑣0𝑦𝑦𝑦𝑤0‖

− ‖𝑢𝑠𝑦{𝑤2
0}𝑦‖∞‖𝑣0𝑦𝑦‖2 − ‖𝑢𝑠‖∞‖{𝑤2

0}𝑦𝑦𝑣
0
𝑦𝑦‖2

≳‖√𝑢𝑠𝑣
0
𝑦𝑦𝑦𝑤0‖2 − ‖𝑢𝑠𝑦𝑤0‖∞‖𝑣0𝑦𝑦‖‖𝑣0𝑦𝑦𝑦𝑤0‖

− ‖𝑢𝑠𝑦{𝑤2
0}𝑦‖∞‖𝑣0𝑦𝑦‖2 − 𝑜(1)‖𝑣0𝑦𝑦𝑤0‖2 − [[𝑞0]]2. (2.27)

The next term from  in (2.1) is 𝑢𝑠𝑦𝑦𝑣0, which we combine with 𝜀𝑢𝑠𝑥𝑥𝑣0 (the sixth term in  in
(2.1)) to produce 𝑣0Δ𝜀𝑢𝑠. We treat this via:

(𝑣0Δ𝜀𝑢𝑠, 𝑣
0
𝑦𝑦𝑦𝑦𝑤

2
0) =(Δ𝜀𝑢𝑠𝑢𝑠𝑞

0, 𝑣0𝑦𝑦𝑦𝑦𝑤
2
0)

=(𝑢𝑠𝑦𝑦𝑢𝑠𝑞
0, 𝑣0𝑦𝑦𝑦𝑦𝑤

2
0) + (𝜀𝑢𝑠𝑥𝑥𝑢𝑠𝑞

0, 𝑣0𝑦𝑦𝑦𝑦𝑤
2
0)

≤‖Δ𝜀𝑢𝑠𝑤0

√⟨𝑦⟩‖∞[[𝑞0]]‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖
≲ [[𝑞0]]‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖.
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Next, we integrate by parts, using that 𝑣𝑠𝑦|𝑦=0 = 0, to obtain

−(𝑣𝑠𝑣
0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦𝑦𝑤

2
0) =

1

2
(𝜕𝑦{𝑣𝑠𝑤

2
0}𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦𝑦)

= −
1

2
(𝜕𝑦𝑦{𝑣𝑠𝑤

2
0}𝑣

0
𝑦𝑦𝑦, 𝑣

0
𝑦𝑦) −

1

2
(𝜕𝑦{𝑣𝑠𝑤

2
0}𝑣

0
𝑦𝑦𝑦𝑦, 𝑣

0
𝑦𝑦)

≲ ‖𝜕𝑦𝑦{𝑣𝑠𝑤2
0}‖∞‖𝑣0𝑦𝑦𝑦‖‖𝑣0𝑦𝑦‖ + ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖‖𝑣0𝑦𝑦‖‖𝑣𝑠𝑦𝑤0 + 𝑣𝑠𝑤0𝑦‖∞

≲ 𝑜(1)[[[𝑣0]]]2 + [[𝑞0]]2.

Next, we arrive at

|(𝑣𝑠𝑦𝑦𝑣0𝑦, 𝑣0𝑦𝑦𝑦𝑦𝑤2
0)| ≤(‖𝑣𝑠𝑦𝑦𝑢𝑠𝑞0𝑦𝑤0‖ + ‖𝑣𝑠𝑦𝑦𝑢𝑠𝑦𝑞0𝑤0‖)‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖

≤(‖𝑣𝑠𝑦𝑦𝑤0‖∞‖𝑢𝑠𝑞0𝑦‖ + ‖𝑞0⟨𝑦⟩−1

2 ‖∞‖𝑣𝑠𝑦𝑦𝑢𝑠𝑦𝑤0‖)‖𝑣0𝑦𝑦𝑦𝑦𝑤‖
≲ [[𝑞0]][[[𝑣0]]].

Next, we arrive at

|(𝜀𝑣𝑠𝑥𝑥𝑣0𝑦, 𝑣0𝑦𝑦𝑦𝑤2
0)| =|(𝜀𝑣𝑠𝑥𝑥{𝑢𝑠𝑞0𝑦 + 𝑢𝑠𝑦𝑞

0}, 𝑣0𝑦𝑦𝑦𝑤
2
0)|

≤(√𝜀‖√𝜀𝑤0𝑣𝑠𝑥𝑥‖∞‖𝑢𝑠𝑞0𝑦‖ + 𝜀
1−

2 ‖𝑣𝑠𝑥𝑥𝑢𝑠𝑦𝑤0𝑦‖∞[[𝑞0]])‖𝑣0𝑦𝑦𝑦𝑤0‖
The remaining step is to absorb the 𝑜(1)‖𝑣0𝑦𝑦𝑤0‖ appearing above in (2.27). Thanks to the 𝑜(1)

factor, it suffices to rearrange (2.1) to obtain

‖𝑢𝑠𝑣0𝑦𝑦𝑤0‖ ≤‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖ + ‖𝐹𝑤0‖ + ‖𝑢𝑠𝑦𝑦𝑤0⟨𝑦⟩‖‖ 𝑣0⟨𝑦⟩‖ + ‖𝑣𝑠𝑣0𝑦𝑦𝑦𝑤0‖
+ ‖𝑣𝑠𝑦𝑦𝑤0‖∞‖𝑣0𝑦‖ + ‖𝜀𝑢𝑠𝑥𝑥𝑤0⟨𝑦⟩‖∞‖ 𝑣0⟨𝑦⟩‖ + ‖𝜀𝑣𝑠𝑥𝑥𝑤0‖∞‖𝑣0𝑦‖

≲ ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦𝑦𝑦𝑤0‖ + ‖𝐹𝑤0‖ + [[𝑞0]]

≲ [[[𝑣0]]] + ‖𝐹𝑤0‖ + [[𝑞0]].

To conclude the proof, the right-hand side clearly contributes |(𝐹, 𝑣0𝑦𝑦𝑦𝑦𝑤2
0)| ≲‖𝐹𝑤0‖‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖. □

2.3 Existence and uniqueness

We now establish existence and uniqueness for the system (2.1). First, consider the operator:

0𝑣
0 = 𝐹, 𝑣0(0) = 𝑣0𝑦(0) = 𝜕𝑘𝑦𝑣

0(∞) = 0 for 𝑘 ≥ 1,

0𝑣
0 ∶= 𝑣0𝑦𝑦𝑦𝑦 − 𝑢∞

∥
𝑣0𝑦𝑦.

(2.28)
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3170 GUO and IYER

Lemma 2.9. Assume 𝐹 ∈ 𝐶∞
0 . There exists a unique solution 𝑣0 to the problem (2.28). Moreover,

𝑣0 is given by the expression 𝑣0 = 𝐶1 + 𝐶2𝑒
−
√

𝑢∞
∥
𝑦
+ 𝑢𝑝[𝐹], where 𝑢𝑝[𝐹] is the particular solution

defined below.

Proof. The characteristic equation is 𝑟4 − 𝑢∞
∥
𝑟2 = 0. The roots thus correspond to the basis

solutions {𝑣01, 𝑣
0
2, 𝑣

0
3, 𝑣

0
4} ∶= {1, 𝑦, 𝑒𝑟𝑦, 𝑒−𝑟𝑦} where 𝑟 =

√
𝑢∞
∥
.

𝐖(𝑦) =

⎡⎢⎢⎢⎢⎢⎣

1 𝑦 𝑒𝑟𝑦 𝑒−𝑟𝑦

0 1 𝑟𝑒𝑟𝑦 −𝑟𝑒−𝑟𝑦

0 0 𝑟2𝑒𝑟𝑦 𝑟2𝑒−𝑟𝑦

0 0 𝑟3𝑒𝑟𝑦 −𝑟3𝑒−𝑟𝑦

⎤⎥⎥⎥⎥⎥⎦
𝐖1(𝑦) =

⎡⎢⎢⎢⎢⎢⎣

0 𝑦 𝑒𝑟𝑦 𝑒−𝑟𝑦

0 1 𝑟𝑒𝑟𝑦 −𝑟𝑒−𝑟𝑦

0 0 𝑟2𝑒𝑟𝑦 𝑟2𝑒−𝑟𝑦

𝐹 0 𝑟3𝑒𝑟𝑦 −𝑟3𝑒−𝑟𝑦

⎤⎥⎥⎥⎥⎥⎦
𝐖2(𝑦) =

⎡⎢⎢⎢⎢⎢⎣

1 0 𝑒𝑟𝑦 𝑒−𝑟𝑦

0 0 𝑟𝑒𝑟𝑦 −𝑟𝑒−𝑟𝑦

0 0 𝑟2𝑒𝑟𝑦 𝑟2𝑒−𝑟𝑦

0 𝐹 𝑟3𝑒𝑟𝑦 −𝑟3𝑒−𝑟𝑦

⎤⎥⎥⎥⎥⎥⎦
𝐖3(𝑦) =

⎡⎢⎢⎢⎢⎢⎣

1 𝑦 0 𝑒−𝑟𝑦

0 1 0 −𝑟𝑒−𝑟𝑦

0 0 0 𝑟2𝑒−𝑟𝑦

0 0 𝐹 −𝑟3𝑒−𝑟𝑦

⎤⎥⎥⎥⎥⎥⎦
𝐖4(𝑦) =

⎡⎢⎢⎢⎢⎢⎣

1 𝑦 𝑒𝑟𝑦 0

0 1 𝑟𝑒𝑟𝑦 0

0 0 𝑟2𝑒𝑟𝑦 0

0 0 𝑟3𝑒𝑟𝑦 𝐹

⎤⎥⎥⎥⎥⎥⎦
Let𝑊(𝑦) = |𝐖| and𝑊𝑖(𝑦) = |𝐖𝑖|. Define

𝑐𝑖[𝐹](𝑦) = −∫
∞

𝑦

𝑊𝑖(𝑧)

𝑊(𝑧)
d𝑧

As 𝐹 has compact support, it is clear that 𝑐𝑖 and its derivatives decay rapidly at 𝑦 = ∞. The
full solution is thus given by 𝑣0 = 𝐶1 + 𝐶2𝑒

−𝑟𝑦 + 𝑢𝑝[𝐹], where 𝑢𝑝[𝐹] is the particular solution
𝑢𝑝[𝐹] ∶=

∑
𝑐𝑖[𝐹]𝑣

0
𝑖
. We achieve the boundary conditions by solving 𝐶1 + 𝐶2 + 𝑢𝑝[𝐹](0) = 0 and

𝐶1 − 𝑟𝐶2 + 𝜕𝑦𝑢𝑝[𝐹](0) = 0. □

We now quantify the space in which 𝑣0 lives. To do so, define

‖𝑣0‖𝑇 ∶= ‖𝑣0𝑦𝑦𝑦𝑦‖ + ‖𝑣0𝑦𝑦𝑦‖ + ‖𝑣0𝑦𝑦‖ + ‖𝑣0𝑦‖ + ‖𝑣0
𝑦
‖,

‖𝑣0‖𝑇𝑠 ∶= ‖𝑣0𝑦𝑦𝑦𝑦𝑒𝑠𝑦‖ + ‖𝑣0𝑦𝑦𝑦𝑒𝑠𝑦‖ + ‖𝑣0𝑦𝑦𝑒𝑠𝑦‖ + ‖𝑣0𝑦‖,
‖𝑣0‖𝑇̃ ∶= ‖𝑣0𝑦𝑦𝑦‖ + ‖𝑣0𝑦𝑦‖ + ‖𝑣0𝑦‖ + ‖𝑣0

𝑦
‖

Lemma 2.10. Let 𝐹 ∈ 𝐶∞
0 . Then 𝑣

0 ∈ 𝑇, 𝑇𝑠 and the following estimate is valid

‖𝑣0‖𝑇 ≲ ‖𝐹𝑤0‖, and ‖𝑣0‖𝑇𝑠 ≲ ‖𝐹𝑒𝑠𝑦‖,
for 0 < 𝑠 < 𝑟.
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Proof. We square and integrate the equation ‖0𝑣
0‖2 = ‖𝐹‖2. It is immediate to see that

‖0𝑣
0‖2 = ‖𝑣0𝑦𝑦𝑦𝑦‖2 + 2𝑢∞

∥
‖𝑣0𝑦𝑦𝑦‖2 + |𝑢∞

∥
|2‖𝑣0𝑦𝑦‖2 + 2𝑢∞

∥
𝑣0𝑦𝑦(0)𝑣

0
𝑦𝑦𝑦(0).

Next, one takes inner product with 𝑣0 to obtain control over ‖𝑣0𝑦‖2 + ‖𝑣0𝑦𝑦‖2, whereas on the
right hand side one uses Hardy inequality via |(𝐹, 𝑣0)| ≲ ‖𝐹⟨𝑦⟩‖‖𝑣0𝑦‖. Wemay repeat the first step
with weights 𝑒𝑠𝑦, and all integrations by parts are justified since 𝑠 < 𝑟. □

We now remove the compact support assumption on 𝐹.

Lemma 2.11. Let 𝐹 ∈ 𝐿2(𝑤0). Then there exists a solution 𝑣0 ∈ 𝑇 satisfying ‖𝑣0‖𝑇 ≲ ‖𝐹𝑤0‖. Let
𝐹 ∈ 𝐿2(𝑒𝑠𝑦). Then 𝑣0 ∈ 𝑇𝑠 satisfying the estimate ‖𝑣0‖𝑇𝑠 ≲ ‖𝐹𝑒𝑠𝑦‖.
Proof. This follows from a straightforward density argument. □

The final step is to add on the perturbations from  to 0. To do so, write  = 0 + 𝐾, where

𝐾𝑣0 = (𝑢𝑠 − 𝑢∞𝑠 )𝑣0𝑦𝑦 − 𝑢𝑠𝑦𝑦𝑣
0 − 𝑣𝑠𝑣

0
𝑦𝑦𝑦 − 𝑣𝑠𝑦𝑦𝑣

0
𝑦 − 𝜀𝑢𝑠𝑥𝑥𝑣

0 + 𝜀𝑣𝑠𝑥𝑥𝑣
0
𝑦

Lemma 2.12. Let 𝐹 ∈ 𝐿2(𝑤0). Assume the operator  satisfies the a-priori bound ‖𝑣0𝑤0‖ ≳‖𝑣0‖𝑇 . Then there exists a unique solution 𝑣0 ∈ 𝑇 which satisfies the bound ‖𝑣0‖𝑇 ≲ ‖𝐹𝑤0‖.
Proof. We note first that −1

0 𝐾 is a compact operator on 𝑇̃. Indeed, letting 𝑣0 ∈ 𝑇̃, we see that
𝐾𝑣0 ∈ 𝐿2𝑒𝑠𝑦 for some 0 < 𝑠. Thus, wemay apply−1

0 which brings−1
0 𝐾𝑣0 into 𝑇𝑠, which is com-

pactly embedded in 𝑇̃. We thus apply the Fredholm alternative so that wemust rule out nontrivial
solutions to the homogeneous problem 0𝑣

0 = −𝐾𝑣0. Since 𝑣0 ∈ 𝑇̃, we bootstrap to conclude
𝑣0 ∈ 𝑇𝑠. We may subsequently apply the assumed a-priori bound on  to conclude that 𝑣0 = 0 is
the only solution. □

Proof of Proposition 2.1. Estimate (2.6) is obtained by combining (2.16) with (2.21) and (2.26).
Together with Lemma 2.12 (whose hypotheses are verified by estimate (2.6)), this concludes the
proof of the proposition. □

3 FORMULATION OF DNS

3.1 Solvability of DNS

The main object of study in this section, motivated by (A.27), will be the following system:

− 𝜕𝑥𝑅[𝑞] + Δ2
𝜀𝑣 + 𝐽(𝑣) = 𝐹

𝑣𝑥𝑥𝑥|𝑥=𝐿 = 𝑣𝑥|𝑥=𝐿 = 0 and 𝑣|𝑥=0 = 𝑣𝑥𝑥|𝑥=0 = 0,

𝑣|𝑦=0 = 𝑣𝑦|𝑦=0 = 𝑣|𝑦↑∞ = 0

(3.1)

The above 𝐹 serves as an abstract forcing for this section. Recall the definition of 𝑅[𝑞] given in
(1.13), and of 𝐽(𝑣) given in (1.29).
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3172 GUO and IYER

Recall that 𝑞 =
𝑣

𝑢𝑠
from (1.13). Define:

𝑢̃ ∶= 𝑢 − 𝑢0 = ∫
𝑥

0

−𝑣𝑦(𝑥
′, 𝑦) d𝑥′ ∶= 𝐼𝑥[−𝑣𝑦]. (3.2)

We will record now identities regarding the boundary conditions for 𝑞:

𝑞𝑥|𝑥=𝐿 = −
𝑢𝑠𝑥
𝑢𝑠

𝑞|𝑥=𝐿, 𝑞𝑥𝑥|𝑥=0 = −2
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑥|𝑥=0. (3.3)

Define our ambient function space via:

𝐻4
0 ∶=

{
𝑣 ∈ 𝐻4 ∶ (3.1) is satisfied.

}
Wewant to establish existence for 𝑣 as a solution to the system (3.1). We will define now several

function spaces which will enable us to state the existence theorem.

Definition 3.1 (Function Spaces). Fix any weight, 𝑤(𝑦) ∈ 𝐶∞(ℝ+).

‖𝑣‖𝐿2(𝑤) ∶= ‖𝑣 ⋅ 𝑤‖, ‖𝑣‖𝐻̇𝑘
𝜀 (𝑤)

∶= ‖∇𝑘
𝜀 𝑣‖𝐿2(𝑤), ‖𝑣‖𝐻𝑘

𝜀 (𝑤)
∶= sup

0≤𝑗≤𝑘
‖𝑣‖

𝐻̇
𝑗
𝜀 (𝑤)

,

‖𝑣‖𝐻̇4
𝜀,𝑑
(𝑤) = ‖{𝑣𝑦𝑦𝑦𝑦, 𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀 32 𝑣𝑥𝑥𝑥𝑦, 𝜀2𝑣𝑥𝑥𝑥𝑥} ⋅ 𝑤‖ + ‖√𝑢𝑠

√
𝜀𝑣𝑥𝑦𝑦𝑦 ⋅ 𝑤‖,

‖𝑣‖𝐻4
𝜀,𝑑
(𝑤) = ‖𝑣‖𝐻̇4

𝜀,𝑑
(𝑤) + ‖𝑣‖𝐻3

𝜀 (𝑤)
.

We adopt the convention that ‖𝑣‖𝐻0
𝜀 (𝑤)

∶= ‖√𝜀𝑣 ⋅ 𝑤‖, and that when 𝑤 is left unspecified,
𝑤 = 1. The relevant class of test functions is 𝐶∞

𝑉 ∶= {𝜙 ∈ 𝐶∞ ∶ 𝜙(0) = 0 and 𝜕𝑥𝜙 = 0 in a neigh-
borhood of 𝑥 = 0, and are compactly supported in 𝑦}. The following spaces are defined:𝐻2

𝜀 (𝑤) ∶=

𝐶∞
𝑉

‖⋅‖
𝐻2
𝜀 (𝑤) , and 𝑋𝑤 ∶= {𝑣 ∈ 𝐻4

𝜀 ∶ ‖𝑣‖𝑋𝑤
< ∞}, where ‖ ⋅ ‖𝑋𝑤

has been defined in (1.22).

We now define notation for several operators:

𝐽0(𝑣) ∶= 𝜕𝑥(−[𝑢𝑠 − 𝑢𝑠(∞)]𝑣𝑦𝑦 + 𝑢𝑠𝑦𝑦𝑣) + 𝜀𝜕𝑥(−[𝑢𝑠 − 𝑢𝑠(∞)]𝑣𝑥𝑥

+ 𝑢𝑠𝑥𝑥𝑣) + 𝜕𝑥(𝑣𝑠(𝐼𝑥[−𝑣𝑦𝑦𝑦] − 𝜀𝑣𝑥𝑦) − 𝐼𝑥[−𝑣𝑦]Δ𝜀𝑣𝑠) (3.4)

𝑁(𝑣) ∶= Δ2
𝜀𝑣 − 𝑢𝑠(∞)𝜒

( 𝑦

𝑁

)
Δ𝜀𝑣𝑥, (𝑣) ∶= ∞(𝑣). (3.5)

We now prove the following result, where ‖𝑣‖𝑋1
, ‖𝑣‖𝑌𝑤0

are defined in (1.22):

Proposition 3.2. Assume 𝑣 ∈ 𝐻4 satisfies the a-priori estimate:

‖𝑣‖𝑋1
≲ 𝐶𝜀‖𝐹‖ and ‖𝑣‖𝑌𝑤0

≲ 𝐶𝜀‖𝐹𝑤0‖ (3.6)

for solutions 𝑣 ∈ 𝑋1 ∩ 𝑌𝑤0
to (3.7).
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Then there exists a unique solution 𝑣 ∈ 𝑋1 ∩ 𝑌𝑤0
to the problem:

Δ2
𝜀𝑣 − 𝜕𝑥𝑅[𝑞] + 𝐽(𝑣) = 𝐹,

𝑣𝑥|𝑥=𝐿 = 𝑣𝑥𝑥𝑥|𝑥=𝐿 = 0, 𝑣|𝑥=0 = 𝑣𝑥𝑥|𝑥=0 = 0,

𝑣|𝑦=0 = 𝑣𝑦|𝑦=0 = 0, 𝑣|𝑦→∞ = 0.

(3.7)

The first step is to invert the highest-order operator, Δ2
𝜀 . In so doing, the first point is the

existence of a finite-energy solution:

Lemma 3.3. Given 𝐹 ∈ 𝐿2, there exists a unique𝐻4
𝜀 solution to Δ2

𝜀𝑣 = 𝐹 with boundary conditions
from (3.7). Moreover, for any 𝑤 satisfying |𝜕𝑘𝑦𝑤| ≲ |𝑤|, this 𝑣 satisfies the following estimates:

‖{𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀
3

2 𝑣𝑥𝑥𝑥𝑦, 𝜀
2𝑣𝑥𝑥𝑥𝑥

}
𝑤‖2 − 𝜀|||𝑞|||2𝑤 ≲ |(𝐹, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤)|, (3.8)

‖{√
𝜀𝑣𝑥𝑦𝑦𝑦, 𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀

3

2 𝑣𝑥𝑥𝑥𝑦

}√
𝑢𝑠𝑤‖2 − 𝜀|||𝑞|||21 (3.9)

− |||𝑞|||2√
𝜀𝑤

≲ |(𝐹, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤)|.
Proof. Fix 𝑓𝑚 ∈ 𝐶∞

𝐶
such that ‖𝐹 − 𝑓𝑚‖ 𝐿2

%%→ 0. Let 𝑓𝑚 denote the even extension over 𝑥 = 𝐿,
which satisfies 𝑓𝑚(0) = 𝑓𝑚(2𝐿) = 0. Wemay now expand 𝑓𝑚 periodically in a Fourier sine series:
𝑓𝑚 =

∑
𝑛
sin(𝑛

𝜋

2𝐿
𝑥). Since 𝑓 is even across 𝑥 = 𝐿, only the 𝑛-odd coefficients remain. We now

solve the equation Δ2
𝜀𝑣

𝑚 = 𝑓𝑚 on ℍ. Thus:

𝑓𝑚 =
∑
𝑛 odd

𝑓𝑚𝑛 (𝑦) sin
(
𝑛
𝜋

2𝐿
𝑥
)
, 𝑣𝑚 =

∑
𝑛 odd

𝑣𝑚𝑛 (𝑦) sin
(
𝑛
𝜋

2𝐿
𝑥
)
.

We thus obtain the following ODEs:

(𝑣𝑚𝑛 )
′′′′ − 2𝜀

( 𝜋

2𝐿

)2
𝑛2(𝑣𝑚𝑛 )

′′ + 𝜀2𝑛4
( 𝜋

2𝐿

)4
(𝑣𝑚𝑛 ) = 𝑓𝑚𝑛 for 𝑛 ≠ 0 and 𝑛 odd. (3.10)

Note that 𝑓𝑚𝑛=0 = 0 since 𝑓𝑚 is odd. For each fixed 𝑛, we solve the above ODE using Lax
Milgram. Precisely, define the bilinear form:

𝐵𝑛[𝑣, 𝜙] ∶= (𝑣′′, 𝜙′′) − 2𝜀
( 𝜋

2𝐿

)2
(𝑛𝑣′, 𝑛𝜙′) + 𝜀2

( 𝜋

2𝐿

)4
(𝑛2𝑣, 𝑛2𝜙) ∶ 𝐻2

𝑦 × 𝐻2
𝑦 → ℝ.

First, for 𝑛 ≠ 0, 𝐵𝑛 is coercive over 𝐻2
𝑦 since 𝐵𝑛[𝑣, 𝑣] = |𝑣′′| + 2𝜀(

𝜋

2𝐿
)2𝑛2|𝑣′|2 + 𝜀2(

𝜋

2𝐿
)4𝑛2|𝑣|2.

Similarly, 𝐵𝑛 is bounded on 𝐻2
𝑦 × 𝐻2

𝑦 . Summing in 𝑛 yields the estimate ‖𝑣𝑚‖𝐻2
𝜀
≲ ‖𝑓𝑚‖.

We now estimate ‖𝑣𝑚𝑥𝑦𝑦𝑦‖. Integration by parts in 𝑦 and appealing to the trace theorem in ℝ+

produces:

𝑛2‖(𝑣𝑚𝑛 )𝑦𝑦𝑦‖2 =(𝑛2𝑣𝑛𝑦𝑦, 𝑣𝑛𝑦𝑦𝑦𝑦) +(
𝑛

1

2 𝑣𝑛𝑦𝑦𝑦(0), 𝑛
3

2 𝑣𝑛𝑦𝑦(0)

)
≤‖𝑛2𝑣𝑛𝑦𝑦‖‖𝑣𝑛𝑦𝑦𝑦𝑦‖ + |𝑛 1

2 𝑣𝑛𝑦𝑦𝑦(0)||𝑛 3

2 𝑣𝑛𝑦𝑦(0)|
≤‖𝑛2𝑣𝑛𝑦𝑦‖‖𝑣𝑛𝑦𝑦𝑦𝑦‖ + ‖𝑛𝑣𝑛𝑦𝑦𝑦‖ 1

2 ‖𝑣𝑛𝑦𝑦𝑦𝑦‖ 1

2 ‖𝑛2𝑣𝑛𝑦𝑦‖ 1

2 ‖𝑛𝑣𝑛𝑦𝑦𝑦‖ 1

2 .
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3174 GUO and IYER

Taking summation over 𝑛 gives and applying Young’s inequality for products with exponents
1

4
+

1

(4∕3)
= 1:

‖𝑣𝑚𝑥𝑦𝑦𝑦‖2 ≲ ‖𝑣𝑚𝑥𝑥𝑦𝑦‖‖𝑣𝑚𝑦𝑦𝑦𝑦‖ + ‖𝑣𝑚𝑥𝑦𝑦𝑦‖ 1

2 ‖𝑣𝑚𝑦𝑦𝑦𝑦‖ 1

2 ‖𝑣𝑚𝑥𝑥𝑦𝑦‖ 1

2 ‖𝑣𝑚𝑥𝑦𝑦𝑦‖ 1

2

≲ ‖𝑣𝑚𝑥𝑥𝑦𝑦‖‖𝑣𝑚𝑦𝑦𝑦𝑦‖ + 𝜅

(‖𝑣𝑚𝑥𝑦𝑦𝑦‖ 1

2

)4

+ 𝑁𝜅

(‖𝑣𝑚𝑦𝑦𝑦𝑦‖ 1

2 ‖𝑣𝑚𝑥𝑥𝑦𝑦‖ 1

2 ‖𝑣𝑚𝑥𝑦𝑦𝑦‖ 1

2

) 4

3

.

Multiplying by 𝑣𝑚𝑥𝑥𝑥𝑥 produces the bound: ‖𝜀𝑣𝑚𝑥𝑥𝑦𝑦, 𝜀 32 𝑣𝑚𝑥𝑥𝑥𝑦, 𝜀2𝑣𝑚𝑥𝑥𝑥𝑥‖2 ≲ ‖𝑓𝑚‖2. We use the
equation to estimate ‖𝑣𝑚𝑦𝑦𝑦𝑦‖. This then concludes the full 𝐻4

𝜀 bound.
That 𝑣𝑚 is in 𝐶∞(ℍ) follows by multiplying (3.10) by factors of 𝑛𝑗 , summing in 𝑛, and using

that 𝑓𝑚 is smooth to ensure summability of the right-hand side
∑

𝑛
𝑛2𝑗‖𝑓𝑚𝑛 ‖2 < ∞.

That 𝑣𝑚(0) = 𝑣𝑚𝑥𝑥(0) = 0 is guaranteed by the fact that 𝑣𝑚 is a Fourier sine series and 𝑣𝑚𝑥 (𝐿) =
𝑣𝑚𝑥𝑥𝑥(𝐿) = 0 is guaranteed by the fact that only odd 𝑛 coefficients are nonzero.
We turn now to the estimate (3.8). Integrating by parts produces:

(Δ2
𝜀 𝑣

𝑚, 𝜀2𝑣𝑚𝑥𝑥𝑥𝑥𝑤
2) = ‖{𝜀𝑣𝑚𝑥𝑥𝑦𝑦, 2𝜀 32 𝑣𝑚𝑥𝑥𝑥𝑦, 𝜀2𝑣𝑚𝑥𝑥𝑥𝑥}𝑤‖2

− 4‖𝜀𝑣𝑚𝑥𝑥𝑦√(|𝑤𝑦|2 + 𝑤𝑤𝑦𝑦)‖2 + ‖𝜀𝑣𝑚𝑥𝑥√(𝜕𝑦𝑦{𝑤𝑤𝑦𝑦} + 𝜕𝑦𝑦{|𝑤𝑦|2})‖2
− 2‖𝜀 32 𝑣𝑚𝑥𝑥𝑥√(|𝑤𝑦|2 + 𝑤𝑤𝑦𝑦)‖2.

On the right-hand side, we have (𝑓𝑚, 𝜀2𝑣𝑚𝑥𝑥𝑥𝑥𝑤2). As 𝑓𝑚 → 𝑓 in 𝐿2, and 𝑣𝑚𝑥𝑥𝑥𝑥 ⇀ 𝑣𝑥𝑥𝑥𝑥 weakly
in 𝐿2, we may pass to the limit in the inner product. From here, (3.8) follows immediately.
We turn now to (3.9): We integrate by parts the Δ2

𝜀 terms:

(Δ2
𝜀 𝑣

𝑚, 𝜀𝑣𝑚𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2) = − (𝜀𝑣𝑚𝑥𝑦𝑦𝑤

2, 𝜕𝑥{𝑢𝑠𝑣
𝑚
𝑦𝑦𝑦𝑦}) + 2‖𝜀𝑣𝑚𝑥𝑥𝑦𝑦√𝑢𝑠𝑤‖2

− (𝜀3𝑣𝑚𝑥𝑥𝑥𝑤
2, 𝜕𝑥{𝑢𝑠𝑣

𝑚
𝑥𝑥𝑦𝑦})

= − (𝜀𝑢𝑠𝑣
𝑚
𝑥𝑦𝑦, 𝑣

𝑚
𝑥𝑦𝑦𝑦𝑦𝑤

2) − (𝜀𝑢𝑠𝑥𝑣
𝑚
𝑥𝑦𝑦, 𝑣

𝑚
𝑦𝑦𝑦𝑦𝑤

2)

+ 2‖𝜀𝑣𝑚𝑥𝑥𝑦𝑦√𝑢𝑠𝑤‖2 − (𝜀3𝑢𝑠𝑥𝑣
𝑚
𝑥𝑥𝑥, 𝑣

𝑚
𝑥𝑥𝑦𝑦𝑤

2)

− (𝜀3𝑢𝑠𝑣
𝑚
𝑥𝑥𝑥, 𝑣

𝑚
𝑥𝑥𝑥𝑦𝑦𝑤

2)

=‖√𝜀𝑣𝑚𝑥𝑦𝑦𝑦𝑤
√
𝑢𝑠‖2 + (𝜀𝑣𝑚𝑥𝑦𝑦𝑦, 𝑣

𝑚
𝑥𝑦𝑦𝜕𝑦{𝑤

2𝑢𝑠})

+ (𝜀𝑣𝑚𝑦𝑦𝑦, 𝑣
𝑚
𝑥𝑦𝑦𝑦𝑤

2𝑢𝑠𝑥) + (𝜀𝑣𝑚𝑦𝑦𝑦, 𝑣
𝑚
𝑥𝑦𝑦𝜕𝑦{𝑤

2𝑢𝑠𝑥})

+ 2‖𝜀𝑣𝑚𝑥𝑥𝑦𝑦√𝑢𝑠𝑤‖2 + (𝜀3𝑢𝑠𝑥𝑣
𝑚
𝑥𝑥𝑦, 𝑣

𝑚
𝑥𝑥𝑥𝑦𝑤

2)

+ (2𝜀3𝑢𝑠𝑥𝑣
𝑚
𝑥𝑥𝑦, 𝑣

𝑚
𝑥𝑥𝑥𝑤𝑤𝑦) + (𝜀3𝑢𝑠𝑥𝑦𝑣

𝑚
𝑥𝑥𝑦, 𝑣

𝑚
𝑥𝑥𝑥𝑤

2)

+ ‖𝜀 32√𝑢𝑠𝑣
𝑚
𝑥𝑥𝑥𝑦𝑤‖2 + (𝜀3𝑢𝑠𝑦𝑣

𝑚
𝑥𝑥𝑥, 𝑣

𝑚
𝑥𝑥𝑥𝑦𝑤

2)

+ (2𝜀3𝑢𝑠𝑣
𝑚
𝑥𝑥𝑥, 𝑣

𝑚
𝑥𝑥𝑥𝑦𝑤𝑤𝑦)
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≳|√𝑢𝑠{
√
𝜀𝑣𝑚𝑥𝑦𝑦𝑦, 2𝜀𝑣

𝑚
𝑥𝑥𝑦𝑦, 𝜀

3

2 𝑣𝑚𝑥𝑥𝑥𝑦}𝑤‖2 − 𝜀|||𝑞𝑚|||21
− |||𝑞𝑚|||2√

𝜀𝑤

We have used the bound |𝑤𝑦| ≲ |𝑤| and Young’s inequality for products to perform the above
estimate. We again pass to the limit as𝑚 → ∞ in the same manner as for (3.8). □

Lemma 3.4. Let 𝐹 ∈ 𝐿2(⟨𝑦⟩𝑚) for some 1 ≤ 𝑚 < ∞. Then ‖𝑣‖𝐻4
𝜀,𝑑
(⟨𝑦⟩𝑚) ≤ 𝐶𝜀‖𝐹‖𝐿2(⟨𝑦⟩𝑚). In

particular, in the case when 𝐹 ∈ 𝐿2 ∩ 𝐿2(𝑤0), 𝑣 = (Δ2
𝜀 )
−1𝐹 ∈ 𝑋1 ∩ 𝑌𝑤0

.

Proof. This follows from standard polynomial-type weighted estimates, and we omit the
proof. □

We will now study the perturbation in two steps.

Lemma 3.5. The map−1 ∶ 𝐿2 → 𝐻4 is well-defined.

Proof. Consider the map 𝑁(𝑣) = 𝐹 ∈ 𝐿2. By calling 𝑣0 = Δ2
𝜀𝑣, we may rewrite the equa-

tion as 𝑣0 + 𝜒𝑁(𝑦)𝑢𝑠(∞)Δ𝜀Δ
−2
𝜀 𝑣0 = 𝐹. We will study this as an equality in 𝐿2, and it is clear that

𝜒𝑁(𝑦)𝑢𝑠(∞)Δ𝜀Δ
−2
𝜀 is a compact operator on 𝐿2 due to the cutoff function. Therefore, by the Fred-

holm alternative, to establish solvability of 𝑁 , we must prove uniqueness of the homogeneous
solution. This follows by performing an energy estimate:

(Δ2
𝜀 𝑣𝑥, 𝑣𝑥𝑥) − 𝑢𝑠(∞)(𝜒𝑁(𝑦)Δ𝜀𝑣𝑥, 𝑣𝑥𝑥) = (𝐹, 𝑣𝑥𝑥)

The Bilaplacian term produces the quantities −‖𝑣𝑥𝑦𝑦, 2√𝜀𝑣𝑥𝑥𝑦, 𝜀𝑣𝑥𝑥𝑥‖2.
Next, assuming 𝑁 = 𝜀−∞, we have:

−𝑢𝑠(∞)(𝜒𝑁Δ𝜀𝑣𝑥, 𝑣𝑥𝑥) = −
𝑢𝑠(∞)

2
[|𝑣𝑥𝑦(0)√𝜒𝑁|2 + |√𝜀𝑣𝑥𝑥(𝐿)

√
𝜒𝑁|2

+
1

𝑁
(𝑣𝑥𝑦, 𝑣𝑥𝑥𝜒

′
𝑁).

Note that 𝑢𝑠(∞) > 0. Thus, the operator is coercive over the quantities

‖𝑣𝑥𝑦𝑦, 2√𝜀𝑣𝑥𝑥𝑦, 𝜀𝑣𝑥𝑥𝑥‖2 + [|𝑣𝑥𝑦(0)√𝜒𝑁|2 + |√𝜀𝑣𝑥𝑥(𝐿)
√
𝜒𝑁|2.

By Poincare inequalities this implies that 𝑣 = 0 if 𝐹 = 0. Passing to the limit as 𝑁 ↑ ∞, we find
that is invertible from𝐻4 → 𝐿2. □

Proof of Proposition 3.2. We will now consider the full equation (3.7), which may be written as
(𝑣) + 𝐽0(𝑣) = 𝐹 ∈ 𝐿2. Again, standard arguments show that 𝐽0◦−1 is a compact operator on
𝐿2 or 𝐿2(𝑒𝑌). By the Fredholm alternative, it suffices to show uniqueness for the homogeneous
solution to (3.7). For this, we apply the assumed a-priori estimate, (3.6) to conclude. □
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3176 GUO and IYER

3.2 Basic estimates

First, we urge the reader to recall the definitions in (1.22). For the weight, 𝑤, we will take

𝑤 = either 1 or 𝑤0, (3.11)

where𝑤0 is defined in (1.21). For both of these choices, the following elementary inequalities hold:

|𝑤𝑦| ≲ √
𝜀|𝑤| + 1, |𝑤𝑦| ≲ |𝑤|. (3.12)

Lemma 3.6 (Hardy-type inequalities). Let 𝑓 satisfy 𝑓|𝑦=0 = 0 and 𝑓|𝑦→∞ = 0. Then:

‖𝑓
𝑦
𝑤‖ ≲ ‖𝑓𝑦𝑤‖ + ‖√𝜀𝑓𝑤‖. (3.13)

Proof. The case of 𝑤 = 1 follows from the standard Hardy inequality. We thus consider 𝑤 = 𝑤0

(recall (1.21)). We integrate by parts in 𝑦 in the following manner:

‖𝑓
𝑦
𝑤0‖2 =(𝜕𝑦{𝑦 −

1

𝑦

}
𝑓, 𝑓⟨𝑌⟩2𝑚)

=2𝑚

(
𝑓

{
𝑦 −

1

𝑦

}
, 𝑓⟨𝑌⟩2𝑚−1

√
𝜀

)
− 2

(
𝑓

{
𝑦 −

1

𝑦

}
, 𝑓𝑦⟨𝑌⟩2𝑚)

≲ ‖𝑓⟨𝑌⟩𝑚‖[‖√𝜀𝑓𝑦⟨𝑌⟩𝑚−1‖ + ‖𝑓𝑦𝑦⟨𝑌⟩𝑚‖].
□

Lemma 3.7. Let 𝑣 ∈ 𝐻4
0 , let 𝑞 =

𝑣

𝑢𝑠
, and let 𝑤 satisfy |𝑤𝑦| ≲ |𝑤|. Assume 𝐿 << 1.

1. The following Poincare type inequalities hold:

‖𝜕𝑗𝑦𝜕𝑗2𝑥 𝑣𝑤‖ ≲ 𝐿‖𝜕𝑗𝑦𝜕𝑗2+1𝑥 𝑣𝑤‖ for 𝑗2 = 0, 1, 2, 3, (3.14)

‖𝑢𝑘𝑠 𝜕𝑗𝑦𝑞𝑤‖ ≲ 𝐿‖𝑢𝑘𝑠 𝜕𝑗𝑦𝑞𝑥𝑤‖ for 𝑘 = 0, 1, (3.15)

‖√𝜀𝑞𝑥𝑤‖ ≲ 𝐿‖√𝜀𝑞𝑥𝑥𝑤‖. (3.16)

2. The following quantities are controlled by the triple norm:

‖{𝑞𝑦𝑦, 𝑞𝑥𝑦,√𝜀𝑞𝑥𝑥} ⋅ 𝑤‖ + ‖∇𝜀𝑞 ⋅ 𝑤‖ + ‖𝑞𝑥
𝑦
𝑤‖

+ ‖{𝑣𝑦𝑦𝑦, 𝑣𝑥𝑦𝑦,√𝜀𝑣𝑥𝑥𝑦, 𝜀𝑣𝑥𝑥𝑥} ⋅ 𝑤‖
+ ‖{𝑣𝑦𝑦, 𝑣𝑥𝑦,√𝜀𝑣𝑥𝑥} ⋅ 𝑤‖ + ‖∇𝜀𝑣 ⋅ 𝑤‖

≲ |||𝑞|||𝑤.
(3.17)
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3177

3. The following quantities can be controlled with a pre-factor of 𝑜𝐿(1):

‖𝑣𝑦𝑦 ⋅ 𝑤‖ + ‖√𝜀{𝑞𝑥, 𝑣𝑥} ⋅ 𝑤‖ ≤ 𝐿|||𝑞|||𝑤,
‖𝑞𝑦𝑦𝑤‖ ≲

√
𝐿|||𝑞|||𝑤. (3.18)

4. Fix any 𝛿 > 0. The following interpolation estimate holds:

‖∇𝜀𝑞𝑥 ⋅ 𝑤‖ ≤ 𝛿|||𝑞|||𝑤 + 𝑁𝛿‖𝑢𝑠∇𝜀𝑞𝑥 ⋅ 𝑤‖. (3.19)

Wewill often (for the sake of concreteness) apply the above interpolationwith the following choices
of 𝛿:

‖∇𝜀𝑞𝑥𝑤‖ ≲ 𝐿
𝛼

2 |||𝑞|||𝑤 + 𝐿−𝛼‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖. (3.20)

5. The following boundary estimates are valid:

‖𝑞𝑥𝑤‖𝑥=𝐿 + ‖√𝜀𝑞𝑥 ⋅ 𝑤‖𝑥=0 + ‖𝑣𝑦𝑦 ⋅ 𝑤‖𝑥=𝐿 (3.21)

+ ‖√𝜀𝑞𝑥𝑥𝑤‖𝑥=0 + ‖𝜀√𝑢𝑠𝑞𝑥𝑥𝑤‖𝑥=𝐿 + ‖𝑞𝑥𝑦𝑤‖𝑥=𝐿 ≲ √
𝐿|||𝑞|||𝑤

‖𝜀 14 𝑞𝑥𝑥 ⋅ 𝑤‖𝑥=0 + ‖𝜀 14 𝑞𝑥⟨𝑦⟩𝑤‖𝑥=0 ≲ ⎛⎜⎜⎝1 +
𝜀
1

4

𝐿

⎞⎟⎟⎠ |||𝑞|||𝑤 (3.22)

‖√𝑢𝑠𝑞𝑥𝑦𝑦 ⋅ 𝑤‖𝑥=𝐿 ≲ √
𝐿|||𝑞|||𝑤. (3.23)

Proof. Step 1:
Proof of (3.14)–(3.16): Fix a function 𝑢̃𝑠 that is a function of 𝑦 only, and such that 𝐶0𝑢̃𝑠 ≤ 𝑢𝑠 ≤

𝐶1𝑢̃𝑠 for all (𝑥, 𝑦) ∈ Ω. We may take 𝑢̃𝑠 ≳ 𝑦 for 𝑦 ≤ 1 as 𝑢𝑠 ≳ 𝑦 for 𝑦 ≤ 1. For any function 𝑔

satisfying 𝑔|𝑥=0 = 0 or 𝑔|𝑥=𝐿 = 0, a Poincare inequality gives:

‖𝑢𝑠𝑔𝑤‖ ≲ ‖𝑢̃𝑠𝑔𝑤‖ ≲ 𝐿‖𝑢̃𝑠𝑔𝑥𝑤‖ ≲ 𝐿‖𝑢𝑠𝑔𝑥𝑤‖.
We will apply the above with 𝑔 = 𝜕

𝑗
𝑦𝑞, 𝜕

𝑗1
𝑦 𝜕

𝑗2
𝑦 𝑣 for 𝑗2 = 0, 1, 2, 3. We turn now to the following

Poincare-type inequality in the 𝑥-direction:

‖√𝜀𝑞𝑥 ⋅ 𝑤‖ =‖√𝜀

(
𝑞𝑥(𝐿) + ∫

𝑥

𝐿

𝑞𝑥𝑥

)
⋅ 𝑤‖

=‖√𝜀
𝑢𝑠𝑥
𝑢𝑠

𝑞|𝐿(𝑦) ⋅ 𝑤‖ + ‖√𝜀 ∫
𝑥

𝐿

𝑞𝑥𝑥 d𝑥
′ ⋅ 𝑤‖

=‖√𝜀
𝑢𝑠𝑥
𝑢𝑠 ∫

𝐿

0

𝑞𝑥 d𝑥
′ ⋅ 𝑤‖ + ‖√𝜀 ∫

𝑥

𝐿

𝑞𝑥𝑥 d𝑥
′ ⋅ 𝑤‖

≲ 𝑜𝐿(1)‖√𝜀𝑞𝑥 ⋅ 𝑤‖ + 𝐿‖√𝜀𝑞𝑥𝑥 ⋅ 𝑤‖.

(3.24)

By absorbing the ‖√𝜀𝑞𝑥 ⋅ 𝑤‖ to the left-hand side, we obtain the desired estimate.
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3178 GUO and IYER

Step 2:
Proof of (3.17): We will work systematically through (3.17). Let us start with the ∇2

𝜀𝑞 terms. For
this, let 𝜉 > 0 a free parameter, and we will compute the localized quantity:

‖𝑞𝑦𝑦𝑤𝜒(𝑦

𝜉

)‖2 =(
𝜕𝑦{𝑦}, 𝑞

2
𝑦𝑦𝑤

2𝜒

(
𝑦

𝜉

)2
)

= −

(
2𝑦𝑞𝑦𝑦, 𝑞𝑦𝑦𝑦𝑤

2𝜒

(
𝑦

𝜉

)2
)
−

(
𝑦𝑞2𝑦𝑦, 2𝑤𝑤𝑦𝜒

(
𝑦

𝜉

)2
)

−

(
𝑦𝑞2𝑦𝑦, 𝑤

2 1

𝜉
𝜒′

(
𝑦

𝜉

)
𝜒

(
𝑦

𝜉

))
≤𝐿‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤𝜒

(
𝑦

𝜉

)‖‖√𝑢𝑠𝑞𝑦𝑦𝑦𝑤‖
+ 𝐿2‖√𝑢𝑠𝑞𝑥𝑦𝑦‖2 sup

𝑦≤𝜉
|𝑤𝑤𝑦| + 𝐿2

𝜉
‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖2

≤
(
𝐿 +

𝐿2

𝜉

)|||𝑞|||2𝑤.
We have used (3.15). Inserting this below gives:

‖𝑞𝑦𝑦 ⋅ 𝑤‖ ≤ ‖𝑞𝑦𝑦 ⋅ 𝑤[
1 − 𝜒

(
𝑦

𝜉

)]‖ + ‖𝑞𝑦𝑦 ⋅ 𝑤𝜒(𝑦

𝜉

)‖
≤ 𝐿√

𝜉
‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖ +(

𝐿√
𝜉
+

√
𝐿

)|||𝑞|||2𝑤
≤ √

𝐿|||𝑞|||2𝑤 for 𝜉 = 𝐿. (3.25)

A similar bound can be performed for the remaining components of ∇2
𝜀𝑞. However, we must

forego the pre-factor of 𝑜𝐿(1) for these terms. Let 𝑔 be generic for now. For the far-field component,
estimate ‖𝑔 ⋅ 𝑤[1 − 𝜒(

𝑦

𝜉
)]‖ ≤ 1

𝜉
‖𝑢𝑠𝑔𝑤‖. For the localized component:

‖𝑔 ⋅ 𝑤𝜒(𝑦

𝜉

)‖2 = −

(
𝑦, 𝜕𝑦

{
𝑔2𝑤2𝜒

(
𝑦

𝜉

)2
})

= −

(
2𝑦𝑔, 𝑔𝑦𝑤

2𝜒

(
𝑦

𝜉

)2
)
−

(
2𝑦𝑔2, 𝑤𝑤𝑦𝜒

(
𝑦

𝜉

)2
)

−

(
𝑦𝑔2, 𝑤2𝜒′

(
𝑦

𝜉

)
𝜒

(
𝑦

𝜉

)
𝜉−1

)
≲
√
𝜉(√LHS)‖𝑢𝑠𝑔𝑦𝑤‖ + sup

𝑦≤𝜉
|𝑤𝑤𝑦|√𝜉‖𝑔‖2

+ 𝜉−1‖𝑢𝑠𝑔𝑤‖2.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3179

Accumulating these estimates gives:

‖𝑔𝑤‖ ≤ 𝜉‖𝑢𝑠𝑔𝑦𝑤‖2 + 𝜉−1‖𝑢𝑠𝑔𝑤‖2 + sup
𝑦≤𝜉

|𝑤𝑤𝑦|√𝜉‖𝑔‖2. (3.26)

We will apply the above computation to 𝑔 = 𝑞𝑥𝑦 and 𝑔 =
√
𝜀𝑞𝑥𝑥 and take 𝜉 = 1. Next, applying

(3.13) with 𝑓 = 𝑞𝑥 gives: ‖𝑞𝑥
𝑦
𝑤‖ ≲ ‖𝑞𝑥𝑦𝑤‖ + ‖√𝜀𝑞𝑥𝑤‖. (3.27)

Upon using (3.16), this concludes all of the 𝑞 terms from (3.17).
We now move to 𝑣 terms from (3.17), for which we expand:

𝑣𝑥 = 𝑢𝑠𝑞𝑥 + 𝑢𝑠𝑥𝑞, 𝑣𝑦 = 𝑢𝑠𝑞𝑦 + 𝑢𝑠𝑦𝑞,

𝑣𝑥𝑦 = 𝑢𝑠𝑥𝑦𝑞 + 𝑢𝑠𝑥𝑞𝑦 + 𝑢𝑠𝑦𝑞𝑥 + 𝑢𝑠𝑞𝑥𝑦,

𝑣𝑦𝑦 = 𝑢𝑠𝑦𝑦𝑞 + 2𝑢𝑠𝑦𝑞𝑦 + 𝑢𝑠𝑞𝑦𝑦,

𝑣𝑥𝑥 = 𝑢𝑠𝑥𝑥𝑞 + 2𝑢𝑠𝑥𝑞𝑥 + 𝑢𝑠𝑞𝑥𝑥,

𝑣𝑦𝑦𝑦 = 𝑢𝑠𝑞𝑦𝑦𝑦 + 𝑢𝑠𝑦𝑦𝑦𝑞 + 3𝑢𝑠𝑦𝑦𝑞𝑦 + 3𝑢𝑠𝑦𝑞𝑦𝑦

𝑣𝑥𝑦𝑦 = 𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑦𝑦𝑞 + 𝑢𝑠𝑦𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑞𝑦𝑦 + 2𝑢𝑠𝑥𝑦𝑞𝑦 + 2𝑢𝑠𝑦𝑞𝑥𝑦

𝑣𝑥𝑥𝑦 = 𝑢𝑠𝑞𝑥𝑥𝑦 + 𝑢𝑠𝑥𝑥𝑦𝑞 + 𝑢𝑠𝑥𝑥𝑞𝑦 + 𝑢𝑠𝑦𝑞𝑥𝑥 + 2𝑢𝑠𝑥𝑦𝑞𝑥 + 2𝑢𝑠𝑥𝑞𝑥𝑦

𝑣𝑥𝑥𝑥 = 𝑢𝑠𝑥𝑥𝑥𝑞 + 𝑢𝑠𝑞𝑥𝑥𝑥 + 3𝑢𝑠𝑥𝑥𝑞𝑥 + 3𝑢𝑠𝑥𝑞𝑥𝑥.

We turn to the third order terms for 𝑣, starting with 𝑣𝑦𝑦𝑦 . We have already established the
required estimates for 𝑢𝑠𝑞𝑦𝑦𝑦, 𝑞𝑦, 𝑞𝑦𝑦 , and so we must estimate using Hardy’s inequality:‖𝑢𝑠𝑦𝑦𝑦𝑞‖ ≤‖𝑢𝑖𝑝𝑦𝑦𝑦𝑞‖ + ‖𝜀2𝑢𝑖𝑒𝑌𝑌𝑌𝑞‖

≤‖𝑢𝑖𝑝𝑦𝑦𝑦𝑦‖∞‖𝑞⟨𝑦⟩−1‖ + 𝜀
3

2 ‖𝑢𝑖𝑒𝑌𝑌𝑌‖∞‖√𝜀𝑞𝑥‖
≲ ‖𝑞𝑦‖ + 𝜀

3

2 ‖√𝜀𝑞𝑥‖.
The same argument is performed for the remaining quantities from∇3𝑣. The quantities in∇2𝑣

and ∇𝑣 follow immediately upon using (3.1) and Poincare’s inequality. This concludes the proof
of (3.17).
Step 3:
Proof of (3.18): The 𝑞𝑦𝑦 estimate follows from taking 𝜉 = 1 in (3.25). For 𝑣𝑦𝑦 , we use (3.14) and

(3.17) which shows that ‖𝑣𝑥𝑦𝑦𝑤‖ ≲ |||𝑞|||𝑤 . Both 𝑞𝑥 and 𝑣𝑥 follow from (3.14) to (3.16).
Step 4:
Proof of (3.19), (3.20): This follows immediately from (3.26) upon selecting 𝑔 = 𝑞𝑥𝑦 or

𝑔 =
√
𝜀𝑞𝑥𝑥 and with 𝛿 =

√
𝜉, 𝜉 = 𝐿𝛼.

Step 5:
Proof of (3.21) The estimate for 𝑞𝑥|𝑥=𝐿 is obtained by appealing to the boundary condition,

(3.1), (3.3):

‖𝑞𝑥𝑤‖𝑥=𝐿 =‖𝑢𝑠𝑥
𝑢𝑠

𝑞𝑤‖𝑥=𝐿 ≤ √
𝐿‖[𝜕𝑥{𝑢𝑠𝑥

𝑢𝑠

}
𝑞 +

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑥

]
𝑤‖

≲
√
𝐿‖(𝜕𝑥{𝑢𝑠𝑥

𝑢𝑠

}
+
𝑢𝑠𝑥
𝑢𝑠

)⟨𝑦⟩‖∞‖ 𝑞𝑥⟨𝑦⟩𝑤‖.
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3180 GUO and IYER

For 𝑞𝑥|𝑥=0, we use Fundamental Theorem of Calculus:

‖𝑞𝑥𝑤‖𝑥=0 =‖𝑞𝑥(𝐿, ⋅)𝑤 + ∫
0

𝐿

𝑞𝑥𝑥𝑤‖ ≤ ‖𝑞𝑥𝑤‖𝑥=𝐿 +√
𝐿‖𝑞𝑥𝑥𝑤‖.

Next, |𝑣𝑦𝑦𝑤(𝐿, ⋅)| ≤ √
𝐿‖𝑣𝑥𝑦𝑦𝑤‖ by using 𝑣|𝑥=0 = 0. We nowmove to the 𝑞𝑥𝑥 terms from (3.21)

for which we recall (3.3). From here, we obtain

|√𝜀𝑞𝑥𝑥𝑤(0, ⋅)| = 2|√𝜀
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑥(0, ⋅)𝑤(0, ⋅)|.
The result then follows from the 𝑞𝑥 estimate. At 𝑥 = 𝐿, we use Fundamental theorem of calculus
to conclude: ‖𝜀√𝑢𝑠𝑞𝑥𝑥‖𝑥=𝐿 ≤ ‖𝜀√𝑢𝑠𝑞𝑥𝑥𝑤‖𝑥=0 +√

𝐿‖𝜀√𝑢𝑠𝑞𝑥𝑥𝑥𝑤‖.
We now compute using (3.3):

‖𝑞𝑥𝑦 ⋅ 𝑤‖𝑥=𝐿 =‖𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

𝑞

}
⋅ 𝑤‖𝑥=𝐿

≤‖𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
𝑞 ⋅ 𝑤‖𝑥=𝐿 + ‖𝑢𝑠𝑥

𝑢𝑠
𝑞𝑦 ⋅ 𝑤‖𝑥=𝐿.

The latter term is estimated using 𝑞|𝑥=0 = 0 so by Fundamental Theorem of Calculus is
majorized by

√
𝐿‖𝑞𝑥𝑦𝑤‖. The former term requires a decomposition, upon which we use that

𝑞|𝑥=0 = 0 and Hardy’s inequality for the localized and Prandtl component, and the extra
√
𝜀 for

the Euler component coupled with the Poincare inequality in (3.16) for the 𝑞𝑥 term:

‖𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑤𝜒‖𝑥=𝐿 + ‖𝜕𝑦{𝑢𝑝𝑥

𝑢𝑠

}
𝑞𝑤[1 − 𝜒]‖𝑥=𝐿 + ‖𝜕𝑦{√

𝜀𝑢𝑒𝑥
𝑢𝑠

}
𝑞𝑤[1 − 𝜒]‖𝑥=𝐿

≲
√
𝐿‖𝑞𝑥

𝑦
‖ +√

𝐿‖𝜕𝑦{𝑢𝑝𝑥

𝑢𝑠

}
[1 − 𝜒]𝑦⟨𝑌⟩𝑚‖∞‖𝑞𝑥

𝑦
‖ + ‖𝜕𝑦{𝑢𝑒𝑥}√𝜀𝑦⟨𝑌⟩𝑚‖∞√

𝐿‖√𝜀𝑞𝑥‖.
Above, we have used

√
𝜀𝑢𝑒 =

∑𝑛

𝑖=1

√
𝜀
𝑖
𝑢𝑖𝑒(𝑥, 𝑌) from which ‖𝜕𝑦{𝑢𝑒𝑥}√𝜀𝑤0‖∞ < ∞.

This concludes the treatment of (3.21).
Step 6:
Proof of (3.22)
Using (3.3):

‖𝜀 14 𝑞𝑥𝑥𝑤‖𝑥=0 =‖2𝜀 14 𝑢𝑠𝑥
𝑢𝑠

𝑞𝑥𝑤‖𝑥=0 ≲ ‖𝑢𝑠𝑥⟨𝑦⟩‖∞‖𝜀 14 𝑞𝑥⟨𝑦⟩𝑤‖𝑥=0.
We use the cutoff function 𝜒(

10𝑥

𝐿
), which satisfies |𝜕𝑥𝜒(10𝑥

𝐿
)| ≲ 1

𝐿
, and use the standard Trace

inequality to estimate:

‖𝜀 14 𝑞𝑥⟨𝑦⟩𝑤‖𝑥=0 = ‖𝜀 14 𝑞𝑥⟨𝑦⟩𝜒
(
10𝑥

𝐿

)
𝑤‖𝑥=0 ≲ ‖𝑞𝑥

𝑦
𝑤‖ 1

2 ‖√𝜀𝑞𝑥𝑥𝑤‖ 1

2 +
𝜀
1

4

𝐿
‖ 𝑞𝑥⟨𝑦⟩𝑤‖.

To conclude, we apply the Hardy inequality in (3.13).
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3181

Step 7:
Proof of (3.23) Again using (3.3), the fact that 𝑞|𝑥=0 = 0, and the Fundamental Theorem of

Calculus:

‖√𝑢𝑠𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤‖𝑥=𝐿 =‖√𝑢𝑠

[
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑦 + 2𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑦 +

(
𝑢𝑠𝑥
𝑢𝑠

)
𝑦𝑦

𝑞

]
𝑤‖𝑥=𝐿

≲
√
𝐿‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖ +√

𝐿‖𝑞𝑥𝑦‖ +√
𝐿‖(𝑢𝑠𝑥

𝑢𝑠

)
𝑦𝑦

𝑦‖∞‖𝑞𝑥
𝑦
‖.

□

We must now collect some blow-up rates near 𝑦 = 0 of various quantities according to the 𝐻4
0

norm.We emphasize that these are qualitative estimates (and thus, any 𝜀 dependence on the right-
hand side is acceptable):

Lemma 3.8. Let 𝑣 ∈ 𝐻4
0 . Then the following are valid for 𝑗 = 0, 1, 2 and 𝑘 = 0, 1, 2, 3:

sup
𝑦0≤1

[‖∇𝑘𝑣‖𝑦=𝑦0 + ‖∇𝑗𝑞‖𝑦=𝑦0 +√
𝑦0‖∇3𝑞‖𝑦=𝑦0] ≤ 𝐶𝜀, (3.28)

for some constant 𝐶𝜀 < ∞ that may depend poorly on small 𝜀.

Proof. First, that sup𝑦 |∇𝑘𝑣|𝐿2𝑥 < ∞, for 𝑘 = 0, 1, 2, 3, follows immediately from ‖𝑣‖𝐻4 < ∞. We

now use the elementary formula 1

𝑎+𝑏
=

1

𝑎
−

𝑏

𝑎(𝑎+𝑏)
to write:

𝑞 =
𝑣

𝑢𝑠
=

𝑣

𝑢𝑠𝑦(0)𝑦 + [𝑢𝑠 − 𝑢𝑠𝑦(0)𝑦]
=

1

𝑢𝑠𝑦(0)

𝑣

𝑦
− 𝑣

𝑢𝑠 − 𝑢𝑠𝑦(0)𝑦

𝑦𝑢𝑠𝑦(0)𝑢𝑠
.

Using the estimates 𝑢𝑠 ≳ 𝑦 as 𝑦 ↓ 0 and |𝑢𝑠 − 𝑢𝑠𝑦(0)𝑦| ≲ 𝑦2 as 𝑦 ↓ 0, it is easy to see that the
second quotient above is bounded and in fact 𝑘. We may thus limit our study to 𝑞0 ∶=

𝑣

𝑦
. We let

𝑘1 + 𝑘2 = 3 and differentiate the formula:

𝑞0(𝑥, 𝑦) =
1

𝑦 ∫
𝑦

0

𝑣𝑦(𝑥, 𝑦
′) d𝑦′ = ∫

1

0

𝑣𝑦(𝑥, 𝑡𝑦) d𝑡,

where we changed variables via 𝑡𝑦 = 𝑦′, to obtain:√
𝑦
0
𝜕
𝑘1
𝑥 𝜕

𝑘2
𝑦 𝑞0(𝑥, 𝑦0) =∫

1

0

𝜕
𝑘1
𝑥 𝜕

𝑘2
𝑦 𝑣𝑦(𝑥, 𝑡𝑦0)𝑡

𝑘2
√
𝑦0 d𝑡.

We take 𝐿2𝑥 and use Cauchy-Schwartz in 𝑦 to majorize:

√
𝑦0‖𝜕𝑘1𝑥 𝜕

𝑘2
𝑦 𝑞0‖𝑦=𝑦0 ≤

(
∫

1

0

‖𝜕𝑘1𝑥 𝜕
𝑘2+1
𝑦 𝑣‖2𝑦=𝑡𝑦0𝑦0𝑡2𝑘2 d𝑡

) 1

2

≤
(
∫

1

0

‖𝜕𝑘1𝑥 𝜕
𝑘2+1
𝑦 𝑣‖2𝑦=𝑡𝑦0𝑦0 d𝑡

) 1

2

≤
(
∫

𝑦0

0

‖∇4𝑣‖2) 1

2
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3182 GUO and IYER

This establishes the ∇3𝑞 estimate. For ∇2𝑞, a similar calculation produces:

‖𝜕𝑗1𝑥 𝜕𝑗2𝑦 𝑞0‖𝑦=𝑦0 =‖∫ 1

0

𝜕
𝑗1
𝑥 𝜕

𝑗2+1
𝑦 𝑣(𝑥, 𝑡𝑦0)𝑡

𝑗2 d𝑡‖𝑦=𝑦0
≤∫

1

0

‖∇3𝑣‖𝑦=𝑡𝑦0𝑡𝑗2 d𝑡
≤
(
∫

𝑦

0

‖∇3𝑣‖2𝑦=𝑠 𝑠𝑗2
𝑦𝑗2

d𝑠

𝑦

) 1

2

≤
(
1

𝑦 ∫
𝑦

0

‖∇3𝑣‖2𝑦=𝑠 d𝑠)
1

2

≤
(
1

𝑦
𝑦 sup

𝑠≲1
‖∇3𝑣‖𝑦=𝑠) 1

2

< ∞.

Above, we have used that sup𝑠≲1 ‖∇3𝑣‖𝑦=𝑠 < ∞ has already been established. This concludes
the proof of the lemma. □

Corollary 3.9. Let 𝑣 ∈ 𝐻4
0 . The trace∇

2𝑞|𝑦=0 is well defined as an element of 𝐿2𝑥 , and moreover the
following continuity is satisfied: ∇2𝑞(⋅, 𝑦)

𝑦↓0
%%%→ ∇2𝑞(⋅, 0) in 𝐿2(0, 𝐿).

Proof. (∇2𝑞|𝑦=0)2 is realized as the boundary trace of a𝑊1,1 function |∇2𝑞|2. Indeed, this follows
from estimating the product ∇2𝑞 ⋅ 𝜕𝑦∇

2𝑞 ∈ 𝐿1:

‖∇2𝑞 ⋅ 𝜕𝑦∇
2𝑞‖1 ≤ ‖∇2𝑞‖𝐿∞𝑦 (𝐿2𝑥)

‖∇3𝑞‖𝐿2𝑥𝐿1𝑦 < ∞,

The continuity statement in the lemma is a consequence of the above estimate and the Lebesgue
Differentiation Theorem. □

Corollary 3.10. Let 𝑣 ∈ 𝐻4
0 . Then all quantities appearing in ‖ ⋅ ‖𝑋1

are finite.

Proof. All ∇3𝑞 terms, upon taking | ⋅ |𝐿2𝑥 scale like 𝑦−1∕2, and so clearly ‖√𝑢𝑠∇
3𝑞‖ < ∞. The

second derivatives, upon taking | ⋅ |𝐿2𝑥 are bounded, and so clearly ‖∇2𝑞‖ < ∞. The boundary
terms are well-defined from the above corollary. □

4 A-PRIORI ESTIMATES FOR DNS

In light of Proposition 3.2, it suffices to control ‖𝑣‖𝑋1
in order to solve the DNS system (A.27). This

is achieved in this section via a cascade of estimates on |||𝑞|||𝑤 (Quotient Estimates, Subsection
4.1) and ||||𝑣||||𝑤 (Trace Estimates, Subsection 4.2).
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3183

4.1 Quotient estimates

Lemma 4.1. Let 𝑣 be a solution to (3.1), let 𝑤 satisfy |𝜕𝑘𝑦𝑤| ≲ 𝑤, and let 𝐿 << 1. Then

‖√𝑢𝑠{𝑞𝑥𝑦𝑦,
√
𝜀𝑞𝑥𝑥𝑦, 𝜀𝑞𝑥𝑥𝑥} ⋅ 𝑤‖2 + ‖𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖2𝑥=0 + ‖𝑞𝑥𝑦 ⋅ 𝑤‖2𝑦=0

+ ‖√𝜀𝑢𝑠𝑞𝑥𝑥 ⋅ 𝑤‖2𝑥=𝐿
≤ 𝑜𝐿(1)

[|||𝑞|||2𝑤 + ||||𝑣||||2𝑤] + 𝐿
−

1

8 ‖∇𝜀𝑞𝑥 ⋅ 𝑢𝑠𝑤‖2 + 𝐿
1

8 ‖𝑞𝑥𝑥𝑤𝑦‖2
+ |(𝐹, 𝑞𝑥𝑥𝑤2)|

(4.1)

Proof. We will compute (Equation (3.1), 𝑞𝑥𝑥𝑤2).

Step 1: Rayleigh Terms

(−𝜕𝑥𝑅[𝑞], 𝑞𝑥𝑥𝑤
2) ≲ − ‖𝑢𝑠𝑞𝑥𝑦𝑤‖2𝑥=0 − ‖𝑢𝑠√𝜀𝑞𝑥𝑥𝑤‖2𝑥=𝐿 + 𝐿|||𝑞|||2𝑤

+ 𝐿
1

8 ‖𝑞𝑥𝑥𝑤𝑦‖2 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2. (4.2)

We first integrate by parts in 𝑦, distribute the 𝜕𝑥, and then integrate by parts in 𝑥:

(−𝜕𝑥𝑦{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥𝑥𝑤

2) = (𝜕𝑥{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥𝑥𝑦𝑤

2) + (𝜕𝑥{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥𝑥2𝑤𝑤𝑦)

= (2𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑥𝑦𝑤
2) + (𝑢2𝑠 𝑞𝑥𝑦, 𝑞𝑥𝑥𝑦𝑤

2)

+ (4𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦) + (2𝑢2𝑠 𝑞𝑥𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

= − (2𝑢𝑠𝑢𝑠𝑥, 𝑞
2
𝑥𝑦𝑤

2) − (2𝜕𝑥{𝑢𝑠𝑢𝑠𝑥}𝑞𝑦, 𝑞𝑥𝑦𝑤
2)

− (𝑢𝑠𝑢𝑠𝑥, 𝑞
2
𝑥𝑦𝑤

2) + (4𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

+ (2𝑢2𝑠 𝑞𝑥𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦) + 2(𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑦𝑤
2)𝑥=𝐿

+
1

2
‖𝑢𝑠𝑞𝑥𝑦𝑤‖2𝑥=𝐿 − 1

2
‖𝑢𝑠𝑞𝑥𝑦𝑤‖2𝑥=0. (4.3)

The term (4.3.8) is a favorable contribution. The cross terms, (4.3.{4, 5}), are themost dangerous
terms:

|(4.3.{4, 5})| ≲ ‖𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖‖𝑢𝑠𝑞𝑥𝑥𝑤𝑦‖ ≲ 𝐿
−

1

8 ‖𝑢𝑠𝑞𝑥𝑦𝑤‖2 + 𝐿
1

8 ‖𝑢𝑠𝑞𝑥𝑥𝑤𝑦‖2,|(4.3.{1, 2, 3})| ≲ ‖𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖2,
|(4.3.6)| + |(4.3.7)| ≲ 𝑜𝐿(1)‖𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖2

To estimate (4.3.2) we have used (3.14) because 𝑞|𝑥=0 = 0. For the two boundary terms,
(4.3.{6,7}), we have used (3.21).
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3184 GUO and IYER

We will move to the next Rayleigh term, which upon expanding reads:

−(𝜀𝜕𝑥𝑥{𝑢
2
𝑠 𝑞𝑥}, 𝑞𝑥𝑥𝑤

2) = −𝜀(𝑢2𝑠 𝑞𝑥𝑥𝑥 + 4𝑢𝑠𝑢𝑠𝑥𝑞𝑥𝑥 + 2[𝑢𝑠𝑢𝑠𝑥𝑥 + 𝑢2𝑠𝑥]𝑞𝑥, 𝑞𝑥𝑥𝑤
2). (4.4)

We integrate the first term by parts in 𝑥:

(4.4.1) =(𝜀𝑢𝑠𝑢𝑠𝑥𝑞𝑥𝑥, 𝑞𝑥𝑥𝑤
2) −

1

2
‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2𝑥=𝐿 + 1

2
‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2𝑥=0

≲ − ‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2𝑥=𝐿 + ‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2𝑥=0 + ‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2,
where we appeal to (3.21). The remaining two terms in (4.4) are also directly majorized by‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2 upon using (3.21) and the Fundamental Theorem of Calculus.

Step 2: Δ2
𝜀 Terms

(Δ2
𝜀 𝑣, 𝑞𝑥𝑥𝑤

2) ≲ − ‖√𝑢𝑠{𝑞𝑥𝑦𝑦,
√
𝜀𝑞𝑥𝑥𝑦, 𝜀𝑞𝑥𝑥𝑥}𝑤‖2 − ‖𝑞𝑥𝑦𝑤‖2𝑦=0

+ 𝑜𝐿(1)|||𝑞|||2𝑤 +
√
𝐿||||𝑣||||2𝑤 + 𝐿

−
1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2 (4.5)

+ 𝐿2‖√𝜀𝑞𝑥𝑥𝑤𝑦‖2.
We now treat the contributions arising from Δ2

𝜀𝑣, starting with 𝜕4𝑦 1:

(𝑣𝑦𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤
2) = − (𝑣𝑦𝑦𝑦, 𝑞𝑥𝑥𝑦𝑤

2) − 2(𝑣𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

=(𝑣𝑥𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2) − (𝑣𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤

2)𝑥=𝐿

+ 2(𝑣𝑦𝑦, 𝑞𝑥𝑥𝑦𝑤𝑤𝑦) + (𝑣𝑦𝑦, 𝑞𝑥𝑥(𝑤
2)𝑦𝑦)

= − (𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑦𝑤
2) − 2(𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑤𝑤𝑦) − (𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑤

2)𝑦=0

− (𝑣𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2)𝑥=𝐿 − 2(𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑤𝑤𝑦)

+ 2(𝑣𝑦𝑦, 𝑞𝑥𝑦𝑤𝑤𝑦)𝑥=𝐿 + (𝑣𝑦𝑦, 𝑞𝑥𝑥(𝑤
2)𝑦𝑦). (4.6)

The main terms are (4.6.1) and (4.6.3), so we begin with these. First, an expansion of:

𝑣𝑥𝑦𝑦 = 𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑦𝑦𝑞 + 𝑢𝑠𝑦𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑞𝑦𝑦 + 2𝑢𝑠𝑥𝑦𝑞𝑦 + 2𝑢𝑠𝑦𝑞𝑥𝑦,

shows:

(4.6.1) = −([𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑦𝑦𝑞 + 𝑢𝑠𝑦𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑞𝑦𝑦

+ 2𝑢𝑠𝑥𝑦𝑞𝑦 + 2𝑢𝑠𝑦𝑞𝑥𝑦], 𝑞𝑥𝑦𝑦𝑤
2).

1 Note that all integrations by parts are justified rigorously by Lemma 3.8 and its corollaries.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3185

First, (4.6.1.1) is a favorable contribution to the left-hand side. We estimate immediately using
Poincare estimate (3.14), |(4.6.1.4)| ≲ 𝐿|||𝑞|||2𝑤 . Using the Hardy inequality in (3.17), the fact that
𝑞|𝑦=0 = 𝑞𝑥|𝑦=0 = 0, and the interpolation inequality (3.20) with appropriate selections of 𝛼:

|(4.6.1.3)| ≲ ‖𝑢𝑠𝑦𝑦⟨𝑦⟩‖∞‖‖‖𝑞𝑥𝑦 𝑤
‖‖‖‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖

≲ {‖𝑞𝑥𝑦𝑤‖ + 𝐿‖√𝜀𝑞𝑥𝑥𝑤‖}‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖
≲ 𝐿

1

64 |||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2.
Let us explain the computation above, as it is will be used repeatedly. We simply apply (3.20)

twice with different choices of 𝛼:

‖𝑞𝑥𝑦𝑤‖ |||𝑞|||𝑤 ≲

{
𝐿

1

64 |||𝑞|||𝑤 + 𝐿
−

1

32 ‖𝑢𝑠𝑞𝑥𝑦𝑤‖}|||𝑞|||𝑤
≲ 𝐿

1

64 |||𝑞||2𝑤 + 𝐿
−

1

32

{
𝐿
−

3

32 ‖𝑢𝑠𝑞𝑥𝑦𝑤‖2 + 𝐿
3

32 ‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖2}
≲ 𝐿

1

64 |||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠𝑞𝑥𝑦𝑤‖2.
(4.7)

For (4.6.1.2) we may first use Poincare in 𝑥 as 𝑞|𝑥=0 = 0 to majorize in the same way as above.
Integration by parts in 𝑦 and use of the assumption that |𝑤𝑦| ≲ |𝑤| yields:

(4.6.1.5) =(2𝑢𝑠𝑥𝑦𝑦𝑞𝑥𝑦, 𝑞𝑦𝑤
2) + (2𝑢𝑠𝑥𝑦𝑞𝑥𝑦, 𝑞𝑦𝑦𝑤

2)

+ (4𝑢𝑠𝑥𝑦𝑞𝑥𝑦, 𝑞𝑦𝑤𝑤𝑦) + (2𝑢𝑠𝑥𝑦𝑞𝑦, 𝑞𝑥𝑦𝑤
2)𝑦=0

≲ ‖𝑞𝑥𝑦, 𝑞𝑦𝑦 ⋅ 𝑤‖2 + 𝐿‖𝑞𝑥𝑦𝑤‖2 + 𝐿‖𝑞𝑥𝑦𝑤‖2𝑦=0.
We use above that 𝑞𝑦𝑦 comes with a factor of

√
𝐿 according to estimate (3.18).

Integrate by parts in 𝑦:

(4.6.1.6) =(𝑞2𝑥𝑦, 𝑢𝑠𝑦𝑦𝑤
2) + (𝑞2𝑥𝑦, 𝑢𝑠𝑦2𝑤𝑤𝑦) + (𝑞2𝑥𝑦, 𝑢𝑠𝑦𝑤

2)𝑦=0

≤𝐶‖√𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖2 + 𝐶‖𝑞𝑥𝑦 ⋅√𝑤𝑤𝑦‖2. + |√|𝑢𝑠𝑦|𝑞𝑥𝑦𝑤|2
𝐿2(𝑦=0)

≤𝐿 1

16 |||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2 + ‖√𝑢𝑠𝑦𝑞𝑥𝑦𝑤‖2𝑦=0 (4.8)

Above, we have used |𝑤𝑦| ≲ |𝑤| and the interpolation inequality (3.20). Let us emphasize the {𝑦 =

0} boundary term from (4.6.1.6) arises with a pre-factor of +1, which is of bad sign. We postpone
the estimation of this boundary term until (4.10).
We move to (4.6.3) for which an expansion shows:

(4.6.3) = − ({𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑦𝑦𝑞 + 𝑢𝑠𝑦𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑞𝑦𝑦

+ 2𝑢𝑠𝑥𝑦𝑞𝑦 + 2𝑢𝑠𝑦𝑞𝑥𝑦}, 𝑞𝑥𝑦𝑤
2)𝑦=0

≤ − (2 − 𝐶0𝐿)‖√𝑢̄𝑦𝑞𝑥𝑦‖2𝑦=0,
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3186 GUO and IYER

for some 𝐶0 < ∞, independent of small 𝐿, 𝜀. Let us provide some details regarding the above esti-
mate. For (4.6.3.1), we use (3.28) and the fact that |𝑢𝑠| ≲ 𝑦 near 𝑦 = 0 to conclude that (4.6.3.1)
vanishes. Using that 𝑞|𝑦=0 = 0 shows that (4.6.{2, 3}) vanishes. Using (3.28) togetherwith |𝑢𝑠𝑥| ≲ 𝑦

for 𝑦 ∼ 0 shows that (4.6.4) vanishes. This leaves only (4.6.3.5) and (4.6.3.6). The main favorable
term is (4.6.3.6). For this, we have used that:

𝑢𝑠𝑦|𝑦=0 =𝑢̄|𝑦=0 + 𝑛∑
𝑖=1

√
𝜀
𝑛+1

𝑢𝑖𝑒𝑌|𝑦=0 + 𝑛∑
𝑖=1

√
𝜀
𝑛
𝑢𝑖𝑝𝑦|𝑦=0

≥(1 − 𝐶1𝜀)𝑢𝑠𝑦|𝑦=0, (4.9)

for some 𝐶1 < ∞ independent of 𝐿, 𝜀. Note that 𝑢𝑠𝑦|𝑦=0 is bounded below according to the first
line of (A.33), which ensures that (4.6.3.6) is, in fact, a favorable contribution. For (4.6.3.5), we use
that 𝑞|𝑥=0 = 0 to invoke the Poincare inequality:

|(4.6.3.5)| ≤𝐿‖𝑢𝑠𝑥𝑦
𝑢̄𝑦

‖𝑦=0‖√𝑢̄𝑦𝑞𝑥𝑦𝑤‖𝑦=0‖√𝑢̄𝑦𝑞𝑥𝑦𝑤‖𝑦=0.
This concludes the estimate of (4.6.3).
We apply the same calculation as in (4.9) to conclude:

(4.6.3) + (4.8.3) ≤ −(2 − 𝐶0𝐿)‖√𝑢̄𝑦𝑞𝑥𝑦‖2𝑦=0 + (1 + 𝐶1𝜀)‖√𝑢̄𝑦𝑞𝑥𝑦‖2𝑦=0 (4.10)

≤ −
1

2
‖√𝑢̄𝑦𝑞𝑥𝑦‖2𝑦=0.

Using (3.3) and the Fundamental Theorem of Calculus to integrate from 𝑥 = 0 produces the
identity:

(4.6.4) =

(
𝑣𝑦𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
𝑥=𝐿

=

(
𝑣𝑥𝑦𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
+

(
𝑣𝑦𝑦𝑦, 𝜕𝑥𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
= −

(
𝑣𝑥𝑦𝑦, 𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
−

(
𝑣𝑥𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
2𝑤𝑤𝑦

)
−

(
𝑣𝑥𝑦𝑦,

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑤
2

)
𝑦=0

+

(
𝑣𝑦𝑦𝑦, 𝜕𝑥𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
For the first term, we distribute the 𝜕𝑦𝑦 and subsequently use (3.27), Poincare in 𝑥, and (3.18)

to obtain:

|(4.6.4.1)| =| −(
𝑣𝑥𝑦𝑦,

[
𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞 + 2𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑦 +

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑦

]
𝑤2

)|
≲ ‖𝑣𝑥𝑦𝑦𝑤‖[‖𝜕𝑦𝑦{𝑢𝑠𝑥

𝑢𝑠

}
𝑦‖∞‖𝑞

𝑦
𝑤‖ + 𝐿‖𝜕𝑦{𝑢𝑠𝑥

𝑢𝑠

}‖∞‖𝑞𝑥𝑦𝑤‖
+
‖‖‖‖𝑢𝑠𝑥𝑢𝑠 ‖‖‖‖∞‖𝑞𝑦𝑦𝑤‖]
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3187

≲ ‖𝑣𝑥𝑦𝑦𝑤[‖𝑞𝑦𝑤‖ + ‖√𝜀𝑞𝑤‖ + 𝐿‖𝑞𝑥𝑦𝑤‖ + ‖𝑞𝑦𝑦𝑤‖]
≲ 𝑜𝐿(1)|||𝑞|||2𝑤.

For the second term, we again distribute the 𝜕𝑦 and use that |𝑤𝑦| ≲ |𝑤|:
|(4.6.4.2)| ≤|(𝑣𝑥𝑦𝑦, 𝜕𝑦{𝑢𝑠𝑥

𝑢𝑠

}
𝑞2𝑤𝑤𝑦

)| + |(𝑣𝑥𝑦𝑦, 𝑢𝑠𝑥𝑢𝑠 𝑞𝑦2𝑤𝑤𝑦

)|
≲ 𝐿‖𝜕𝑦{𝑢𝑠𝑥

𝑢𝑠

}
𝑦‖∞‖𝑣𝑥𝑦𝑦𝑤‖𝑞𝑥

𝑦
𝑤‖ + 𝐿‖𝑢𝑠𝑥

𝑢𝑠
‖∞‖𝑣𝑥𝑦𝑦𝑤‖‖𝑞𝑥𝑦𝑤‖

≲ 𝐿‖𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
𝑦‖∞‖𝑣𝑥𝑦𝑦𝑤‖{‖𝑞𝑥𝑦𝑤‖

+ 𝐿‖√𝜀𝑞𝑤‖} + 𝐿‖𝑢𝑠𝑥
𝑢𝑠

‖∞‖𝑣𝑥𝑦𝑦𝑤‖‖𝑞𝑥𝑦𝑤‖
≲ 𝐿|||𝑞|||2𝑤.

For the third term, we expand the expression for 𝑣𝑥𝑦𝑦 via:

(4.6.4.3) = −
(
𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑞𝑦𝑦 + 2𝑢𝑠𝑥𝑦𝑞𝑦 + 2𝑢𝑠𝑦𝑞𝑥𝑦

+𝑢𝑠𝑥𝑦𝑦𝑞 + 𝑢𝑠𝑦𝑦𝑞𝑥,
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑤
2

)
𝑦=0

.

(4.6.4.3.1) and (4.6.4.3.2) vanish by combining (3.28) with |𝜕𝑗𝑥𝑢𝑠| ≲ 𝑦 for 𝑦 small, and (4.6.4.3.5),
(4.6.4.3.6) vanish by using that 𝑞|𝑦=0 = 𝑞𝑥|𝑦=0 = 0. This then leaves:

|(4.6.4.3.3)| + |(4.6.4.3.4)| ≲ 𝐿‖𝑞𝑥𝑦𝑤‖2𝑦=0 ≲ 𝐿|||𝑞|||2𝑤,
where we have used the Poincare inequality, which is available as 𝑞|𝑥=0 = 0.
For the fourth term, we use the interpolation inequality, (3.20), and then Young’s inequality for

products to establish:

|(4.6.4.4)| ≲ ‖𝑣𝑦𝑦𝑦𝑤‖‖𝑞𝑥𝑦𝑤‖ ≲ ‖𝑣𝑦𝑦𝑦‖(𝛿|||𝑞|||𝑤 + 𝑁𝛿‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2)
≲ 𝑜𝐿(1)|||𝑞|||2𝑤 + 𝐿

−
1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2.
We now move to (4.6.6). Again using (3.3) and that 𝑣|𝑥=0 = 𝑞|𝑥=0 = 0:

(4.6.6) = − 2

(
𝑣𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤𝑤𝑦

)
𝑥=𝐿

≲ 𝐿‖𝑣𝑥𝑦𝑦𝑤‖‖𝜕𝑥𝑦{𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤‖ ≲ 𝐿|||𝑞|||2𝑤.
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3188 GUO and IYER

For (4.6.{2, 5})we use |𝑤𝑦| ≲ |𝑤| and the interpolation inequality (3.20), whereas for (4.6.7) we
use Poincare in 𝑥, (3.16), and the assumption that |(𝑤2)𝑦𝑦| ≲ |𝑤′|2:

|(4.6.{2, 5})| ≤ 𝐿
1

16 |||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2,
|(4.6.7)| ≲ 𝐿‖𝑣𝑥𝑦𝑦𝑤‖‖𝑞𝑥𝑥𝑤𝑦‖.

This concludes the treatment of 𝜕4𝑦 contributions.
We now move to contributions from 2𝜀𝜕𝑥𝑥𝑦𝑦 . We first integrate by parts in 𝑦, second expand

the expression for 𝑣𝑥𝑥𝑦 , and third perform a further 𝑦-integration by parts for the 2𝑢𝑠𝑦𝑞𝑥𝑥
contribution. This produces:

(2𝜀𝑣𝑥𝑥𝑦𝑦, 𝑞𝑥𝑥𝑤
2) =(−2𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑥𝑦𝑤

2) − 4(𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

=(−2𝜀[𝑢𝑠𝑥𝑥𝑦𝑞 + 2𝑢𝑠𝑥𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑥𝑞𝑦 + 𝑢𝑠𝑞𝑥𝑥𝑦 + 2𝑢𝑠𝑥𝑞𝑥𝑦

+ 2𝑢𝑠𝑦𝑞𝑥𝑥], 𝑞𝑥𝑥𝑦𝑤
2) − 4(𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

= − (2𝜀[𝑢𝑠𝑥𝑥𝑦𝑞 + 2𝑢𝑠𝑥𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑥𝑞𝑦 + 𝑢𝑠𝑞𝑥𝑥𝑦

+ 2𝑢𝑠𝑥𝑞𝑥𝑦], 𝑞𝑥𝑥𝑦𝑤
2) + (𝜀𝑢𝑠𝑦𝑦, 𝑞

2
𝑥𝑥𝑤

2)

+ (2𝜀𝑢𝑠𝑦, 𝑞
2
𝑥𝑥𝑤𝑤𝑦) − (4𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦) (4.11)

Term (4.11.4) contributes favorably. Terms (4.11.{1, 2}) are estimated through the weighted
Hardy’s inequality (3.27), terms (4.11.{3,5}) are estimated via Poincare’s inequality (3.14) and
Cauchy-Schwartz, and terms (4.11.{6,7,8}) are estimated through the use of the assumption that|𝑤𝑦| ≲ |𝑤|:

|(4.11.{1, 2})| ≤ √
𝜀‖{𝑢𝑠𝑥𝑦, 𝑢𝑠𝑥𝑥𝑦}⟨𝑦⟩‖∞‖𝑞, 𝑞𝑥

𝑦
𝑤‖‖√𝑢𝑠

√
𝜀𝑞𝑥𝑥𝑦𝑤‖,

|(4.11.{3, 5})| ≤ √
𝜀‖𝑞𝑥𝑦𝑤‖‖√𝑢𝑠

√
𝜀𝑞𝑥𝑥𝑦𝑤‖

|(4.11.{6, 7, 8})| ≲ 𝐿
−

1

10 ‖√𝜀𝑞𝑥𝑥𝑤‖2 + 𝑜𝐿(1)‖√𝜀𝑣𝑥𝑥𝑦𝑤‖2
≲ 𝐿

−
1

8 ‖𝑢𝑠∇𝜀𝑞𝑤‖2 + 𝑜𝐿(1)|||𝑞|||2𝑤.
We next get to the contributions from 𝜀2𝑣𝑥𝑥𝑥𝑥. We first integrate by parts in 𝑥, use that

𝑣𝑥𝑥𝑥|𝑥=𝐿 = 0, and then expand 𝜕3𝑥𝑣 in terms of 𝑞 to obtain:

(𝜀2𝑣𝑥𝑥𝑥𝑥, 𝑞𝑥𝑥𝑤
2) = − (𝜀2[𝑢𝑠𝑥𝑥𝑥𝑞 + 3𝑢𝑠𝑥𝑥𝑞𝑥 + 3𝑢𝑠𝑥𝑞𝑥𝑥

+ 𝑢𝑠𝑞𝑥𝑥𝑥], 𝑞𝑥𝑥𝑥𝑤
2) − (𝜀2𝑣𝑥𝑥𝑥, 𝑞𝑥𝑥𝑤

2)𝑥=0. (4.12)

We first estimate the first three terms with the use of (3.17) – (3.18):

|(4.12.1, 2, 3)| ≤ 𝐿‖√𝑢𝑠𝜀𝑞𝑥𝑥𝑥 ⋅ 𝑤‖2 +√
𝜀𝐿‖√𝜀𝑞𝑥𝑥 ⋅ 𝑤‖2.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3189

For the boundary term, (4.12.5), we use the identity (3.3) to simplify and (3.21) to estimate:

(4.12.5) =

(
2𝜀2𝑣𝑥𝑥𝑥,

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑥𝑤
2

)
𝑥=0

≲ ‖𝜀 32 𝑣𝑥𝑥𝑥 ⋅ 𝑤(
𝑢𝑠𝑥
𝑢𝑠

)‖𝑥=0‖√𝜀𝑞𝑥 ⋅ 𝑤‖𝑥=0
≲ ‖𝜀 32 𝑣𝑥𝑥𝑥 ⋅ 𝑤(

𝑢𝑠𝑥
𝑢𝑠

)‖𝑥=0√𝐿|||𝑞|||𝑤
≲
√
𝐿||||𝑣|||| 12𝑤|||𝑞||| 32𝑤.

Note we have invoked the fourth-order norm, ||||𝑣||||𝑤, due to the boundary contribution at
{𝑥 = 0}, through the following trace inequality:

‖𝜀 32 𝑣𝑥𝑥𝑥𝑤‖𝑥=0 ≲ ‖𝜀𝑣𝑥𝑥𝑥𝑤‖ 1

2 ‖𝜀2𝑣𝑥𝑥𝑥𝑥𝑤‖ 1

2 ≲ |||𝑞||| 12𝑤||||𝑣|||| 12𝑤. (4.13)

Step 3: 𝐽(𝑣) Terms

|(𝐽, 𝑞𝑥𝑥𝑤2)| ≲ 𝑜𝐿(1)|||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑤‖2 + 𝐿‖𝑞𝑥𝑥𝑤𝑦‖2. (4.14)

Recalling the definition of 𝐽 in (1.29), we expand (𝐽, 𝑞𝑥𝑥𝑤2) via:

(−𝜀𝑣𝑠𝑥𝑣𝑥𝑦 − 𝑣𝑠𝑣𝑦𝑦𝑦 − 𝜀𝑣𝑠𝑣𝑦𝑥𝑥

+ Δ𝜀𝑣𝑠𝑣𝑦 − 𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦] + Δ𝜀𝑣𝑠𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑥𝑤
2) (4.15)

An integration by parts first in 𝑥 and then in 𝑦 shows:

(4.15.5) =(𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝑞𝑥𝑤
2) + (𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝑞𝑥𝑤

2) − (𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝑞𝑥𝑤
2)𝑥=𝐿

= − (𝑣𝑠𝑥𝑥𝑦𝐼𝑥[𝑣𝑦𝑦], 𝑞𝑥𝑤
2) − (𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦𝑦], 𝑞𝑥𝑦𝑤

2) − (𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦𝑦], 𝑞𝑥2𝑤𝑤𝑦)

+ (𝑣𝑠𝑥𝑦𝑣𝑦𝑦, 𝑞𝑤
2) + (𝑣𝑠𝑥𝑣𝑦𝑦, 𝑞𝑦𝑤

2) + (𝑣𝑠𝑥𝑣𝑦𝑦, 𝑞𝑥2𝑤𝑤𝑦)

+ (𝐼𝑥[𝑣𝑦𝑦], 𝜕𝑦{𝑣𝑠𝑥𝑞𝑤
2})𝑥=𝐿

≲ 𝐿[|||𝑞|||2𝑤 + ‖𝑞𝑥𝑥 ⋅ 𝑤𝑦‖2]
We have used the Hardy inequality (3.27) and Poincare in 𝑥, (3.16).
The estimates for (4.15.2) follow along the same lines. Again, integration by parts in 𝑦 then in

𝑥 and an appeal to the boundary condition (3.3) produces the identity:

(4.15.2) = − (𝑣𝑠𝑥𝑦𝑣𝑦𝑦, 𝑞𝑥𝑤
2) − (𝑣𝑠𝑥𝑣𝑦𝑦, 𝑞𝑥𝑦𝑤

2) − (𝑣𝑠𝑥𝑣𝑦𝑦, 𝑞𝑥2𝑤𝑤𝑦)

− (𝑣𝑠𝑦𝑣𝑥𝑦𝑦, 𝑞𝑥𝑤
2) − (𝑣𝑠𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑤

2) − (𝑣𝑠𝑣𝑥𝑦𝑦, 𝑞𝑥2𝑤𝑤𝑦)
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3190 GUO and IYER

+

(
𝑣𝑦𝑦𝑤

2, 𝜕𝑦

{
𝑣𝑠

(
𝑢𝑠𝑥
𝑢𝑠

)
𝑞

})
𝑥=𝐿

+

(
𝑣𝑦𝑦𝑣𝑠,

𝑢𝑠𝑥
𝑢𝑠

𝑞2𝑤𝑤𝑦

)
𝑥=𝐿

≲ 𝑜𝐿(1)|||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥 ⋅ 𝑤‖2 + 𝐿‖𝑞𝑥𝑥 ⋅ 𝑤𝑦‖2.
The above estimate relies on the Hardy type inequality (3.27) for (4.15.2.{1,4}), the interpolation

inequality (3.19) for (4.15.2.5), and Poincare in 𝑥 as 𝑣|𝑥=0 = 0 for the boundary terms (4.15.2.{7,8}).
Next, we trivially obtain:

|(4.15.1)| ≲ √
𝜀‖𝑣𝑥𝑦𝑤‖‖√𝜀𝑞𝑥𝑥𝑤‖ ≲

√
𝜀|||𝑞|||2𝑤

|(4.15.3)| ≲ ‖√𝜀𝑣𝑥𝑥𝑦𝑤‖‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖ ≲ 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑤‖2 + 𝑜𝐿(1)|||𝑞|||2𝑤.
For (4.15.4), we integrate by parts in 𝑥 and appeal to the boundary condition (3.3) and 𝑣|𝑥=0 = 0:

(4.15.4) = − (Δ𝜀𝑣𝑠𝑥𝑣𝑦, 𝑞𝑥𝑤
2) − (Δ𝜀𝑣𝑠𝑣𝑥𝑦, 𝑞𝑥𝑤

2) − (Δ𝜀𝑣𝑠𝑣𝑦,
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑤2)𝑥=𝐿

≤𝐿‖Δ𝜀𝑣𝑠𝑥𝑦‖∞‖𝑣𝑥𝑦𝑤‖‖𝑞𝑥
𝑦
𝑤‖ + ‖Δ𝜀𝑣𝑠⟨𝑦⟩‖∞‖𝑣𝑥𝑦𝑤‖‖𝑞𝑥

𝑦
𝑤‖

+ 𝐿‖𝑢𝑠𝑥
𝑢𝑠

⟨𝑦⟩‖∞‖Δ𝜀𝑣𝑠‖∞‖𝑣𝑥𝑦𝑤‖𝑞𝑥
𝑦
𝑤‖

≲ 𝑜𝐿(1)|||𝑞|||2𝑤 + 𝐿
−

1

8 ‖𝑢𝑠∇𝜀𝑞𝑥𝑤‖2.
Above we have used the Hardy type inequality (3.27), and the interpolation inequality (3.20)

to conclude.
Finally, for the final term (4.15.6) we first split the coefficient via:

(4.15.6) =(Δ𝜀𝑣
0
𝑝𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑥𝑤

2) +

𝑛∑
𝑖=1

(
√
𝜀
𝑖
Δ𝜀𝑣

𝑖
𝑝𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑥𝑤

2)

+

𝑛∑
𝑖=1

(
√
𝜀
𝑖+1

Δ𝑣𝑖𝑒𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑥𝑤
2).

The higher order contributions are easily estimated using the extra power of
√
𝜀 by:

|(4.15.6.2)| + |(4.15.6.3)| ≲ 𝐿‖𝑣𝑦𝑤‖‖√𝜀𝑞𝑥𝑥𝑤‖ ≲ 𝐿|||𝑞|||2𝑤.
For the leading order Prandtl contribution, we integrate by parts in 𝑥, use that 𝐼𝑥|𝑥=0 = 0, and

estimate the resulting quantity using the rapid decay of 𝑣0𝑝:

(4.15.6.1) = − (Δ𝜀𝑣
0
𝑝𝑥𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑤

2) − (Δ𝜀𝑣
0
𝑝𝑥𝑣𝑦, 𝑞𝑥𝑤

2)

+

(
Δ𝜀𝑣

0
𝑝𝑥

𝑢𝑠𝑥
𝑢𝑠

𝑞, 𝐼𝑥[𝑣𝑦]𝑤
2

)
𝑥=𝐿

≲ 𝐿|||𝑞|||2𝑤
This concludes the treatment of the 𝐽(𝑣) contributions.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3191

We estimate directly: |(𝐹, 𝑞𝑥𝑥𝑤2)| is placed on the right-hand side of the desired estimate. This
concludes the proof. □

Lemma 4.2. Let 𝑣 be a solution to (3.1). Let 𝑤 satisfy |𝜕𝑘𝑦𝑤| ≲ |𝑤|:
‖𝑞𝑦𝑦 ⋅ 𝑤‖2𝑦=0 + ‖√𝑢𝑠{𝑞𝑦𝑦𝑦,

√
𝜀𝑞𝑥𝑦𝑦, 𝜀𝑞𝑥𝑥𝑦} ⋅ 𝑤‖2 (4.16)

≲
√
𝐿|||𝑞|||2𝑤 + |(𝐹, 𝑞𝑦𝑦𝑤2)|.

Proof. We will compute the inner-product (Equation(3.1), 𝑞𝑦𝑦𝑤2).

Step 1: Estimate of Rayleigh terms

(−𝜕𝑥𝑅[𝑞], 𝑞𝑦𝑦𝑤
2) ≲ −‖𝑢𝑠𝑞𝑦𝑦𝑤‖2𝑥=𝐿 + 𝐿|||𝑞|||2𝑤. (4.17)

First, we will expand the term:

𝜕𝑥𝑦{𝑢
2
𝑠 𝑞𝑦} = 𝑢2𝑠 𝑞𝑥𝑦𝑦 + 2𝑢𝑠𝑢𝑠𝑥𝑞𝑦𝑦 + 2𝑢𝑠𝑢𝑠𝑦𝑞𝑥𝑦 + 2[𝑢𝑠𝑢𝑠𝑥𝑦 + 𝑢𝑠𝑥𝑢𝑠𝑦]𝑞𝑦,

and upon doing sowewill integrate by parts the highest order contribution, that is (𝑢2𝑠 𝑞𝑥𝑦𝑦, 𝑞𝑦𝑦𝑤2)

in 𝑥:

(−𝜕𝑥𝑦{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑦𝑦𝑤

2) = − (2𝑢𝑠𝑥𝑢𝑠𝑦𝑞𝑦, 𝑞𝑦𝑦𝑤
2) − (2𝑢𝑠𝑢𝑠𝑥𝑦𝑞𝑦, 𝑞𝑦𝑦𝑤

2)

− (2𝑢𝑠𝑢𝑠𝑥𝑞𝑦𝑦𝑤
2, 𝑞𝑦𝑦) − (2𝑢𝑠𝑢𝑠𝑦𝑞𝑥𝑦, 𝑞𝑦𝑦𝑤

2)

+ (𝑢𝑠𝑢𝑠𝑥𝑞𝑦𝑦𝑤
2, 𝑞𝑦𝑦) −

(
𝑢2𝑠
2
𝑞𝑦𝑦𝑤

2, 𝑞𝑦𝑦

)
𝑥=𝐿

≲ 𝐿|||𝑞|||2𝑤 − ‖𝑢𝑠𝑞𝑦𝑦𝑤‖2𝑥=𝐿.
Second, we expand the term:

𝜕𝑥𝑥{𝑢
2
𝑠 𝑞𝑥} = 𝑢2𝑠 𝑞𝑥𝑥𝑥 + 4𝑢𝑠𝑢𝑠𝑥𝑞𝑥𝑥 + [2𝑢𝑠𝑢𝑠𝑥𝑥 + 2𝑢2𝑠𝑥]𝑞𝑥.

We subsequently use the Poincare inequality (3.14) followed by (3.15),

(−𝜀𝜕𝑥𝑥{𝑢
2
𝑠 𝑞𝑥}, 𝑞𝑦𝑦𝑤

2) = − (𝜀[(𝑢2𝑠 )𝑥𝑥𝑞𝑥 + 2𝜕𝑥{𝑢
2
𝑠 }𝑞𝑥𝑥 + 𝑢2𝑠 𝑞𝑥𝑥𝑥], 𝑞𝑦𝑦𝑤

2)

≲ 𝐿|||𝑞|||2𝑤.
Step 2: Estimate of Δ2

𝜀 terms

(Δ2
𝜀 𝑣, 𝑞𝑦𝑦𝑤

2) ≲ −‖√𝑢𝑠{𝑞𝑦𝑦𝑦,
√
𝜀𝑞𝑥𝑦𝑦, 𝜀𝑞𝑥𝑥𝑦}𝑤‖2 − ‖𝑞𝑦𝑦𝑤‖2𝑦=0 + 𝐿|||𝑞|||2𝑤 (4.18)
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3192 GUO and IYER

We begin with 𝜕𝑦𝑦𝑦𝑦 . First, we integrate by parts in 𝑦, and then we expand the term 𝑣𝑦𝑦𝑦:

(𝑣𝑦𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤
2) = − (𝑣𝑦𝑦𝑦, 𝑞𝑦𝑦𝑦𝑤

2) − 2(𝑣𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤𝑤𝑦) − (𝑣𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤
2)𝑦=0

= − ([𝑢𝑠𝑞𝑦𝑦𝑦 + 3𝑢𝑠𝑦𝑦𝑞𝑦 + 𝑢𝑠𝑦𝑦𝑦𝑞 + 3𝑢𝑠𝑦𝑞𝑦𝑦], 𝑞𝑦𝑦𝑦𝑤
2)

− 2(𝑣𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤𝑤𝑦) − (𝑣𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤
2)𝑦=0. (4.19)

We first handle the important boundary contribution from above.We integrate by parts, expand
the boundary term to obtain:

(4.19.{4 + 6}) =

(
3

2
𝑢𝑠𝑦𝑦𝑞𝑦𝑦𝑤

2, 𝑞𝑦𝑦

)
+

(
3

2
𝑢𝑠𝑦𝑞𝑦𝑦𝑤

2, 𝑞𝑦𝑦

)
𝑦=0

− (3𝑢𝑠𝑦𝑞𝑦𝑦𝑤
2, 𝑞𝑦𝑦)𝑦=0 + (3𝑞2𝑦𝑦, 𝑢𝑠𝑦𝑤𝑤𝑦)

≤ −
3

2
‖√𝑢𝑠𝑦𝑞𝑦𝑦 ⋅ 𝑤‖2𝑦=0 +√

𝐿|||𝑞|||2𝑤.
Above, we have used |𝑤𝑦| ≲ |𝑤|, and the estimate (3.18) to estimate the 𝑞𝑦𝑦 term. We have

also used the expansion for (4.19.6): 𝑣𝑦𝑦𝑦 = 𝑢𝑠𝑦𝑦𝑦𝑞 + 3𝑢𝑠𝑦𝑦𝑞𝑦 + 3𝑢𝑠𝑦𝑞𝑦𝑦 + 𝑢𝑠𝑞𝑦𝑦𝑦 , and subse-
quently that 𝑞|𝑦=0 = 𝑢𝑠|𝑦=0 = 0, ‖𝑞𝑦‖𝑦=0 ≲ 𝐿‖𝑞𝑥𝑦‖𝑦=0. We emphasize the importance of the
precise prefactors of −3 and +

3

2
in the above boundary terms, which enable us to generate the

required positivity.
The first term, (4.19.1) is a favorable contribution which contributes ‖√𝑢𝑠𝑞𝑦𝑦𝑦𝑤‖2. The third

term is controlled by the Hardy-type inequality, (3.27):

|(4.19.3)| ≤ ‖𝑢𝑠𝑦𝑦⟨𝑦⟩‖∞‖‖‖𝑞𝑦𝑤‖‖‖‖√𝑢𝑠𝑞𝑦𝑦𝑦𝑤‖ ≲ 𝐿|||𝑞|||2𝑤.
The second term, (4.19.2), is controlled via an integration by parts in 𝑦, Poincare in 𝑥, (3.14)

which is available since 𝑞|𝑥=0 = 0, and finally (3.18) to estimate the 𝑞𝑦𝑦 contribution:

(4.19.2) =(3𝑢𝑠𝑦𝑦𝑦𝑞𝑦 + 3𝑢𝑠𝑦𝑦𝑞𝑦𝑦, 𝑞𝑦𝑦𝑤
2) + 6(𝑢𝑠𝑦𝑦𝑞𝑦, 𝑞𝑦𝑦𝑤𝑤𝑦)

+ 3(𝑢𝑠𝑦𝑦𝑞𝑦, 𝑞𝑦𝑦𝑤
2)𝑦=0

≲ ‖𝑞𝑦𝑦𝑤‖2 + 𝐿‖𝑞𝑥𝑦‖𝑦=0‖𝑞𝑦𝑦‖𝑦=0 ≲ 𝐿|||𝑞|||2𝑤.
Finally, we move to (4.19.5), for which an expansion of 𝑣𝑦𝑦𝑦 = 𝑢𝑠𝑞𝑦𝑦𝑦 + 𝑢𝑠𝑦𝑦𝑦𝑞 + 3𝑢𝑠𝑦𝑦𝑞𝑦 +

3𝑢𝑠𝑦𝑞𝑦𝑦 and |𝑤𝑦| ≲ |𝑤| gives |(4.19.5)| ≲ 𝐿|||𝑞|||2𝑤 upon invoking (3.18). This concludes the
contributions of 𝜕4𝑦 .
We next move to 2𝜀𝜕𝑥𝑥𝑦𝑦 . We integrate by parts the following term upon using that 𝑣𝑥|𝑥=𝐿 = 0

and 𝑞|𝑥=0 = 0:

(2𝜀𝑣𝑥𝑥𝑦𝑦, 𝑞𝑦𝑦𝑤
2) = − (2𝜀𝑣𝑥𝑦𝑦, 𝑞𝑥𝑦𝑦𝑤

2)

= − (2𝜀𝜕𝑥𝑦𝑦{𝑢𝑠𝑞}, 𝑞𝑥𝑦𝑦𝑤
2)

= − (2𝜀
[
𝑢𝑠𝑥𝑦𝑦𝑞 + 2𝑢𝑠𝑥𝑦𝑞𝑦 + 𝑢𝑠𝑥𝑞𝑦𝑦

+𝑢𝑠𝑦𝑦𝑞𝑥 + 2𝑢𝑠𝑦𝑞𝑥𝑦 + 𝑢𝑠𝑞𝑥𝑦𝑦
]
, 𝑞𝑥𝑦𝑦𝑤

2). (4.20)
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3193

While (4.20.6) is a favorable contribution, straightforward computations using the Poincare
inequalities, (3.14), show that

|(4.20.1)| + |(4.20.3)| + |(4.20.4)| ≲ 𝐿
√
𝜀|||𝑞|||2𝑤.

We must treat (4.20.{2, 5}) via integration by parts in 𝑦 because their coefficients do not vanish
as 𝑦 ↓ 0. For (4.20.2), integrate by parts in 𝑦, and use |𝑤𝑦| ≲ |𝑤| to obtain:

(4.20.2) =(4𝜀𝑞𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑥𝑦𝑞𝑦𝑤
2}) + (4𝜀𝑞𝑥𝑦, 𝑢𝑠𝑥𝑦𝑞𝑦𝑤

2)𝑦=0

=(4𝜀𝑢𝑠𝑥𝑦𝑦𝑞𝑥𝑦, 𝑞𝑦𝑤
2) + (4𝜀𝑞𝑥𝑦, 𝑢𝑠𝑥𝑦𝑞𝑦𝑦𝑤

2)

+ (8𝜀𝑞𝑥𝑦, 𝑢𝑠𝑥𝑦𝑞𝑦𝑤𝑤𝑦) + (4𝜀𝑞𝑥𝑦, 𝑢𝑠𝑥𝑦𝑞𝑦𝑤
2)𝑦=0

≲ 𝜀|||𝑞|||2𝑤 + 𝜀𝐿‖𝑞𝑥𝑦𝑤‖2 + 𝐿𝜀‖𝑞𝑥𝑦‖2𝑦=0.
For (4.20.5), integration by parts in 𝑦 produces the expression

(4.20.5) =(2𝜀𝑞𝑥𝑦𝜕𝑦{𝑢𝑠𝑦𝑤
2}, 𝑞𝑥𝑦) + (2𝜀𝑞𝑥𝑦, 𝑞𝑥𝑦𝑢𝑠𝑦𝑤

2)𝑦=0 ≲ 𝜀|||𝑞|||2𝑤.
Wenextmove to 𝜀2𝑣𝑥𝑥𝑥𝑥. For this, we integrate by parts twice in 𝑥, use the boundary conditions

𝑣𝑥𝑥𝑥|𝑥=𝐿 = 0 and 𝑞𝑦𝑦|𝑥=0 = 0 from (3.3), subsequently integrate by parts in 𝑦, and finally expand
the term 𝑣𝑥𝑥𝑦 . We show this below:

(𝜀2𝑣𝑥𝑥𝑥𝑥, 𝑞𝑦𝑦𝑤
2) =(𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑥𝑦𝑦𝑤

2) − (𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑦𝑦)𝑥=𝐿

= − (𝜀2𝑣𝑥𝑥𝑦, 𝑞𝑥𝑥𝑦𝑤
2) − 2(𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑥𝑦𝑤𝑤𝑦) − (𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑦𝑦)𝑥=𝐿

=(−𝜀2[𝑢𝑠𝑥𝑥𝑦𝑞 + 2𝑢𝑠𝑥𝑦𝑞𝑥 + 𝑢𝑠𝑦𝑞𝑥𝑥 + 𝑢𝑠𝑞𝑥𝑥𝑦

+ 𝑢𝑠𝑥𝑥𝑞𝑦 + 2𝑢𝑠𝑥𝑞𝑥𝑦], 𝑞𝑥𝑥𝑦𝑤
2) − (𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑥𝑦2𝑤𝑤𝑦)

+ (𝜀2𝑣𝑥𝑥, 𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2)𝑥=𝐿. (4.21)

The term (4.21.4) is favorable. The terms with coefficients that vanish as 𝑦 ↓ 0 are (4.21.5) and
(4.21.6), and so these may be estimated directly via

|(4.21.5)| + |(4.21.6)| ≲ 𝐿𝜀
3

2 |||𝑣|||2𝑤.
The remaining interior terms require integration by parts in 𝑦:

(4.21.1) =(𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑥𝑦𝑦𝑞𝑤
2) + (𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑥𝑦𝑞𝑦𝑤

2)

+ (𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑥𝑦𝑞2𝑤𝑤𝑦)

≲ 𝜀
3

2 |||𝑣|||2𝑤.
Above, we have used the weighted Hardy inequality from (3.27). Next, in a similar fashion:

(4.21.2) =(2𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑦𝑦𝑞𝑥𝑤
2) + (2𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑦𝑞𝑥𝑦𝑤

2)

+ (4𝜀2𝑞𝑥𝑥, 𝑢𝑠𝑥𝑦𝑞𝑥𝑤𝑤𝑦)

≲ 𝜀
3

2 |||𝑞|||2𝑤.
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3194 GUO and IYER

We have used (3.27) for the 𝑞𝑥 term appearing in (4.21.2.1), (4.21.2.3). The term (4.21.3) can be
handled analogously using that 𝑞𝑥𝑥|𝑦=0 = 0:

(4.21.3) =
𝜀2

2
(𝑢𝑠𝑦𝑦𝑞𝑥𝑥, 𝑞𝑥𝑥𝑤

2) + (𝜀2𝑢𝑠𝑦𝑞𝑥𝑥, 𝑞𝑥𝑥𝑤𝑤𝑦) ≲ 𝜀‖√𝜀𝑞𝑥𝑥𝑤‖2.
Next, we use that |𝑤𝑦| ≲ |𝑤| and split the term (4.21.7) into 𝑦 ≤ 1 and 𝑦 ≥ 1. On the 𝑦 ≤ 1 piece,

we use |𝑤| ≲ 1, whereas in the far-field piece we use that |𝑤𝑦| ≲ |𝑤|. Recall also that 𝑢𝑠 ≳ 𝑦 for
𝑦 ≲ 1. Thus, |(4.21.7)| ≲ |(𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑥𝑦𝑤𝑤𝑦𝜒(𝑦))| + |(𝜀2𝑣𝑥𝑥, 𝑞𝑥𝑥𝑦𝑤𝑤𝑦[1 − 𝜒(𝑦)])|

≲ 𝜀‖√𝜀
𝑣𝑥𝑥
𝑦

‖‖√𝑢𝑠
√
𝜀𝑞𝑥𝑥𝑦‖ + 𝜀‖√𝜀𝑣𝑥𝑥𝑤‖‖√𝑢𝑠

√
𝜀𝑞𝑥𝑥𝑦𝑤‖.

For the boundary term we distribute the 𝜕𝑦𝑦 and estimate using the Fundamental Theorem of
Calculus since both 𝑣𝑥𝑥|𝑥=0 = 𝑞|𝑥=0 = 0:

|(4.21.8)| =(
𝜀2𝑣𝑥𝑥,

[
𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞 + 2𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑦 +

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑦

]
𝑤2

)
𝑥=𝐿

=

(
𝜀2𝑣𝑥𝑥𝑥,

[
𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞 + 2𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑦 +

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑦

]
𝑤2

)
+

(
𝜀2𝑣𝑥𝑥, 𝜕𝑥

[
𝜕𝑦𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞 + 2𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑦 +

𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑦

]
𝑤2

)
≲
√
𝜀‖ 1√

𝑢𝑠
𝜀𝑣𝑥𝑥𝑥𝑤‖‖√𝜀

√
𝑢𝑠
{
𝑞 + 𝑞𝑦 + 𝑞𝑦𝑦 + 𝑞𝑥 + 𝑞𝑥𝑦 + 𝑞𝑥𝑦𝑦

}
𝑤‖

≲
√
𝜀|||𝑞|||2𝑤.

Above, we have expanded:

‖ 1√
𝑢𝑠
𝜀𝑣𝑥𝑥𝑥𝑤‖ =‖ 1√

𝑢𝑠
𝜀𝜕𝑥𝑥𝑥{𝑢𝑠𝑞}𝑤‖

≤‖ 1√
𝑢𝑠
𝜀{𝑢𝑠𝑥𝑥𝑥𝑞 + 3𝑢𝑠𝑥𝑥𝑞𝑥 + 3𝑢𝑠𝑥𝑞𝑥𝑥 + 𝑢𝑠𝑞𝑥𝑥𝑥}‖

≤|||𝑞|||𝑤,
where we have used that |𝜕𝑗𝑥𝑢𝑠| ≲ 𝑦 near {𝑦 = 0}.

Step 3: 𝐽(𝑣) terms

|(𝐽, 𝑞𝑦𝑦𝑤2)| ≲ √
𝐿|||𝑞|||2𝑤.

Recalling (1.29), we expand and estimate immediately

(−𝑣𝑠𝑣𝑦𝑦𝑦 − 𝜀𝑣𝑠𝑥𝑣𝑥𝑦 − 𝜀𝑣𝑠𝑣𝑥𝑥𝑦

+ Δ𝜀𝑣𝑠𝑣𝑦 − 𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦] + 𝐼𝑥[𝑣𝑦], 𝑞𝑦𝑦𝑤
2) ≲ 𝐿|||𝑞|||2𝑤.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3195

The forcing term clearly contributes |(𝐹, 𝑞𝑦𝑦𝑤2)| to the right-hand side, which concludes the
proof. □

Lemma 4.3. Let 𝑣 be a solution to (3.1). Let𝑤 satisfy |𝜕𝑘𝑦𝑤| ≲ |𝑤|, |(𝑤2)𝑦𝑦| ≲ |𝑤𝑦|2 and |𝑤𝑦| ≲ |𝑤|.
Then:

‖∇𝜀𝑞𝑥 ⋅ 𝑢𝑠𝑤‖2 ≲ 𝐿
1

2 {|||𝑞|||2𝑤 + ||||𝑣||||2𝑤} + 𝐿‖𝑞𝑥𝑥𝑤𝑦‖2 + |(𝐹, 𝑞𝑥𝑤2)|. (4.22)

Proof. We compute the following inner product: (Equation (3.1), 𝑞𝑥𝑤(𝑦)2).

Step 1: Rayleigh Tterms estimates

(−𝜕𝑥𝑅[𝑞], 𝑞𝑥𝑤
2) ≳ ‖𝑢𝑠𝑞𝑥𝑦𝑤‖2 − 𝐿‖𝑞𝑥𝑥𝑤𝑦‖2 − 𝐿|||𝑞|||2𝑤. (4.23)

First, integrate by parts in 𝑦 and expand via the product rule:

(−𝜕𝑥𝑦{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥𝑤

2) =(𝜕𝑥{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥𝑦𝑤

2) + (𝜕𝑥{𝑢
2
𝑠 𝑞𝑦}, 𝑞𝑥2𝑤𝑤𝑦)

=‖𝑢𝑠𝑞𝑥𝑦𝑤‖2 + (2𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑦𝑤
2) + (4𝑢𝑠𝑢𝑠𝑥𝑞𝑦, 𝑞𝑥𝑤𝑤𝑦)

+ 2(𝑢2𝑠 𝑞𝑥𝑦, 𝑞𝑥𝑤𝑤𝑦). (4.24)

The second and third terms are majorized by 𝐿‖𝑢𝑠𝑞𝑥𝑦𝑤‖2 + 𝐿2‖𝑢𝑠𝑞𝑥𝑦𝑤‖‖𝑞𝑥𝑤𝑦‖ upon using
Poincare in 𝑥 as in (3.14). For the fourth, integrate by parts in 𝑦 to produce:

−(𝑞𝑥, 𝑞𝑥[2𝑢𝑠𝑢𝑠𝑦𝑤𝑤𝑦 + 𝑢2𝑠 (𝑤𝑤𝑦)𝑦]) ≤ 𝐿‖𝑢𝑠𝑦𝑦‖∞‖𝑞𝑥
𝑦
𝑤‖‖𝑞𝑥𝑥𝑤𝑦‖ + 𝐿2‖𝑞𝑥𝑥𝑤𝑦‖2

In the above estimate, we have used Poincare in 𝑥, (3.14), Hardy in 𝑦, and the estimate that|(𝑤2)𝑦𝑦| ≲ |𝑤𝑦|2.
The second Rayleigh contribution is as follows, upon integrating by parts in 𝑥 and then

expanding:

(−𝜀𝜕𝑥𝑥{𝑢
2
𝑠 𝑞𝑥}, 𝑞𝑥𝑤

2) =(𝜀𝜕𝑥{𝑢
2
𝑠 𝑞𝑥}, 𝑞𝑥𝑥𝑤

2) − (𝜀𝑞𝑥, 𝜕𝑥{𝑢
2
𝑠 𝑞𝑥}𝑤

2)|𝑥=𝐿𝑥=0

=‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2 + (2𝜀𝑢𝑠𝑢𝑠𝑥𝑞𝑥, 𝑞𝑥𝑥𝑤
2)

− (𝜀𝑞𝑥, 𝜕𝑥{𝑢
2
𝑠 𝑞𝑥}𝑤

2)|𝑥=𝐿𝑥=0

=‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2 + (2𝜀𝑢𝑠𝑢𝑠𝑥𝑞𝑥, 𝑞𝑥𝑥𝑤
2)

− (𝜀𝑢2𝑠 𝑞𝑥, 𝑞𝑥𝑥𝑤
2)|𝑥=𝐿𝑥=0 − 2|√𝜀𝑢𝑠𝑢𝑠𝑥𝑞𝑥𝑤|𝑥=𝐿𝑥=0 |2 (4.25)

≳‖√𝜀𝑢𝑠𝑞𝑥𝑥𝑤‖2 − 𝐿|||𝑞|||2𝑤,
where we have used (3.14)–(3.16). The boundary terms follow from (3.21).
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3196 GUO and IYER

Step 2: Estimate for Δ2
𝜀 terms

|(Δ2
𝜀 𝑣, 𝑞𝑥𝑤

2)| ≲ √
𝐿[|||𝑞|||2𝑤 + ||||𝑣||||2𝑤] + 𝐿‖𝑞𝑥𝑥𝑤𝑦‖2. (4.26)

We begin with the 𝜕4𝑦 contribution. A series of integration by parts in 𝑦 gives:

(𝑣𝑦𝑦𝑦𝑦, 𝑞𝑥𝑤
2) =(𝑣𝑦𝑦, 𝑞𝑥𝑦𝑦𝑤

2) + (𝑣𝑦𝑦, 𝑞𝑥𝑦2𝑤𝑤𝑦)

+ (𝑣𝑦𝑦, 𝑞𝑥𝑦2𝑤𝑤𝑦) − (𝑣𝑦, 𝑞𝑥𝑦2(𝑤𝑤𝑦)𝑦)

− (𝑣𝑦, 𝑞𝑥2(𝑤𝑤𝑦)𝑦𝑦) + (𝑣𝑦𝑦, 𝑞𝑥𝑦𝑤
2)𝑦=0

− (𝑣𝑦𝑦𝑦, 𝑞𝑥𝑤
2)𝑦=0. (4.27)

Specifically, we have integrated by parts twice in 𝑦, expanded the resulting quantity,
𝜕𝑦𝑦{𝑞𝑥𝑤

2} = 𝑞𝑥𝑦𝑦𝑤
2 + 4𝑞𝑥𝑦𝑤𝑤𝑦 + 𝑞𝑥𝜕𝑦𝑦{𝑤

2}, and further integrated by parts the final term in 𝑦.
We will first treat the boundary terms from (4.27). First, (4.27.7) = 0 due to the boundary

condition 𝑞𝑥|𝑦=0 = 0 coupled with the asymptotic estimate (3.28) for 𝑣𝑦𝑦𝑦 . Next, an expansion
shows:

(4.27.6) = ([𝑢𝑠𝑦𝑦𝑞 + 2𝑢𝑠𝑦𝑞𝑦 + 𝑢𝑠𝑞𝑦𝑦], 𝑞𝑥𝑦𝑤
2)𝑦=0.

The first term vanishes as 𝑞|𝑦=0 = 0, whereas the third term vanishes according to the asymp-
totics in (3.28). The only contribution is thus the middle term for which we use that 𝑞|𝑥=0 = 0 to
estimate |(𝑞𝑦, 𝑞𝑥𝑦)|𝑦=0| ≤ 𝐿‖𝑞𝑥𝑦‖2𝑦=0, which is an acceptable contribution to the right-hand side
of (4.26) due to the inclusion ‖𝑞𝑥𝑦‖𝑦=0 in |||𝑞|||𝑤.
We now turn to the bulk terms from (4.27). An expansion shows

(4.27.1) = ([𝑢𝑠𝑦𝑦𝑞 + 2𝑢𝑠𝑦𝑞𝑦 + 𝑢𝑠𝑞𝑦𝑦], 𝑞𝑥𝑦𝑦𝑤
2).

For the first term, we estimate via Hardy in 𝑦, (3.13), and Poincare in 𝑥:

|(4.27.1.1)| ≤‖𝑢𝑠𝑦𝑦⟨𝑦⟩‖∞‖𝑞
𝑦
𝑤‖‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖

≲ {‖𝑞𝑦𝑤‖ + ‖√𝜀𝑞𝑤‖}‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖
≲ 𝐿{‖𝑞𝑥𝑦𝑤‖ + ‖√𝜀𝑞𝑥𝑤‖}‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖.

The middle term requires an integration by parts in 𝑦 via:

(4.27.1.2) = − (2𝑞𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑦𝑞𝑦𝑤
2}) − (2𝑞𝑥𝑦, 𝑢𝑠𝑦𝑞𝑦𝑤

2)𝑦=0

= − (2𝑢𝑠𝑦𝑦𝑞𝑥𝑦, 𝑞𝑦𝑤
2) − (2𝑞𝑥𝑦, 𝑢𝑠𝑦𝑞𝑦𝑦𝑤

2)

− (4𝑢𝑠𝑦𝑞𝑥𝑦, 𝑞𝑦2𝑤𝑤𝑦) − (2𝑞𝑥𝑦, 𝑞𝑦𝑢𝑠𝑦𝑤
2)𝑦=0

≲ 𝐿‖𝑞𝑥𝑦 ⋅ 𝑤‖2 + ‖𝑞𝑥𝑦 ⋅ 𝑤‖‖𝑞𝑦𝑦 ⋅ 𝑤‖
+ 𝐿‖𝑞𝑥𝑦 ⋅√𝑤𝑤𝑦‖2 + 𝐿‖𝑞𝑥𝑦 ⋅ 𝑤‖2𝑦=0

≲
√
𝐿|||𝑞|||2𝑤.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3197

Above, we have used (3.14) for the 𝑞𝑦 terms, the assumption that |𝑤𝑦| ≲ |𝑤|, and most impor-
tantly the estimate (3.18) to obtain

√
𝐿 control of ‖𝑞𝑦𝑦𝑤‖. The final term can be estimated via

Poincare in 𝑥: |(4.27.1.3)| ≲ 𝐿‖√𝑢𝑠𝑞𝑥𝑦𝑦𝑤‖2.
We continue with the bulk contributions from (4.27), for which straightforward bounds using

(3.14) and the inequalities |𝑤𝑦| ≲ |𝑤|, (𝑤2)𝑦𝑦 ≲ |𝑤𝑦|2 show:|(4.27.2, 3)| ≤ 𝐿‖𝑣𝑥𝑦𝑦𝑤‖‖√𝑢𝑠𝑞𝑥𝑦 ⋅ 𝑤‖,
|(4.27.4)| ≤ 𝐿‖𝑣𝑥𝑦𝑤‖‖𝑞𝑥𝑦𝑤‖,
|(4.27.5)| ≤ 𝐿2‖𝑣𝑥𝑦𝑤‖‖𝑞𝑥𝑥𝑤𝑦‖,

all of which are acceptable contributions to the right-hand side of (4.26). This concludes our
treatment of (4.27).
We move on to contributions from 𝜀𝑣𝑥𝑥𝑦𝑦 . We begin with one integration by parts in 𝑦 and an

expansion of 𝑣𝑥𝑥𝑦 = 𝜕𝑥𝑥𝑦{𝑢𝑠𝑞}:

(2𝜀𝑣𝑥𝑥𝑦𝑦, 𝑞𝑥𝑤
2) =(−2𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑦𝑤

2) − (4𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑤𝑤𝑦) − (2𝜀𝑣𝑥𝑥𝑦, 𝑞𝑥𝑤
2)𝑦=0

= − (2𝜀[𝑢𝑠𝑥𝑥𝑦𝑞 + 𝑢𝑠𝑦𝑞𝑥𝑥 + 2𝑢𝑠𝑥𝑦𝑞𝑥 + 𝑢𝑠𝑥𝑥𝑞𝑦

+ 𝑢𝑠𝑞𝑥𝑥𝑦 + 2𝑢𝑠𝑥𝑞𝑥𝑦], 𝑞𝑥𝑦𝑤
2) − (4𝜀𝑞𝑥, 𝑣𝑥𝑥𝑦𝑤𝑤𝑦). (4.28)

We have used (3.28) to conclude that the {𝑦 = 0} boundary contribution vanishes. It is
straightforward to estimate using (3.16) and that |𝑤𝑦| ≲ |𝑤|:

|(4.28.1)| +⋯+ |(4.28.6)| ≲ √
𝜀|||𝑞|||2𝑤

|(4.28.7)| ≲ 𝐿‖√𝜀𝑣𝑥𝑥𝑦𝑤‖‖√𝜀𝑞𝑥𝑥𝑤‖.
We now move to 𝜕4𝑥 contributions, for which an integration by parts in 𝑥 and expansion gives:

(𝜀2𝑣𝑥𝑥𝑥𝑥, 𝑞𝑥𝑤
2) = − (𝜀2𝑣𝑥𝑥𝑥, 𝑞𝑥𝑥𝑤

2) − (𝜀2𝑣𝑥𝑥𝑥, 𝑞𝑥𝑤
2)𝑥=0

= − (𝜀2[𝑢𝑠𝑥𝑥𝑥𝑞 + 3𝑢𝑠𝑥𝑥𝑞𝑥 + 3𝑢𝑠𝑥𝑞𝑥𝑥 + 𝑢𝑠𝑞𝑥𝑥𝑥], 𝑞𝑥𝑥𝑤
2)

− (𝜀2𝑣𝑥𝑥𝑥, 𝑞𝑥𝑤
2)𝑥=0

≲
√
𝜀|||𝑞|||2𝑤 + ‖𝜀 32 𝑣𝑥𝑥𝑥𝑤‖𝑥=0‖√𝜀𝑞𝑥𝑤‖𝑥=0

≲
√
𝜀|||𝑞|||2𝑤 +

√
𝐿||||𝑣|||| 12𝑤|||𝑞||| 32𝑤, (4.29)

where we have used estimate (3.21) for the 𝑞𝑥|𝑥=0 boundary term, and the trace inequality (4.13).
Step 3: 𝐽(𝑣) terms

|(𝐽, 𝑞𝑥𝑤2)| ≲ √
𝐿|||𝑞|||𝑤 + 𝐿2‖𝑞𝑥𝑥𝑤𝑦‖2.

Recalling the definition of 𝐽 in (1.29), we have

(−𝜀𝑣𝑠𝑥𝑣𝑥𝑦 − 𝑣𝑠𝑣𝑦𝑦𝑦 − 𝜀𝑣𝑠𝑣𝑦𝑥𝑥 + Δ𝜀𝑣𝑠𝑣𝑦 (4.30)

− 𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦] + Δ𝜀𝑣𝑠𝑥𝐼𝑥[𝑣𝑦], 𝑞𝑥𝑤
2).
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We first record the elementary inequality which will be in repeated use:

‖𝐼𝑥[𝑓]‖ ≤ √
𝐿‖𝐼𝑥[𝑓]‖𝐿∞𝑥 𝐿2𝑦

≤ 𝐿‖𝑓‖. (4.31)

We integrate by parts in 𝑦:

(4.30.5) =(𝐼𝑥[𝑣𝑦𝑦]𝑣𝑠𝑥𝑦, 𝑞𝑥𝑤
2) + (𝐼𝑥[𝑣𝑦𝑦]𝑣𝑠𝑥, 𝑞𝑥𝑦𝑤

2) + (𝐼𝑥[𝑣𝑦𝑦]𝑣𝑠𝑥, 𝑞𝑥2𝑤𝑤𝑦).

Using (4.31), we immediately estimate (4.30.5.{2, 3}). The first term, (4.30.5.1), is controlled upon
using that ‖𝑣𝑠𝑥𝑦𝑦‖∞ < ∞ and an appeal to the Hardy inequality, (3.27):

|(4.30.5.1)| ≲ 𝐿‖𝑣𝑠𝑥𝑦⟨𝑦⟩‖∞‖𝑣𝑦𝑦𝑤‖‖ 𝑞𝑥⟨𝑦⟩𝑤‖,
|(4.30.5.2)| ≲ 𝐿‖𝑣𝑦𝑦𝑤‖‖𝑞𝑥𝑦𝑤‖,
|(4.30.5.3)| ≲ 𝐿2‖𝑣𝑦𝑦𝑤‖𝑞𝑥𝑥𝑤𝑦‖.

Integration by parts in 𝑦 for the term (4.30.2) produces:

(4.30.2) = (𝑣𝑦𝑦𝑣𝑠𝑦, 𝑞𝑥𝑤
2) + (𝑣𝑦𝑦𝑣𝑠, 𝑞𝑥𝑦𝑤

2) + 2(𝑣𝑦𝑦𝑣𝑠, 𝑞𝑥𝑤𝑤𝑦)

From here an analogous set of estimates to (4.30.5) produces the desired estimate upon using
one further Poincare inequality, ‖𝑣𝑦𝑦𝑤‖ ≤ 𝐿‖𝑣𝑥𝑦𝑦𝑤‖, which is valid as 𝑣|𝑥=0 = 0. Direct Poincare
inequality in 𝑥 using (3.14) yields |(4.30.1)| + |(4.30.3)| ≲ 𝐿|||𝑞|||2𝑤 . Terms (4.30.4) and (4.30.6) are
estimated identically so we focus on (4.30.4). We estimate the Δ𝜀 term using (3.27) and Poincare
in 𝑥 as 𝑣|𝑥=0 = 0:

|(4.30.4)| ≤‖Δ𝜀𝑣𝑠𝑦‖∞‖𝑣𝑦𝑤‖‖𝑞𝑥
𝑦
𝑤‖

≲ 𝐿‖𝑣𝑥𝑦𝑤‖{‖𝑞𝑥𝑦𝑤‖ + ‖√𝜀𝑞𝑥𝑤‖}
≲ 𝐿|||𝑞|||2𝑤.

This concludes the terms in 𝐽.
We put directly the contribution |(𝐹, 𝑞𝑥𝑤2)| on the right-hand side of the desired estimate,

which concludes the proof. □

4.2 Trace estimates

For the first fourth order bound, we will perform a weighted estimate for a weight 𝑤(𝑦). Let us
make the following definition:

𝐵̄(𝑤) ∶= ‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦 ⋅ 𝑤‖2𝑥=0 + ‖𝜀𝑢𝑠𝑣𝑥𝑥𝑦 ⋅ 𝑤‖2𝑥=𝐿. (4.32)
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Lemma 4.4. Let 𝑣 be a solution to (3.1). Then the following estimate is valid:

𝐵̄(𝑤) + ‖{√
𝜀𝑣𝑥𝑦𝑦𝑦, 𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀

3

2 𝑣𝑥𝑥𝑥𝑦

}√
𝑢𝑠𝑤‖2

≲
√
𝜀|||𝑞|||21 + |||𝑞|||2√

𝜀𝑤
+ |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦

+ |(𝐹, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤2)|. (4.33)

Proof. We compute the inner-product (Equation (3.1), 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤2).

Step 1: Rayleigh terms

The main estimate in this step is:

(−𝜕𝑥𝑅[𝑞], 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤
2) ≳ ‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖2𝑥=0 + ‖𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑤‖2𝑥=𝐿
− |||𝑞|||2√

𝜀𝑤
−

√
𝜀|||𝑞|||21. (4.34)

First, we rewrite the Rayleigh operator via

−𝜕𝑥𝑅[𝑞] = −𝜕𝑥𝑦{𝑢𝑠𝑣𝑦} − 𝜀𝜕𝑥𝑥{𝑢𝑠𝑣𝑥} + 𝜕𝑥𝑦{𝑢𝑠𝑦𝑣} + 𝜀𝜕𝑥𝑥{𝑢𝑠𝑥𝑣}. (4.35)

A series of integration by parts shows:

(−𝜕𝑥𝑦{𝑢𝑠𝑣𝑦}, 𝜀𝑣𝑥𝑥𝑦𝑦𝑤
2𝑢𝑠)

= − (𝜀[𝑢𝑠𝑥𝑣𝑦𝑦 + 𝑢𝑠𝑦𝑣𝑥𝑦 + 𝑢𝑠𝑥𝑦𝑣𝑦 + 𝑢𝑠𝑣𝑥𝑦𝑦], 𝑣𝑥𝑥𝑦𝑦𝑤
2𝑢𝑠)

=(𝜀𝑣𝑥𝑦𝑦, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑣𝑦𝑦}𝑤
2) + (𝜀𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑢𝑠𝑦𝑣𝑥𝑦𝑤

2})

+ (𝜀𝑣𝑥𝑦𝑦𝑤
2, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑦𝑣𝑦}) + (𝜀𝑢𝑠𝑢𝑠𝑥𝑣𝑥𝑦𝑦, 𝑣𝑥𝑦𝑦𝑤

2)

+
1

2
‖√𝜀𝑣𝑥𝑦𝑦𝑤𝑢𝑠‖2𝑥=0

≳‖√𝜀𝑣𝑥𝑦𝑦𝑤𝑢𝑠‖2𝑥=0 − |||𝑞|||2√
𝜀𝑤
.

Again, we expand and perform a series of integrations by parts which produces:

−(𝜀𝜕𝑥𝑥{𝑢𝑠𝑣𝑥}, 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2)

= − (𝜀2[𝑢𝑠𝑣𝑥𝑥𝑥 + 2𝑢𝑠𝑥𝑣𝑥𝑥 + 𝑢𝑠𝑥𝑥𝑣𝑥], 𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2)

=(𝜀2𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢
2
𝑠 𝑣𝑥𝑥𝑥𝑤

2}) + (2𝜀2𝑣𝑥𝑦𝑦𝑤
2, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑣𝑥𝑥})

+ (𝜀2𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑥𝑥𝑢𝑠𝑣𝑥𝑤
2})

=(𝜀2𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢
2
𝑠𝑤

2}𝑣𝑥𝑥𝑥) + (𝜀2𝑣𝑥𝑥𝑦, 𝑢
2
𝑠 𝑣𝑥𝑥𝑥𝑦𝑤

2)

+ 2(𝜀2𝑣𝑥𝑦𝑦𝑤
2, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑣𝑥𝑥}) + (𝜀2𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑥𝑥𝑢𝑠𝑣𝑥𝑤

2}). (4.36)
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First, let us deal with (4.36.1). Using (A.5) we split 𝑢𝑠 = 𝑢𝑃𝑠 + 𝑢𝐸𝑠 , where 𝑢𝑃𝑠 decays rapidly as
𝑦 → ∞, which produces

|∇𝑘𝑢𝑠| ≤ |∇𝑘𝑢𝑃𝑠 | +√
𝜀 for 𝑘 ≥ 1, (4.37)

and so:

|(4.36.1)| ≲ ‖√𝜀𝑣𝑥𝑥𝑦
√
𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥𝑤𝑦‖ +√

𝜀‖√𝜀𝑣𝑥𝑥𝑦‖𝜀𝑣𝑥𝑥𝑥‖
+

√
𝜀‖√𝜀𝑣𝑥𝑥𝑦

√
𝜀𝑤‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖

≲ |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦
+

√
𝜀|||𝑞|||21 +√

𝜀|||𝑞|||2√
𝜀𝑤
.

The term (4.36.2) produces a positive boundary contribution via integration by parts in 𝑥:

(4.36.2) =
1

2
‖𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑤‖2𝑥=𝐿 − (𝑢𝑠𝑢𝑠𝑥𝜀

2𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑦𝑤
2)

≳‖𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑤‖2𝑥=𝐿 − |||𝑞|||2√
𝜀𝑤

We estimate (4.36.3) directly:

|(4.36.3)| ≲ ‖𝑣𝑥𝑦𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖ ≲ |||𝑞|||2√
𝜀𝑤
.

Finally, for (4.36.4), we distribute the 𝜕𝑦:

|(4.36.4)| =|(𝜀2𝑣𝑥𝑥𝑦, 𝑢𝑠𝑥𝑥𝑦𝑢𝑠𝑣𝑥𝑤2 + 𝑢𝑠𝑥𝑥𝑢𝑠𝑦𝑣𝑥𝑤
2 + 𝑢𝑠𝑥𝑥𝑢𝑠𝑣𝑥𝑦𝑤

2

+ 𝑢𝑠𝑥𝑥𝑢𝑠𝑣𝑥2𝑤𝑤𝑦)|
≲ ‖√𝜀𝑣𝑥𝑥𝑦

√
𝜀𝑤‖{‖√𝜀𝑣𝑥

√
𝜀𝑤‖ + ‖𝑣𝑥𝑦√𝜀𝑤‖}

We now have the lower order Rayleigh contributions. Here, the main mechanism is the point-
wise inequality (4.37). We simply expand the product, integrate by parts once, expand further the
resulting expression, and estimate using this pointwise inequality:

(𝜕𝑥𝑦{𝑢𝑠𝑦𝑣}, 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2) =([𝑢𝑠𝑥𝑦𝑦𝑣 + 𝑢𝑠𝑥𝑦𝑣𝑦 + 𝑢𝑠𝑦𝑦𝑣𝑥 + 𝑢𝑠𝑦𝑣𝑥𝑦], 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤

2)

= − (𝜀𝑣𝑥𝑦𝑦𝑤
2, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑦𝑦𝑣}) − (𝜀𝑣𝑥𝑦𝑦𝑤

2, 𝜕𝑥{𝑢𝑠𝑢𝑠𝑥𝑦𝑣𝑦})

− (𝜀𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑦𝑦𝑢𝑠𝑣𝑥𝑤
2}) − (𝜀𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑦𝑢𝑠𝑣𝑥𝑦𝑤

2})

= − (𝜀𝑢𝑠𝑥𝑢𝑠𝑥𝑦𝑦𝑣𝑥𝑦𝑦, 𝑣𝑤
2) − (𝜀𝑢𝑠𝑢𝑠𝑥𝑥𝑦𝑦𝑣𝑥𝑦𝑦, 𝑣𝑤

2)

− (𝜀𝑢𝑠𝑢𝑠𝑥𝑦𝑦𝑣𝑥, 𝑣𝑥𝑦𝑦𝑤
2) − (𝜀𝑢𝑠𝑥𝑢𝑠𝑥𝑦𝑣𝑦, 𝑣𝑥𝑦𝑦𝑤

2)

− (𝜀𝑢𝑠𝑢𝑠𝑥𝑥𝑦𝑣𝑥𝑦𝑦, 𝑣𝑦𝑤
2) − (𝜀𝑢𝑠𝑢𝑠𝑥𝑦𝑣𝑥𝑦𝑦, 𝑣𝑥𝑦𝑤

2)

− (𝜀𝑢𝑠𝑢𝑠𝑦𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑤
2) − (𝜀𝑢𝑠𝑢𝑠𝑦𝑦𝑣𝑥𝑦, 𝑣𝑥𝑥𝑦𝑤

2)

− (𝜀𝑢𝑠𝑦𝑦𝑢𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑤
2) − (2𝜀𝑢𝑠𝑦𝑦𝑢𝑠𝑣𝑥, 𝑣𝑥𝑥𝑦𝑤𝑤𝑦)

− (𝜀𝑢𝑠𝑢𝑠𝑦𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑦𝑤
2) − (𝜀𝑢𝑠𝑢𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑦𝑦𝑤

2)

 10970312, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22109 by B

row
n U

niversity Library, W
iley O

nline Library on [29/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3201

− (𝜀𝑢2𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑦𝑤
2) − (2𝜀𝑢𝑠𝑢𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑦𝑤𝑤𝑦)

≲
√
𝜀|||𝑞|||21 +√

𝜀|||𝑞|||2√
𝜀𝑤
.

Above, we have used that |𝑤𝑦| ≲ |𝑤|. We have the final lower-order Rayleigh terms, for which
a nearly identical argument to above is carried out:

(𝜀𝜕𝑥𝑥{𝑢𝑠𝑥𝑣}, 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2) =(𝜀2[𝑢𝑠𝑥𝑥𝑥𝑣 + 2𝑢𝑠𝑥𝑥𝑣𝑥 + 𝑢𝑠𝑥𝑣𝑥𝑥], 𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤

2)

= − (𝜀2𝑣𝑥𝑦𝑦, 𝜕𝑥{𝑢𝑠𝑥𝑥𝑥𝑢𝑠𝑣}𝑤
2) − (2𝜀2𝑣𝑥𝑥𝑦, 𝜕𝑦{𝑢𝑠𝑥𝑥𝑣𝑥𝑢𝑠𝑤

2})

− (𝜀2𝑣𝑥𝑦𝑦, 𝜕𝑥{𝑢𝑠𝑥𝑢𝑠𝑣𝑥𝑥}𝑤
2)

= − (𝜀2𝑢𝑠𝑥𝑥𝑥𝑥𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑤
2) − (𝜀2𝑢𝑠𝑥𝑥𝑥𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑤

2)

− (𝜀2𝑢𝑠𝑥𝑥𝑥𝑢𝑠𝑥𝑣𝑥𝑦𝑦, 𝑣𝑤
2) − (2𝜀2𝑢𝑠𝑢𝑠𝑥𝑥𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑤

2)

− (2𝜀2𝑢𝑠𝑢𝑠𝑥𝑥𝑣𝑥𝑦, 𝑣𝑥𝑥𝑦𝑤
2) − (4𝜀2𝑢𝑠𝑢𝑠𝑥𝑥𝑣𝑥, 𝑣𝑥𝑥𝑦𝑤𝑤𝑦)

− (2𝜀2𝑢𝑠𝑥𝑥𝑢𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑤
2) − (𝜀2𝑢𝑠𝑥𝑥𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑤

2)

− (𝜀2𝑢𝑠𝑥𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2) − (𝜀2𝑢2𝑠𝑥𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑤

2)

≲
√
𝜀|||𝑞|||21 +√

𝜀|||𝑞|||2√
𝜀𝑤
.

Step 2: Estimate of Δ2
𝜀 terms

This is done in (3.9).

Step 3: Estimate of 𝐽(𝑣) terms

|(𝐽, 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤2)| ≲ 𝑜(1)LHS(4.33) + |||𝑞|||2√
𝜀𝑤

(4.38)

Recalling the definition of 𝐽 from (1.29), we expand

(−𝑣𝑠𝑣𝑦𝑦𝑦 − 𝜀𝑣𝑠𝑣𝑦𝑥𝑥 − 𝜀𝑣𝑠𝑥𝑣𝑥𝑦 − 𝑣𝑦Δ𝜀𝑣𝑠 (4.39)

− 𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦] + 𝐼𝑥[𝑣𝑦]Δ𝜀𝑣𝑠𝑥, 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2)

Straightforward estimates give:

|(4.39.2)| ≲ ‖√𝜀𝑣𝑦𝑥𝑥
√
𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤‖ ≲ |||𝑞|||√𝜀𝑤 × LHS(4.33),

|(4.39.3)| ≲ √
𝜀‖𝑣𝑥𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤‖ ≲

√
𝜀|||𝑞|||√𝜀𝑤 × LHS(4.33),

which upon using Young’s inequality for products is clear acceptable to the right-hand side of
(4.38).
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We now turn to (4.39.1) for which we integrate by parts in 𝑥, and subsequently integrate by
parts the middle term in 𝑦 thanks to the boundary condition 𝑣|𝑦=0 = 𝑣𝑦|𝑦=0 = 0:

(4.39.1) =(𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤
2) + (𝑣𝑠𝑣𝑥𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤

2) + (𝑣𝑠𝑣𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑥𝑤
2)

=(𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑤
2) −

1

2
(𝑣𝑠𝑦𝑣𝑥𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤

2) −
1

2
(𝑣𝑠𝑣𝑥𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑦𝑤

2)

− (𝑣𝑠𝑣𝑥𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤𝑤𝑦) + (𝑣𝑠𝑣𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑥𝑤
2)

≲ |||𝑞|||2√
𝜀𝑤
.

We next move to (4.39.4) for which we integrate by parts in 𝑥 using that 𝑣|𝑥=0 = 0 and 𝑣𝑥|𝑥=𝐿 =
0:

(4.39.4) =(𝑣𝑥𝑦Δ𝜀𝑣𝑠, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤
2) + (𝑣𝑦Δ𝜀𝑣𝑠𝑥, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤

2) + (𝑣𝑦Δ𝜀𝑣𝑠, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑥𝑤
2)

≲ ‖Δ𝜀𝑣𝑠 + Δ𝜀𝑣𝑠𝑥‖∞|||𝑞|||2√
𝜀𝑤
.

Next, we move to (4.39.5) for which we integrate by parts in 𝑥 and use that 𝐼𝑥[𝑓]|𝑥=0 = 0 by
definition:

(4.39.5) =(𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤
2) + (𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤

2)

+ (𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑥𝑤
2)

≲ |||𝑞|||2√
𝜀𝑤
.

Lastly, we move to (4.39.6), for which we again integrate by parts in 𝑥 and subsequently use the
Poincare inequality in 𝑥, (3.14), to produce:

(4.39.6) = − (𝑣𝑦Δ𝜀𝑣𝑠𝑥, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤
2) − (𝐼𝑥[𝑣𝑦]Δ𝜀𝑣𝑠𝑥𝑥, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑤

2)

− (𝐼𝑥[𝑣𝑦]Δ𝜀𝑣𝑠𝑥, 𝜀𝑣𝑥𝑦𝑦𝑢𝑠𝑥𝑤
2)

≲ ‖𝜕𝑗𝑥Δ𝜀𝑣𝑠‖∞|||𝑞|||2√
𝜀𝑤
.

This concludes the estimation of the 𝐽(𝑣) terms.
To conclude the proof, we simply put the forcing term, |(𝐹, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤2)| to the right-hand side

of the desired estimate. □

Lemma 4.5. Let 𝜁 > 0 be arbitrary. Let 𝑣 be a solution to (3.1), and suppose |𝜕𝑘𝑦𝑤| ≲ |𝑤|. Then:
‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥 ⋅ 𝑤‖2𝑥=0 + ‖{𝜀𝑣𝑥𝑥𝑦𝑦, 𝜀

3

2 𝑣𝑥𝑥𝑥𝑦, 𝜀
2𝑣𝑥𝑥𝑥𝑥

}
⋅ 𝑤‖2 (4.40)

≲
1

𝜁
𝐵̄(1) + 𝐵̄(𝑤) +

(
𝜁3 +

√
𝜀
)|||𝑞|||21 + |||𝑞|||2√

𝜀𝑤

+ |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦
+ |(𝐹, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2)|,

where 𝐵̄ has been defined in (4.32).

 10970312, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22109 by B

row
n U

niversity Library, W
iley O

nline Library on [29/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3203

Proof. We will compute the inner-product (Equation (3.1), 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2).

Step 1: Estimate of Rayleigh terms

(
−𝜕𝑥𝑅[𝑞], 𝜀

2𝑣𝑥𝑥𝑥𝑥𝑤
2
)
≳‖√𝑢𝑠𝜀

3

2 𝑣𝑥𝑥𝑥𝑤‖2𝑥=0 − (
𝐵̄(𝑤) + 𝜁−1𝐵̄(1)

)
(4.41)

+
(
𝜁3 +

√
𝜀
) |||𝑞|||21 + |||𝑞|||2√

𝜀𝑤
− 𝑜(1)LHS(4.40)

− |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦
.

Recall (4.35). First, we will extract the positive terms:

(−𝜀𝜕𝑥{𝑢𝑠𝑣𝑥𝑥}, 𝜀
2𝑣𝑥𝑥𝑥𝑥𝑤

2) =(𝜀3𝑢𝑠𝑥𝑥𝑣𝑥𝑥, 𝑣𝑥𝑥𝑥𝑤
2) +

3

2
(𝜀

3

2 𝑢𝑠𝑥𝑣𝑥𝑥𝑥, 𝑣𝑥𝑥𝑥𝑤
2)

+
1

2
‖√𝑢𝑠𝜀

3

2 𝑣𝑥𝑥𝑥𝑤‖2𝑥=0 (4.42)

≳
1

2
‖√𝑢𝑠𝜀

3

2 𝑣𝑥𝑥𝑥𝑤‖2𝑥=0 − ‖𝜀𝑣𝑥𝑥𝑥 ⋅√𝜀𝑤‖2.
The lower order Rayleigh term is treated as follows, using the Poincare inequality paired with

𝑣𝑥|𝑥=𝐿 = 0:

|(𝜀3𝜕𝑥{𝑢𝑠𝑥𝑥𝑣}, 𝑣𝑥𝑥𝑥𝑥𝑤2)| ≲ ‖𝜀2𝑣𝑥𝑥𝑥𝑥 ⋅ 𝑤‖‖√𝜀𝑣𝑥 ⋅
√
𝜀𝑤‖

≲ 𝐿 × LHS(4.40) + 𝐿|||𝑞|||2√
𝜀𝑤
.

The next Rayleigh contributions are of the following form:

−(𝜕𝑥{𝑢𝑠𝑣𝑦𝑦} ⋅ 𝜀
2𝑣𝑥𝑥𝑥𝑥𝑤

2) = −(𝜀2[𝑢𝑠𝑥𝑣𝑦𝑦 + 𝑢𝑠𝑣𝑥𝑦𝑦], 𝑣𝑥𝑥𝑥𝑥𝑤
2). (4.43)

For the first term from (4.43), we integrate by parts in 𝑥 with no boundary contributions
according to (3.1):

(4.43.1) =(𝜀2𝑢𝑠𝑥𝑥𝑣𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2) + (𝜀2𝑢𝑠𝑥𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤

2)

≲ ‖𝜀𝑣𝑥𝑥𝑥 ⋅√𝜀𝑤‖‖𝑣𝑥𝑦𝑦√𝜀𝑤‖.
For the latter term, we require a localization. Recall the definition of (1.20) and define:

𝜒≤𝜁(𝑦) ∶= 𝜒

(
𝑦

𝜁

)
, 𝜒𝜁≤𝑦≤1(𝑦) ∶= 𝜒(𝑦) − 𝜒

(
𝑦

𝜁

)
, 𝜒≥1(𝑦) ∶= 1 − 𝜒(𝑦).

We then decompose:

(4.43.2) = −(𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤
2[𝜒≤𝜁(𝑦) + 𝜒𝜁≤𝑦≤1(𝑦) + 𝜒≥1(𝑦)]).
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Using that 𝑢𝑠(0) = 0 and |𝜕𝑦𝑢𝑠| ≲ 1 gives that |𝑢𝑠| ≲ 𝑦 ≲ 𝜁 in the support of 𝜒≤𝜁 , and so we
estimate with Young’s inequality for products:

|(𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤2𝜒≤𝜁)| ≲ 𝜁‖𝑤𝜒≤𝜁‖∞‖𝑣𝑥𝑦𝑦‖‖𝜀2𝑣𝑥𝑥𝑥𝑥 ⋅ 𝑤‖
≤ 𝑜(1) ‖𝜀2𝑣𝑥𝑥𝑥𝑥 ⋅ 𝑤‖2

⏟⎴⎴⎴⏟⎴⎴⎴⏟
(𝐿𝐻𝑆)

+𝑁𝜁3|||𝑞|||21 +√
𝜀|||𝑞|||21, (4.44)

for some large number𝑁. All of these contributions are acceptable to the right-hand side of (4.41).
To establish estimate (4.44), we expand 𝑣𝑥𝑦𝑦 = 𝑢𝑠𝑞𝑥𝑦𝑦 + 𝑢𝑠𝑥𝑞𝑦𝑦 + 2𝑢𝑠𝑦𝑞𝑦𝑥 + 2𝑢𝑠𝑥𝑦𝑞𝑦 + 𝑢𝑠𝑦𝑦𝑞𝑥 +

𝑢𝑠𝑥𝑦𝑦𝑞. The first, second, fifth, and sixth terms of the expansion provide an extra
√
𝜁 factor due to

𝑢𝑠𝑥|𝑦=0 = 𝑢𝑠|𝑦=0 = 𝑞|𝑦=0 = 𝑞𝑥|𝑦=0. For the fourth term we estimate

‖𝑞𝑦𝜒≤𝜁‖ ≤‖𝑞𝑦|𝑦=0𝜒≤𝜁‖ + ‖(∫ 𝑦

0

𝑞𝑥𝑦)𝜒≤𝜁‖ ≲
√
𝜁|||𝑞|||1.

For the third term, we integrate by parts via

(𝜀2𝑢𝑠𝑦𝑢𝑠𝑞𝑥𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤
2𝜒≤𝜁) = − (𝜀2𝑢𝑠𝑦𝑢𝑠𝑞𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤

2𝜒≤𝜁)𝑥=0 − (𝜀2𝑢𝑠𝑥𝑦𝑢𝑠𝑞𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜒≤𝜁)

− (𝜀2𝑢𝑠𝑦𝑢𝑠𝑞𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜒≤𝜁) − (𝜀2𝑢𝑠𝑥𝑢𝑠𝑦𝑞𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤

2𝜒≤𝜁)

≲
√
𝜀‖𝑢𝑠𝑞𝑥𝑦‖𝑥=0‖𝜀 32 𝑣𝑥𝑥𝑥‖𝑥=0 + 𝜀‖𝑞𝑥𝑦‖𝜀𝑣𝑥𝑥𝑥‖

+
√
𝜀‖√𝑢𝑠𝑞𝑥𝑥𝑦‖‖𝜀𝑣𝑥𝑥𝑥‖ + 𝜀‖𝑞𝑥𝑦‖𝜀𝑣𝑥𝑥𝑥‖

≲
√
𝜀|||𝑞|||21.

Let now 𝜙 = 𝜒𝜁≤𝑦≤1 or 𝜒𝑦≥1. We integrate by parts the term in (4.43.2), and use that 𝑣𝑥𝑥𝑥|𝑥=𝐿 =
0 to produce only boundary contributions at {𝑥 = 0}:

−(𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤
2𝜙) =(𝜀2𝑢𝑠𝑣𝑥𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤

2𝜙) + (𝜀2𝑢𝑠𝑥𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜙)

+ (𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜙)𝑥=0. (4.45)

We estimate:

|(4.45.2)| ≲ ‖𝑣𝑥𝑦𝑦√𝜀𝑤‖‖𝜀 32 𝑣𝑥𝑥𝑥𝑤‖,
|(4.45.3)| ≲ 1√

𝜁
‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥‖𝑥=0‖𝑢𝑠√𝜀𝑣𝑥𝑦𝑦‖𝑥=0

+ ‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥𝑤‖𝑥=0‖𝑢𝑠√𝜀𝑣𝑥𝑦𝑦𝑤‖𝑥=0
≤ 𝑁

𝜁
𝐵̄(1)2 + 𝑜(1)LHS(4.40) + 𝑁𝐵̄(𝑤)2,
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3205

for a potentially large constant𝑁. Above for (4.45.3), we have split into two cases:

|(𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤2𝜒𝜁≤𝑦≤1
)
𝑥=0

|
=|(𝜀2𝑢𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤

2

√
𝑢𝑠√
𝑢𝑠
𝜒𝜁≤𝑦≤1

)
𝑥=0

|
≤ 1√

𝜁
‖ √

𝜁√
𝑢𝑠
𝜒𝜁≤𝑦≤1‖∞‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥‖𝑥=0‖𝑢𝑠√𝜀𝑣𝑥𝑦𝑦‖𝑥=0,

(4.46)

whereas in the 𝜙 = 𝜒≥1 case, we use that 𝑢𝑠 ≳ 1. For the highest order term, (4.45.1), we integrate
by parts in 𝑦 to get:

(4.45.1) = − (𝜀2𝑢𝑠𝑦𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜙) − (𝜀2𝑢𝑠𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑦𝑤

2𝜙)

− 2(𝜀2𝑢𝑠𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤𝑤𝑦𝜙) − (𝜀2𝑢𝑠𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2𝜙𝑦).

First, we estimate the lower order terms:

|(4.45.1.1)| ≤ √
𝜀‖𝑢𝑃𝑠𝑦𝑤2‖∞‖√𝜀𝑣𝑥𝑥𝑦‖‖𝜀𝑣𝑥𝑥𝑥‖

+
√
𝜀‖𝑢𝐸𝑠𝑌‖∞‖√𝜀𝑣𝑥𝑥𝑦

√
𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖,

|(4.45.1.3)| ≲ ‖√𝜀𝑣𝑥𝑥𝑦
√
𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥𝑤𝑦‖ ≲ |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦

,

|(4.45.1.4)| ≲ ‖𝑢𝑠𝜕𝑦𝜙𝑤2‖∞√
𝜀‖√𝜀𝑣𝑥𝑥𝑦‖‖𝜀𝑣𝑥𝑥𝑥‖.

For (4.45.1.1), we split 𝑢𝑠𝑦 = 𝑢𝑃𝑠𝑦 +
√
𝜀𝑢𝐸𝑠𝑌 according to (A.5). We highlight above that (4.45.1.3)

is an acceptable term into the right-hand side of (4.41). For the term (4.45.1.4), we use that the
following quantity is bounded independent of 𝜁:

‖𝑢𝑠𝜕𝑦𝜙‖∞ =‖𝑢𝑠𝜕𝑦{𝜒𝜁≤𝑦≤1 + 𝜒𝑦≥1}‖∞
=‖𝑢𝑠𝜕𝑦{𝜒(𝑦) − 𝜒

(
𝑦

𝜁

)
+ 1 − 𝜒(𝑦)

}‖∞
=‖ − 𝑢𝑠

1

𝜁
𝜒′

(
𝑦

𝜁

)‖∞ ≲ 1,

since 𝑢𝑠

𝜁
≲

𝑦

𝜁
.

The highest order term, (4.45.1.2), we integrate by parts in 𝑥 to produce (recall the definition of
𝐵̄ in (4.32)):

(4.45.1.2) =
1

2

(
𝜀2𝑢𝑠𝑥𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑦𝑤

2𝜙
)
−
1

2
‖𝜀√𝑢𝑠𝑣𝑥𝑥𝑦𝑤

√
𝜙‖2𝑥=𝐿

≲ ‖√𝜀𝑣𝑥𝑥𝑦
√
𝜀𝑤‖2 + 1

𝜁
𝐵̄(1) + 𝐵̄(𝑤).
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3206 GUO and IYER

This concludes the treatment of (4.45). Piecing together (4.45) and (4.44), we complete the
estimate of (4.43.2). Summarizing the above estimates:

|(4.43.2)| ≲ 𝜁3|||𝑞|||21 +√
𝜀|||𝑞|||21 + |||𝑞|||2√

𝜀𝑤
+

1

𝜁
𝐵̄(1) + 𝐵̄(𝑤)

+ |||𝑞|||√𝜀𝑤|||𝑞|||𝑤𝑦
+ 𝑜(1)LHS(4.40).

For the next Rayleigh contribution, we integrate by parts in 𝑥 and expand:

(𝜕𝑥{𝑢𝑠𝑦𝑦𝑣}, 𝜀
2𝑣𝑥𝑥𝑥𝑥𝑤

2) = − (𝜀2𝑣𝑥𝑥𝑥𝑤
2, 𝑢𝑠𝑥𝑥𝑦𝑦𝑣) − (2𝜀2𝑣𝑥𝑥𝑥𝑤

2, 𝑢𝑠𝑥𝑦𝑦𝑣𝑥) (4.47)

− (𝜀2𝑣𝑥𝑥𝑥𝑤
2, 𝑢𝑠𝑦𝑦𝑣𝑥𝑥) − (𝜀2𝑣𝑥𝑥𝑥𝑤

2, 𝑢𝑠𝑦𝑦𝑣𝑥)𝑥=0.

Upon using the decomposition (A.5) to write:

𝜕
𝑗
𝑥𝑢𝑠𝑦𝑦 = 𝜕

𝑗
𝑥𝑢

𝑃
𝑠𝑦𝑦 + 𝜀𝜕

𝑗
𝑥𝑢

𝐸
𝑠𝑌𝑌, (4.48)

we estimate: |(4.47.{1, 2, 3})| ≤ √
𝜀|||𝑞|||21 + 𝜀|||𝑞|||2√

𝜀𝑤
.

Next, again using (4.48) and (3.22):

|(4.47.4)| ≲ ‖𝑢𝑃𝑠𝑦𝑦
𝑢𝑠

𝑤⟨𝑦⟩‖∞‖𝜀 14 𝑣𝑥⟨𝑦⟩−1‖𝑥=0‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥𝑤‖𝑥=0𝜀1∕4
+ 𝜀‖𝜀 32√𝑢𝑠𝑣𝑥𝑥𝑥𝑤‖𝑥=0‖√𝜀𝑣𝑥

√
𝜀𝑤‖𝑥=0

≲ 𝜀
1

4 |||𝑞|||𝑤||||𝑣||||𝑤 + 𝜀||||𝑣||||𝑤|||𝑞|||1,
where we have invoked the crucial fact that 𝑢𝑃𝑠𝑦𝑦|𝑦=0 = 0.

Step 2: Δ2
𝜀 termsThis is done in (3.8).

Step 3: 𝐽(𝑣) terms

|(𝐽, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2)| ≲ |||𝑞|||2√
𝜀𝑤

+ 𝜀|||𝑞|||21.
Recalling the definition of 𝐽 from (1.29), we expand

(𝐽, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤
2)

= −(𝜀3𝑣𝑠𝑥𝑣𝑥𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤
2) − (𝑣𝑠𝑣𝑦𝑦𝑦, 𝜀

2𝑣𝑥𝑥𝑥𝑥𝑤
2)

− (𝜀3𝑣𝑠𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑥𝑤
2) + (𝜀2𝑣𝑦, 𝑣𝑥𝑥𝑥𝑥Δ𝜀𝑣𝑠𝑤

2)

− (𝑣𝑠𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝜀
2𝑣𝑥𝑥𝑥𝑥𝑤

2) + (Δ𝜀𝑣𝑠𝑥𝐼𝑥[𝑣𝑦], 𝜀
2𝑣𝑥𝑥𝑥𝑥𝑤

2). (4.49)
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3207

Next, we integrate by parts in 𝑥, and there are no boundary contributions at 𝑥 = 0 due to
𝐼𝑥[𝑓]|𝑥=0 = 0 by definition:

(4.49.5) = −(𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦𝑦𝑦], 𝜀
2𝑣𝑥𝑥𝑥𝑤

2) − (𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝜀
2𝑣𝑥𝑥𝑥𝑤

2)

≲ ‖𝑣𝑦𝑦𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖ ≲ |||𝑞|||2√
𝜀𝑤
.

Similarly, an integration by parts in 𝑥 produces:

(4.49.6) = − (Δ𝜀𝑣𝑠𝑥𝑥𝐼𝑥[𝑣𝑦] + Δ𝜀𝑣𝑠𝑥𝑣𝑦, 𝜀
2𝑣𝑥𝑥𝑥𝑤

2) ≲ 𝐿‖𝑣𝑥𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖.
For (4.49.1), we perform Young’s inequality for products:

|(4.49.1)| ≲ √
𝜀‖𝜀2𝑣𝑥𝑥𝑥𝑥 ⋅ 𝑤‖‖𝑣𝑥𝑦 ⋅√𝜀𝑤‖ ≲ 𝛿‖𝜀2𝑣𝑥𝑥𝑥𝑥𝑤‖2 + 𝑁𝛿𝜀‖𝑣𝑥𝑦√𝜀𝑤‖2.

We will now integrate by parts in 𝑥 to produce:

(4.49.2) =(𝜀2𝑣𝑠𝑥𝑣𝑦𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2) + (𝜀2𝑣𝑠𝑣𝑥𝑦𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤

2).

The first term can be majorized by ‖𝑣𝑦𝑦𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖, which is clearly admissible. For
the latter term, we integrate by parts in 𝑦:

(4.49.2.2) = − (𝜀2𝑣𝑠𝑦𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤
2) − (𝜀2𝑣𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑦𝑤

2) − 2(𝜀2𝑣𝑠𝑣𝑥𝑦𝑦, 𝑣𝑥𝑥𝑥𝑤𝑤𝑦).

The first and third are evidently majorized by ‖𝑣𝑥𝑦𝑦√𝜀𝑤‖‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖ upon using |𝑤𝑦| ≲ |𝑤|.
Themiddle term can bemajorized ‖𝑣𝑥𝑦𝑦√𝜀𝑤‖‖𝜀 32 𝑣𝑥𝑥𝑥𝑦𝑤‖ uponwhichwe use Young’s inequality
for products. This concludes the bound for (4.49.2).
Next, for (4.49.3), an integration by parts first in 𝑥, using that 𝑣𝑥𝑥|𝑥=0 = 𝑣𝑥𝑥𝑥|𝑥=𝐿 = 0, and then

in 𝑦 for the highest order term produces:

(4.49.3) =(𝜀3𝑣𝑠𝑥𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2) + (𝜀3𝑣𝑠𝑣𝑥𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤

2)

=(𝜀3𝑣𝑠𝑥𝑣𝑥𝑥𝑦, 𝑣𝑥𝑥𝑥𝑤
2) −

1

2
(𝜀3𝑣𝑠𝑦𝑣𝑥𝑥𝑥, 𝑣𝑥𝑥𝑥𝑤

2) − (𝜀3𝑣𝑠𝑣𝑥𝑥𝑥, 𝑣𝑥𝑥𝑥𝑤𝑤𝑦)

≲ ‖√𝜀𝑣𝑥𝑥𝑦 ⋅
√
𝜀𝑤‖2 + ‖𝜀𝑣𝑥𝑥𝑥 ⋅√𝜀𝑤‖2 ≲ |||𝑞|||2√

𝜀𝑤
.

Finally, for (4.49.4), we again integrate by parts in 𝑥 using that 𝑣𝑦|𝑥=0 = 𝑣𝑥𝑥𝑥|𝑥=𝐿 = 0, and use
that:

Δ𝜀𝑣𝑠 = Δ𝜀𝑣
𝑃
𝑠 + 𝜀Δ𝑣𝐸𝑠 , (4.50)

we estimate

(4.49.4) = − (𝜀2𝑣𝑥𝑦, Δ𝜀𝑣𝑠𝑣𝑥𝑥𝑥𝑤
2) − (𝜀2𝑣𝑦, Δ𝜀𝑣𝑠𝑥𝑣𝑥𝑥𝑥𝑤

2)

≲ 𝜀‖Δ𝜀𝑣
𝑃
𝑠 𝑤

2‖∞‖𝜀𝑣𝑥𝑥𝑥‖‖𝑣𝑥𝑦‖ +√
𝜀‖Δ𝑣𝐸𝑠 ‖∞‖𝜀𝑣𝑥𝑥𝑥√𝜀𝑤‖‖𝑣𝑥𝑦√𝜀𝑤‖

≲ 𝜀|||𝑞|||21 +√
𝜀|||𝑞|||2√

𝜀𝑤
.

This concludes the treatment of 𝐽(𝑣) terms.
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3208 GUO and IYER

To conclude the proof, we simply place |(𝐹, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2)| to the right-hand side of the
desired estimate. □

We next establish the a-priori estimate for Proposition 3.2:

Proposition 4.6. Let 𝑣 ∈ 𝑋1 ∩ 𝑌𝑤0
be a solution (3.1). Then the following estimate holds:

‖𝑣‖𝑌𝑤0
≲ ‖𝐹𝑤0‖ and ‖𝑣‖𝑋1

≲ ‖𝐹‖, (4.51)

and

‖𝑣𝑦𝑦𝑦𝑦𝑤‖ ≲ RHS of Estimates (4.22), (4.1), (4.16), (4.40), (4.33) + ‖𝐹𝑤‖2.
Proof. We use the equation (3.1) to write the identity:

𝑣𝑦𝑦𝑦𝑦 = − 2𝜀𝑣𝑥𝑥𝑦𝑦 − 𝜀2𝑣𝑥𝑥𝑥𝑥 − 𝜕𝑥𝑦{𝑢
2
𝑠 𝜕𝑦𝑞} − 𝜀𝜕𝑥𝑥{𝑢

2
𝑠 𝜕𝑥𝑞} + 𝐽(𝑣) + 𝐹. (4.52)

We will place each term in 𝐿2(𝑤). It is easy to see that all of the terms are controlled by the
left-hand sides of estimates (4.22), (4.1), (4.16), (4.40), (4.33).

Fromhere,we take the linear combination 𝜀−
1

8 (4.33) + (4.40) and (4.1) + (4.16) + (4.22), which

corresponds to a selection of 𝜁 = 𝜀
1

8 in estimate (4.40) to obtain the 𝑋1 bound.

Next, we take the combination 𝜀
−

1

8 (4.33) + (4.40) and (4.1) + (4.16) + (4.22) for 𝐿 << 1 and
𝑤 = 𝑤0, which produces the 𝑌𝑤0

bound. □

5 SOLUTION TO DNS AND NS

The aim in this section is to bring together the estimates of the prior sections. Recall our ultimate
aim is the nonlinear problem defined by (A.23) and (A.27). Motivated by these, we define the
problem of interest in this section:

− 𝜕𝑥𝑅[𝑞] + Δ2
𝜀𝑣 + 𝐽(𝑣) (5.1)

= −𝐵(𝑣0)(𝑣
0) + 𝜀𝑁0 (𝑢̄0, 𝑣0, 𝑣) + 𝐹(𝑞)(𝑢̄

0, 𝑣0, 𝑣),

𝑣0 = 𝐹(𝑣)(𝑣) +(𝑢̄0, 𝑣0, 𝑣) + + 𝐹𝑎
𝑅. (5.2)

Recall the definition of 𝐹(𝑞) from (A.27).While 𝜕𝑥𝐹𝑅, 𝜕𝑥𝑏(𝑢)(𝑎𝜀), and the ℎ-dependent terms are
pure forcing terms, 𝐻[𝑎𝜀] is linear. We thus take𝐻[𝑎𝜀] = 𝐻[𝑎𝜀][𝑣, 𝑢̄0, 𝑣0].
We build the following linear combinations:

𝑋1
∶= (𝐵(𝑣0), 𝑞𝑥 + 𝑞𝑥𝑥 + 𝑞𝑦𝑦

+ 𝜀
−

3

8 𝜀2𝑣𝑥𝑥𝑥𝑥 + 𝜀
−

3

8 𝜀
−

1

8 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦), (5.3)

𝑌𝑤
∶= (𝐵(𝑣0), {𝜀𝑞𝑥 + 𝜀𝑞𝑥𝑥 + 𝜀𝑞𝑦𝑦 + 𝜀2𝑣𝑥𝑥𝑥𝑥 + 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦}𝑤

2

+ {𝜀2𝑣𝑥𝑥𝑥𝑥 + 𝜀
−

1

8 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦}). (5.4)
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3209

The quantities𝑋1
,𝑌𝑤

are defined as above, with 𝜀𝑁0 (𝑢̄0, 𝑣0, 𝑣) taking the place of 𝐵(𝑣0).
Similarly, the quantities 𝑋1

,𝑌𝑤
are defined as above, with 𝐹(𝑞) taking the place of 𝐵(𝑣0). As a

notational point, we will sometimes need to think of 𝑋1
,𝑌𝑤

as a bilinear term. In this case, we
introduce the notation 𝑋1

(𝐹(𝑞)(𝑣, 𝑢̄
0, 𝑣0), 𝑞) (and same with 𝑌𝑤

, and 𝐵 below).
We also define the quantities:

𝐵 ∶= |(𝐹(𝑣)(𝑣), 𝑞0)| + ‖𝐹(𝑣)(𝑣)𝑤0‖2,
𝐵 ∶= |((𝑢̄0, 𝑣0, 𝑣) +, 𝑞0)| + ‖{(𝑢̄0, 𝑣0, 𝑣) +}𝑤0‖2,
𝐵 ∶= |(𝐹𝑎

𝑅, 𝑞
0)| + ‖𝐹𝑎

𝑅𝑤0‖2.
(5.5)

One sees from the specification of 𝐹𝑎
𝑅 in (A.23) that 𝐹

𝑎
𝑅 is a pure forcing term.

The purpose of all of these definitions is:

Lemma 5.1. Let 𝑣 be a solution to (5.1) and [𝑢0, 𝑣0] a solution to (5.2), and 𝐮 ∈  as in (1.22). Then
the following estimates are valid:

‖𝑣‖2𝑋1
≲ 𝑋1

+𝑋1
+ 𝑋1

+ 𝐶(ℎ),

[𝑢0, 𝑣0]2𝐵 ≲ 𝐵 +𝐵 + 𝐵,‖𝑣‖2𝑌𝑤0
≲ ‖𝑣‖2𝑋1

+ 𝑌𝑤0
+𝑌𝑤0

+ 𝑌𝑤0
+ 𝐶(ℎ),

(5.6)

where 𝐵 has been defined in (5.5) and 𝑋1
,𝑌𝑤0

have been defined analogously to (5.3), (5.4) as
explained above.

Proof. The [𝑢0, 𝑣0]𝐵 bound follows immediately from (2.6) upon replacing the abstract forcing, 𝐹,
in (2.6), by the right-hand side of (5.2). We refer to the definition (1.22), where there is a gain of

𝜀
−

1

8 when 𝑤 = 1 due to the disparity in scaling.

We take the combination 𝜀
−

1

8 (4.33) + (4.40) and (4.1) + (4.16) + (4.22), which corresponds to

a selection of 𝜁 = 𝜀
1

8 in estimate (4.40), for 𝐿 << 1 and 𝑤 = 1, which produces

||||𝑣||||21 ≲ 𝜀
3

8 |||𝑞|||21 + |(𝐹, 𝜀2𝑣𝑥𝑥𝑥𝑥 + 𝜀
−

1

8 𝜀𝑣𝑥𝑥𝑦𝑦)|,|||𝑞|||21 ≲ 𝑜𝐿(1)|||𝑞|||21 + 𝑜𝐿(1)||||𝑣||||21 + |(𝐹, 𝑞𝑦𝑦 + 𝑞𝑥𝑥 + 𝑞𝑥)|.
The above 𝐹 stands for an abstract forcing. In place of this, we insert the right-hand side of (5.1).

From here, we conclude the 𝑋1 estimate.

Next, we take the combination 𝜀
−

1

8 (4.33) + (4.40) and (4.1) + (4.16) + (4.22) for 𝐿 << 1 and
𝑤 = 𝑤0, which produces

||||𝑣||||2𝑤 ≲ 𝜀
3

8 |||𝑞|||21 + |||𝑞|||2√
𝜀𝑤

+ |||𝑞|||2𝑤𝑦

+ |(𝐹, 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2 + 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠𝑤
2 + 𝜀

−
1

8 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦)| + 𝐶(ℎ),

|||𝑞|||2𝑤 ≲ 𝑜𝐿(1)||||𝑣||||2𝑤 + 𝑜𝐿(1)‖𝑞𝑥𝑥‖2𝑤𝑦
+ |(𝐹, [𝑞𝑥𝑥 + 𝑞𝑦𝑦 + 𝑞𝑥]𝑤

2)|
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From here, using the inequality |𝑤0𝑦| ≲ 1 +
√
𝜀|𝑤0|, and again replacing the abstract forcing 𝐹

by the right-hand side of (5.1), we conclude the 𝑌𝑤0
estimate. □

Our aim now is to estimate each of the quantities appearing on the right-hand sides of (5.6). We
do this in a sequence of lemmas.

Lemma 5.2. Let 𝐮 ∈  as in (1.22). Let 𝐶(ℎ) denote a constant that is(‖ℎ‖𝑀0(𝑒𝑦)) for a large𝑀0.
Then for 𝑋1

,𝑌𝑤0
defined as in (5.3), (5.4), the following estimates are valid

|𝑋1
| ≲ 𝑜(1)‖𝑣‖2𝑋1

+ 𝜀
−

1

2 [𝑢̄0, 𝑣0]2𝐵, (5.7)

|𝑌𝑤0
| ≲ 𝑜(1)‖𝑣‖2𝑌𝑤0

+ [𝑢̄0, 𝑣0]2𝐵. (5.8)

Proof. Recall the specification of𝐵(𝑣0)(𝑣0) given in (1.30). Recall also the specification of the norms
(1.22) and (2.4). The inequality (3.17) will be in constant use throughout the proof of this lemma.
Step 1: 𝑞𝑥𝑥 Multiplier

|(𝐵(𝑣0), 𝑞𝑥𝑥𝑤2)| ≲ {
𝜀−1∕2[𝑢̄0, 𝑣0]2𝐵 + 𝑜(1)|||𝑞|||21 if 𝑤 = 1

𝜀−1[𝑢̄0, 𝑣0]2𝐵 + 𝑜(1)|||𝑞|||2𝑤 if 𝑤 = 𝑤0

. (5.9)

Recall the specification of 𝐵(𝑣0) given in (1.30). We compute

(𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤
2) =(𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤

2𝜒(𝑦)) + (𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤
2{1 − 𝜒(𝑦)}). (5.10)

For ease of notation, denote 𝜒𝐶(𝑦) ∶= 1 − 𝜒(𝑦). For the localized quantity, we estimate

(5.10.1) =(𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑤
2𝜒)|𝑥=𝐿 − (𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑤

2𝜒)𝑥=0

= − (𝑣0𝑦𝑦𝑦𝑦,
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑤2𝜒)|𝑥=𝐿 − (𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑤
2𝜒)𝑥=0

≲
√
𝐿‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦‖ + ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖(‖𝑞𝑥𝜒‖1∕2‖𝑞𝑥𝑥‖1∕2)

≲
√
𝐿‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦‖ + 𝜀

−
1

4 ‖𝑣0𝑦𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦 ‖1∕2‖√𝜀𝑞𝑥𝑥‖1∕2
≲ 𝜀

−
1

4 [𝑢̄0, 𝑣0]𝐵|||𝑞|||1,
where we have used 𝑞2𝑥|𝑥=0 = 𝑞2𝑥|𝑥=𝐿 + 2𝐼𝐿[𝑞𝑥𝑞𝑥𝑥], and (1.22), (2.4), and (3.17).
For the far field quantity, we integrate by parts to produce

(5.10.2) = − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥𝑦𝑤
2𝜒𝐶)) − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥2𝑤𝑤𝑦𝜒

𝐶)

− (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤
2(𝜒𝐶)′)

= − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2𝜒𝐶)𝑥=0 + (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤

2𝜒𝐶)𝑥=𝐿

− (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥2𝑤𝑤𝑦𝜒
𝐶) − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤

2(𝜒𝐶)′)

= − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2𝜒𝐶)𝑥=0 − (𝑣0𝑦𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2𝜒𝐶)𝑥=𝐿
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3211

− (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥2𝑤𝑤𝑦𝜒
𝐶) − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥𝑤

2(𝜒𝐶)′)

= − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2𝜒𝐶)𝑥=0 − (𝑣0𝑦𝑦𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2𝜒𝐶)𝑥=𝐿

− (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑥2𝑤𝑤𝑦𝜒
𝐶) − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑤

2(𝜒𝐶)′)𝑥=𝐿

+ (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑤
2(𝜒𝐶)′)𝑥=0

≲ ‖𝑣0𝑦𝑦𝑦𝑤0‖‖𝑢𝑠𝑞𝑥𝑦𝑤‖𝑥=0 +√
𝐿‖𝑣0𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦𝑤‖

+ ‖𝑣0𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑥𝑤𝑦‖ + 𝜀−1∕4‖𝑣0𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦‖1∕2‖√𝜀𝑞𝑥𝑥‖1∕2
≲ [𝑢̄0, 𝑣0]𝐵

(
𝜀
−

1

2 |||𝑞|||𝑤𝑦
+ 𝜀

−
1

4 |||𝑞|||𝑤).
Above, we have used that | 1

𝑢𝑠
|𝜒𝐶 ≲

1

𝑢̄0𝑝
𝜒𝐶 ≲ 1. We have also used the same estimates as in

(5.10.1) for |(𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑤2(𝜒𝐶)′)𝑥=𝐿 − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑤
2(𝜒𝐶)′)𝑥=0|.

We next compute

−2(𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦}, 𝑞𝑥𝑥𝑤

2) =2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑥𝑦𝑤

2) + 4(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

= − 2(𝜕𝑥{𝑢𝑠𝑢𝑠𝑥}𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2) + 2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2)𝑥=𝐿

− 2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2)𝑥=0 + 4(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

= − 2(𝜕𝑥{𝑢𝑠𝑢𝑠𝑥}𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2) − 2

(
𝑢𝑠𝑢𝑠𝑥𝑞̄

0
𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
𝑥=𝐿

− 2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2)𝑥=0 + 4(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑥𝑤𝑤𝑦)

≲
√
𝐿‖𝑢𝑠𝑞̄0𝑦𝑤0‖‖𝑞𝑥𝑦𝑤‖ + 𝐿‖√𝑢𝑠𝑞̄

0
𝑦𝑤0‖‖𝑞𝑥𝑦𝑤‖

+ ‖𝑢𝑠𝑞̄0𝑦‖‖𝑢𝑠𝑞𝑥𝑦𝑤‖𝑥=0 +√
𝐿‖𝑢𝑠𝑞̄0𝑦‖‖𝑞𝑥𝑥𝑤𝑦‖

≲ [𝑢̄0, 𝑣0]𝐵

(|||𝑞|||𝑤 + 𝜀−1∕2|||𝑞|||𝑤𝑦

)
We compute (

𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝑞𝑥𝑥𝑤

2
)

= −
(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦, 𝑞𝑥𝑥𝑦𝑤

2 + 2𝑞𝑥𝑥𝑤𝑤𝑦

)
=
(
𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦, 𝑞𝑥𝑦𝑤

2
)
−

(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦

−𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣
0
𝑦, 𝑞𝑥𝑦𝑤

2
)
𝑥=𝐿

+
(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦

−𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣
0
𝑦, 𝑞𝑥𝑦𝑤

2
)
𝑥=0

−
(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦

−𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣
0
𝑦, 2𝑞𝑥𝑥𝑤𝑤𝑦

)
. (5.11)
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Above, we have used the identity

𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦 = 𝜕𝑦{𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦}.

We estimate the first term in the 𝑤 = 1 case:

|(5.11.1)| ≤‖(𝑥 + 1)𝑣𝑠𝑥𝑥 + 2𝑣𝑠𝑥‖∞‖𝑣0𝑦𝑦‖𝑞𝑥𝑦‖ + ‖(𝑥 + 1)𝑢𝑠𝑥𝑥𝑥 + 2𝑢𝑠𝑥𝑥‖∞‖𝑣0𝑦‖‖𝑞𝑥𝑦‖
≲ [𝑢̄0, 𝑣0]𝐵|||𝑞|||1

We next expand

(5.11.2) =

(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

𝑞

}
𝑤2

)
𝑥=𝐿

=

(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦, 𝜕𝑦

{
𝑢𝑠𝑥
𝑢𝑠

}
𝑞𝑤2

)
𝑥=𝐿

+

(
𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣

0
𝑦,
𝑢𝑠𝑥
𝑢𝑠

𝑞𝑦𝑤
2

)
𝑥=𝐿

Thus, in the 𝑤 = 1 case, we estimate

‖(𝑥 + 1)𝑣𝑠𝑥 + 𝑣𝑠‖∞‖𝑦𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
+
𝑢𝑠𝑥
𝑢𝑠

‖∞‖𝑣0𝑦𝑦‖‖𝑞𝑥𝑦‖√𝐿

+ ‖(𝑥 + 1)𝑢𝑠𝑥𝑥 + 𝑢𝑠𝑥‖∞‖𝑦𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
+
𝑢𝑠𝑥
𝑢𝑠

‖∞‖𝑣0𝑦‖‖𝑞𝑥𝑦‖√𝐿

≲ [𝑢̄0, 𝑣0]𝐵|||𝑞|||.
We next continue with 𝑤 = 1 to estimate

|(5.11.3)| ≲ ‖ (𝑥 + 1)𝑣𝑠𝑥 + 𝑣𝑠
𝑢𝑠

‖∞‖𝑣0𝑦𝑦‖‖𝑢𝑠𝑞𝑥𝑦‖𝑥=0 + ‖𝑣𝑠𝑦 + (𝑥 + 1)𝑣𝑠𝑥𝑦

𝑢𝑠
‖∞‖𝑣0𝑦‖‖𝑢𝑠𝑞𝑥𝑦‖𝑥=0

≲ [𝑢̄0, 𝑣0]𝐵|||𝑞|||1
This concludes the 𝑤 = 1 case, and we move on to the 𝑤 = 𝑤0 case. We first record using (1.6),

the following estimate (using 𝑌 =
√
𝜀𝑦 and 𝑣1𝑒 = 𝑣1𝑒 (𝑌))

‖𝜕𝑘𝑥𝑣𝑠𝑤0‖∞ ≲ ‖𝜕𝑘𝑥{𝑣0𝑝 + 𝑣1𝑒 }⟨𝑦⟩⟨𝑌⟩𝑚‖∞ + (1) ≲ 𝜀
−

1

2 . (5.12)

We begin with the following, using (5.12):

|(5.11.1)| ≲ ‖𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠}𝑤0‖∞‖𝑣0𝑦𝑦‖‖𝑞𝑥𝑦𝑤0‖ + ‖𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑤0‖∞‖𝑣0𝑦‖‖𝑞𝑥𝑦𝑤‖
≲ 𝜀−1∕2‖𝑣0𝑦𝑦‖𝑞𝑥𝑦𝑤0‖ + ‖𝑣0𝑦‖‖𝑞𝑥𝑦𝑤‖
≲ 𝜀−1∕2[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤.
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We move to the (5.11.2) for which

|(5.11.2)| ≲ ‖(𝑥 + 1)𝑣𝑠𝑥 + 𝑣𝑠‖∞‖𝑤𝑦𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
+ 𝑤

𝑢𝑠𝑥
𝑢𝑠

‖∞‖𝑣0𝑦𝑦‖‖𝑞𝑥𝑦𝑤0‖√𝐿

+ ‖(𝑥 + 1)𝑢𝑠𝑥𝑥 + 𝑢𝑠𝑥‖∞‖𝑤𝑦𝜕𝑦{𝑢𝑠𝑥
𝑢𝑠

}
+ 𝑤

𝑢𝑠𝑥
𝑢𝑠

‖∞‖𝑣0𝑦‖‖𝑞𝑥𝑦‖√𝐿

≲
√
𝐿[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤

Next, again recalling (5.12),

|(5.11.3)| ≲ ‖𝜕𝑥{(𝑥 + 1)𝑣𝑠}

𝑢𝑠
𝑤‖∞‖𝑣0𝑦𝑦‖‖𝑢𝑠𝑞𝑥𝑦𝑤‖𝑥=0

+ ‖𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}

𝑢𝑠
𝑤‖∞‖𝑣0𝑦‖‖𝑢𝑠𝑞𝑥𝑦𝑤‖𝑥=0

≲ 𝜀−1∕2[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤0
.

Last, again using (5.12),

|(5.11.4)| ≲ 𝜀−1∕2‖𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑤𝑦‖∞‖𝑣0𝑦𝑦‖√𝜀𝑞𝑥𝑥𝑤‖
+ 𝜀−1∕2‖𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑤𝑦‖∞‖𝑣0𝑦‖‖√𝜀𝑞𝑥𝑥𝑤‖

≲ 𝜀−1∕2[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤.
Finally, upon using again (5.12),

|(𝜀𝑣0𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}, 𝑞𝑥𝑥𝑤
2)| ≲√

𝐿‖𝑣0𝑦‖‖√𝜀𝑞𝑥𝑥𝑤‖ ≲
√
𝐿[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤.

This concludes the 𝐵(𝑣0) terms for this multiplier.
Step 2:
𝑞𝑦𝑦 Multiplier

|(𝐵(𝑣0), 𝑞𝑦𝑦𝑤2)| ≲ 𝑜(1)|||𝑞|||2𝑤 +
√
𝐿[𝑢̄0, 𝑣0]2𝐵. (5.13)

Recall again the specification of 𝐵(𝑣0) given in (1.30). We begin with

|(𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑦𝑦𝑤2)| ≤ √
𝐿‖𝑣0𝑦𝑦𝑦𝑦𝑤‖‖𝑞𝑦𝑦𝑤‖.

Second,

− 2(𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦}, 𝑞𝑦𝑦𝑤

2)

= − 2(𝜕𝑦{𝑢𝑠𝑢𝑠𝑥}𝑞̄
0
𝑦, 𝑞𝑦𝑦𝑤

2) − 2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦𝑦, 𝑞𝑦𝑦𝑤

2)

≲ 𝐿‖𝑢𝑠𝑞̄0𝑦‖‖𝑞𝑦𝑦𝑤‖ + 𝐿‖𝑢𝑠𝑞̄0𝑦𝑦‖‖𝑞𝑦𝑦𝑤‖
≲ [𝑢̄0, 𝑣0]|||𝑞|||𝑤.
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Next, |(𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝑞𝑦𝑦𝑤

2)|
≲
√
𝐿[‖𝑣0𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦‖]‖𝑞𝑦𝑦𝑤‖

≲
√
𝐿[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤, (5.14)

Finally, |(𝜀𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}𝑣
0
𝑦, 𝑞𝑦𝑦𝑤

2)| ≲ √
𝐿
√
𝜀‖𝑣0𝑦‖‖𝑞𝑦𝑦𝑤‖, using the bound ‖𝜀𝑦{𝑣𝑠𝑥𝑥𝑥𝑥 +

𝑣𝑠𝑥𝑥}‖ ≲
√
𝜀.

Step 3: 𝑞𝑥 Multiplier

|(𝐵(𝑣0), 𝑞𝑥𝑤2)| ≲ 𝑜𝐿(1)|||𝑞|||2𝑤 + 𝑜𝐿(1)

{
[𝑢̄0, 𝑣0]2𝐵 if 𝑤 = 1,

𝜀−1[𝑢̄0, 𝑣0]2𝐵 if 𝑤 = 𝑤0

. (5.15)

Recall again the specification of 𝐵(𝑣0) given in (1.30). We begin with (letting 𝑤 be either 𝑤0 or 1
for this calculation)

|(𝑣0𝑦𝑦𝑦𝑦, 𝑞𝑥𝑤2)| =| − (𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑦𝑤
2) − 2(𝑣0𝑦𝑦𝑦, 𝑞𝑥𝑤𝑤𝑦)|

≲
√
𝐿‖𝑣0𝑦𝑦𝑦𝑤0‖‖𝑞𝑥𝑦𝑤‖ +√

𝐿‖𝑣0𝑦𝑦𝑦𝑤‖{√𝐿‖√𝜀𝑞𝑥𝑥𝑤‖ + ‖𝑞𝑥
𝑦
𝑤‖},

where we have used that |𝑤𝑦| ≲ √
𝜀|𝑤| + 1, which is true for both choices of 𝑤.

Next,

(𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝑞𝑥𝑤

2)

=(𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦}𝑣
0
𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣

0
𝑦𝑦, 𝑞𝑥𝑦𝑤

2 + 2𝑞𝑥𝑤𝑤𝑦) (5.16)

We must now distinguish the weights for 𝑤 = 1 and 𝑤 = 𝑤0. In the case 𝑤 = 1, we majorize
the above quantity by

|(5.16)| ≲ (‖𝑣𝑠𝑦 + (𝑥 + 1)𝑣𝑠𝑥𝑦‖∞‖𝑣0𝑦‖ + ‖𝑣𝑠 + (𝑥 + 1)𝑣𝑠𝑥‖∞‖𝑣0𝑦𝑦‖)‖𝑞𝑥𝑦‖
≲ [𝑢̄0, 𝑣0]𝐵|||𝑞|||.

In the case of 𝑤 = 𝑤0, recalling (5.12)

|(5.16)| ≲ [‖{(𝑥 + 1)𝑣𝑠𝑥𝑦 + 𝑣𝑠𝑦}𝑤𝑦‖∞‖𝑣0𝑦‖ + ‖{𝑣𝑠 + (𝑥 + 1)𝑣𝑠𝑥}𝑤𝑦‖∞‖𝑣0𝑦𝑦‖]
× [‖𝑞𝑥𝑦𝑤‖ + 𝜀−1∕2𝐿‖√𝜀𝑞𝑥𝑥𝑤‖]

≲ 𝜀−1∕2𝐿[𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤
Next, (𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄

0
𝑦}, 𝑞𝑥𝑤

2) = −(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥𝑦𝑤

2) − (𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦, 𝑞𝑥2𝑤𝑤𝑦). We again distinguish

between the case of 𝑤 = 1 and 𝑤 = 𝑤0. In the 𝑤 = 1 case, we estimate by
√
𝐿‖𝑞̄0𝑦𝑢𝑠‖‖𝑞𝑥𝑦‖ ≲√

𝐿[𝑢̄0, 𝑣0]𝐵|||𝑞|||1. In the 𝑤 = 𝑤0 case, we majorize by√
𝐿‖𝑞̄0𝑦𝑢𝑠‖‖𝑞𝑥𝑦𝑤‖ +√

𝐿‖𝑢𝑠𝑞̄0𝑦‖{𝐿‖√𝜀𝑞𝑥𝑥𝑤‖ + ‖ 𝑞𝑥⟨𝑦⟩𝑤‖}
≲ (

√
𝐿 + 𝐿3∕2 +

√
𝐿)[𝑢̄0, 𝑣0]|||𝑞|||𝑤
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We move to the final term. In the case 𝑤 = 1,

|(𝜀𝑣0𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}, 𝑞𝑥)| ≲ √
𝜀‖𝑞̄𝑥𝑦‖‖𝑣0𝑦‖ ≲

√
𝜀[𝑢̄0, 𝑣0]𝐵|||𝑞|||1

upon using that |√𝜀𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}| ≲ 1. In the case 𝑤 = 𝑤0,

|(𝜀𝑣0𝑦𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}, 𝑞𝑥)| ≲ ‖𝑞𝑥
𝑦
𝑤‖‖𝑣0𝑦‖ ≲ [𝑢̄0, 𝑣0]𝐵|||𝑞|||𝑤.

upon using that |𝜀𝑦𝑤0𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}| ≲ 1. For these profile estimates, we have used (A.33).
Step 4: 𝜀𝑣𝑥𝑥𝑦𝑦𝑢𝑠 Multiplier

|(𝐵(𝑣0), 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤2)| ≤ 𝐶
√
𝜀[𝑢̄0, 𝑣0]2𝐵 + 𝑜(1)

√
𝜀|||𝑞|||2√

𝜀𝑤
+ 𝐶

√
𝜀||||𝑣||||2𝑤. (5.17)

Recall again the specification of 𝐵(𝑣0) given in (1.30). We compute

(𝑣0𝑦𝑦𝑦𝑦, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤
2)

= − (𝑣0𝑦𝑦𝑦𝑦, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤
2) − (𝑣0𝑦𝑦𝑦𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0

≤√𝐿
√
𝜀‖𝑣0𝑦𝑦𝑦𝑦𝑤‖‖𝑣𝑥𝑦𝑦√𝜀𝑤‖ +√

𝜀‖𝑣0𝑦𝑦𝑦𝑦𝑤‖‖𝑢𝑠𝑣𝑥𝑦𝑦√𝜀𝑤‖𝑥=0
≲
√
𝐿
√
𝜀[𝑢̄0, 𝑣0]𝐵|||𝑞|||√𝜀𝑤 +

√
𝜀[𝑢̄0, 𝑣0]𝐵||||𝑣||||𝑤

Next,

(𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤

2)

= − (𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0

− (𝜕𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤

2)

− (𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠}𝑣
0
𝑦𝑦𝑦 − 𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠𝑦𝑦}𝑣

0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2). (5.18)

First,

|(5.18.1)| ≲ (
√
𝜀‖√𝑢𝑠𝑣

0
𝑦𝑦𝑦𝑤0‖ +√

𝜀‖𝑣0𝑦‖)‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=0
≲
√
𝜀[𝑢̄0, 𝑣0]𝐵||||𝑣||||𝑤 +

√
𝜀[𝑢̄0, 𝑣0]𝐵||||𝑣||||𝑤.

Next,

|(5.18.2)| + |(5.18.3)| ≲ √
𝐿
√
𝜀(‖𝑢𝑠𝑣0𝑦𝑦𝑦𝑤0‖ + ‖𝑣0𝑦‖)‖𝑣𝑥𝑦𝑦√𝜀𝑤‖

(−2𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦}, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤

2)

=(2𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦}, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤

2) + (2𝜕𝑦{(𝑢𝑠𝑢𝑠𝑥)𝑥𝑞̄
0
𝑦}, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)

+ 2(𝜕𝑦{𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦}, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0

=(2𝜕𝑦{𝑢𝑠𝑢𝑠𝑥}𝑞̄
0
𝑦, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤

2) + (2𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦𝑦, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤

2)
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+ (2{(𝑢𝑠𝑢𝑠𝑥)𝑥𝑦𝑞̄
0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2) + (2(𝑢𝑠𝑢𝑠𝑥)𝑥𝑞̄
0
𝑦𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)

+ 2(𝜕𝑦{𝑢𝑠𝑢𝑠𝑥}𝑞̄
0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0 + 2(𝑢𝑠𝑢𝑠𝑥𝑞̄
0
𝑦𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0 (5.19)

We begin with the first two terms. Since 𝑢𝑠𝑥 decays at 𝑦 = ∞,

|(5.19.1)| ≲ √
𝜀
√
𝐿‖𝑢𝑠𝑞̄0𝑦‖‖𝑣𝑥𝑦𝑦√𝜀𝑤‖,

|(5.19.2)| ≲ √
𝜀
√
𝐿‖√𝑢𝑠𝑞̄

0
𝑦𝑦‖‖𝑣𝑥𝑦𝑦√𝜀𝑤‖,

Next, we estimate the third and fourth terms

|(5.19.3)| + |(5.19.4)| ≲ √
𝜀
√
𝐿(‖𝑢𝑠𝑞̄0𝑦‖ + ‖𝑢𝑠𝑞̄0𝑦𝑦‖)‖𝑣𝑥𝑦𝑦√𝜀𝑤‖,

The last two terms follow very similarly from the first two, yielding

|(5.19.5)| ≲ √
𝜀‖𝑢𝑠𝑞̄0𝑦‖‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=0,

|(5.19.6)| ≲ √
𝜀‖√𝑢𝑠𝑞̄

0
𝑦𝑦‖‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=0

We finally move to

(𝜀𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}𝑣
0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑥𝑦𝑦𝑤

2)

= − (𝜀𝜕𝑥𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}𝑣
0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2) − (𝜀𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}𝑣
0
𝑦, 𝜀𝑢𝑠𝑥𝑣𝑥𝑦𝑦𝑤

2)

− (𝜀𝜕𝑥{(𝑥 + 1)𝑣𝑠𝑥𝑥}𝑣
0
𝑦, 𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤

2)𝑥=0

≲ 𝜀
√
𝐿‖𝑣0𝑦‖‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=𝐿 +√

𝐿𝜀‖𝑣0𝑦‖‖√𝜀𝑣𝑥𝑦𝑦𝑤‖
+ 𝜀‖𝑣0𝑦‖‖√𝜀𝑢𝑠𝑣𝑥𝑦𝑦𝑤‖𝑥=0

Step 5: 𝜀2𝑣𝑥𝑥𝑥𝑥 Multiplier

|(𝐵(𝑣0), 𝜀2𝑣𝑥𝑥𝑥𝑥𝑤2)| ≤ 𝐶𝜀[𝑢̄0, 𝑣0]2𝐵 + 𝜀|||𝑞|||2√
𝜀𝑤

+ 𝐶𝜀||||𝑣||||2𝑤. (5.20)

This follows in the same manner is the previous multiplier. Putting together estimates (5.9),
(5.13), (5.15), (5.17), (5.20) according to the linear combinations in (5.3) and (5.4) gives the desired
bound and completes the proof of the lemma. □

Lemma 5.3. Let 𝐮 ∈  as in (1.22). For 𝐵 defined as in (5.5), and for any 𝛿 > 0, the following
estimates are valid

|𝐵| ≤ 𝛿[𝑢0, 𝑣0]𝐵 + 𝐶𝛿𝜀‖𝑣‖2𝑌𝑤0
+ 𝐶𝛿𝜀

1

2
+

3−

16 ‖𝑣‖2𝑋1
. (5.21)

Proof. We estimate each term in 𝐹(𝑣)(𝑣) which are defined in (A.23) and we write here for
convenience:

𝐹(𝑣) ∶= −2𝜀𝑢𝑠𝑢𝑠𝑥𝑞̄𝑥|𝑥=0 − 2𝜀𝑣𝑥𝑦𝑦|𝑥=0 − 𝜀2𝑣𝑥𝑥𝑥|𝑥=0 + 𝜀𝑣𝑠𝑣𝑥𝑦|𝑥=0. (5.22)
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3217

Starting with the higher order terms,

‖𝜀2𝑣𝑥𝑥𝑥𝑤‖𝑥=0 ≤‖𝜀2𝑣𝑥𝑥𝑥𝑤{1 − 𝜒}‖𝑥=0 + ‖𝜀2𝑣𝑥𝑥𝑥𝑤𝜒‖𝑥=0
≤√𝜀‖𝜀 32 𝑢𝑠𝑣𝑥𝑥𝑥𝑤‖𝑥=0 + 𝜀

1

2 ‖𝜀𝑣𝑥𝑥𝑥‖ 1

2 ‖𝜀2𝑣𝑥𝑥𝑥𝑥‖ 1

2

≲
√
𝜀‖𝑣‖𝑌𝑤

+ 𝜀
1

2
+

3

32 ‖𝑣‖𝑋1
.

The identical argument is performed for (5.22.2).
For the fourth term, we expand 𝑣𝑥𝑦|𝑥=0 = 𝑢𝑠𝑞̄𝑥𝑦|𝑥=0 + 𝑢𝑠𝑦𝑞̄𝑥|𝑥=0, perform a Hardy type

inequality for the 𝑞̄𝑥 term, and use (3.22) to obtain

‖𝜀𝑣𝑠𝑣𝑥𝑦𝑤‖𝑥=0 ≤‖𝜀𝑣𝑠𝑢𝑠𝑞̄𝑥𝑦𝑤‖𝑥=0 + ‖𝜀𝑣𝑠𝑢𝑠𝑦𝑞̄𝑥𝑤‖𝑥=0
≤√𝜀‖𝑣‖𝑌𝑤

+ 𝜀‖𝑣𝑠𝑢𝑠𝑦𝑞̄𝑥𝜒‖𝑥=0
≤√𝜀‖𝑣‖𝑌𝑤

+ 𝜀
3

4 ‖𝜀 14 𝑞̄𝑥⟨𝑦⟩‖𝑥=0
≤√𝜀‖𝑣‖𝑌𝑤

+ 𝜀
3

4 ‖𝑣‖𝑋1
.

To estimate the first term from (5.22), we split into Euler and Prandtl:

‖𝜀𝑢𝑠𝑢𝑠𝑥𝑞̄𝑥𝑤‖𝑥=0 ≤‖𝜀𝑢𝑠𝑢𝑃𝑠𝑥𝑞̄𝑥𝑤‖𝑥=0 + 𝜀
3

2 ‖𝑢𝑠𝑢𝐸𝑠𝑥𝑞̄𝑥𝑤‖𝑥=0
≤‖𝑢𝑃𝑠𝑥𝑤⟨𝑦⟩‖∞𝜀‖ 𝑞̄𝑥⟨𝑦⟩‖𝑥=0 +√

𝜀[‖√𝜀𝑞̄𝑥
√
𝜀𝑤‖ + ‖√𝜀𝑞̄𝑥𝑥

√
𝜀𝑤‖]

≲ 𝜀
3

4 ‖𝑣‖𝑋1
+

√
𝜀‖𝑣‖𝑌𝑤

.

We have thus established: ‖𝐹(𝑣)𝑤0‖ ≲
√
𝜀‖𝑣‖𝑌𝑤0

+ 𝜀
1

2
+

3

32 ‖𝑣‖𝑋1
. This concludes the proof. □

Lemma 5.4. Let 𝐮 ∈  as in (1.22). The following estimates are valid

|𝑋1
| ≲ 𝜀𝑁0−1[𝑢̄0, 𝑣0]𝐵‖𝑣‖𝑋1

‖𝑣‖𝑋1
+ 𝜀

𝑁0−
3

4 ‖𝑣‖𝑋1
‖𝑣‖𝑋1

‖𝑣‖𝑋1
, (5.23)

+ 𝜀𝑁0−1[𝑢̄0, 𝑣0]2𝐵‖𝑣‖𝑋1
,

|𝑌𝑤
| ≲ 𝜀𝑁0−1[𝑢̄0, 𝑣0]𝐵‖𝑣‖𝑌𝑤

‖𝑣‖𝑌𝑤
+ 𝜀

𝑁0−
3

4 ‖𝑣‖𝑋1
‖𝑣‖𝑌𝑤

‖𝑣‖𝑌𝑤
(5.24)

+ 𝜀𝑁0−1[𝑢̄0, 𝑣0]2𝐵‖𝑣‖𝑋1
,

|𝐵| ≲ 𝜀𝑁0−1[𝑢̄0, 𝑣0]4𝐵 + 𝜀𝑁0−1[𝑢̄0, 𝑣0]2𝐵 + 𝐶(ℎ, 𝑎𝜀2) + 𝜀𝑁0−1‖𝑣‖2𝑌𝑤
. (5.25)

Proof. Proof of (5.23), (5.24):
We begin with the immediate estimates:

|𝑋1
| ≲ 𝜀

𝑁0−
1

2 ‖‖‖𝑣‖𝑋1
|𝑌𝑤

| ≲ 𝜀𝑁0‖𝑤‖‖𝑣‖𝑌𝑤
.
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First, recall the specification of  = 𝑄11 + 𝑄12 + 𝑄22 given in (A.27). We now establish the
following bound:

‖ ⋅ 𝑤‖ ≲ {𝜀−1∕2[𝑢̄0, 𝑣0]𝐵 + 𝜀
−

1

4 ‖𝑣‖𝑋1
}|||𝑞̄|||𝑤.

To establish this, we go term by term through 𝑄11:

‖𝑣𝑦Δ𝜀𝑣𝑤‖ ≤ ‖𝑣𝑦‖∞‖Δ𝜀𝑣𝑤‖
‖𝐼𝑥[𝑣𝑦]Δ𝜀𝑣𝑥𝑤‖ ≤ ‖𝑣𝑦‖∞‖Δ𝜀𝑣𝑥𝑤‖
‖𝑣𝑥𝐼𝑥[𝑣𝑦𝑦𝑦]𝑤‖ ≤ 𝜀

−
1

4 ‖𝜀 14 𝑣𝑥‖𝐿2𝑥𝐿∞𝑦 ‖𝑣𝑦𝑦𝑦𝑤‖
‖𝑣𝑣𝑦𝑦𝑦𝑤‖ ≤ 𝜀

−
1

4 ‖𝜀 14 𝑣‖𝐿2𝑥𝐿∞𝑦 ‖𝑣𝑦𝑦𝑦𝑤‖
‖𝜀𝑣𝑥𝑣𝑥𝑦𝑤‖ ≤ √

𝜀‖√𝜀𝑣𝑥‖∞‖𝑣𝑥𝑦𝑤‖
‖𝑣Δ𝜀𝑣𝑦𝑤‖ ≤ 𝜀

−
1

4 ‖𝜀 14 𝑣‖∞‖Δ𝜀𝑣𝑦𝑤‖
‖𝑢̄0Δ𝜀𝑣𝑥𝑤‖ ≤ |𝑢̄0|∞‖Δ𝜀𝑣𝑥𝑤‖ ≲ [𝑢̄0, 𝑣0]𝐵|||𝑞̄|||𝑤,‖𝑢̄0𝑦𝑦𝑣𝑥𝑤‖ ≤ ‖𝑢̄0𝑦𝑦⟨𝑦⟩‖𝐿∞𝑥 𝐿2𝑦

‖𝑣𝑥⟨𝑦⟩−1𝑤‖𝐿2𝑥𝐿∞𝑦 ≲ [𝑢̄0, 𝑣0]𝐵|||𝑞̄|||𝑤.
Above, we have used the following interpolation:

‖𝑣𝑥⟨𝑦⟩−1

2 𝑤‖𝐿∞𝑦 𝐿2𝑥
≤‖𝑣𝑥⟨𝑦⟩−1𝑤‖ 1

2 ‖𝑣𝑥𝑦𝑤‖ 1

2 ,

and the weighted Hardy’s inequality (3.27). The result follows upon remarking the follow-
ing basic fact. For any function 𝑔(𝑥, 𝑦) such that 𝑔𝑥=0 OR 𝑥=𝐿 = 0 and 𝑔|𝑦=∞ = 0: |𝑔|2 ≤‖𝑔𝑥‖‖𝑔𝑦‖ + ‖𝑔‖‖𝑔𝑥𝑦‖. This immediately gives: ‖𝜀 14 𝑣‖∞ + ‖𝑣⟨𝑦⟩−1∕2‖∞ + ‖∇𝜀𝑣‖∞ ≲ |||𝑞|||1. A
basic interpolation also gives ‖𝜀 14 𝑣𝑥‖𝐿∞𝑦 ≤ ‖√𝜀𝑣𝑥‖ 1

2

𝐿2𝑦
‖𝑣𝑥𝑦‖ 1

2

𝐿2𝑦
.

We treat now the quantity ‖𝑄12𝑤‖
‖𝑣𝑦𝑣0𝑦𝑦𝑤‖ ≤ ‖𝑣𝑥𝑦𝑤‖‖𝑣0𝑦𝑦‖∞ ≲ [𝑢0, 𝑣0]𝐵|||𝑞|||𝑤,
‖𝑣0𝑦Δ𝜀𝑣𝑤‖ ≤ ‖𝑣0𝑦‖∞‖Δ𝜀𝑣𝑤‖ ≲ [𝑢0, 𝑣0]𝐵|||𝑞|||𝑤,
‖𝑥𝑣0Δ𝜀𝑣𝑥𝑤‖ ≲ ‖𝑣0‖∞‖Δ𝜀𝑣𝑥𝑤‖ ≲ 𝜀

−
1

2 [𝑢0, 𝑣0]𝐵|||𝑞|||𝑤
‖𝑥𝑣𝑥𝑣0𝑦𝑦𝑤‖ ≲ 𝜀−1∕2‖√𝜀𝑣𝑥𝑥𝑤‖‖𝑣0𝑦𝑦‖∞ ≲ 𝜀−1∕2[𝑢0, 𝑣0]𝐵|||𝑞|||𝑤,
‖𝑣𝑣0𝑦𝑦𝑦𝑤‖ ≤ 𝜀

−
1

4 ‖𝜀 14 𝑣‖𝐿2𝑥𝐿∞𝑦 ‖𝑣0𝑦𝑦𝑦𝑤‖ ≲ 𝜀
−

1

4 [𝑢0, 𝑣0]𝐵|||𝑞|||𝑤,
‖𝑣0Δ𝜀𝑣𝑦𝑤‖ ≤ ‖𝑣0‖∞‖Δ𝜀𝑣𝑦𝑤‖ ≲ 𝜀

−
1

2 [𝑢0, 𝑣0]𝐵|||𝑞|||𝑤.
To conclude, we note that the 𝑄22 terms have already been treated in Lemmas 2.7 and 2.8.
Proof of (5.25)
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Recall the specification of  from (2.1). We begin with the multiplier of 𝑞0. First,

𝜀𝑁0(𝑣0𝑣0𝑦𝑦𝑦 − 𝑣0𝑦𝑣
0
𝑦𝑦, 𝑞

0) =𝜀𝑁0(𝑢𝑠𝑞
0𝜕𝑦𝑦𝑦{𝑢𝑠𝑞

0} − 𝜕𝑦{𝑢𝑠𝑞
0}𝜕𝑦𝑦{𝑢𝑠𝑞

0}, 𝑞0)

=𝜀𝑁0(𝑢2𝑠 𝑞
0𝑞0𝑦𝑦𝑦 − 𝑢2𝑠 𝑞

0
𝑦𝑞

0
𝑦𝑦, 𝑞

0) + 2.

Here,

2 ∶=𝜀
𝑁0(𝑢𝑠𝑞

0[𝑢𝑠𝑦𝑦𝑦𝑞
0 + 3𝑢𝑠𝑦𝑦𝑞

0
𝑦 + 3𝑢𝑠𝑦𝑞

0
𝑦𝑦]

− 𝑢𝑠𝑦𝑞
0[𝑢𝑠𝑦𝑦𝑞

0 + 2𝑢𝑠𝑦𝑞
0
𝑦 + 𝑢𝑠𝑞

0
𝑦𝑦𝑦] − 𝑢𝑠𝑞

0
𝑦[𝑢𝑠𝑦𝑦𝑞

0 + 2𝑢𝑠𝑦𝑞
0
𝑦], 𝑞

0)

Thus,2 contains harmless commutator termswhich are easily seen to be size 𝜀𝑁0[[[𝑣0]]][[𝑞0]]2

upon using (2.8), (2.11), and the rapid decay of 𝜕𝑘𝑦𝑢𝑠 (𝑘 ≥ 1) which is present in each term above.
We estimate

𝜀𝑁0 |(𝑢2𝑠 𝑞0𝑞0𝑦𝑦𝑦, 𝑞0)| ≲ 𝜀𝑁0[[𝑞0]]2(𝑢2𝑠 |𝑞0𝑦𝑦𝑦|, ⟨𝑦⟩)|
≲ 𝜀

𝑁0−
(
1

2
+
)(

𝑞0𝑦𝑦𝑦⟨𝑦⟩𝑌 1+

2 , ⟨𝑦⟩−1+

2

)
[[𝑞0]]2

≲ 𝜀
𝑁0−

(
1

2
+
)‖𝑞0𝑦𝑦𝑦⟨𝑦⟩𝑌 1+

2 ‖[[𝑞0]]2
≲ 𝜀

𝑁0−
(
1

2
+
)
[[[𝑣0]]][[𝑞0]]2.

Next, recalling (2.15)

𝜀𝑁0 |(𝑢2𝑠 𝑞0𝑦𝑞0𝑦𝑦, 𝑞0)| ≲ 𝜀𝑁0‖𝑞0‖∞‖√𝑢𝑠𝑞
0
𝑦‖‖𝑢𝑠𝑞0𝑦𝑦‖

≲ 𝜀
𝑁0−

1

2 𝐶𝜎,𝜆[[𝑞
0]]3.

The next nonlinear terms are

𝜀𝑁0+1(𝑢0𝑣𝑥𝑥|𝑥=0 + 𝑣0𝑣𝑥𝑦|𝑥=0, 𝑞0)
≲ 𝜀𝑁0+1‖𝑢0‖∞‖𝑣𝑥𝑥|𝑥=0⟨𝑦⟩‖‖𝑞0𝑦‖ + 𝜀𝑁0+1‖𝑣0‖∞‖𝑣𝑥𝑦|𝑥=0𝑤‖‖𝑞0𝑦‖
≲ 𝜀𝑁0+1[𝑢0, 𝑣0]2𝐵‖𝑎𝜀2⟨𝑦⟩‖ + 𝜀

𝑁0+
1

4 (
√
𝜀‖𝑣0‖∞)‖𝑣𝑥𝑦𝑤‖ 1

2 ‖√𝜀𝑣𝑥𝑥𝑦𝑤‖ 1

2 ‖𝑞0𝑦‖
≲ 𝜀𝑁0+1[𝑢0, 𝑣0]2𝐵‖𝑎𝜀2⟨𝑦⟩‖ + 𝜀

𝑁0−
1

4 [𝑢0, 𝑣0]2𝐵‖𝑣‖𝑌𝑤
.

To conclude, we treat the contribution of the ℎ terms:

|(𝜀𝑁0{ℎ𝑣0𝑦𝑦 − 𝑣0ℎ𝑦𝑦}, 𝑞
0)|

≲ 𝜀𝑁0‖ℎ⟨𝑦⟩‖∞‖𝑣0𝑦𝑦‖‖𝑞0𝑦‖ + 𝜀𝑁0‖ℎ𝑦𝑦𝑦2‖∞‖𝑣0𝑦‖‖𝑞0𝑦‖
≲ 𝜀𝑁0{‖ℎ⟨𝑦⟩‖∞ + ‖ℎ𝑦𝑦𝑦2‖∞}[𝑢0, 𝑣0]2𝐵.
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Next,

|(, 𝑞0)| ≲ [[𝑞0]]‖⟨𝑦⟩1∕2‖1
≲ [𝑢0, 𝑣0]𝐵‖{ℎ′′′ − 𝑣𝑠ℎ

′′ − ℎΔ𝜀𝑢𝑠}⟨𝑦⟩1∕2‖1.
We now move to the contribution of ‖𝑤0‖. We estimate the first term directly upon using

(2.15):

‖𝜀𝑁0𝑣0𝑣0𝑦𝑦𝑦𝑤0‖ ≤𝜀𝑁0−
1

2 ‖√𝜀𝑣0‖∞‖𝑣0𝑦𝑦𝑦𝑤‖ ≲ 𝜀
𝑁0−

1

2 [𝑢0, 𝑣0]2𝐵.

For the second nonlinearity, we have

‖𝜀𝑁0𝜕𝑦{𝑢𝑠𝑞
0}𝜕𝑦𝑦{𝑢𝑠𝑞

0}𝑤0‖
=‖𝜀𝑁0

(
𝑢𝑠𝑢𝑠𝑦𝑦𝑞

0𝑞0𝑦 + 2𝑢𝑠𝑢𝑠𝑦|𝑞0𝑦|2 + 𝑢2𝑠 𝑞
0
𝑦𝑞

0
𝑦𝑦 + 𝑢𝑠𝑦𝑢𝑠𝑦𝑦|𝑞0|2

+2𝑢2𝑠𝑦𝑞
0𝑞0𝑦 + 𝑢𝑠𝑢𝑠𝑦𝑞

0𝑞0𝑦𝑦
)
𝑤0‖

≤𝜀𝑁0‖{𝑢𝑠𝑢𝑠𝑦𝑦𝑞0𝑞0𝑦 + 2𝑢𝑠𝑢𝑠𝑦|𝑞0𝑦|2 + 𝑢2𝑠 𝑞
0
𝑦𝑞

0
𝑦𝑦 + 𝑢𝑠𝑦𝑢𝑠𝑦𝑦|𝑞0|2

+ 2𝑢2𝑠𝑦𝑞
0𝑞0𝑦 + 𝑢𝑠𝑢𝑠𝑦𝑞

0𝑞0𝑦𝑦}𝑤‖
≲ 𝜀𝑁0−1[𝑢0, 𝑣0]2𝐵.

Above, we have used

‖𝑢2𝑠 𝑞0𝑦𝑞0𝑦𝑦𝑤‖ ≲ ‖𝑞0𝑦⟨𝑦⟩‖∞‖𝑞0𝑦𝑦 𝑤⟨𝑦⟩‖ ≲ 𝜀−1‖𝜀⟨𝑦⟩𝑞0𝑦‖∞[𝑢0, 𝑣0]𝐵 ≲ 𝜀−1[𝑢0, 𝑣0]2𝐵.

We next move to

‖𝜀𝑁0+1𝑢0𝑣
(𝜀)
𝑥𝑥|𝑥=0𝑤0‖ + 𝜀𝑁0+1‖𝑣0𝑣(𝜀)𝑥𝑦 |𝑥=0𝑤0‖

≲ 𝜀𝑁0+1
(‖𝑢0‖∞‖𝑣(𝜀)𝑥𝑥|𝑥=0𝑤‖ + ‖𝑣0‖∞‖𝑣(𝜀)𝑥𝑦𝑤‖𝑥=0)

≲ 𝜀𝑁0+1[𝑢0, 𝑣0]2𝐵‖𝑎𝜀2𝑤‖ + 𝜀
𝑁0+

1

4 ‖√𝜀𝑣0‖∞‖𝑣𝑥𝑦𝑤‖ 1

2 ‖√𝜀𝑣𝑥𝑥𝑦𝑤‖ 1

2

≲ 𝜀𝑁0+1[𝑢0, 𝑣0]2𝐵‖𝑎𝜀2𝑤‖ + 𝜀
𝑁0−

1

4 [𝑢0, 𝑣0]2𝐵‖𝑣‖𝑌𝑤
.

To conclude, we estimate the contributions of ℎ, starting with

‖𝜀𝑁0{ℎ𝑣0𝑦𝑦 − 𝑣0ℎ𝑦𝑦}𝑤0‖ ≲ 𝜀𝑁0‖ℎ𝑤‖∞‖𝑣0𝑦𝑦‖ + 𝜀𝑁0‖𝑣0
𝑦
‖∞‖ℎ𝑦𝑦𝑦𝑤‖2

≲ 𝜀𝑁0[[𝑞0]]𝐶(ℎ) ≲ 𝜀𝑁0[𝑢0, 𝑣0]2𝐵 + 𝐶(ℎ).

We next move to the terms:

‖𝑤0‖ ≤‖[−ℎ′′′ + 𝑣𝑠ℎ
′′ − ℎΔ𝜀𝑣𝑠]𝑤‖ ≤ 𝐶(ℎ).

□
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The remaining terms from the right-hand sides of (5.6) are the  terms, for which we estimate

Lemma 5.5. Let 𝐮 ∈  as in (1.22). Assume (1.16) and ℎ ∈ 𝐶∞(𝑒𝑦) as in (1.15). Let 𝑛 > 1 + 2𝑁0 in
Theorem A.3. Then the forcing terms satisfy

𝜀
1

2 |𝑋1
| + |𝐵| + 𝜀

1

2 |𝑌𝑤0
| ≤ 𝑜(1) + 𝑜(1)‖𝐮‖2 + 𝑜(1)‖𝐮̄‖2 . (5.26)

Proof. Recalling the definition of 𝐹(𝑞), 𝐹𝑎
𝑅 from (A.23), (A.27):

𝐹(𝑞) = 𝜕𝑥𝐹𝑅 + 𝜕𝑥𝑏(𝑢)(𝑎
𝜀) + 𝐻[𝑎𝜀](𝑣, 𝑢̄0, 𝑣0) + {𝑣𝑠𝑥ℎ𝑦𝑦 − ℎΔ𝜀𝑣𝑠𝑥},

𝐹𝑎
𝑅 = 𝐹𝑅|𝑥=0 + 𝑏(𝑢)(𝑎

𝜀).

Examining the definition of 𝑋1
,𝑌𝑤0

,𝐵 (from (5.3), (5.4), (5.5)), we may estimate

𝜀
1

2

(𝑋1
(𝜕𝑥𝐹𝑅, 𝑞) + 𝑌𝑤0

(𝜕𝑥𝐹𝑅, 𝑞)
)
≲ 𝜀

1

2 ‖ 1√
𝜀
𝜕𝑥𝐹𝑅𝑤0‖[‖𝑣‖𝑌𝑤0

+ ‖𝑣‖𝑋1
]

≲ 𝑜(1) + 𝑜(1)‖𝐮‖2 ,
upon recalling (A.34). Next,

𝐵(𝐹𝑅|𝑥=0, 𝑞) ≤|(𝐹𝑅, 𝑞0)| + ‖𝐹𝑅𝑤0‖2
≲ ‖𝐹𝑅𝑤0‖‖𝑞0𝑦‖ + ‖𝐹𝑅𝑤0‖2
≤𝑜(1) + 𝑜(1)[𝑢0, 𝑣0]2𝐵

≤𝑜(1) + 𝑜(1)‖𝐮‖2 .
Repeating the above estimates for the 𝜕𝑥𝑏(𝑢)(𝑎

𝜀), 𝑏(𝑢)(𝑎
𝜀) terms, we obtain that these

contributions to (5.26) are bounded by

𝐶‖ 1√
𝜀
𝜕𝑥𝑏(𝑢)(𝑎

𝜀)‖2 + ‖𝑏(𝑢)(𝑎𝜀)𝑤0‖2 + 𝑜(1)‖𝐮‖2 ≲ 𝑜(1) + 𝑜(1)‖𝐮‖2 ,
upon invoking assumption (1.16) and consulting the definitions (A.25).
A similar computation, consulting the definition of𝐻[𝑎𝜀](𝑢̄0, 𝑣0, 𝑣) given in (A.27), produces a

bound

‖𝐻[𝑎𝜀](𝑢̄0, 𝑣0, 𝑣)
𝑤0√
𝜀
‖ ≤𝑜(1) + 𝑜(1)

([
𝑢̄0, 𝑣0

]
𝐵
+ ‖𝑣‖𝑋1

+ ‖𝑣‖𝑌𝑤0

)
,

upon invoking again assumption (1.16). A similar estimate holds for theℎ terms in𝐹(𝑞) using (1.15).
This thus concludes the proof of (5.26). □

We are now ready to insert all of these estimates into (5.6), which gives the following

Proposition 5.6. For 𝜎 << 1 then 𝐿 << 1, solutions to (5.1), (5.2) satisfy the following set of
estimates:
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‖𝑣‖2𝑋1
≲ 𝑜(1)‖𝑣‖2𝑋1

+ 𝜀
−

1

2 [𝑢̄0, 𝑣0]2𝐵

+𝜀𝑁0−1
(‖𝑣‖4𝑋1

+
[
𝑢̄0, 𝑣0

]4
𝐵

)
+ 𝐶(ℎ) + 𝑋1

(5.27)

[𝑢0, 𝑣0]2𝐵 ≲ 𝜀‖𝑣‖2𝑌𝑤0
+ 𝜀

1

2
+

3−

16 ‖𝑣‖2𝑋1

+ 𝜀𝑁0−1[𝑢̄0, 𝑣0]4𝐵 + 𝐶(ℎ, 𝑎𝜀2) + 𝐵 (5.28)

‖𝑣‖2𝑌𝑤0
≲ ‖𝑣‖2𝑋1

+ [𝑢̄0, 𝑣0]2𝐵

+ 𝜀𝑁0−1
(‖𝑣‖4𝑋1

+ ‖𝑣‖4𝑌𝑤0
+

[
𝑢̄0, 𝑣0

]4
𝐵

)
+ 𝐶(ℎ) + 𝑌𝑤0

. (5.29)

Above, 𝐶(ℎ) = (‖ℎ‖𝐶𝑀0(𝑒𝑦)) for a large𝑀0.

From here, we may immediately prove the main result:

Proof of Theorem 1.1. We apply a standard contraction mapping theorem to the map Ψ which
sends [𝑣, 𝑢̄0, 𝑣0] to [𝑣, 𝑢0, 𝑣0] via the equations (5.1) , (5.2). Such a map is well-defined according
to Proposition 2.1 and Proposition 3.2.
Recall the definition of ‖ ⋅ ‖ from (1.22). Motivated by this, we define for a large number𝐾 >>

1, the equivalent norm

‖𝐮‖𝐾
∶= 𝜀

1

4 ‖𝑣‖𝑋1
+ 𝜀

1

4 ‖𝑣‖𝑌𝑤0
+ 𝐾[𝑢0, 𝑣0]𝐵,

and we appropriately modify definition (1.23) to define the space 𝐾 . We now take the linear

combination 𝜀
1

2 (5.27) + 𝐾2(5.28) + 𝜀
1

2 (5.29) to obtain

‖𝐮‖2𝐾
≲ 𝑜(1)𝜀

1

2 ‖𝑣‖2𝑋1
+ [𝑢̄0, 𝑣0]2𝐵 + 𝜀

𝑁0−
1

2

(‖𝑣‖4𝑋1
+

[
𝑢̄0, 𝑣0

]4
𝐵

)
+ 𝐶(ℎ)

+

(
𝜀
1

2𝑋1
+ 𝐾2𝐵 + 𝜀

1

2𝑌𝑤0

)
+ 𝜀𝐾2‖𝑣‖‖‖‖2𝑌𝑤0

+ 𝜀
1

2
+

3−

16
‖‖‖‖𝑣‖2𝑋1

+ 𝐾2𝜀𝑁0−1[𝑢̄0, 𝑣0]4𝐵 + 𝐾2𝐶(ℎ, 𝑎𝜀2) + 𝜀
1

2 [𝑢̄0, 𝑣0]2𝐵

+ 𝜀
𝑁0−

1

2

(‖𝑣‖4𝑋1
+ ‖𝑣‖4𝑌𝑤0

+ [𝑢̄0, 𝑣0]4𝐵

)
≤𝑜(1)‖𝐮‖2𝐾

+ (𝑜(1) + 𝐾−2)‖𝐮̄‖2𝐾
+ 𝜀𝑁0−1‖𝐮̄‖4𝐾

+ (1). (5.30)

By repeating the above analysis for differences 𝐮1 − 𝐮2, and 𝐮̄1 − 𝐮̄2, (5.30) shows that Ψ is a
contraction map on 𝐾 for 𝐾 >> 1, and thus has a unique fixed point. Clearly, from (5.1) and
(5.2), such a fixed point solves the nonlinear equations (A.23) and (A.27). The homogenization
procedure to derive these two systems (see (1.19)) ensures that this is equivalent to solving:

𝜕𝑥LHS Equation (1.12) = 𝜕𝑥RHS Equation (1.12), and

LHS Equation (1.12)|𝑥=0 = RHS Equation (1.12)|𝑥=0.
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Thus, such a fixed point solves (1.12) itself. To conclude, we note that𝐾 is equivalent to , and
thus this fixed point is an element of  . □
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APPENDIX A: ASYMPTOTIC EXPANSIONS
We will assume the expansions:

𝑈𝜀 = 𝑢̃𝑛𝑠 + 𝜀𝑁0𝑢, 𝑉𝜀 = 𝑣𝑛𝑠 + 𝜀𝑁0𝑣, 𝑃𝜀 = 𝑃̃𝑛𝑠 + 𝜀𝑁0𝑃. (A.1)

We will denote the partial expansions:

𝑢𝑖𝑠 =

𝑖∑
𝑗=0

√
𝜀
𝑗
𝑢
𝑗
𝑒 +

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑢
𝑗
𝑝, 𝑢̃𝑖𝑠 = 𝑢𝑖𝑠 +

√
𝜀
𝑖
𝑢𝑖𝑝, (A.2)

𝑣𝑖𝑠 =

𝑖∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒 +

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑣
𝑗
𝑝, 𝑣𝑖𝑠 = 𝑣𝑖𝑠 +

√
𝜀
𝑖
𝑣𝑖𝑝, (A.3)

𝑃𝑖𝑠 =

𝑖∑
𝑗=0

√
𝜀
𝑗
𝑃
𝑗
𝑒 , 𝑃̃𝑖𝑠 = 𝑃𝑖𝑠 +

√
𝜀
𝑖{
𝑃𝑖𝑝 +

√
𝜀𝑃𝑖,𝑎𝑝

}
. (A.4)

Wewill also define 𝑢𝐸,𝑖𝑠 =
∑𝑖

𝑗=0

√
𝜀
𝑗
𝑢
𝑗
𝑒 to be the “Euler” components of the partial sum. Similar

notation will be used for 𝑢𝑃,𝑖𝑠 , 𝑣𝐸,𝑖𝑠 , 𝑣𝑃,𝑖𝑠 . The following will also be convenient:

𝑢𝐸𝑠 ∶=

𝑛∑
𝑖=0

√
𝜀
𝑖
𝑢𝑖𝑒, 𝑣𝐸𝑠 ∶=

𝑛∑
𝑖=1

√
𝜀
𝑖−1

𝑣𝑖𝑒,

𝑢𝑃𝑠 ∶=

𝑛∑
𝑖=0

√
𝜀
𝑖
𝑢𝑖𝑝, 𝑣𝑃𝑠 ∶=

𝑛∑
𝑖=0

√
𝜀
𝑖
𝑣𝑖𝑝,

𝑢𝑠 = 𝑢𝑃𝑠 + 𝑢𝐸𝑠 , 𝑣𝑠 = 𝑣𝑃𝑠 + 𝑣𝐸𝑠 .

(A.5)

The 𝑃𝑖,𝑎𝑝 terms are “auxiliary Pressures” in the same sense as those introduced in [27] and [31]
and are for convenience. We will also introduce the notation:

𝑢̄𝑖𝑝 ∶= 𝑢𝑖𝑝 − 𝑢𝑖𝑝|𝑦=0, 𝑣𝑖𝑝 ∶= 𝑣𝑖𝑝 − 𝑣𝑖𝑝(𝑥, 0), 𝑣𝑖𝑒 = 𝑣𝑖𝑒 − 𝑣𝑖𝑒|𝑌=0. (A.6)

We first record the properties of the leading order (𝑖 = 0) layers. For the outer Euler flow, we
will take a shear flow, [𝑢0𝑒 (𝑌), 0, 0]. The derivatives of 𝑢0𝑒 decay rapidly in 𝑌 and that is bounded
below, |𝑢0𝑒 | ≳ 1.
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For the leading order Prandtl boundary layer, the equations are:

𝑢̄0𝑝𝑢
0
𝑝𝑥 + 𝑣0𝑝𝑢

0
𝑝𝑦 − 𝑢0𝑝𝑦𝑦 + 𝑃0𝑝𝑥 = 0,

𝑢0𝑝𝑥 + 𝑣0𝑝𝑦 = 0, 𝑃0𝑝𝑦 = 0, 𝑢0𝑝|𝑥=0 = 𝑈0
𝑃, 𝑢0𝑝|𝑦=0 = −𝑢0𝑒 |𝑌=0.

⎫⎪⎬⎪⎭ (A.7)

It is convenient to state results in terms of the quantity 𝑢̄0𝑝, whose initial data is simply 𝑈̄0
𝑃 ∶=

𝑢0𝑒 (0) + 𝑈0
𝑃. Our starting point is the following result of Oleinik in [46], P. 21, Theorem 2.1.1:

Theorem A.1 (Oleinik). Assume boundary data is prescribed satisfying 𝑈0
𝑃 ∈ 𝐶∞ and exponen-

tially decaying |𝜕𝑗𝑦{𝑈̄0
𝑃 − 𝑢0𝑒 (0)}| for 𝑗 ≥ 0 satisfying:

𝑈̄0
𝑃 > 0 for 𝑦 > 0, 𝜕𝑦𝑈̄

0
𝑃(0) > 0, 𝜕2𝑦𝑈̄

0
𝑃 ∼ 𝑦2 near 𝑦 = 0 (A.8)

Then for some 𝐿 > 0, there exists a solution, [𝑢̄0𝑝, 𝑣0𝑝] to (A.7) satisfying, for some 𝑦0,𝑚0 > 0,

sup
𝑥∈(0,𝐿)

sup
𝑦∈(0,𝑦0)

|𝑢̄0𝑝, 𝑣0𝑝, 𝜕𝑦𝑢̄0𝑝, 𝜕𝑦𝑦𝑢̄0𝑝, 𝜕𝑥𝑢̄0𝑝| ≲ 1, (A.9)

sup
𝑥∈(0,𝐿)

sup
𝑦∈(0,𝑦0)

𝜕𝑦𝑢̄
0
𝑝 > 𝑚0 > 0. (A.10)

By evaluating the system (A.7) and 𝜕𝑦 of (A.7) at {𝑦 = 0} we conclude:

𝑢̄0𝑝𝑦𝑦|𝑦=0 = 𝑢̄0𝑝𝑦𝑦𝑦|𝑦=0 = 0.

We now list the equations to be satisfied by the 𝑖’th layers, starting with the 𝑖’th Euler layer:

𝑢0𝑒𝜕𝑥𝑢
𝑖
𝑒 + 𝜕𝑌𝑢

0
𝑒𝑣

𝑖
𝑒 + 𝜕𝑥𝑃

𝑖
𝑒 =∶ 𝑓

𝑖
𝐸,1,

𝑢0𝑒𝜕𝑥𝑣
𝑖
𝑒 + 𝜕𝑌𝑃

𝑖
𝑒 =∶ 𝑓

𝑖
𝐸,2,

𝜕𝑥𝑢
𝑖
𝑒 + 𝜕𝑌𝑣

𝑖
𝑒 = 0,

𝑣𝑖𝑒|𝑌=0 = −𝑣0𝑝|𝑦=0, 𝑣𝑖𝑒|𝑥=0,𝐿 = 𝑉𝑖
𝐸,{0,𝐿}

𝑢𝑖𝑒|𝑥=0 = 𝑈𝑖
𝐸.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.11)

For the 𝑖’th Prandtl layer:

𝑢̄𝜕𝑥𝑢
𝑖
𝑝 + 𝑢𝑖𝑝𝜕𝑥𝑢̄ + 𝜕𝑦𝑢̄[𝑣

𝑖
𝑝 − 𝑣𝑖𝑝|𝑦=0] + 𝑣𝜕𝑦𝑢

𝑖
𝑝 + 𝜕𝑥𝑃

𝑖
𝑝 − 𝜕𝑦𝑦𝑢

𝑖
𝑝 ∶= 𝑓(𝑖),

𝜕𝑥𝑢
𝑖
𝑝 + 𝜕𝑦𝑣

𝑖
𝑝 = 0, 𝜕𝑦𝑃

𝑖
𝑝 = 0

𝑢𝑖𝑝|𝑦=0 = −𝑢𝑖𝑒|𝑦=0, [𝑢𝑖𝑝, 𝑣
𝑖
𝑝]𝑦→∞ = 0, 𝑣𝑖𝑝|𝑥=0 = prescribed data.

⎫⎪⎪⎬⎪⎪⎭
(A.12)

The relevant definitions of the above forcing terms are given below. Note that as a matter of
convention, summations that end with a negative number are empty sums.
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3227

Definition A.2 (Forcing Terms).

− 𝑓𝑖𝐸,1 ∶= 𝑢𝑖−1𝑒𝑥

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

{𝑢
𝑗
𝑒 + 𝑢

𝑗
𝑝(𝑥,∞) + 𝑢𝑖−1𝑒

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑢
𝑗
𝑒𝑥

+
√
𝜀
𝑖−2

[{𝑢𝑖−1𝑒 + 𝑢𝑖−1𝑝 (𝑥,∞)}𝑢𝑖−1𝑒𝑥 + 𝑣𝑖−1𝑒 𝑢𝑖−1𝑒𝑌 ]

+ 𝑢𝑖−1𝑒𝑌

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒 + 𝑣𝑖−1𝑒

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑢
𝑗
𝑒𝑌 −

√
𝜀Δ𝑢𝑖−1𝑒

− 𝑓𝑖𝐸,2 ∶= 𝑣𝑖−1𝑒𝑌

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒 + 𝑣𝑖−1𝑒

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒𝑌 +

√
𝜀
𝑖−2

[𝑣𝑖−1𝑒 𝑣𝑖−1𝑒𝑌 + 𝑢𝑖−1𝑒 𝑣𝑖−1𝑒𝑥 ]

+ {𝑢𝑖−1𝑒 + 𝑢𝑖−1𝑝 (𝑥,∞)}

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒𝑥 + 𝑣𝑖−1𝑒𝑥

𝑖−2∑
𝑗=1

√
𝜀
𝑗−1

{𝑢
𝑗
𝑒 + 𝑢

𝑗
𝑝(𝑥,∞)}

−
√
𝜀Δ𝑣𝑖−1𝑒 ,

− 𝑓(𝑖) ∶=
√
𝜀𝑢𝑖−1𝑝𝑥𝑥 + 𝜀

−
1

2
{
𝑣𝑖𝑒 − 𝑣𝑖𝑒(𝑥, 0)

}
𝑢0𝑝𝑦 + 𝜀

−
1

2 {𝑢0𝑒 − 𝑢0𝑒 (0)}𝑢
𝑖−1
𝑝𝑥 + 𝜀

−
1

2 {𝑢𝑃,𝑖−1𝑠𝑥

− 𝑢̄0𝑠𝑥}𝑢
𝑖−1
𝑝 + 𝜀

−
1

2 {𝑢𝐸,𝑖−1𝑠𝑥 − 𝑢̄0𝑠𝑥}{𝑢
𝑖−1
𝑝 − 𝑢𝑖−1𝑝 (𝑥,∞)} + 𝜀

−
1

2 𝑣𝑖−1𝑝 {𝑢̄𝑖−1𝑠𝑦

− 𝑢0𝑝𝑦} + 𝑢𝑖−1𝑝𝑥

𝑖−1∑
𝑗=1

√
𝜀
𝑗−1

(𝑢
𝑗
𝑒 + 𝑢

𝑗
𝑝) + 𝜀

−
1

2 (𝑣𝑖−1𝑠 − 𝑣1𝑠 )𝑢
𝑖−1
𝑝𝑦 + 𝜀

−
1

2 (𝑣1𝑒

− 𝑣1𝑒 (𝑥, 0))𝑢
𝑖−1
𝑝𝑦 +

√
𝜀𝑢𝑖𝑒𝑌

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑣
𝑗
𝑝 + 𝑣𝑖𝑒

𝑖−1∑
𝑗=1

√
𝜀
𝑗−1

𝑢
𝑗
𝑝𝑦 + 𝑢𝑖𝑒𝑥

𝑖−1∑
𝑗=0

√
𝜀
𝑗
{𝑢

𝑗
𝑝

− 𝑢
𝑗
𝑝(𝑥,∞)} + 𝑢𝑖𝑒

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑢
𝑗
𝑝𝑥 + ∫

∞

𝑦

𝜕𝑥{
√
𝜀
2
𝑢𝑖𝑒

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑣
𝑗
𝑝𝑥 +

√
𝜀𝑣𝑖𝑒𝑥

×

𝑖−1∑
𝑗=0

√
𝜀
𝑗
{𝑢

𝑗
𝑝 − 𝑢

𝑗
𝑝(𝑥,∞)} +

√
𝜀
2
𝑣𝑖𝑒𝑌

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑣
𝑗
𝑝 +

√
𝜀𝑣𝑖𝑒

𝑖−1∑
𝑗=0

√
𝜀
𝑗
𝑣
𝑗
𝑝𝑦

+
√
𝜀𝑣𝑖−1𝑠 𝑣𝑖−1𝑝𝑦 +

√
𝜀𝑣𝑖−1𝑠𝑦 𝑣𝑖−1𝑝 +

√
𝜀𝑣𝐸,𝑖−1𝑠𝑥 {𝑢𝑖−1𝑝 − 𝑢𝑖−1𝑝 (𝑥,∞)}

+
√
𝜀𝑣𝑃,𝑖−1𝑠𝑥 𝑢𝑖−1𝑝 +

√
𝜀𝑢𝑖−1𝑠 𝑣𝑖−1𝑝𝑥 +

√
𝜀Δ𝜀𝑣

𝑖−1
𝑝 +

√
𝜀
𝑖
{𝑢𝑖−1𝑝 𝑣𝑖−1𝑝𝑥 + 𝑣𝑖−1𝑝 𝑣𝑖−1𝑝𝑦 }} d𝑧.

For 𝑖 = 1 only, wemake the followingmodifications. The aim is to retain only the required order√
𝜀 terms into 𝑓(1). 𝑓(2) will then be adjusted by including the superfluous terms. Specifically,

define:

𝑓(1) ∶= − 𝑢0𝑝𝑢
1
𝑒𝑥|𝑌=0 − 𝑢0𝑝𝑥𝑢

1
𝑒 |𝑌=0 − 𝑢̄0𝑒𝑌(0)𝑦𝑢

0
𝑝𝑥 − 𝑣0𝑝𝑢

0
𝑒𝑌 − 𝑣1𝑒𝑌(0)𝑦𝑢

0
𝑝𝑦. (A.13)
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3228 GUO and IYER

For the final Prandtl layer, we must enforce the boundary condition 𝑣𝑛𝑝|𝑦=0 = 0. Define the
quantities [𝑢𝑝, 𝑣𝑝, 𝑃𝑝] to solve

𝑢̄𝜕𝑥𝑢𝑝 + 𝑢𝑝𝜕𝑥𝑢̄ + 𝜕𝑦𝑢̄𝑣𝑝 + 𝑣𝜕𝑦𝑢𝑝 + 𝜕𝑥𝑃𝑝 − 𝜕𝑦𝑦𝑢𝑝 ∶= 𝑓(𝑛),

𝜕𝑥𝑢𝑝 + 𝜕𝑦𝑣𝑝 = 0, 𝜕𝑦𝑃
𝑖
𝑝 = 0

[𝑢𝑝, 𝑣𝑝]|𝑦=0 = [−𝑢𝑛𝑒 , 0]|𝑦=0, 𝑢𝑝|𝑦→∞ = 0 𝑣𝑝|𝑥=0 = 𝑉𝑛
𝑃.

⎫⎪⎪⎬⎪⎪⎭
(A.14)

Note the change in boundary condition of 𝑣𝑝|𝑦=0 = 0 which contrasts the 𝑖 = 1, .., 𝑛 − 1 case.
This implies that 𝑣𝑝 = ∫ 𝑦

0
𝑢𝑝𝑥 d𝑦

′. For this reason, we must cut-off the Prandtl layers:

𝑢𝑛𝑝 ∶= 𝜒(
√
𝜀𝑦)𝑢𝑝 +

√
𝜀𝜒′(

√
𝜀𝑦)∫

𝑦

0

𝑢𝑝(𝑥, 𝑦
′) d𝑦′,

𝑣𝑛𝑝 ∶= 𝜒(
√
𝜀𝑦)𝑣𝑝.

Here 𝑛 is the error contributed by the cut-off:

 (𝑛) ∶= 𝑢̄𝜕𝑥𝑢
𝑛
𝑝 + 𝑢𝑛𝑝𝜕𝑥𝑢̄ + 𝑣𝜕𝑦𝑢

𝑛
𝑝 + 𝑣𝑛𝑝𝜕𝑦𝑢̄ − 𝑢𝑛𝑝𝑦𝑦 − 𝑓(𝑛).

Computing explicitly:

 (𝑛) ∶=(1 − 𝜒)𝑓(𝑛) + 𝑢̄
√
𝜀𝜒′(

√
𝜀𝑦)𝑣𝑝(𝑥, 𝑦) + 𝑢̄𝑥

√
𝜀𝜒′ ∫

𝑦

0

𝑢𝑝

+ 𝑣
√
𝜀𝜒′𝑢𝑝 + 𝜀𝑣𝜒′′ ∫

𝑦

0

𝑢𝑝 +
√
𝜀𝜒′𝑢𝑝

+ 𝜀
3

2 𝜒′′′ ∫
𝑦

0

𝑢𝑝 + 2𝜀𝜒′′𝑢𝑝 +
√
𝜀𝜒′𝑢𝑝𝑦. (A.15)

We will now define the contributions into the next order, which will serve as the forcing for the
remainder term:

f(𝑛+1) ∶=
√
𝜀
𝑛[
𝜀𝑢𝑛𝑝𝑥𝑥 + 𝑣𝑛𝑝

{
𝑢̄𝑛𝑠𝑦 − 𝑢0𝑝𝑦

}
+

{
𝑢0𝑒 − 𝑢0𝑒 (0)

}
𝑢𝑛𝑝𝑥

+ 𝑢𝑛𝑝𝑥

𝑛∑
𝑗=1

√
𝜀
𝑗
(𝑢

𝑗
𝑒 + 𝑢

𝑗
𝑝) + {𝑢𝑛𝑠𝑥 − 𝑢̄0𝑠𝑥}𝑢

𝑛
𝑝 + (𝑣𝑛𝑠 − 𝑣1𝑠 )𝑢

𝑛
𝑝𝑦

+{𝑣1𝑒 − 𝑣1𝑒 (𝑥, 0)}𝑢
𝑛
𝑝𝑦

]
+

√
𝜀
𝑛 (𝑛) +

√
𝜀
𝑛+2

Δ𝑢𝑛𝑒

+
√
𝜀
𝑛
𝑢𝑛𝑒𝑥

𝑛−1∑
𝑗=1

√
𝜀
𝑗
𝑢
𝑗
𝑒 +

√
𝜀
𝑛
𝑢𝑛𝑒

𝑛−1∑
𝑗=1

√
𝜀
𝑗
𝑢
𝑗
𝑒𝑥 +

√
𝜀
2𝑛
[𝑢𝑛𝑒 𝑢

𝑛
𝑒𝑥 (A.16)

+𝑣𝑛𝑒 𝑢
𝑛
𝑒𝑌

]
+

√
𝜀
𝑛+1

𝑢𝑛𝑒𝑌

𝑛−1∑
𝑗=1

√
𝜀
𝑗−1

𝑣
𝑗
𝑒 +

√
𝜀
𝑛−1

𝑣𝑛𝑒

𝑛−1∑
𝑗=1

√
𝜀
𝑗+1

𝑢
𝑗
𝑒𝑌.

g(𝑛+1) ∶=
√
𝜀
𝑛[
𝑣𝑛𝑠 𝜕𝑦𝑣

𝑛
𝑝 + 𝜕𝑦𝑣

𝑛
𝑠 𝑣

𝑛
𝑝 + 𝜕𝑥𝑣

𝑛
𝑠 𝑢

𝑛
𝑝 + 𝑢𝑛𝑠 𝜕𝑥𝑣

𝑛
𝑝 − Δ𝜀𝑣

𝑛
𝑝
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3229

+
√
𝜀
𝑛(
𝑢𝑛𝑝𝜕𝑥𝑣

𝑛
𝑝 + 𝑣𝑛𝑝𝜕𝑦𝑣

𝑛
𝑝

)]
+ (

√
𝜀)𝑛𝜕𝑌𝑣

𝑛
𝑒

𝑛−1∑
𝑗=1

(
√
𝜀)𝑗−1𝑣

𝑗
𝑒

+
√
𝜀
𝑛−1

𝑣𝑛𝑒

𝑖−1∑
𝑗=1

√
𝜀
𝑗
𝜕𝑌𝑣

𝑗
𝑒 +

√
𝜀
2𝑛−1

[𝑣𝑛𝑒 𝑣
𝑛
𝑒𝑌 + 𝑢𝑛𝑒 𝜕𝑥𝑣

𝑛
𝑒 ] (A.17)

+
√
𝜀
𝑛
𝑢𝑛𝑒

𝑛−1∑
𝑗=1

(
√
𝜀)𝑗−1𝜕𝑥𝑣

𝑗
𝑒 +

√
𝜀
𝑛−1

𝜕𝑥𝑣
𝑛
𝑒

𝑛−1∑
𝑗=0

√
𝜀
𝑗
𝑢
𝑗
𝑒 +

√
𝜀
𝑛+1

Δ𝑣𝑛𝑒 .

We now move to the remainder system. A straightforward linearization yields:

− Δ𝜀𝑢
(𝜀) + 𝑆𝑢 + 𝜕𝑥𝑃

(𝜀) = 𝜀−𝑁0 f(𝑛+1) − 𝜀𝑁0

{
𝑢(𝜀)𝑢

(𝜀)
𝑥 + 𝑣(𝜀)𝑢

(𝜀)
𝑦

}
− Δ𝜀𝑣

(𝜀) + 𝑆𝑣 +
𝜕𝑦

𝜀
𝑃(𝜀) = 𝜀−𝑁0g(𝑛+1) − 𝜀𝑁0

{
𝑢(𝜀)𝑣

(𝜀)
𝑥 + 𝑣(𝜀)𝑣

(𝜀)
𝑦

}
𝜕𝑥𝑢

(𝜀) + 𝜕𝑦𝑣
(𝜀) = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.18)

Denote:

𝑢𝑠 ∶= 𝑢̃𝑛𝑠 , 𝑣𝑠 ∶= 𝑣𝑛𝑠 . (A.19)

Here we have defined:

𝑆𝑢 = 𝑢𝑠𝜕𝑥𝑢
(𝜀) + 𝑢𝑠𝑥𝑢

(𝜀) + 𝑣𝑠𝜕𝑦𝑢
(𝜀) + 𝑢𝑠𝑦𝑣

(𝜀), (A.20)

𝑆𝑣 = 𝑢𝑠𝜕𝑥𝑣
(𝜀) + 𝑣𝑠𝑥𝑢

(𝜀) + 𝑣𝑠𝜕𝑦𝑣
(𝜀) + 𝑣𝑠𝑦𝑣

(𝜀). (A.21)

Let us discuss now the boundary conditions. We take

𝑢𝜀|𝑥=0 ∶= 𝑢0(unknown),

𝑣𝜀|𝑥=0 ∶= 𝑣0(unknown),

𝑣𝜀|𝑦=0 = 𝑣𝜀𝑦|𝑦=0 = 0,

𝑣𝜀𝑥|𝑥=𝐿 ∶= 𝑎𝜀1(𝑦), 𝑣
𝜀
𝑥𝑥|𝑥=0 ∶= 𝑎𝜀2(𝑦), 𝑣

𝜀
𝑥𝑥𝑥|𝑥=𝐿 ∶= 𝑎𝜀3(𝑦).

Going to the vorticity formulation of (A.18) yields the system (1.12), with

𝐹𝑅 ∶= 𝜀−𝑁0(𝜕𝑦f
(𝑛+1)

− 𝜀𝜕𝑥g(𝑛+1)). (A.22)
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3230 GUO and IYER

In Section 2, our main object of analysis with the vorticity equation evaluated at the {𝑥 = 0}

boundary, (1.12)|𝑥=0, which reads:
𝑣0 = 𝐹(𝑣) + 𝐹𝑎

𝑅 +(𝑢0, 𝑣0, 𝑣) +,

𝑣0 ∶= 𝑣0𝑦𝑦𝑦𝑦 − {𝑢𝑠𝑣
0
𝑦𝑦 − 𝑢𝑠𝑦𝑦𝑣

0} − {𝑣𝑠𝑣
0
𝑦𝑦𝑦 − 𝑣0𝑦𝑣𝑠𝑦𝑦}

+ 𝜀𝑢𝑠𝑥𝑥𝑣
0 + 𝜀𝑣𝑠𝑥𝑥𝑣

0
𝑦,

(𝑢0, 𝑣0, 𝑣) ∶= 𝜀𝑁0
[
𝑣0𝑦𝑣

0
𝑦𝑦 − 𝑣0𝑣0𝑦𝑦𝑦 + 𝜀𝑢0𝑣𝑥𝑥|𝑥=0 + 𝜀𝑣0𝑣𝑥𝑦|𝑥=0

+ℎ𝑣0𝑦𝑦 − 𝑣0ℎ𝑦𝑦
]

 ∶= [−ℎ𝑦𝑦𝑦 + 𝑣𝑠ℎ𝑦𝑦 − ℎΔ𝜀𝑢𝑠],

𝐹(𝑣)(𝑣) ∶= 𝜀𝑢𝑠𝑣
(𝜀)
𝑥𝑥|𝑥=0 − 2𝜀𝑣

(𝜀)
𝑥𝑦𝑦|𝑥=0 − 𝜀2𝑣

(𝜀)
𝑥𝑥𝑥|𝑥=0 + 𝜀𝑣𝑠𝑣

(𝜀)
𝑥𝑦 |𝑥=0,

𝐹𝑎
𝑅 ∶= 𝐹𝑅|𝑥=0 + 𝜀𝑢𝑠𝑎

𝜀
𝑥𝑥|𝑥=0 − 2𝜀𝑎𝜀𝑥𝑦𝑦|𝑥=0 − 𝜀2𝑎𝜀𝑥𝑥𝑥|𝑥=0 + 𝜀𝑣𝑠𝑎

𝜀
𝑥𝑦|𝑥=0

∶= 𝐹𝑅|𝑥=0 + 𝑏(𝑢)(𝑎
𝜀)|𝑥=0.

(A.23)

We homogenize the 𝑣𝜀 via (1.19). Define the quotients:

𝑞𝜀 ∶=
𝑣𝜀

𝑢𝑠
, 𝑞 ∶=

𝑣

𝑢𝑠
, 𝑞 ∶=

𝑣

𝑢𝑠
, 𝑞0 ∶=

𝑣0

𝑢𝑠|𝑥=0 .
The 𝜕𝑥 of vorticity equation (DNS) satisfied by [𝑢𝜀, 𝑣𝜀] is as follows

− 𝜕𝑥𝑅[𝑞
(𝜀)] + Δ2

𝜀𝑣
(𝜀) + 𝜕𝑥{𝑣𝑠Δ𝜀𝑢

(𝜀) − 𝑢(𝜀)Δ𝜀𝑣𝑠}

= 𝜀𝑁0𝜕𝑥{𝑣
𝜀Δ𝜀𝑢

𝜀 − 𝑢𝜀Δ𝜀𝑣
𝜀} + 𝜕𝑥𝐹𝑅,

𝑣(𝜀)|𝑥=0 = 𝑣0, 𝑣
(𝜀)
𝑥𝑥|𝑥=0 = 𝑎

(𝜀)
2 , 𝑣

(𝜀)
𝑥 |𝑥=𝐿 = 𝑎

(𝜀)
1 , 𝑣

(𝜀)
𝑥𝑥𝑥|𝑥=𝐿 = 𝑎

(𝜀)
3 ,

𝑣(𝜀)|𝑦=0 = 𝑣
(𝜀)
𝑦 |𝑦=0 = 0,

(A.24)

We now homogenize equation (A.24) by writing it in terms of [𝑢, 𝑣]. First, the linear
contributions are given in terms of the following

𝑏(𝑢)(𝑣) = −𝑅[𝑣] + 𝐼𝑥[𝑣𝑦𝑦𝑦𝑦] + 2𝜀𝑣𝑥𝑦𝑦 + 𝜀2𝑣𝑥𝑥𝑥 − 𝜀𝑣𝑥𝑦 (A.25)

+ 𝑣𝑠𝐼𝑥[𝑣𝑦𝑦𝑦] − Δ𝜀𝑣𝑠𝐼𝑥[𝑣𝑦],

We now arrive at the nonlinearity. For this, we will use (1.19) to write

𝜕𝑥{𝑣
𝜀Δ𝜀𝑢

𝜀 − 𝑢𝜀Δ𝜀𝑣
𝜀} =𝜀𝑁0(𝑄11 + 𝑄12 + 𝑄13 + 𝑄22 + 𝑄23 + 𝑄33),

where the quadratic terms are

𝑄11 ∶=𝑣𝑦Δ𝜀𝑣 − 𝑢Δ𝜀𝑣𝑥 + 𝑣𝑥Δ𝜀𝑢 − 𝑣Δ𝜀𝑣𝑦,

𝑄12 ∶=𝑣𝑦𝑣
0
𝑦𝑦 + 𝑣0𝑦Δ𝜀𝑣 − 𝑥𝑣0Δ𝜀𝑣𝑥 − 𝑥𝑣𝑥𝑣

0
𝑦𝑦 − 𝑣𝑣0𝑦𝑦𝑦 − 𝑣0Δ𝜀𝑣𝑦,

𝑄22 ∶=𝑣
0
𝑦𝑣

0
𝑦𝑦 − 𝑣0𝑣0𝑦𝑦𝑦,
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VALIDITY OF STEADY PRANDTL LAYER EXPANSIONS 3231

and the linear terms are

𝑄13 ∶=𝑣𝑦Δ𝜀𝑎
𝜀 + 𝑎𝜀𝑦Δ𝜀𝑣 − 𝑢Δ𝜀𝑎

𝜀
𝑥 + 𝐼𝑥[𝑎

𝜀]Δ𝜀𝑣𝑥 − 𝑣Δ𝜀𝑎
𝜀
𝑦 − 𝑎𝜀Δ𝜀𝑣𝑦

𝑄23 ∶=𝑣
0
𝑦Δ𝜀𝑎

𝜀 + 𝑎𝜀𝑦𝑣
0
𝑦𝑦 − 𝑥𝑣0Δ𝜀𝑎

𝜀
𝑥 − 𝑣0Δ𝜀𝑎

𝜀
𝑦 − 𝑎𝜀𝑣0𝑦𝑦𝑦

and the forcing term is

𝑄33 ∶= 𝑎𝜀𝑦Δ𝜀𝑎
𝜀 + 𝐼𝑥[𝑎

𝜀]Δ𝜀𝑎
𝜀
𝑥 − 𝑎𝜀Δ𝜀𝐼𝑥[𝑎

𝜀] − 𝑎𝜀Δ𝜀𝑎
𝜀
𝑦.

The last step is to use the identity (recalling (A.25), (1.15), and (1.30)):

𝜕𝑥𝑏(𝑢)(𝑣
0) +

{
𝑣𝑠𝑥𝑢

0
𝑦𝑦 − 𝑢0Δ𝜀𝑣𝑠𝑥

}
= 𝐵𝑣0 +

{
𝑣𝑠𝑥ℎ𝑦𝑦 − ℎΔ𝜀𝑣𝑠𝑥

}
, (A.26)

Piecing together the preceding, we arrive at the homogenized system

− 𝜕𝑥𝑅[𝑞] + Δ2
𝜀𝑣 + 𝐽(𝑣) + 𝐵𝑣0 = 𝜀𝑁0 + 𝐹(𝑞),

 ∶= 𝑄11 + 𝑄12 + 𝑄22,

𝐹(𝑞) ∶= 𝜕𝑥𝐹𝑅 + 𝜕𝑥𝑏(𝑢)(𝑎
𝜀) + 𝐻[𝑎𝜀](𝑣, 𝑢0, 𝑢0) + {𝑣𝑠𝑥ℎ𝑦𝑦 − ℎΔ𝜀𝑣𝑠𝑥},

𝐻[𝑎𝜀](𝑣, 𝑢0, 𝑣0) ∶= 𝑄13(𝑢, 𝑣) + 𝑄23(𝑣
0) + 𝑄33(𝑎

𝜀),

(A.27)

where we have defined 𝐽, 𝐵𝑣0 in (1.29) and (1.30).
The following proposition summarizes the profile constructions from [25]:

Theorem A.3. Assume the shear flow 𝑢0𝑒 (𝑌) ∈ 𝐶∞, whose derivatives decay rapidly. Assume (A.8)
regarding 𝑢̄0𝑝|𝑥=0, and the conditions

𝑣𝑖𝑝𝑦𝑦𝑦|𝑥=0(0) = 𝜕𝑥𝑔1|𝑥=0,𝑦=0, (A.28)

𝑣𝑖𝑝|′′′′𝑥=0(0) = 𝜕𝑥𝑦𝑔1|𝑦=0(𝑥 = 0), (A.29)

𝑢̄0𝑝𝑦|𝑥=0(0)𝑢𝑖𝑒|𝑥=0(0) − ∫
∞

0

𝑢̄0𝑝𝑒
− ∫ 𝑦

1
𝑣0𝑝
{
𝑓(𝑖)(𝑦) − 𝑟(𝑖)(𝑦)

}
d𝑦 = 0, (A.30)

where 𝑟(𝑖)(𝑦) ∶= 𝑣𝑖𝑝𝑢̄
0
𝑝𝑦 − 𝑢̄0𝑝𝑣

𝑖
𝑝𝑦 . We assume also standard higher order versions of the parabolic

compatibility conditions (A.28), (A.29). Let 𝑣𝑖𝑒|𝑥=0, 𝑣𝑖𝑒|𝑥=𝐿, 𝑢𝑖𝑒|𝑥=0 be prescribed smooth and rapidly
decaying Euler data. We assume on the data standard elliptic compatibility conditions at the corners
(0,0) and (𝐿, 0) obtained by evaluating the equation at the corners. In addition, assume

𝑣1𝑒 |𝑥=0 ∼ 𝑌−𝑚1 or 𝑒−𝑚1𝑌 for some 0 < 𝑚1 < ∞, (A.31)

‖𝜕𝑘𝑌{𝑣𝑖𝑒|𝑥=0 − 𝑣𝑖𝑒|𝑥=𝐿}⟨𝑌⟩𝑀‖∞ ≲ 𝐿 (A.32)
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3232 GUO and IYER

Then all profiles in [𝑢𝑠, 𝑣𝑠] exist and are smooth onΩ. The following estimates hold:

𝑢̄0𝑝 > 0, 𝑢̄0𝑝𝑦|𝑦=0 > 0, 𝑢̄0𝑝𝑦𝑦|𝑦=0 = 𝑢̄0𝑝𝑦𝑦𝑦|𝑦=0 = 0

‖∇𝐾{𝑢0𝑝, 𝑣
0
𝑝}𝑒

𝑀𝑦‖∞ ≲ 1 for any 𝐾 ≥ 0,

‖𝑢𝑖𝑝‖∞ + ‖∇𝐾𝑢𝑖𝑝𝑒
𝑀𝑦‖∞ + ‖∇𝐽𝑣𝑖𝑝𝑒

𝑀𝑦‖∞ ≲ 1 for any 𝐾 ≥ 1,𝑀 ≥ 0,

‖∇𝐾
{
𝑢1𝑒 , 𝑣

1
𝑒

}
𝑤𝑚1

‖∞ ≲ 1 for some fixed𝑚1 > 1

‖∇𝐾
{
𝑢𝑖𝑒, 𝑣

𝑖
𝑒

}
𝑤𝑚𝑖

‖∞ ≲ 1 for some fixed𝑚𝑖 > 1,

(A.33)

where 𝑤𝑚𝑖
∼ 𝑒𝑚𝑖𝑌 or (1 + 𝑌)𝑚𝑖 .

In addition the following estimate on the remainder forcing holds:

‖𝐹𝑅|𝑥=0𝑤0‖ + ‖𝜕𝑥𝐹𝑅 𝑤0√
𝜀
‖ ≲

√
𝜀
𝑛−1−2𝑁0

, (A.34)

where 𝐹𝑅 has been defined in (A.22).
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