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Abstract (233 words)

Predators play a central role in shaping community structure, function, and stability. The
degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists
with a single bacterial prey species versus generalists able to consume multiple types of prey has
implications for their effect on microbial communities. The presence and abundance of multiple
bacterial prey types can alter selection for phage generalists, but less is known about how
interactions between prey shape predator specificity in microbial systems. Using a
phenomenological mathematical model of phage and bacterial populations, we find that the
dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist
predators maintain an advantage when prey species compete, while specialists dominate when
prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic
microbial community with interacting strains of Escherichia coli and Salmonella enterica by
competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-
specific phage. Our experimental data conform to our modeling expectations when prey species
are competing or obligately mutualistic, although our results suggest that the in vitro cost of
generalism is caused by a combination of biological mechanisms not anticipated in our model.
Our work demonstrates that interactions between bacteria play a role in shaping ecological
selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity

of ways in which fitness trade-offs can manifest.

Importance (140 words)

There is significant natural diversity in how many different types of bacteria a bacteriophage can
infect, but the mechanisms driving this diversity are unclear. This study uses a combination of
mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella
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enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection
between bacteriophage specificity and interactions between their potential microbial prey.
Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage,
while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results
support this general finding. The experiments also show that the optimal phage strategy is
impacted by phage degradation and bacterial physiology. These findings enhance our
understanding of how complex microbial communities shape selection on bacteriophage
specificity, which may improve our ability to use phage to manage antibiotic resistant microbial

infections.
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Introduction

Predators can impose top-down control of ecosystems, impacting species abundances,
community structure, and community function [1]. For example, in marine environments, lytic
bacteriophages (phages), the viral predators of bacteria, are critical drivers of microbial
populations and nutrient cycling, lysing up to 40% of phytoplankton biomass per day [2]. The
diet breadth of predators — how many different prey species they can consume — is an important
component of how top-down control shapes an environment (Figure 1A) [3-8]. Specialist
predators often drive limit cycles with their prey, while generalists are more likely to stabilize
prey populations through the emergence of apparent mutualisms, in which the presence of one
prey species reduces the burden of predation on the other [9-14]. Diversity in specificity is
widespread in microbial communities, where some phages are generalists that can prey upon
bacterial species across multiple genera, while others specialize on a single serovar [15-16]. The
determinants of phage specificity are likely complex, particularly in coevolving communities, as
bacterial prey develop mechanisms either to block phage adsorption (e.g. loss of receptors) or
prevent phage replication (e.g. CRISPR, superinfection immunity) [17] and phage evolve to
overcome these resistance mechanisms, often with pleiotropic costs for host range expansion
[18]. Identifying the key forces shaping predator diet breadth, as well as their relative
importance, would therefore have substantial consequences for our ability to predict the long-
term dynamics of multitrophic microbial communities.

The composition of the prey community is one force known to impact predator
specificity. The evolution of generalist predators often requires prey heterogeneity to provide
opportunities for diversification [19-24]. While it has been suggested that prey diversity could
reduce the incidence of predator generalism given the demands of engaging in coevolutionary
arms races with multiple species [25], microbial studies have shown that the presence of multiple
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bacterial strains is sufficient to select for generalists [19, 26]. Assuming a heterogenous prey
environment, optimal foraging theory provides several additional predictions of how the
structure of prey communities might shape predator diet breadth. First, it suggests that absolute
prey densities alter selection on predator specificity by impacting foraging time [27]. Generalism
1s predicted to be favored at low prey densities when foraging time is high, while specialism is
favored at high prey densities; this prediction has been validated in a microbial system [27].
Optimal foraging theory also emphasizes the importance of relative prey abundances, such that
predators should experience selection to exploit the most abundant prey types, even if those prey
are low-quality or intraspecific competition between predators is strong [22-23, 28-29].
However, even when relative abundances are considered, most studies on diet breadth assume a
static ratio of prey types over time, omitting a critical dimension of natural communities.
Interactions between prey complicate the assumption of static ratios by generating
correlations between prey abundances [30-32]. Nutrient competition between bacteria tends to
generate anti-correlated abundances between species, while positive interactions such as obligate
mutualism generate positively correlated abundances [29-32]. When predators are consuming
prey species with anti-correlated abundances, a generalist strategy is likely to be favored,
because predation on one species should lead to an increase in the abundance of the alternative
prey through competitive release (Figure 1B). The expectation that competing prey should favor
predator generalism is consistent with 0" theory, which suggests that the outcome of
competition on a shared limiting resource is determined by which species can survive on the
lowest levels of the resource [33]. Given that a generalist predator has alternative resources
available to it, it should always be able to survive on the lower levels of a resource shared with a

specialist. Additional theoretical work provides support for the notion that there are situations in



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

which competing prey should favor generalist predators [29, 34]. When prey compete,
mathematical modeling suggests that competitive dominance by a novel prey type is generally
required for the evolution of broadened predator diet breadth when fitness trade-offs for
generalism are present [29]. Comparatively little work has been done investigating the impact of
prey engaged in direct positive interactions on predator diet breadth. Positively correlated prey
abundances are likely to favor specialist predators because predation by a specialist would also
lead to a reduction in abundance of the alternative prey (Figure 1B). The interdependence
between prey species may also increase the likelihood of overexploitation by predators [35-37].
However, the hypothesis that different types of interactions between prey should alter predator
specificity has not been fully validated theoretically or empirically.

Here we use a mathematical model and an in vitro system to investigate how interactions
between prey species govern ecological selection on predator diet breadth. We found that, in our
model, obligately mutualistic interactions between microbial prey were more likely to favor a
specialist phage predator, while competition between prey was more likely to favor a generalist
phage predator. These findings were in accordance with our initial hypotheses and are relevant to
systems where interactions between prey drive correlations in their abundance. We tested these
findings in an experimental system (Figure 1C) and reproduced our ecological modeling results
despite differences in the mechanism of fitness trade-off experienced by the generalist phage.
Our work provides insight into how interactions between two microbial prey species alter
ecological selection on phage specificity in well-mixed environments and provides a foundation
for predicting the evolution and maintenance of specificity in bacteriophage, with implications

for designing and managing microbial communities.
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Results

In a phenomenological model, phage relative abundance depends on prey interactions and fitness
trade-offs for phage generalism

We used a phenomenological model (Figure 1D; Materials and Methods) to predict how
communities of two interacting prey species respond to attack by predatory lytic phage during
chemostatic growth. We predicted that competition between prey was likely to favor predator
generalism by increasing temporal heterogeneity in resource availability [38-39], while obligate
mutualism between prey species would result in less temporal heterogeneity, as bacterial species
would either occur together or not at all, likely favoring specialization [38].

We first investigated the behavior of the model with a single parameter set. Using our
default parameters (Table 1), we examined cases in which phage were not present, or when only
one phage type was present. When phage were not modeled in our system, prey species reached
a 50:50 ratio at equilibrium (Figure 2A, left panel). The introduction of a specialist resulted in
competitive release of E. coli when prey competed and correlated reductions in bacterial
abundances when prey were mutualistic (Figure 2A, middle panel). This behavior was consistent
with our conceptual model (Figure 1B). In comparison, the introduction of a generalist phage
predator reduced the density of both prey species at equilibrium, keeping their abundances at a
50:50 ratio (Figure 2A, right panel). We also considered the behavior of the model when phage
phenotypes competed against one another. When phage were parametrically identical, the
generalist was more prevalent regardless of prey interaction type (Figure 2B and C, top panels),
though interaction type altered the degree of dominance. This finding suggested the importance
of the “jack of all trades, master of none” hypothesis for the predominance of specialization,
which asserts that, all other things equal, a cost of generalism is required to favor a specialist

[40-46]. Following the incorporation of a cost of generalism by increasing the specialist’s burst
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size to five times greater than that of the generalist, we found that our modeling results were
consistent with our conceptual model such that the generalist dominated when prey competed
(Figure 2B), while the specialist dominated when prey were mutualistic (Figure 2C).

To further understand the behavior of the model when phage phenotypes competed
against one another, we then sought to simplify the system, applying R* theory to Egs. 3-4. R*
theory [33] suggests that, when two species compete for the same resource, the species that
requires fewer resources for zero net population growth will be able to competitively exclude the
other species. This is formalized by computing the resource needed for zero net population
growth, R*, for each species independently and comparing those values. To apply this to our
system, we treated the shared prey, S. enterica, as a resource, and identified domains in which
the amount of S. enterica required by the specialist to hold its net population growth at zero, Sp,
would be expected to be less than the amount of S. enferica required for zero net growth of the
generalist population, S; [33]. To do so, we assumed that the generalist phage had the same burst
size and attachment rate on both prey types and that the intrinsic rate for mortality due to dilution

or death was not species-specific, such that y . described the burst size of the generalist on both
prey, ¢, described the attachment rate of the generalist on both prey, y, described the burst size
of the specialist on S. enterica, ¢, described the attachment rate of the specialist on S. enterica,

and & described the intrinsic mortality rate of all four species. S; and Sp were obtained by setting
the left-hand side of Egs. 3-4 equal to 0 and solving for S. Using these equations, in accordance

with R* theory, requiring that

Sp <S¢ Equation (5)

leads to:



Ye * Sc < q _Ye*Sex E Equation (6)
Yp * Cp 6

164  This analysis therefore suggested that the specialist phage could dominate (i.e. have the lower
165  S*) when the alternative prey source E. coli was sufficiently rare (£ sufficiently small), or when
166  the generalist suffered a fitness trade-off for expanded specificity in the form of reduced burst
167  size and/or attachment rate (y; * ¢ sufficiently small). More generally, a cost of generalism is
168  required for the specialist to dominate, as Eq. 5 can only be fulfilled if y; * ¢; < ¥p * ¢p.
169  While interactions between prey alone can alter the magnitude of selection, a cost of generalism
170  is required to alter the direction of selection between interaction types. This inequality supports
171  the relevance of the “jack of all trades, master of none” hypothesis [40-46].

172 To verify the intuition of our S* inequality, we used our default parameters (Table 1) to
173  consider various domains in which the specialist phage predator was favored. To do so, we

174 systematically changed the burst size of the specialist phage on the shared prey S. enterica (v p)

175  and considered the relative abundance of each phage type at equilibrium (Figure 3; for changing

176  attachment rate ¢ , instead of burst size ys p, see Supplemental Figure 1). We found that even as

177  the cost of phage generalism increased, the generalist phage was always favored when prey

178  competed, although there were no stable fixed points using our default parameters (Figure 3A,
179  left panel; Supplemental File 1). Conversely, the specialist was favored on mutualistic prey

180  (Figure 2C; Figure 3A, right panel) given a minimum cost of generalism. If ¢, * yp > 2.83¢; *
181 Y, 1.. the product of the specialist’s burst size and attachment rate was 2.83 times as large as
182  that of the generalist, then the only stable fixed point was that of the two bacterial species

183  coexisting with the specialist. As such, given a threshold cost of generalism, only the specialist

184  could coexist with mutualistic bacterial species, regardless of initial conditions.
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To visualize the next prediction of our S* inequality - that the relative availability of the
alternative prey source E. coli mattered for the competitive outcome of phage specificity
strategies - we loosened the previous assumption that bacterial species should reach a 50:50 ratio
without predators. In addition to varying the ratio of prey growth rates (in both competition and

mutualism) or the ratio of interaction coefficients (ag ¢ for mutualism, g ¢ for competition), we

systematically altered the cost of generalism (either through burst size, in Figure 3, or attachment
rate, in Supplemental Figure 1). Our analyses demonstrated that when prey were competing,
relative growth rates and competition coefficients mediated the abundance of the specialist such
that it had a fitness equivalent to or greater than that of the generalist only in those cases where
the alternative prey E. coli was competitively excluded by the shared prey S. enterica (Figure
3B). In contrast, when prey were mutualistic, neither relative growth rates nor relative
mutualistic benefit coefficients altered phage relative abundance greatly. Instead, ecological
dominance of the specialist depended mainly on the cost of generalism, such that the specialist
tended to proliferate given a sufficient cost regardless of biased bacterial abundances driven by
unequal mutualistic benefit (Figure 3C).

Finally, to ensure that our tested parameters captured the fundamental behavior of the
model, we performed two sensitivity analyses - a Morris screening and a Sobol variance analysis
- to determine which parameters had the largest impact on the final biomass of each phage type.
In the case of both obligate mutualism and competition, Morris screening methods suggested that
the death/dilution rate, burst size and attachment rates of both phage, and the interaction
parameters for the microbial species were of greatest impact (Supplemental Table 1). The
variance-based Sobol method reinforced the importance of dilution rate (Supplemental Table 2).

These results were consistent both with the parameters identified by fixed point analysis, our S*
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inequality, and the basic construction of the model, which requires that both phage types have

reproductive parameters sufficient to offset the chemostat-induced mortality rate.

Phage relative abundance in vitro aligns with modeling results in co-culture

Using our wet-lab experimental cross-feeding system, we tested the mathematical
prediction that generalist predators would be favored on competing prey and specialist predators
would be favored on mutualistic prey. We first verified that over 48 hours our specialist phage
(P22vir) could only replicate on S. enterica and that our generalist phage (EH7) could replicate
on both prey species (Figure 4A). Each phage alone also grew well on competitive and
mutualistic bacterial co-cultures. The final density of EH7 appeared similar when replicating on
both interaction types (Figure 4A, p = 0.999; Supplemental Table 3). This was true for P22vir as
well, such that type of interaction did not result in significantly different final titers (Figure 4A, p
=0.909; Supplemental Table 3). However, in those experiments, EH7 reached a higher titer than
P22vir on both competitive (Figure 4A, p < 0.0001; Supplemental Table 3) and mutualistic co-
culture (Figure 4A, p < 0.0001; Supplemental Table 3). Consistent with our model, P22vir
increased E. coli frequency relative to the no-phage control in competitive co-culture (Figure 4C,
p <0.0001; Supplemental Table 3). Applying the specialist phage suppressed, but did not
eliminate, both bacterial species in mutualism (Figure 4D). In contrast, the generalist phage more
effectively suppressed E. coli in competitive co-culture, resulting in a higher relative density of
S. enterica compared to the no-phage control (Figure 4C, p = 0.0035; Supplemental Table 3).
Unlike P22vir, the application of EH7 to mutualistic co-culture did not suppress co-culture
growth for the duration of the experiment (Figure 4D).

We also evaluated population dynamics when the two phages competed against one

another (Figure 4B, 4C and 4D). When both phage were present in competitive co-culture, the
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generalist reached a higher final density than the specialist (Figure 4B, p < 0.0001; Supplemental
Table 3), as predicted by our modeling results. Bacterial dynamics were also consistent with our
model, with E. coli dominating through competitive release (Figure 4C, p < 0.0001;
Supplemental Table 3). When both phage were present in mutualistic co-culture, the specialist
reached a higher final titer (Figure 4B, p < 0.0001; Supplemental Table 3) and co-culture
densities were suppressed for the duration of the experiment (Figure 4D). Curiously, however,
the presence of the specialist phage reduced EH7 below the limit of detection when prey were

mutualistic (Figure 4B), a result that we interrogated further.

In vitro, cost of generalism manifests as increased rate of degradation and reduced infectivity of
starved cells

To understand our inability to detect the generalist phage in mutualistic co-culture at the
end of our experimental window, we investigated the ability of each phage to reproduce on
starved cells by adding phage to monocultures in lactose minimal media as described in
Materials and Methods. When placed in wells without bacterial cells or with starved E. coli,
P22vir titer remained unchanged over the 48-hour growth period (Figure 5A). When placed in
wells with starved S. enterica, which were also expected to be physiologically inaccessible,
P22vir titer increased relative to the condition without cells (Figure SA, p = 0.001; Supplemental
Table 4) or with only E. coli (Figure SA, p = 0.0001; Supplemental Table 4).

In comparison, the generalist phage EH7 decreased in abundance in all conditions after
the 48-hour growth period. There were no detectable infectious phage particles in wells without
cells or with starved E. coli. In wells with only starved S. enterica, some infectious phages were
still detectable, although phage titer was greatly reduced, suggesting that S. enterica may be

more physiologically accessible to EH7 than E. coli in a starved state (Figure 5A, p=0.012;
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Supplemental Table 4). Taken together, these results indicate that the generalist phage suffers a
cost that manifests in two ways: first, a rapid rate of degradation in minimal media, and, second,
a reduced capacity to infect and reproduce inside starved cells relative to the specialist phage
P22vir. We therefore expect that, when competing with P22vir on mutualistic co-culture, the
starved physiology of the interdependent cells reduces the generalist’s infective ability relative to
the specialist. This reduction, in combination with the generalist’s higher degradation rate,
provides an explanation for our inability to detect it at the end of previous experiments.

Interestingly, these results are specific to minimal media, as EH7 does not degrade in LB
(Supplemental Analysis; Supplemental Figure 2, Supplemental Table 5). We were not able to
identify which component of our minimal media was responsible for the degradation of the
phage, though it does not appear to be related to the presence of metals or the result of

osmolarity (Supplemental Analysis; Supplemental Figure 2).

The generalist is favored in competition even when a cost is imposed in vitro

The in vitro experiments replicated our modeling results when bacterial prey were
mutualistic or competing. However, the modeling results assumed a cost of generalism we did
not observe in the in vitro system when both phage types were competing for actively growing S.
enterica, with each phage reaching titers that did not differ significantly from one another
(Figure 5B, ‘no cost’, p = 0.999; Supplemental Table 4). A clear cost of generalism may thus
only manifest in the mutualistic treatment where the generalist phage EH7 degrades rapidly due
to bacterial growth delayed by P22vir predation on S. enterica. Phage durability is well-
established as a critical component of phage fitness and has been shown in some cases to trade-
off with fecundity [47]. This potentially explains our results on the shared prey: while EH7

reproduction on actively growing S. enterica matches or exceeds that of P22vir, its reproductive
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capacity may trade off with its degradation rate, given its poorer environmental durability in
minimal media.

Therefore, to impose a cost of generalism across all treatments that more closely matched
that observed in the mutualistic co-culture, we repeated our phage competition assay experiments
by incubating the phage for 24 hours prior to the addition of cells, anticipating that some
degradation of the generalist EH7 would occur, while the titer of P22vir would remain
unchanged. Previous preliminary experiments had indicated that, starting with 10° phage
particles, EH7 titer generally drops below the limit of detection after 24 hours (Supplemental
Figure 2). However, the phage can be recovered following the addition of cells, suggesting that
infectious phage particles remain. We expected that the reduced titer of EH7 when cells were
applied would mirror the conditions of mutualism when phage competed. Given that the
presence of P22vir in competitive co-culture increases E. coli frequency (Figure 4C), we
hypothesized that a lower titer of EH7 when cells are added may still result in a higher final titer
of the generalist phage relative to the specialist, because any remaining EH7 would be able to
utilize E. coli.

When this cost was imposed and phage were competed on S. enterica monoculture, the
generalist disappeared below the limit of detection, while P22vir final titer was not significantly
different than in the condition without cost (Figure 5B, p = 0.982; Supplemental Table 4). In
contrast, we found that when bacteria competed, final titers of both EH7 (Figure 5B, p = 0.723;
Supplemental Table 4) and P22vir (Figure 5B, p = 0.999; Supplemental Table 4) were
comparable to the no cost condition, as we had expected. These results are consistent with our
modeling results, suggesting that, even with a substantial cost of generalism, a generalist

predator should be favored on competing prey.
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In a phenomenological model, prey interactions determine the intrinsic death rate needed to favor
specialism

Finally, we amended our model to see if we could replicate the results of our initial in

vitro experiment, given the known constraints of higher rates of degradation of the generalist
phage when cultured in minimal media. To do so, we imposed a cost of generalism not as burst
size (or attachment rate), but instead as an increased intrinsic mortality rate for the generalist
phage, while keeping the mortality rate the same for the three other species.

We observed that, when fitness cost was modeled as increased mortality, our qualitative
results matched those when fitness cost was measured as burst size or attachment rate (compare
Figure 6 with Figure 3A and Supplemental Figure 1A, respectively). The generalist phage could
be maintained on competing prey even as its mortality rate increased significantly; competition
with the specialist phage decreased the abundance of the generalist, but competitive release of E.
coli ensured that the generalist had access to sufficient prey for positive population growth across
a wide range of parameters (Figure 6). In contrast, the same intrinsic mortality rate at which the
generalist persisted on competing hosts (Figure 6) resulted in the loss of the generalist when prey
were mutualistic due to the specialist phage driving correlated reductions of both S. enterica and
E. coli (Figure 6). It is worth noting that our model is not currently designed to capture changes
in the relative phage attachment rates or burst sizes as a function of physiological state.
Therefore, our model assumes that the relative reproductive abilities of the two phage are static
and that the relationship between phage reproductive rate and intrinsic mortality is driven solely
by the relative abundance of prey, assumptions which do not capture the full biological reality of
our in vitro system. Regardless, in its current form, it reinforces our previous qualitative
modeling predictions and our in vitro findings that suggest that, when a cost of generalism is

present, regardless of its mechanism, competition between prey favors generalist predators
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across even severe fitness trade-offs, while a minimal fitness cost favors specialist predators

when prey are engaged in mutualism.

Discussion

We aimed to determine whether ecological interactions between bacterial prey species
impacted the abundance of phage with different specificities. We developed a simple four-
species phenomenological model composed of two interacting bacterial species, a specialist
phage, and a generalist phage. Using this chemostatic model, given a cost of generalism, we
found that specialist phage were favored when prey are mutualistic, while generalist phage were
favored when prey compete. These qualitative results were largely robust to initial conditions,
suggesting that they may be both ecologically and evolutionarily informative. We found that our
modeling predictions were well-matched by the outcome of batch culture experimental phage
competition assays. The alignment between outcomes in our model and our system was observed
despite differences in the mechanisms driving the cost of generalism. In our model, a cost of
generalism was imposed as either a lower burst size or worse attachment rate and was assumed
to be static over time. /n vitro, the cost of generalism was dynamic over time, driven by
differences in phage durability and ability to reproduce on bacteria in variable physiological
states. Our results highlight that ecological interactions between prey can alter ecological
selection on predator specificity in predictable ways when a cost of generalism exists, regardless
of the exact mechanism of cost.

Our modeling results suggest that interactions between bacterial prey impact the
prevalence of phage specificity phenotypes when a cost of generalism exists. Experimental
evolution has previously shown that the presence of different types of resources can select for

generalism [6, 19, 40]. Both absolute and relative prey densities are relevant predictors of phage
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specificity [22-23, 27-28]. However, while much of the previous work done on diet breadth has
assumed a constant relative abundance of available prey, our model upended that assumption by
allowing relative prey abundances to vary as a function of prey ecology. Previous theoretical
modeling has demonstrated that resource competition between prey species can select for
expanded predator diet breadth even when trade-offs for generalism exist, although this result
generally required the competitive dominance of the novel prey source [29, 34]. Our results align
with these findings, underscoring that resource competition should favor a generalist strategy in
most cases, even when a severe fitness trade-off is present. Additionally, we expanded previous
findings to include mutualistic interactions between prey, showing that a specialist predator
strategy dominated assuming even a minimal trade-off for generalism. Our model demonstrates
that ecological interactions between prey species favor different predator diet strategies when
there is a cost of generalism because switching from competition to mutualism changes relative
prey abundances from being anti-correlated to being positively correlated. We anticipate that our
modeling result will apply to systems when interactions between prey generate correlations in
their abundance and a cost of generalism is present.

The experimental results of our study align with our modeling predictions, although they
also highlight two important aspects of our microbial system. First, in vitro, we did not observe a
reproductive fitness cost of generalism on the shared prey species S. enterica under optimal
growth conditions, a cost we had anticipated in our model. Instead, we found that the trade-off
manifested as an interplay between the generalist’s increased degradation in minimal media and
its reduced replication rates on starved cells. Our results contribute to the body of work
suggesting that pleiotropic costs are often context dependent [18, 36, 40-46]. They also reinforce

the observed importance of durability as an important component of phage fitness [47].
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Additionally, our experiments emphasize that in addition to altering population dynamics,
interactions between bacteria can impact phage specificity by altering prey physiology. Bacterial
sensitivity to phage is not a binary trait and can change between physiological states due to
differences in growth rate, metabolism, transcription and translational activity, and the
availability of intracellular components [48-50]. Phage reproduction on slow-growing or
stationary phase cells is often more difficult due to reduced cell size and lower densities of the
receptors phage use to adsorb [28, 51]. Because microbial physiology is driven by resource
availability and interactions between bacterial species [48], our work suggests that ecological
selection on phage specificity is impacted by how interactions between bacterial prey shift prey
abundances and physiological states over time.

There are limitations to the study we performed that may impact the generality of the
results. First of all, our study is limited by its focus on the types of interactions that we chose to
examine: namely, obligate cross-feeding and resource competition. Other interactions or even
other types of mutualistic or competitive interactions - for example, defensive mutualisms or
interference competition - could result in different selective patterns on phage diet breadth.
Additionally, we do not consider bacterial resistance to phage, which would create
subpopulations within interacting species and complicate correlations in bacterial abundance.

We also note that the two phage types tested in these experiments differ in ways
unrelated to specificity. P22vir attaches to the O-antigen of S. enterica’s lipopolysaccharides
(LPS), while EH7 uses BtuB, a vitamin B12 uptake receptor. Previous work has demonstrated
that BtuB expression is context dependent, while the LPS is constitutively expressed [52-60].
Our phages also have different genome sizes, with EH7 consisting of 110kb and 154 putative

proteins, while P22vir is much smaller at 41kb and 72 proteins [61]. We expect that the poor
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infective capacity of EH7 on starved cells is a result of both receptor type and genome size.
When cells are starved, reduced BtuB receptor density may depress EH7 attachment rate, while
P22vir attachment rate remains unchanged. Likewise, differences in phage genome size and
protein content mean that intracellular demands for producing EH7 will be higher than P22vir, so
its burst size may be reduced when cells are starved. Critically, EH7 is also less durable than
P22vir in minimal media. However, these differences, while notable, are present whether phage
are grown on competitive or mutualistic co-cultures; bacterial interactions determine the
consequences of these differences for phage fitness. Fundamentally, the differences between the
two phage types ensure that there is a cost for the generalist phage in our in vitro system —
though the cost may not be directly due to generalism itself — and our work suggests that, if a
cost of generalism exists in some form, bacterial interactions will have consequences for the
direction of ecological selection on phage host range. Future work should test the competitive
ability of phages that use the same or similar receptors and with greater stoichiometric similarity,
though we expect that, in cases where a cost of generalism exists, our results will be applicable.
Our results suggest numerous directions for future study. It would be interesting to select
EH7 for increased durability in minimal media to examine whether the improvement is sufficient
to offset reproductive costs on slow-growing cells, or if a trade-off in fecundity is observed [47].
In the context of phage therapy, the performance of EH7 in minimal media emphasizes the
necessity of testing how different environments affect phages and whether phage characteristics
such as specificity tend to correlate with susceptibility to degradation [62]. These data also
suggest that the ways bacteria modify their environments through alteration to local pH or
metabolite concentrations will have consequences for their viral predators. For example, human

gut microbes often compete with hosts for vitamin B12 [63]; the resultant availability of B12 in
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the human gut may alter the efficacy of BtuB-specific phages in phage therapy applications.
Continued characterization of phage-bacteria interactions in the complex communities in which
they are found will improve our ability to use phage for engineering and biomedical purposes.
We also expect that increasing the number of bacterial species or incorporating the evolution of
resistance will complicate our findings by allowing for the emergence of phage with intermediate
specificities. Finally, we note that the spatial structure of interacting bacterial species, as in a
biofilm, will alter local prey availability in natural environments such that our results may not be
applicable [38].

We took a simple modeling approach, paired with an ecological experiment, to gain
insight into the role of prey ecology on the competitive ability of bacteriophage with different
specificities. We found that, in both our model and in vitro experiments, prey interactions shaped
the prevalence of phage specificity phenotypes, though the focal mechanisms differed between
our modeling approach and synthetic community. Management and design of microbial
communities is contingent upon our ability to predict the evolutionary outcomes and higher order
ecological effects of multitrophic interactions. Understanding the complex biotic factors driving
ecological and evolutionary outcomes for bacteriophage is a critical step for harnessing microbes
in industrial and biomedical applications. We suggest that microbial interactions should be
studied across a diversity of systems to understand the generality of their impact on phage host

range.

Materials and Methods

Model description

We constructed a model of the concentrations of two interacting bacterial species, a
generalist phage, and a specialist phage. Bacteria (dimensionless biomass denoted by E or S) can
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either compete for resources or engage in obligate mutualism [adapted from Hoek et al., 2016;
64]. Biomass of prey changes through growth (with Lotka-Volterra-like dynamics depending on

the interaction with other prey species) and decreases due to predation and death or dilution:

dE aps* S Equation (1)
T ~HexE *m *(R—E —(Bes*S)) — (Gge*G+E) —(8g+E)
ds asp * E Equation (2)
Tt E S ey v RS Bon t )~ (Gsp PrS) (556 + G+ 8) — (8545
Biomass of predators increases through predation and decreases through death or dilution:
da Equation (3)
€ (Vs *Ss6*G*S)+ (Veg *Sec *G*E) — (86 * G)
dP Equation (4)

a (Ysp *Ssp * P xS) — (6p * P)

Our model was constructed such that prey had an intrinsic maximum growth rate y;,
carrying capacity R, and three parameters determined prey interactions: k; a;; and f; ;.
Mutualism is determined by the saturation constant k; and the mutualism coefficient «;;, which
reflects the beneficial effect of prey species i on the per capita growth of prey species j. If all k;
and a;; values are positive, bacterial species grow faster together and cannot grow alone.

Competition is driven by the coefficient 8, ., where ji determines the competitive effect of prey

jr
species i on the per capita growth rate of prey species j. Phage reproduction is modeled via
adsorption with attachment rate on species i by phage X as ¢; y which directly leads to lysis by
phage X on species i with burst size y; . The default natural death rate §; was initially identical
for all four species, as in a chemostat (Table 1), unless noted otherwise.

Using these equations, we investigated the extremes of pure mutualism (x; and a;; > 0,

B Tl 0), and pure competition (x; =0, a;; = 1, B ke 0) (Table 1). Carrying capacity was

increased when prey competed relative to the value used when prey were mutualistic in order to
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standardize the total final biomass in each condition. This is required by a structural limitation of
the Lotka-Volterra style model, where obligate mutualism inflates the carrying capacity over that

set by the value of .

Model analyses

To predict the biomass of both prey and predator over time, we numerically solved
differential equations 1-4 in R v. 4.2.1 with the DeSolve package v. 1.32, using the LSODA
solver. To investigate the equilibrium or steady state dynamics of the system of equations, we
integrated Eqs. 1-4 until species abundances no longer changed between timepoints. These
results were verified by fixed point stability analysis in Mathematica 13.2.1. We evaluated
equilibrium abundance of the phage predators under three different scenarios: 1) imposing a
trade-off for expanded specificity by penalizing the burst size (or attachment rate) of the
generalist phage, 2) altering the intrinsic growth rates or interaction coefficients of the bacterial
prey, or 3) some combination of scenarios 1 and 2 (Table 2). To quantify phage coexistence, we
used the equilibrium abundance of both phage. Relative abundance was calculated as the
equilibrium density of the specialist divided by the sum of the equilibrium density of the
specialist plus the equilibrium density of the generalist. Values greater than 0.5 indicated that the
specialist was more abundant. Initial densities were the same across numerical simulations; all
four species were always initialized at a density of 0.1. To confirm the significance of the
parameters tested, we conducted two types of sensitivity analyses on our ODE system: the
Morris screening method and the variance-based Sobol’ test [65-67]. Morris screening and Sobol
sensitivity analyses were performed in R with the ODESensitivity package v. 1.1.2 using the

same parameter distribution ranges for each test type (Supplemental Table 6).
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Finally, following the in vitro finding of high rates of degradation of the generalist phage,
we amended our model to impose a cost of generalism by increasing the death rate of the

generalist relative to the three other species.

Bacterial co-culture system and phage strains

The bacterial strains have been previously described [68]. Strains are listed in
Supplemental Table 7. The Salmonella enterica serovar Typhimurium LT2 strain secretes
methionine due to mutations in met4 and metJ [69]. The Escherichia coli is a methionine
auxotroph due to a deletion of metB [68]. To track bacterial abundances and relative ratios during
growth, E. coli was tagged with a cyan fluorescent protein and S. enterica was tagged with a
yellow fluorescent protein [70].

The specialist phage used was P22vir. It is an obligately lytic version of the lysogenic S.
enterica-specific phage P22, created through several point mutations in its prophage repressor
gene (Supplemental Table 8). P22vir was provided by I.J. Molineux. A generalist phage strain,
EH7, was isolated and provided by E. Hansen and S. Bowden. EH7 is an obligately lytic T5-like
siphovirus that uses BtuB, a differentially expressed outer membrane protein for vitamin B12
uptake, as a receptor. It is similar to T5-like coliphages described in Kim and Ryu (2011) [16]
and Switt et al (2015) [61].

Two additional bacterial strains were used for plaque assays (Supplemental Table 7).
They were chosen so that, in mixed cultures of phage, phage types could be quantified
independently of each other. The E. coli K-12 BW25113 AtrxA from the Keio collection was
used to quantify EH7 densities as no plaques of P22vir form on that host [71]. An S. enterica

serovar Typhimurium NCTC 74 strain with bfuB knocked out through a transposon insertion
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(EZ-Tn5 <Kan-2>, Lucigen) was used to quantify P22vir as no plaques of EH7 form on that

host. The AbtuB S. enterica strain was provided by S. Bowden.

Media

Minimal hypho liquid media for experiments was prepared as previously described, with
each component sterilized prior to mixing [72] (Supplemental Table 9). In addition to the
appropriate carbon source, solutions containing sulfur, nitrogen, phosphorus, and metals were
supplemented into each media type (Supplemental Table 9). Routine culturing of all bacterial
strains was carried out on Miller Lysogeny Broth (LB) unless otherwise indicated. Working
stocks of both phage types were grown on log-phase S. enterica LT2 cultures in LB and stored at

4°C. Stock titer was determined by plaque overlay assay on the appropriate strains.

Phage competition assays

Phage competition assays were performed in 96-well flat bottom plates on a Tecan
Infinite Pro200 plate reader for 48 hours at 37°C with shaking at 432 rotations per minute.
Experiment duration was chosen to allow batch culture experiments to reach a final state
(stationary phase, phage densities unchanging), thus allowing us to compare to our chemostatic
model. Overnight stationary phase cultures in LB started from single colonies were washed three
times in saline, adjusted to a density of 10’ cells per mL, and used to inoculate 200pL of
appropriate medium with 2.0 x 10° total cells per well (i.e. 2.0 x 10’ total S. enterica cells in
monoculture, 1.0 x 10° total S. enterica cells and 1.0 x 10° total E. coli cells in co-cultures).
Phage stocks were diluted in saline to 10° plaque-forming units per mL and inoculated into the
appropriate wells to an MOI between 0.005 and 0.01 for a given phage, depending on the
fraction of infectable cells for each phage type. Phage strains were added either in isolation (10°

total phage particles of either P22vir or EH7) or in a one-to-one ratio (10° total phage particles of
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P22vir and 10’ total phage particles of EH7 for a final density of 2 x 10? total phage particles).
Phage densities were confirmed by plaque overlay assay at the start of the experiment on the
appropriate strains.

To quantify bacterial abundances throughout the duration of the experiment, OD600, E.
coli-specific CFP (Ex: 430 nm; Em: 480 nm), and S. enterica-specific YFP (Ex: 500 nm; Em:
530 nm) fluorescence were read every 20 minutes. Fluorescent protein signals were used to infer
species-specific OD equivalents based on an experimentally determined conversion factor as
previously described [73]. To determine phage density at the end of the 48-hour growth period,
we plated for PFUs for each replicate from half of the total 200uL volume using plaque overlay
assays on LB plates with 0.7% LB top agar. All replicates were quantified using plaque assays
on both AtrxA E. coli and AbtuB S. enterica. AtrxA E. coli and AbtuB S. enterica were prepared
for use in plaque assays through overnight culture growth in LB, prior to being diluted 1:10
(AbtuB S. enterica) or 1:5 (AtrxA E. coli) and allowed to grow for 30 minutes. Plaque assays
were otherwise performed as previously described using 2uL of phage spot dilutions from 10° to
10”7 with three technical replicates per dilution per sample [51, 74]. The lower limit of detection
was 500 PFU/mL. Change in phage titer was represented as the natural log of the final phage
density divided by the starting phage density (In(final PFU/mL / initial PFU/mL)). All plates
were incubated overnight at 37°C.

A single initial experiment was completed to confirm the reproductive ability of each
phage on S. enterica monoculture or E. coli monoculture. Full factorial experiments testing all
three phage conditions (P22vir, EH7 or EH7 + P22vir) on either S. enterica monoculture,
mutualistic co-culture, or competitive co-culture were then completed with four biological

replicates per condition, plus three biological replicates for no-phage controls per condition.
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Three independent experiments were set up and completed during different weeks to protect
against batch effects and confirm the repeatability of the results. One representative experimental
run was chosen for display in this paper.

To impose a cost of generalism in our system, we repeated the phage competition assays,
incubating the phage in minimal media at 37°C with shaking for 24 hours prior to the addition of
cells in either S. enterica monoculture or competitive co-culture. Mutualistic co-culture was not
tested. Once cells were added, cultures were grown for an additional 24 hours. Phage densities
were quantified at the beginning and end of the 48-hour experiment. The experiment was
completed once following preliminary trials to confirm that EH7 did not degrade below the limit

of recovery after 24 hours.

Phage degradation assays

We examined the impact of cell starvation on the formation of new EH7 particles using a
full factorial design of both phage types and E. coli or S. enterica monoculture in lactose hypho
minimal media. Neither bacterial strain could grow, as each was starved of essential nutrients.
Bacteria were inoculated in lactose hypho monoculture at a density of 10° cells per 200uL of
medium in a 96-well plate and treated with either EH7 or P22vir at a total density of 10° PFU
(MOI = 0.01) or incubated in a no-phage control. Additionally, we tested each phage in isolation
in lactose minimal media without cells to determine phage decay rates. Each condition consisted
of three technical replicates. Both experiments were completed once at 37°C with shaking at 432
rotations per minute. Phage density in each well was determined by plaque overlay assay at the
beginning and end of the 48-hour experiment. Change in phage titer was again represented as the
natural log of the final phage density divided by the starting phage density (In(final PFU/mL /

initial PFU/mL)).
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Phage sequencing and genomic analysis

Phage samples were sequenced following DNA extraction. To isolate DNA, 450uL of
each phage stock was combined in a microcentrifuge tube with S0pL DNase I 10x Buffer
(Invitrogen), SuL. DNase I (Invitrogen), and 1uLL RNase A (Qiagen). The solution was incubated
at 37°C without shaking for 1.5 hours, followed by inactivation of DNase I and RNase A through
the application of 20puL of 0.5M EDTA and incubation at 75°C for 10 minutes. 1.25uL.
Proteinase K (Invitrogen) was then added to the tube and the solution was incubated for an
additional 1.5 hours at 56°C without shaking. DNA was then purified using the Qiagen DNeasy
Blood and Tissue kit and quantified on a Nanodrop. Samples were sent to Seq Center, LLC
(https://www.seqcenter.com/) for sequencing.

Once returned, reads were assembled and evaluated. Point mutations knocking out
lysogeny in our lab strain of P22vir (reads available at SRA accession SRX22993822) were
identified using breseq v. 0.28 [75] to assemble and analyze reads relative to the ancestral,
lysogenic version of P22 (GenBank accession NC _002371.2). A complete EH7 annotation was
created by E. Hansen and S. Bowden using Unicycler v. 0.5.0 [76] (GenBank accession

OR413347.1).

Scripts and data availability

Numerical simulations, sensitivity analyses, data analysis, statistics, and figure generation

were performed using R v. 4.2.1 using custom scripts available at https://github.com/bisesi/Host-

Ecology-and-Host-Range. Raw experimental data and Mathematica notebooks for fixed point

analysis are available at the same link.
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Competition (Mutualism
Parameter |Default Value [Default Value |Description
Mutualistic coefficient, benefit of prey species S to prey
ag,o 1 1 species E
Competition coefficient, effect of prey species S on prey
Bon 1 0 species E
Mutualistic coefficient, benefit of prey species E to prey
ag,o 1 1 species S
Competition coefficient, effect of prey species £ on prey
Boo 1 0 species S
Ko 0.5 0.5 Maximum intrinsic growth rate of prey species £
Ko 0.5 0.5 Maximum intrinsic growth rate of prey species S
Yoo 20 20 Burst size of generalist phage on prey species £
Yoo 20 20 Burst size of specialist phage on prey species E
Yoo 20 20 Burst size of specialist phage on prey species S
$o.0 0.001 0.001 Attachment rate of generalist phage on prey species E
$o,o 0.001 0.001 Attachment rate of specialist phage on prey species E
$o,o 0.001 0.001 Attachment rate of specialist phage on prey species E




s 0.03 0.03 Intrinsic death rate of prey species E
Ju 0.03 0.03 Intrinsic death rate of prey species S
s 0.03 0.03 Intrinsic death rate of generalist phage
s 0.03 0.03 Intrinsic death rate of specialist phage
Ko 0 1 Half-saturation constant of species £
Ko 0 1 Half-saturation constant of species S
U 2 1 System carrying capacity
864  Table 1. Dimensionless phenomenological model parameters, default values, and
865  descriptions.
866
Trade-off Parameter Combinations Significance
Yoo =Yoo =20
and Generalist and specialist phage are parametrically
None $og = Hoo = 0.001 identical
Yoo =Ygo =20
Cost of generalism and Generalist and specialist phage differ in their
(burst size) Yoo < Uoo abilities to kill prey due to differences in burst size
Soo =Sgn = 0.001 Generalist and specialist phage differ in their
Cost of generalism and abilities to kill prey due to differences in attachment
(attachment rate) ¢oo < Upo rate
po =05 Prey species coexistence in the absence of phage is
Interaction outcome and biased or impossible due to differences in growth
(growth rate) pg F Un rate
Interaction outcome
(interaction Poo = Prey species coexistence when competing in the
coefficient, and absence of phage 1s biased or impossible due to
competition) Bopn # Uoo differences in interaction coefficients
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Interaction outcome
(interaction
coefficient,
mutualism)

aD,E = ]
and
ano * Upp

Prey species coexistence when mutualistic in the
absence of phage 1s biased or impossible due to
differences in interaction coefficients

Cost of generalism
and interaction
outcome (growth rate)

(y],E = 20 and yE,D < DD,]

and
pn = 0.5and p # Op)
or
(g],E = 0.001 and $oo < Hop
and

pp = 05and py # Op)

Generalist and specialist phage differ in their ability
to kill prey and prey species coexistence in the
absence of phage 1s biased or impossible due to
differences in growth rate

(ygp=20andy, < Opp

and
. = Jand # 0 : . . : L
Cost of generalism Poc Puo 0.0) Generalist and specialist phage differ in their ability
and interaction o to kill prey and prey species coexistence when
outcome (interaction (6pn =0.001and g < Opp competing in the absence of phage is biased or
coefficient, and impossible due to differences in interaction
competition) Bopn = land B, # Upn)  |coefficients
(y],E = 20 and yE,D < DD,]

and
Cost of generalism apg = landagp # Upp) Generalist and specialist phage differ in their ability
and interaction or to kill prey and prey species coexistence when
outcome (interaction ($g,p = 0.001and ¢p 5 < Upp |mutualistic in the absence of phage is biased or
coefficient, and impossible due to differences in interaction
mutualism) apn = landagp # Opp)  |coefficients

867  Table 2. Parameter trade-offs tested in our phenomenological model and their biological

868  significance. Parameters not listed here were set to default values in Table 1.
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time

dE ags*S
D — =g xE s (R—E = (Bes*5)) = (¢ag * G *E) = (8 * E)

dt (ags*S)+ Kk E. coli (Equation 1)

ds = RS'E * E * * * -_ * * - *
Frinl (asg*E) + s (B=5=(fsg «E)) = (sp *P+5) = (550 * G +5) = (55 =5) S. enterica (Equation 2)

dG

a - (¥s.6* 65.6% G*8) = (Yag*Suo* G+ E) = (8% 6) Generalist phage (Equation 3)

dp
at = (Vsp *5sp*P*S) = (8p * P)

Speialst phage (Bquation 4)
Figure 1. Specificity in a microbial synthetic community. A: Schematic of diet breadth in
macropredators. Species with generalist diets have wide diet breadths spanning multiple
resources, while specialists have narrower diet breadths, sometimes specific to a single resource.
B: Expected community dynamics when mutualistic or competing prey species are challenged by
a specialist predator. When prey are mutualistic, predation will reduce abundances of both
species. When prey compete, predation will reduce the abundance of one species and result in an
increase in the abundance of the other species through competitive release. C: Schematic of
cross-feeding system consisting of an E. coli methionine auxotroph and S. enterica methionine
secreter. In lactose minimal media, E. coli provides carbon byproducts to S. enterica and S.
enterica provides methionine to E. coli. In glucose minimal media with methionine, the two
bacteria compete. The phage P22vir is a specialist on S. enterica, while the phage EH7 is a
generalist that can attack both bacterial species. D: Lotka-Volterra style modeling equations. For

additional details, see Materials and Methods. For A, B, and C: Figure created with BioRender.
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885  Figure 2. Numerically-simulated bacterial dynamics demonstrate that competing prey

886  provide a different selective environment for phage than mutualistic prey. A: In the absence
887  of phage, both prey species reach an equilibrium ratio of 50:50. In the presence of only a

888  specialist phage, the prey attacked by the specialist (pink line, S. enterica) decreases. The prey
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that is not attacked (black line, E. coli) reaches a higher equilibrium frequency if the prey are
competing and a lower equilibrium frequency if the prey are mutualists. When only the
generalist predator is present, regardless of prey interactions, prey remain at a 50:50 ratio
throughout the simulated growth period. Note that in panels where abundances are identical,
biomass has been deliberately offset for effective visualization. B: When prey compete and both
phage types are present and parametrically identical (no cost), the generalist (yellow line, EH7)
dominates over the specialist (blue line, P22vir). When prey compete and both phage types are
present but the specialist’s burst size increased to five times that of the generalist (cost of
generalism), the generalist (yellow line, EH7) still dominates over the specialist (blue line,
P22vir). C: When prey are mutualistic and both phage types are present and parametrically
identical (no cost), the generalist (yellow line, EH7) dominates over the specialist (blue line,
P22vir). When prey are mutualistic and both phage types are present but the specialist’s burst
size increased to five times that of the generalist (cost of generalism), the specialist (blue line,

P22vir) dominates over the generalist (yellow line, EH7).
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Figure 3. End points of numerically-simulated phage dynamics given a variety of
parameter trade-offs demonstrate that prey interactions result in different patterns of
predator abundance. A: The final density of each phage type as a function of bacterial
interactions and increasing cost of generalism modeled as increasing specialist burst size. When
prey are mutualistic, a relative burst size above 2.1 favors specialist phage (blue line, P22vir)
over generalists (yellow line, EH7). When prey compete, there is no relative burst size that
favors the specialist phage; this is true even as the specialist’s burst size increases well beyond

the values displayed here. For these analyses, the generalist’s burst size is set to 20, with the

40



912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

specialist’s burst size increased relative to that value. All other default parameter values can be
found in Table 1. B: The relative abundance of the specialist phage on competing prey as a
function of increasing cost of generalism and relative growth advantage of the alternative prey E.
coli. Whether prey growth advantage is modeled through growth rate (u) or competitive
coefficients (f), the generalist is favored (yellow, EH7) except in a small subset of cases where
the alternative prey is competitively excluded. For these analyses, the generalist’s burst size is set
to 20, with the specialist’s burst size increased relative to that value. For the competition
coefficient panel, the competition coefficient of S. enterica is 1, and the competition coefficient
of E. coli is set relative to that value. For the growth rate panel, the growth rate of S. enterica is
0.5, and the growth rate of E. coli is set relative to that value. All other default parameter values
can be found in Table 1. C: The relative abundance of the specialist phage on mutualistic prey as
a function of increasing cost of generalism and relative growth advantage of the alternative prey
E. coli. Whether prey growth advantage is modeled through growth rate (¢) or mutualistic
benefit (), a cost of generalism exists above which specialism is favored (blue, P22vir). Note
that there are benefit and growth rate values for E. coli below which the mutualistic system
cannot be supported, indicated by the grey bar. For these analyses, the generalist’s burst size is
set to 20, with the specialist’s burst size increased relative to that value. For the mutualism
coefficient panel, the mutualism coefficient of S. enterica is 1, and the competition coefficient of
E. coli is set relative to that value. For the growth rate panel, the growth rate of S. enterica is 0.5,
and the growth rate of E. coli is set relative to that value. All other default parameter values can

be found in Table 1.
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Figure 4. Phage and bacterial dynamics in vitro align with modeling expectations. A:
Change in individual phage titer on bacterial monocultures and co-cultures over a 48-hour time-
period. EH7 grows on both bacterial strains, while P22vir cannot replicate on E. coli but does
effectively replicate on S. enterica. EH7 reaches approximately equivalent densities mixed prey
with both interaction types (p = 0.999), as does P22vir (p = 0.909), although its final density is
reduced compared to EH7 (competition: p < 0.0001, mutualism: p < 0.0001). B: Change in
phage titer when phage compete on different bacterial interaction types over a 48-hour time-
period. When competing against the specialist, EH7 dominates when prey compete (p < 0.0001).

P22vir dominates when prey are mutualistic (p < 0.0001), while EH7 disappears below the limit
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of detection (LOD). For A and B: The dotted red line indicates no change in titer from the start
of the experiment to the end. Values greater than zero indicate an increase in titer, while values
below zero indicate a decrease in titer. Statistical significance was determined using a two-way
ANOVA with Tukey’s HSD multiple comparison test (Supplemental Table 3). The black dotted
line indicates the limit of detection. C: Inferred species-specific ODs over time across treatment
conditions (top) and final fraction of bacterial co-culture composed of each strain across
treatment conditions (bottom) when bacteria compete. The fraction of E. coli increases in those
cases in which S. enterica is predominantly suppressed by phage (specialist only and both phage
treatments). E. coli frequency is reduced relative to no-phage controls when only EH7 is applied
(p = 0.0035). D: Inferred species-specific ODs over time across treatment conditions (top) and
final fraction of bacterial population composed of each strain across treatment conditions
(bottom) when bacteria are mutualistic. E. coli dominates at similar levels in all treatment
conditions, even in cases where overall growth is suppressed. For C and D: Statistical
significance for bar graphs was determined using a two-way ANOVA with Tukey’s HSD
multiple comparison test (Supplemental Table 3). OD600 traces represent 4 biological replicates

for conditions with phage and 3 biological replicates for conditions without phage.
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Figure 5. Imposing a cost of generalism in vitro as phage intrinsic mortality reproduces
modeling results on S. enterica monoculture. A: Change in phage titer across interaction types
and phage treatments when cells are starved or not present in cultures. P22vir does not degrade
in minimal media over the 48-hour growth period, even in cases when there are no cells present
that it can productively infect. Additionally, it can reproduce even on starved S. enterica. EH7
degrades below the limit of detection in all conditions but does not disappear completely when S.
enterica is present. B: Change in phage titer across interaction types when cells are either added

to minimal media at the same time as both phage (no cost) or 24 hours later (with cost). In the no
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cost condition, EH7 reaches comparable titer to P22vir on S. enterica monoculture (p = 0.999)
and wins when prey compete (p < 0.0001). In the condition where cells are added after a period
of phage incubation, EH7 degrades below the limit of detection on S. enterica monoculture but
dominates when prey are competing (p < 0.0001). For A and B: The dotted red line indicates no
change in titer from the start of the experiment to the end. Values greater than zero indicate an
increase in titer, while values below zero indicate a decrease in titer. Statistical significance was
determined using a two-way ANOVA with Tukey’s HSD multiple comparison test

(Supplemental Table 4). The black dotted line indicates the limit of detection (LOD).
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Figure 6. When a cost of generalism is modeled as intrinsic mortality, qualitative patterns
of ecological selection on predator specificity match findings when cost of generalism is
modeled as burst size (Figure 3) or attachment rate (Supplemental Figure 1). As the
intrinsic mortality rate of the generalist phage increases, it maintains its advantage longer when
prey compete and is driven extinct at a minimal cost when prey are mutualistic. These qualitative
results align with previous modeling findings when cost of generalism is imposed as burst size or
attachment rate. For these analyses, the intrinsic mortality rate of the specialist was set to 0.0067,
with the generalist’s mortality rate increased relative to that value. All other default parameter

values can be found in Table 1.
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