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Abstract— This paper studies the well-posedness and
regularity of safe stabilizing optimization-based controllers
for control-affine systems in the presence of model un-
certainty. When the system dynamics contain unknown
parameters, a finite set of samples can be used to formulate
distributionally robust versions of control barrier function
and control Lyapunov function constraints. Control syn-
thesis with such distributionally robust constraints can be
achieved by solving a (convex) second-order cone pro-
gram (SOCP). We provide one necessary and two sufficient
conditions to check the feasibility of such optimization
problems, characterize their computational complexity and
numerically show that they are significantly faster to check
than direct use of SOCP solvers. Finally, we also analyze
the regularity of the resulting control laws.

Index Terms— Safety-critical control, control barrier
functions, distributionally robust control synthesis.

I. INTRODUCTION

RECENT years have seen increasing deployment of con-

trol systems and robots to aid transportation, warehouse

management, and home automation. In these applications, it

is crucial to implement controllers with provable safety and

stability guarantees despite uncertainty in the system models

and operational conditions. Recent work [1]–[6] tackles this

when some prior information about the uncertainty is known.

Instead, here we rely on a line of work initiated in [7] that

circumvents the need for knowledge about the uncertainty

distribution and uses only uncertainty samples to formulate

distributionally robust constraints for control synthesis. This

approach is robust to distributional shift at deployment time

and enjoys provable out-of-sample performance. However, it

also introduces several challenges, which we focus on here:

the characterization of the quality and number of uncertainty

samples needed to guarantee the feasibility of the safety and

stability constraints, and the study of the regularity properties

of the resulting controllers.

Literature Review: Control Lyapunov functions (CLFs) [8]

are a well-established tool to design stabilizing controllers

for nonlinear systems. More recently, control barrier functions

(CBFs) [9] have gained popularity as a tool to render a desired

subset of the system state space safe. If the system is control

affine, CLF and CBF constraints are linear in the control input

and can be incorporated in a quadratic program (QP) [10] that,

if feasible, can be solved efficiently to obtain control inputs

guaranteeing safety and stability. Recent work has explored
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alternative optimization formulations when the system model

is uncertain. Under the assumption that the uncertainty follows

a Gaussian Process (GP) or satisfies worst-case bounds, [1]–

[3], [5], [11], [12] formulate second-order cone constraints that

can be used to design controllers achieving safe stabilization

of the true system. The paper [4] gives sufficient conditions

for the feasibility of such second-order cone constraints. Our

work here is closely related to [7], which leverages ideas from

distributionally robust optimization (DRO) [13], [14] to model

the uncertainty. The DRO framework constructs an ambiguity

set of probability distributions that contains the true (unknown)

one with high confidence. Such ambiguity sets are constructed

with only finitely many samples and are used to formulate

distributionally robust versions of the control design problem.

Statement of Contributions: We study the problem of safe

stabilization of control-affine systems under uncertainty. We

assume that the distribution of the uncertainty is unknown

and formulate a second-order cone program (SOCP) using

distributionally robust versions of the CLF and CBF con-

straints constructed on the basis of uncertainty samples. Our

first contribution is the derivation of a necessary condition and

two sufficient conditions for the feasibility of the optimization

problem. We characterize the computational complexity of

these conditions and show that, for a large number of samples,

it is significantly smaller than solving the SOCP directly,

which makes them useful to efficiently check whether the

problem is feasible without having to solve it. Our first suffi-

cient condition is dependent on the quality of the uncertainty

samples but is limited to a single control objective. Our

second sufficient condition is only dependent on the number

of samples but can be used for any number of constraints.

Our final contribution shows that the solution of this distri-

butionally robust optimization problem is point-Lipschitz, and

hence continuous, which means that solutions of the closed-

loop system are guaranteed to exist and the controller obtained

from it can be implemented without inducing chattering.

II. PRELIMINARIES

We review distrib. robust chance-constrained programs and

control Lyapunov and barrier functions under uncertainty.

A. Distributionally Robust Chance Constrained
Programs

Given a random vector ξ following distribution P
∗ sup-

ported on set Ξ ⊆ R
k and a closed convex set Z ⊂ R

n, let

G : Z ×Ξ → R define a probabilistic constraint G(z, ξ) ≤ 0.

We are interested in satisfying this constraint with a prescribed

confidence 1− ǫ, with ǫ ∈ (0, 1), while minimizing a convex
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objective function c : Z → R. To achieve this1, define the

chance-constrained program:

min
z∈Z

c(z) (1)

s.t. P∗(G(z, ξ) ≤ 0) ≥ 1− ǫ.

The feasible set of (1) is not convex in general. Nemirosvski

and Shapiro [15, Section 2] propose a convex approximation

of the feasible set of (1) by replacing the chance constraint

with a conditional value-at-risk (CVaR) constraint. CVaR of

G(z, ξ) can be formulated as the following convex program:

CVaRP
∗

1−ǫ(G(z, ξ)) := inf
t∈R

[ǫ−1
EP∗ [(G(z, ξ) + t)+]−t]. (2)

The resulting problem

min
z∈Z

c(z) (3)

s.t. CVaRP
∗

1−ǫ(G(z, ξ)) ≤ 0,

is convex and its feasible set is contained in that of (1).

Both (1) and (3) assume that P∗ is known. Instead, suppose

that it is unknown and we only have access to samples

{ξi}i∈[N ] from P
∗. We describe a way of constructing a set of

distributions that could have generated the samples. Let Pp(Ξ)
be the set of probability measures with finite p-th moment

supported on Ξ. Let P̂N := 1
N

∑N

i=1 δξi
be the empirical

distribution constructed from the samples {ξi}Ni=1. Let Wp be

the p-Wasserstein distance [14, Definition 3.1] between two

probability measures in Pp(Ξ) and let Mr
N := {µ ∈ Pp(Ξ) :

Wp(µ, P̂N ) ≤ r} be the ball of radius r centered at P̂N . We

define a distributionally robust chance-constrained program:

min
z∈Z

c(z) (4)

s.t. inf
P∈Mr

N

P(G(z, ξ) ≤ 0) ≥ 1− ǫ.

We can use CVaR to obtain a convex conservative approxima-

tion of (4):

min
z∈Z

c(z) (5)

s.t. sup
P∈Mr

N

CVaRP

1−ǫ(G(z, ξ)) ≤ 0.

If (5) is feasible, then (4) is also feasible [15, Section 2].

We say that a distribution P is light-tailed if there exists a >

0 such that A := EP[exp ‖ξ‖a] =
∫

Ξ
exp ‖ξ‖aP(dξ) < ∞. If

P
∗ is light-tailed, the following observation specifies how the

radius of Mr
N should be selected so that the true distribution

lies in the ball with high confidence.

1We denote by Z>0, R and R≥0 the set of positive integers, real, and
nonnegative real numbers, resp. We denote by 0n the n-dimensional zero
vector. We write ∂S for the boundary of the set S. Given N ∈ Z>0, we
denote [N ] = {1, . . . , N}. Given x ∈ R

n, ‖x‖ denotes the Euclidean norm
of x. For x ∈ R, we define (x)+ = max(x, 0). A function β : R≥0 → R

is of class K∞ if β(0) = 0, β is strictly increasing and lim
t→∞

β(t) = ∞.

A function V : Rn → R is positive definite if V (0) = 0 and V (x) > 0
for all x 6= 0, and proper in a set Γ if {x ∈ Γ : V (x) ≤ c} is compact
for any c ≥ 0. Given an m × n matrix A and two integers i, j such that
1 ≤ i < j ≤ m, Ai:j denotes the (j−i+1)×n matrix obtained by selecting
the rows from i to j of A. A function f : Rn → R

q is point-Lipschitz at
a point x0 ∈ R

n if there exists a neighborhood U of x0 and a constant
Lx0

> 0 such that ‖f(x)− f(x0)‖ ≤ Lx0
‖x− x0‖ for all x ∈ U .

Remark 2.1: (Choice of Wasserstein ball radius): If the true

distribution P
∗ is light-tailed, the choice of r = rN (ǭ) given

in [14, Theorem 3.5],

rN (ǭ) =

{

( log(c1 ǭ
−1)

c2N
)

1

max{k,2} if N ≥ log(c1 ǭ
−1)

c2
,

( log(c1 ǭ
−1)

c2N
)

1

a else,
(6)

where c1, c2 and a are positive constants that only depend on a,

A and k (cf. [14, Theorem 3.4]), ensures that the ball MrN (ǭ)
N

contains P
∗ with probability at least 1 − ǭ. Then, a solution

z∗ of (5) satisfies the constraint CVaRP
∗

1−ǫ(G(z∗, ξ)) ≤ 0
with probability at least 1− ǭ. Note that c1, c2 and a can be

computed by knowing the class of distributions to which P
∗

belongs to, without having actual knowledge of P
∗. If exact

values are not known, but upper and lower bounds are, these

can be used instead to compute an upper bound of rN (ǭ). •
Remark 2.2: (Choice of ǫ): The parameter ǫ determines the

confidence level 1− ǫ for constraint satisfaction. Throughout

the paper, we assume ǫ ≤ 1
N

, albeit results are valid generally,

with explicit expressions becoming more involved. •

B. Distributionally Robust Safety and Stability

The notions of CLF [8] and CBF [9] can be used to design

controllers in uncertainty-free systems that enforce stability

and safety, resp. Here we extend these notions for systems

with uncertainty in the dynamics. Consider a nominal model

F and a linear combination of k perturbations,

ẋ = (F (x) +

k
∑

j=1

Wj(x)ξj)
¯
u, (7)

where for 1 ≤ j ≤ k, Wj(x) ∈ R
n×(m+1) denotes known

model perturbations, and ξj ∈ R denotes the corresponding

unknown weight, and
¯
u = [1;u] ∈ Ū := {1} × R

m. We let

ξ = [ξ1, ξ2, . . . , ξk]
T ∈ Ξ ⊆ R

k. We assume that ξ follows

an unknown distribution P
∗ but a set of samples {ξi}Ni=1 is

available. We are interested in extending the notions of CLF

[8] and CBF [9] for systems of the form (7). To do so, note

that as shown in [7, Section IV], the CBF condition for a

system of the form (7) and a function h : Rn → R reads as

CBC(x,
¯
u, ξ) :=

¯
uT qh(x) +

¯
uTRh(x)ξ ≥ 0, where the exact

forms of qh and Rh are given in [7, Section IV] and depend

on h and its gradient. Now, since ξ follows a distribution P
∗,

we extend the definition of CBF by requiring that for all x in

the safe set, there exist
¯
u ∈ Ū such that

P
∗(CBC(x,

¯
u, ξ) ≥ 0) ≥ 1− ǫ. (8)

The CLF condition for (7) takes a similar form and is written

as CLC(x,
¯
u, ξ) ≤ 0 (cf. [7, Section IV]). As shown in

Section II-A, CVaR can be used as a convex approximation

of (8) and its analogue with CLC. We use

CVaRP
∗

1−ǫ(CBC(x, ¯
u, ξ)) ≥ 0, (9a)

CVaRP
∗

1−ǫ(CLC(x, ¯
u, ξ)) ≥ 0, (9b)

as the distributionally robust analogues of the CLF and CBF

conditions from [8] and [9], resp. The existence of a controller

satisfying (9) implies the existence of a controller that makes

the CLC (resp. the CBC) condition hold at every point with
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probability at least 1 − ǫ, paving the way for the design

of controllers that make the system stable (resp. safe) with

arbitrarily high probability.

III. PROBLEM STATEMENT

Consider the system model in (7) with distributional uncer-

tainty, meaning that the true distribution P
∗ of the parameter

ξ is unknown. We assume that the system admits a CLF

and a CBF, which allow us to formulate the constraints (9).

Given a nominal controller specified by a smooth function

¯
k : Rn → Ū , we would like to synthesize a controller closest

to it that respects safety and stability constraints. Using (2),

this problem can be written in general form as

min
¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (10)

s.t. sup
P∈Mr

N

inf
t∈R

[ǫ−1
EP[(Gl(x,

¯
u, ξ) + t)+]− t] ≤ 0, ∀l ∈ [M ],

where M ∈ Z>0 and each Gl : R
n × Ū × Ξ → R is an affine

function in
¯
u and ξ, Gl(x,

¯
u, ξ) =

¯
uT ql(x) +

¯
uTRl(x)ξ, for

smooth functions ql : R
n → R

m+1 and Rl : R
n → R

(m+1)×k.

With M = 2 and constraints corresponding to CBC and CLC,

this corresponds to a stable and safe control synthesis problem.

The case M = 1 with the constraint CBC corresponds to a

distributionally robust version of a safety filter of
¯
k.

Although the constraints in (10) are convex, the program is

intractable due to the search of suprema over the Wasserstein

set. Fortunately, [7, Proposition IV.1] shows that when Ξ = R
k

and p = 1, the following SOCP is equivalent to (10):

min
¯
u∈

¯
U,y∈R,t∈R,si∈R

y (11a)

s.t. r
∥

∥RT
l (x)¯

u
∥

∥+
1

N

N
∑

i=1

si − tǫ ≤ 0, ∀l ∈ [M ], (11b)

si ≥ Gl(x,
¯
u, ξi) + t, ∀i ∈ [N ], ∀l ∈ [M ], (11c)

si ≥ 0, ∀i ∈ [N ], (11d)

y + 1 ≥
√

‖2(
¯
u−

¯
k(x))‖2 + (y − 1)2 . (11e)

We refer to (11) as the DRO-SOCP and take Ξ = R
k and

p = 1 Wasserstein distance throughout the paper.

A critical observation about problem (11) is that, in general,

it might be infeasible, leading to controllers that are undefined.

Furthermore, even if the problem is feasible, the controller

obtained from it might not be continuous, hence resulting in

implementation problems (it might induce chattering behavior

when implemented on physical systems) and theoretical prob-

lems (lack of existence of solutions of the closed-loop system).

Hence, our goal in this paper is twofold. First, we derive condi-

tions to ensure the feasibility of (11). Given the complexity of

obtaining characterizations for the feasibility of such problems,

we focus on identifying conditions that are easy to evaluate

computationally as opposed to directly attempting to solve the

optimization problem: either sufficient conditions, to quickly

ensure feasibility, or necessary, to quickly discard it. Second,

assuming that the problem (11) is feasible, we characterize the

regularity properties of the resulting controller.

IV. FEASIBILITY ANALYSIS

In this section, we study the feasibility properties of (11).

We start by giving a necessary condition for its feasibility.

Proposition 4.1: (Necessary condition for feasibility of

DRO-SOCP): Let ǫ ∈ (0, 1
N
] and r > 0. For x ∈ R

n, let

Q̄l(x) = rRl(x)2:(m+1) ∈ R
m×k, r̄l(x) = rRl(x)1 ∈ R

1×k,

w̄l,i(x) = (−ǫql(x)− ǫRl(x)ξi)2:(m+1) ∈ R
m,

v̄l,i(x) = (−ǫql(x)− ǫRl(x)ξi)1 ∈ R,

F̄l,i(x) = Q̄l(x)Q̄l(x)
T − w̄l,i(x)w̄l,i(x)

T ∈ R
m×m,

J̄l,i(x) = r̄l(x)Q̄l(x)
T − v̄l,i(x)w̄

T
l,i ∈ R

1×m,

H̄l,i(x) =

(

r̄lr̄
T
l − v̄2l,i)(x) J̄l,i(x)

J̄T
l,i(x) F̄l,i(x)

)

∈ R
(m+1)×(m+1)

for l ∈ [M ] and i ∈ [N ]. Let λ̄l,i(x) be the minimum

eigenvalue of F̄l,i(x) and suppose Q̄l(x)Q̄l(x)
T is invertible

for all l ∈ [M ]. If (11) is feasible, then for each l ∈ [M ], there

exists i ∈ [N ] such that H̄l,i(x) is not positive definite and

one of the following holds:

(i) λ̄l,i(x)<0,

(ii) λ̄l,i(x)>0 and
(

v̄l,i− w̄T
l,iF̄

−1
l,i (Q̄lr̄

T
l −w̄l,iv̄l,i)

)

(x)≥0,

(iii) λ̄l,i(x) = 0, and
(

v̄l,i − w̄T
l,i(Q̄lQ̄

T
l )

−1Q̄lr̄
T
l

)

(x) > 0.

Proof: Note that (10) (and hence (11)) is equivalent to

min
¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (12)

s.t. r
∥

∥RT
l (x)¯

u
∥

∥+ inf
t∈R

[ 1

N

N
∑

i=1

(Gl(x,
¯
u, ξi) + t)+ − tǫ

]

≤ 0,

for l ∈ {1, . . . ,M}, cf. [7, Proposition IV.1]. For (x,
¯
u) ∈

R
n×Ū , the function Al

x,
¯
u(t) =

1
N

∑N

i=1(Gl(x,
¯
u, ξi)+ t)+−

tǫ is a piecewise linear function in t. Since ǫ ≤ 1
N

, it is

decreasing for t < t∗l (x, ¯
u) := mini∈[N ] −Gl(x,

¯
u, ξi) and

increasing for t > t∗l (x, ¯
u). Hence, it achieves its minimum at

t∗l (x, ¯
u). Thus, (11) is feasible if and only if for all l ∈ [M ]

the following inequalities are simultaneously feasible:

r
∥

∥RT
l (x)¯

u
∥

∥+ ǫ
¯
uT ql(x) + ǫmax

i∈[N ] ¯
uTRl(x)ξi ≤ 0. (13)

Note that, if for some l ∈ [M ], the constraint r
∥

∥RT
l (x)¯

u
∥

∥+
ǫ
¯
uT ql(x) + ǫ

¯
uTRl(x)ξi ≤ 0 is infeasible for all i ∈ [N ],

then (11) is infeasible. Note that this is only a sufficient, but

not necessary, condition for infeasibility (or equivalently, a

necessary, but not sufficient, condition for feasibility). The

result follows from [2, Theorem 2], which characterizes the

feasibility of a single second-order cone constraint.

Next, we state a sufficient condition for the feasibility of

(11) in the case M = 1.

Proposition 4.2: (Sufficient condition for feasibility of

DRO-SOCP with one constraint): Let r > 0, M = 1, and

0 < ǫ ≤ 1
N

. Given x ∈ R
n, define

Q̂(x) = (r + ǫmax
i∈[N ]

‖ξi‖)R1(x)2:(m+1) ∈ R
m×k,

r̂(x) = (r + ǫmax
i∈[N ]

‖ξi‖)R1(x)1 ∈ R
1×k,

ŵ(x) = −ǫq1(x)2:(m+1) ∈ R
m, v̂(x) = −ǫq1(x)1 ∈ R,

F̂ (x) = Q(x)Q(x)T − w(x)w(x)T ∈ R
m×m,
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Ĵ(x) = r̂(x)Q̂(x)T − v̂(x)ŵ(x)T ∈ R
1×m,

Ĥ(x) =

(

(r̂r̂T − v̂2)(x) Ĵ(x)

Ĵ(x)T F̂ (x)

)

∈ R
(m+1)×(m+1).

Let λ̂(x) be the minimum eigenvalue of F̂ (x). Suppose that

Q(x)Q(x)T is invertible, Ĥ(x) is not positive definite and one

of the following holds:

(i) λ̂(x) < 0,

(ii) λ̂(x) > 0 and
(

v̂ − ŵT F̂−1(Q̂r̂T − ŵv̂
)

(x) ≥ 0,

(iii) λ̂(x) = 0 and
(

v̂ − ŵT (Q̂Q̂T )−1Q̂r̂T
)

(x) > 0.

Then, (11) is feasible at x.

Proof: By repeating an argument similar to the one in the

proof of Proposition 4.1, (11) is feasible in the case M = 1
if and only if the following inequality is feasible:

r
∥

∥R(x)T
¯
u
∥

∥+ ǫ
¯
uT q(x) + ǫmax

i∈[N ] ¯
uTR(x)ξi ≤ 0. (14)

Using the Cauchy-Schwartz inequality, the following inequal-

ity being feasible implies that (14) is feasible,

(r + ǫmax
i∈[N ]

‖ξi‖)
∥

∥R(x)T
¯
u
∥

∥+ ǫ
¯
uT q(x) ≤ 0. (15)

If (15) is feasible, there exists ˆ
¯
u such that r

∥

∥ˆ
¯
uTR(x)

∥

∥ +
ǫˆ
¯
uT q(x) + ǫˆ

¯
uTR(x)ξi ≤ 0 for all i ∈ [N ], and thus ˆ

¯
u

satisfies (14). The result follows by [2, Thm. 2].

Remark 4.3: (More data leads to better feasibility guaran-

tees): For a fixed r, the addition of new data points (larger

N ) implies that there are more chances that either of (i)-

(iii) in Proposition 4.1 are satisfied for each l ∈ {1, . . . ,M}.

Moreover, if P
∗ is light-tailed, rN (ǭ) decreases with N . The

choice r = rN (ǭ) means that for each fixed i ∈ [N ] and

l ∈ [M ], the feasible set of the inequality r
∥

∥Rl(x)
T

¯
u
∥

∥ +
ǫ
¯
uT ql(x) + ǫ

¯
uTRl(x)ξi ≤ 0 increases, which from the proof

of Proposition 4.1, also means that there are more chances

that either of (i)-(iii) are met. Similarly, under the assump-

tion that the norm of additional samples is upper bounded

by maxi∈[N ] ‖ξi‖, the choice r = rN (ǭ) also leads to a

larger feasible set of (15) and thus the sufficient condition

in Proposition 4.2 has more chances of being satisfied. •
We next give a sufficient condition for the feasibility of (11)

with high probability for an arbitrary number of constraints.

Proposition 4.4: (Sufficient condition for feasibility of

DRO-SOCP): Let r > 0, ǫ ∈ (0, 1) and ǭ ∈ (0, 1). Suppose

that there exists a controller k̂ : Rn → Ū and non-negative

functions Sl : R
n → R≥0 for l ∈ [M ] satisfying

CVaRP
∗

1−ǫ(Gl(x, k̂(x), ξ)) ≤ −Sl(x), ∀l ∈ [M ]. (16)

Moreover, suppose that P
∗ is light-tailed and let rN (ǭ) be

defined as in (6). Let x ∈ R
n be such that ‖Rl(x)‖ 6= 0 for

all l ∈ [M ], and let B : Rn → R≥0 be an upper bound on the

norm of k̂. Then, if

rN (ǭ) < min
l∈[M ]

ǫSl(x)

2 ‖Rl(x)‖B(x)
, (17)

(11) is strictly feasible at x with probability at least 1− ǭ for

any r ≤ rN (ǭ).

Proof: Note that by definition, the first component of

k̂(x) is 1 for all x ∈ R
n. Hence, B(x) ≥

∥

∥

∥
k̂(x)

∥

∥

∥
≥ 1 for all

x ∈ R
n so (17) is well-defined. Let t∗1 ∈ R be such that

CVaRP
∗

1−ǫ(G1(x,
¯
u, ξ)) =

1

ǫ
EP∗ [(G1(x,

¯
u, ξ) + t∗1)+]− t∗1,

and define Ĝ(x, ξ) = 1
ǫ
(G1(x, k̂(x), ξ)+ t∗1)+ − t∗1. Note that

for any ξ, ξ
′ ∈ R

k,

|Ĝ(x, ξ)−Ĝ(x, ξ
′

)|≤ 1

ǫ
‖R1(x)‖·

∥

∥

∥
k̂(x)

∥

∥

∥
·
∥

∥

∥
ξ − ξ

′

∥

∥

∥
, (18)

where we have used the fact that the operator (·)+ is Lipschitz

with constant 1. Using (18) in [14, Theorem 3.2], we conclude

that for any P̂ ∈ Pp(Ξ), |EP∗(Ĝ(x, ξ))− E
P̂
(Ĝ(x, ξ))| ≤

1
ǫ
‖R1(x)‖·

∥

∥

∥
k̂(x)

∥

∥

∥
·W1(P

∗,P̂).

From (17), together with the fact that MrN (ǭ)
N contains P

∗

with probability at least 1 − ǭ, cf. Remark 2.1, and since the

maximum Wasserstein distance between two distributions in

MrN (ǭ)
N is 2rN (ǭ), with probability at least 1− ǭ,

|CVaRP
∗

1−ǫ(G1(x, k̂(x), ξ))−E
P̂
(Ĝ(x, ξ))| < S1(x). (19)

for any P̂ ∈ MrN (ǭ)
N . By definition of CVaR, cf. (2), for

any P̂ ∈ Pp(Ξ), CVaRP̂

1−ǫ(G1(x, k̂(x), ξ)) ≤ E
P̂
(Ĝ(x, ξ)).

Combining this with (19) and (16), we get that with probability

at least 1 − ǭ, CVaRP̂

1−ǫ(G1(x, k̂(x), ξ)) < 0 for all P̂ ∈
MrN (ǭ)

N . This argument holds for l ∈ {2, . . . , N}, implying

that k̂(x) is strictly feasible for (10) (and hence, (11)) with

probability at least 1− ǭ for any r ≤ rN (ǭ).
Remark 4.5: (Dependency of sufficient condition on slack

terms): Condition (16) on the controller k̂ guarantees the

satisfaction of the constraints in (10) with a slack term Sl(x)
on the righthand side. Larger values of these slack terms mean

that fewer samples are needed to satisfy (17). Moreover, for

the constraints in (9), [4, Remark 2.3] shows how to obtain

such functions Sl, even without knowledge of k̂. •
Remark 4.6: (Applicability of the sufficient condition):

Checking condition (17) does not require precise knowledge

of k̂, just an upper bound of its norm. In particular, if bounds

on the control norm are included as constraints in (11), those

can be used to construct B. Moreover, unlike Proposition 4.2,

condition (17) is agnostic to the samples {ξ1, . . . , ξN} and

instead solely depends on its number N . Note that for each

x ∈ R
n with ‖Rl(x)‖ 6= 0 for all l ∈ [M ], if Sl(x) > 0 for

all l ∈ [M ], there exists N̂x such that condition (17) holds for

all N ≥ N̂x. This is because rN (ǭ) is decreasing in N and

limN→∞ rN (ǭ) = 0. The value N̂x is state-dependent, larger

for smaller values of ǫ, Sl(x) and larger values of B(x). •
Remark 4.7: (Checking for (in)feasibility efficiently): A

commonly used algorithm for solving SOCPs is the method

in [16]. For an SOCP with rS constraints and optimization

variable of dimension nS , it requires solving
√
rS linear sys-

tems of dimension nS , and hence has complexity O(
√
rSn

3
S),

cf. [17]. Therefore, (11) has complexity O(
√
MN(m+N)3).

Instead, since checking the positive definiteness of a symmet-

ric matrix of dimension nP can be done by checking if its

Cholesky factorization exists (which has complexity O(n3
P )),

the complexity of checking the condition in Proposition 4.1 is

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2023.3348688

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 14,2024 at 04:54:21 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Complexity of SOCP solver versus the results in this section.

Method Necessary/Sufficient Complexity M

Prop. 4.1 Necessary O(NMm3) any

Prop. 4.2 Sufficient O(N +m3) 1
Prop. 4.4 Sufficient O(M) any

SOCP solver Necessary and sufficient O(
√
NM(m+N)3) any

O(NMm3). Hence, for large N , it is much more efficient than

solving the SOCP (11) directly. We also note that the scaling in

M for the complexity of the SOCP solver is more favorable

than that of checking the necessary condition. On the other

hand, the complexity of checking the sufficient condition in

Proposition 4.2 reduces to finding a maximum of N numbers

(which has complexity linear in N ) and checking the positive

definiteness of two symmetric matrices of dimension m + 1
and m, resp. Hence, its complexity is O(N +m3), which is

also more efficient than solving the SOCP. Finally, note that

the complexity of checking the conditions in Proposition 4.4 is

constant in N and m, and is linear in M due to the minimum

in (17). Table I summarizes this complexity analysis. •
Proposition 4.1 provides necessary conditions for feasibility.

If the conditions are not met, it is reasonable to gather more

data for verifying feasibility without having to directly solve

the program. Moreover, if the conditions in Propositions 4.2

and 4.4 are not met (which does not mean that (11) is not

feasible), this might be an indication that more data is needed

to certify feasibility, cf. Remarks 4.3 and 4.6.

V. REGULARITY ANALYSIS

In this section, we show that the controller obtained by

solving (11) is point-Lipschitz.

Proposition 5.1: (Point-Lipschitzness of SOCP DRO): Let

r > 0, 0 < ǫ ≤ 1
N

and suppose Rl and ql are twice

continuously differentiable for all l ∈ [M ]. Let
¯
u∗ : Rn → R

m

be the function mapping x ∈ R
n to the solution of (11) in

¯
u

at x. If (10) is strictly feasible at x0 ∈ R
n (i.e., there exists

a solution satisfying all the constraints strictly), then
¯
u∗ is

point-Lipschitz at x0.

Proof: We first show the result for M = 1. Let I :=
argmaxi∈[N ] G1(x0,

¯
u∗(x0), ξi), note that the set I is depen-

dent on x0, but we omit this dependency to simplify the nota-

tion. Note also that since G1(x,
¯
u, ξi) is continuous in x and

¯
u

for all i ∈ [N ], there exists a neighborhood N = Nx ×N
¯
u ⊂

R
n × Ū of (x0,

¯
u∗(x0)) such that for all (x̂, ˆ

¯
u) ∈ N , there

exists ix̂,ˆ
¯
u ∈ I such that ix̂,ˆ

¯
u ∈ argmaxi∈[N ] G1(x̂, ˆ

¯
u, ξi).

Recall from the proof of Proposition 4.1 that, for any x,
¯
u ∈

R
n×Ū , the function Ax,

¯
u(t) :=

1
N

∑N

i=1(G1(x,
¯
u, ξi)+t)+−

tǫ attains its minimum at t∗(x,
¯
u) := maxi∈[N ] G1(x,

¯
u, ξi).

Therefore, for (x̂, ˆ
¯
u) ∈ N , t∗(x̂, ˆ

¯
u) = G1(x̂, ˆ

¯
u, ξix̂,ˆ

¯
u
).

For each i ∈ I, let
¯
u∗
i : Rn → R

m be defined as:

¯
ui(x) :=min

¯
u∈

¯
U
‖
¯
u−

¯
k(x)‖2 (20)

s.t. r
∥

∥R1(x)
T

¯
u
∥

∥+ ǫG1(x,
¯
u, ξi) ≤ 0.

Note that since (10) is strictly feasible at x0, there exists ˜
¯
u ∈ Ū

such that r
∥

∥R1(x0)
T

¯
ũ
∥

∥ + maxi∈[N ] ǫG1(x0, ˜
¯
u, ξi) < 0. By

continuity of R1 and G1 in x, there exists a neighborhood

Ñx ⊂ Nx of x0 such that r
∥

∥R1(x)
T

¯
ũ
∥

∥+ǫG1(x, ˜
¯
u, ξi) < 0 for

all x ∈ Ñx and i ∈ I. This implies that (20) is strictly feasible

for any x ∈ Ñx. Hence, by [4, Proposition 5.4],
¯
u∗
i is point-

Lipschitz at x0 for each i ∈ I. Now, since for all y ∈ Nx there

exists i ∈ I such that
¯
u∗(y) =

¯
u∗
i (y), and Ñx ⊂ Nx, it follows

‖
¯
u∗(y)−

¯
u∗(x0)‖ = ‖

¯
u∗
i (y)− ¯

u∗
i (x0)‖ ≤ γi ‖y − x0‖ for

some γi > 0. Now, by taking γ := maxi∈I γi, it follows that

‖
¯
u∗(y)−

¯
u∗(x0)‖ ≤ γ ‖y − x0‖ for all y ∈ Nx and hence

¯
u∗

is point-Lipschitz at x0. The argument if M > 1 is analogous,

defining a set Il similar to I for each l ∈ [M ].
Proposition 5.1 implies in particular that u∗ is continuous

at x0. Note also that the strict feasibility assumption in

Proposition 5.1 is satisfied with a prescribed probability if the

hypothesis of Proposition 4.4 is satisfied.

VI. SIMULATIONS

In this section, we evaluate our results in a ground-robot

navigation example. We model the robot motion using unicycle

kinematics and take a small distance a = 0.05 off the wheel

axis, cf. [18] to obtain a relative-degree-one model:




ẋ1

ẋ2

θ̇



 =

(





0 cos(θ) −a sin(θ)
0 sin(θ) a cos(θ)
0 0 1



+

3
∑

j=1

Wj(x)ξj)

)





1
v

ω



 ,

where v, ω are the linear and angular velocity, and

W1(x)=

[

0.02 0 0
0.02 0 0
0.01 0 0

]

, W2(x) =

[

0 0 0
0 0 0
0 0 −0.02

]

,

W3(x)=

[

0 0.02 cos(θ) −0.02a sin(θ)
0 0.02 sin(θ) 0.02a cos(θ)
0 0 0

]

,

represent the model perturbations in the drift, angular veloc-

ity, and orientation. We consider uncertainty samples: ξ1 ∼
N (0.5, 1), ξ2 ∼ U(−1, 1), and ξ3 ∼ B(2, 0.2), where N , U ,

B denote normal, uniform, and beta distributions, resp. The

optimization programs are solved using the Embedded Conic

Solver in CVXPY [19] with an Intel i7 9700K CPU.

We first consider the problem of stabilizing the uncertain

unicycle system to a goal position [x∗
1, x

∗
2] = [7, 7] with initial

state [0, 0, 0], so we take M = 1 in (10). At the initial state,

the robot is assumed to have 3 samples {ξi}3i=1 and initial

Wasserstein radius r = 0.5 with risk tolerance ǫ = 0.01. As

the robot moves, each unsuccessful solver attempt prompts

the collection of additional samples, and a corresponding

reduction in the ambiguity radius as prescribed by (6). In

all the figures presented, the x-axis represents the simulation

timestep, where each timestep is equivalent to 0.02 seconds,

and the y-axis denotes the time spent for carrying out the

necessary and sufficient condition checks, as well as for

running the solver at each timestep.

The time complexity, validity, and precision of Proposi-

tion 4.1 are explored in Fig. 1a and Fig. 1b. Fig. 1a compares

the time complexity of checking the necessary condition in

Proposition 4.1 and of solving the corresponding SOCP along

the whole robot trajectory. Notably, the SOCP becomes infea-

sible at around t = 3 s and more uncertainty samples are given

until feasibility is regained. As expected, when Proposition 4.1

predicts the program is infeasible, such inference is consis-

tently mirrored by the solver. Fig. 1b specifically emphasizes

the time complexity during data collection stages. As the
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