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Abstract— This paper addresses the challenge of safe naviga-
tion for rigid-body mobile robots in dynamic environments. We
introduce an analytic approach to compute the distance between
a polygon and an ellipse, and employ it to construct a control
barrier function (CBF) for safe control synthesis. Existing CBF
design methods for mobile robot obstacle avoidance usually
assume point or circular robots, preventing their applicability
to more realistic robot body geometries. Our work enables CBF
designs that capture complex robot and obstacle shapes. We
demonstrate the effectiveness of our approach in simulations
highlighting real-time obstacle avoidance in constrained and
dynamic environments for mobile robots and 2-D robot arms.

I. INTRODUCTION

Obstacle avoidance in static and dynamic environments is

a central challenge for safe mobile robot autonomy.

At the planning level, several motion planning algorithms

have been developed to provide a feasible path that en-

sures obstacle avoidance, including prominent approaches

like A∗ [1], RRT∗ [2], and their variants [3], [4]. These

algorithms typically assume that a low-level tracking con-

troller can execute the planned path. However, in dynamic

environments where obstacles and conditions change rapidly,

reliance on such a controller can be limiting. A significant

contribution to the field was made by Khatib [5], who intro-

duced artificial potential fields to enable collision avoidance

during not only the motion planning stage but also the real-

time control of a mobile robot. Later, Rimon and Koditschek

[6] developed navigation functions, a particular form of

artificial potential functions that guarantees simultaneous

collision avoidance and stabilization to a goal configura-

tion. In recent years, research has delved into the domain

of trajectory generation and optimization, with innovative

algorithms proposed for quadrotor safe navigation [7]–[9]. In

parallel, the rise of learning-based approaches [10]–[12] has

added a new direction to the field, utilizing machine learning

to facilitate both planning and real-time obstacle avoidance.

Despite their promise, these methods often face challenges

in dynamic environments and in providing safety guarantees.

In the field of safe control synthesis, integrating control

Lyapunov functions (CLFs) and control barrier functions

(CBFs) into a quadratic program (QP) has proven to be a

reliable and efficient strategy for formulating safe stabilizing

controls across a wide array of robotic tasks [13]–[15]. While

CBF-based methodologies have been deployed for obstacle

avoidance [16]–[19], such strategies typically simplify the

robot as a point or circle and assume static environments
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when constructing CBFs for control synthesis. Some recent

advances have also explored the use of time-varying CBFs

to facilitate safe control in dynamic environments [20]–[22].

However, this concept has yet to be thoroughly investigated

in the context of obstacle avoidance for robots with complex

shapes. For the safe autonomy of robot arms, Koptev et al.

[23] introduced a neural network approach to approximate

the signed distance function of a robot arm and use it for safe

reactive control in dynamic environments. In [24], a CBF

construction formula is proposed for a robot arm with a static

and circular obstacle. Thirugnanam et al. [25] introduced

a discrete CBF constraint between polytopes and further

incorporated the constraint in a model predictive control

to enable safe navigation. The authors also extended the

formulation for continuous-time systems in [26] but the CBF

computation between polytopes is numerical, requiring a

duality-based formulation with non-smooth CBFs.

Notations: The sets of non-negative real and natural

numbers are denoted R≥0 and N. For N ∈ N, [N ] :=
{1, 2, . . . N}. The orientation of a 2D body is denoted by

0 ≤ θ < 2π for counter-clockwise rotation. We denote the

corresponding rotation matrix as R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

.

The configuration of a 2D rigid-body is described by position

and orientation, and the space of the positions and orienta-

tions in 2D is called the special Euclidean group, denoted as

SE(2). Also, we use ‖x‖ to denote the L2 norm for a vector

x and ⊗ to denote the Kronecker product. The gradient of

a differentiable function V is denoted by ∇V , and its Lie

derivative along a vector field f by LfV = ∇V · f . A

continuous function α : [0, a) → [0,∞) is of class K if

it is strictly increasing and α(0) = 0. A continuous function

α : R → R is of extended class K∞ if it is strictly increasing,

α(0) = 0, and limr→∞ α(r) = ∞. Lastly, consider the body-

fixed frame of the ellipse E ′. The signed distance function

(SDF) of the ellipse ψE : R2 → R is defined as

ψE(p
′) =

{

d(E ′,p′), if p′ ∈ Ec,
−d(E ′,p′), if p′ ∈ E ,

where d is the Euclidean distance. In addition, ‖∇ψE(p
′)‖ =

1 for all p′ except on the boundary of the ellipse and its

center of mass, the origin.

Contributions: (i) We present an analytic distance formula

in SE(2) for elliptical and polygonal objects, enabling

closed-form calculations for distance and its gradient. (ii)

We introduce a novel time-varying control barrier function,

specifically for rigid-body robots described by one or mul-

tiple SE(2) configurations. Its efficacy of ensuring safe



autonomy is demonstrated in ground robot navigation and

multi-link robot arm problems.

II. PROBLEM FORMULATION

Consider a robot with dynamics governed by a non-linear

control-affine system,

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊆ R
n is the robot state and u ∈ R

m is the

control input. Assume that f : Rn 7→ R
n and g : Rn 7→

R
n×m are continuously differentiable functions. We assume

the robot operates in a 2D workspace with a state-dependent

shape S(x) ⊂ R
2.

We assume the R
2 workspace is partitioned into a closed

safe (free) region F(t) and an open unsafe region O(t)
such that F(t) ∩ O(t) = ∅ and R

2 = F(t) ∪ O(t). We

assume the unsafe set O(t) is characterized by a collection

of dynamical elliptical obstacles with known rigid-body

motions, denoted as {E(qi(t),R(θi(t)), ai, bi)}Ni=1. Here, qi

denotes the center of mass and Ri denotes the rotation matrix

of the ellipse. In its body-fixed frame, ai and bi are the

lengths of the semi-axes of the ellipse along the x-axis and

y-axis, respectively.

Problem. Given a robot with shape S(x) governed by

dynamics (1) that can perfectly determine its state, the

objective is to stabilize the robot safely within a goal region

G ⊂ F(t) ∀t ≥ 0 such that S(x(t))∩O(t) = ∅ for all t ≥ 0.

III. PRELIMINARIES

In this section, we review preliminaries on control Lya-

punov and barrier functions and discuss their use in synthe-

sizing a safe stabilizing controller for dynamics in (1).

A. Control Lyapunov Function

The notion of a control Lyapunov function (CLF) was

introduced in [27], [28] to verify the stabilizability of control-

affine systems (1). Specifically, a (exponentially stabilizing)

CLF V : X 7→ R is defined as follows,

Definition III.1. A function V ∈ C
1(X ,R) is a control

Lyapunov function (CLF) on X for system (1) if V (x) >
0, ∀x ∈ X \ {0}, V (0) = 0, and it satisfies:

inf
u∈Rm

CLC(x,u) ≤ 0, ∀x ∈ X , (2)

where CLC(x,u) := LfV (x)+LgV (x)u+αV (V (x)) is the

control Lyapunov condition (CLC) defined for some class K
function αV .

B. Control Barrier Function

To facilitate safe control synthesis, we consider a time-

varying set C(t) defined as the super zero-level set of a

continuously differentiable function h : X × R≥0 7→ R:

C(t) := {x ∈ X ⊆ R
n : h(x, t) ≥ 0}. (3)

Safety of the system (1) can then be ensured by keeping the

state x within the safe set C(t).

Definition III.2. A function h : Rn × R≥0 7→ R is a valid

time-varying control barrier function (CBF) on X ⊆ R
n for

(1) if there exists an extended class K∞ function αh with:

sup
u∈U

CBC(x,u, t) ≥ 0, ∀ (x, t) ∈ X × R≥0, (4)

where the control barrier condition (CBC) is:

CBC(x,u, t) := ḣ(x, t) + αh(h(x, t))

= Lfh(x, t) + Lgh(x, t)u+
∂h(x, t)

∂t
+ αh(h(x, t)).

(5)

Suppose we are given a baseline feedback controller u =
k(x) for the control-affine systems (1), and we aim to ensure

the safety and stability of the system. By observing that both

the CLC and CBC constraints are affine in the control input

u, a quadratic program (QP) can be formulated for online

synthesis of a safe stabilizing controller for (1):

u(x) = argmin
u∈Rm,δ∈R

‖u− k(x)‖2 + λδ2,

s.t. CLC(x,u) ≤ δ,CBC(x,u, t) ≥ 0,
(6)

where δ ≥ 0 denotes a slack variable that relaxes the CLF

constraints to ensure the feasibility of the QP, controlled by

the scaling factor λ > 0.

IV. ANALYTIC DISTANCE BETWEEN ELLIPSE AND

POLYGON

In this section, we derive an analytic formula for comput-

ing the distance between a polygon and an ellipse, which

enables the formulation of CBFs to ensure safe autonomy.

We consider the mobile robot’s body S(x) to be described

as a polygon, denoted by P(q̃, R̃(θ̃), {p̃i}M−1
i=0 ). Here, q̃

denotes the center of mass and R̃ denotes the orientation in

the inertial frame. In its fixed-body frame, {p̃i} denotes the

vertices of the robot with line segments d̃i = p̃[i+1]M − p̃i

for i = 0, 1, . . . ,M − 1 where [·]M is the M -modulus.

For convenience, denote E and P as the bodies in the

inertial frame, and we assume their intersection is empty.

Now, denote E ′ and P ′ as the respective bodies in the body-

fixed frame of the elliptical obstacle. As a result, d(E ,P) =
d(E ′,P ′) by isometric transformation.

Furthermore, let p̃i be a vertex in the robot’s frame. Then

in the inertial frame, it becomes pi = q̃ + R̃p̃i. In the

obstacle’s frame, it is

p′
i = R⊤(pi − q) = R⊤R̃p̃i +R⊤(q̃− q), (7)

In short, {p̃i} are vertices in the robot’s frame, {pi} are

vertices in the inertial frame, and {p′
i} are vertices in the

obstacle’s frame. The distance function is

d(E ′,P ′) := min
i∈[M−1]

d(E ′,d′
i), (8)

which computes the distance between the ellipse E ′ and each

line segment d′
i. We write each segment as

l′i(τ) = (1− τ)p′
i + τp′

[i+1]M
, (9)

for τ ∈ [0, 1]. This further simplifies the function to

d(E ′,d′
i) = min

τ∈[0,1]
d(E ′, l′i(τ)). (10)



Now, there are essentially two groups of computations for

the distance in (10): one is the distance between the ellipse E ′

and the endpoints of d′
i; the other is the distance between the

ellipse E ′ and the infinite line l′i(τ) for arbitrary τ with the

caveat that the minimizing argument occurs at τ∗ ∈ (0, 1).
The two computations are detailed in the procedures which

follow our next proposition.

Proposition IV.1. Let E ′ be an ellipse and l′i be a line

segment in the frame of the ellipse. Denote τ∗ as the

argument of the minimum in (10). Then, the distance

d(E ′,d′
i) =











‖p′
i − p′

i‖, if τ∗ = 0,

‖p′
[i+1]M

− p′
[i+1]M

‖, if τ∗ = 1,

‖l′i(τ∗)− l′i(τ
∗)‖, if τ∗ ∈ (0, 1),

(11)

where pi′ and p[i+ 1]M
′

are the points on the ellipse

closest to pi′ and p[i+ 1]M
′
, respectively. These points are

determined using Procedure 1. The terms l′i(τ
∗) and l′i(τ

∗)
(on the ellipse) are determined using Procedure 2.

Procedure 1. Let p′ = (p′x, p
′
y) be one of the endpoints

for the line segment d′
i. Recall that the ellipse is defined by

its semi-axes along x-axis and y-axis, denoted by a and b,
respectively. The points on the ellipse are parameterized by

x(t) = a cos(t), y(t) = b sin(t), (12)

for 0 ≤ t ≤ 2π. The goal is to determine the point

(x(t), y(t)) on the ellipse that is closest to the point p′, so it

is a minimization problem of the squared Euclidean distance:

d2(t) = (p′x − a cos(t))2 + (p′y − b sin(t))2. (13)

To find the minimum distance, we determine the critical

point(s) by solving for 0 = d
dt
d2(t), which simplified to

0 = (b2 − a2) cos t sin t+ ap′x sin t− bp′y cos t. (14)

Using single-variable optimization, we substitute

cos t = λ, sin t =
√
1− λ, (15)

and this yields bp′yλ =
√
1− λ2((b2−a2)λ+ap′x), which is

a quartic equation in λ. Furthermore, a monic quartic can be

derived, which gives the following simplified coefficients:

0 = λ4 + 2mλ3 + (m2 + n2 − 1)λ2 − 2mλ−m2, (16)

where

m = p′x
a

b2 − a2
, n = p′y

b

b2 − a2
. (17)

From this point, the real root(s) of the equation can be solved

analytically following Cardano’s and Ferrari’s solution for

the quartic equations [29]. Let t be the solution so that p′ =
(x(t), y(t)) is a point on the ellipse and is closest to p′.

Hence,

d(E ′,d′
i) = ‖p′ − p′‖ (18)

where p′ is either p′
i or p′

[i+1]M
.

Procedure 2. We compute the distance between the ellipse

E ′ and the infinite line l′i(τ) whose minimizing point occurs

at τ∗ ∈ (0, 1). First, define the unit normal of the infinite

line as

n̂′
i =

1

‖d′
i‖
(−d′i,y, d′i,x). (19)

Denote l′i(τ
∗) as the point on the ellipse that is closest to the

l′i(τ
∗). In fact, this point l′i(τ

∗) must have a tangent line at

the ellipse which is parallel to l′i; which means the normal

at l′i(τ
∗) is ±n̂′

i. Therefore, we compute the point on the

ellipse up to a sign:

l′i(τ
∗) = ± I2ǫ n̂

′
i

‖Iǫn̂′
i‖
, (20)

where Iǫ = diag(a, b). The correct sign is chosen when we

are looking at the sign of the constant C in the line equation

Ax+By + C = 0 of l′i. In particular,

C = −n̂′⊤
i p′

i. (21)

If C > 0, then l′i(τ
∗) = − I2

ǫ
n̂′

i

‖Iǫn̂′

i
‖ ; otherwise, if C < 0, then

l′i(τ
∗) =

I2

ǫ
n̂′

i

‖Iǫn̂′

i
‖ . Finally, we determine l′i(τ

∗) on the line

segment d′
i using projection:

l′i(τ
∗) = p′

i + projd′

i

(l′i(τ
∗)− p′

i). (22)

Here, we are done with Procedure 2.

Next, we compute the partial derivatives of d(E ′,P ′) with

respect to either (q,R), the configuration of the obstacle, or

(q̃, R̃), the configuration of the polygonal robot.

In general, both procedures above compute the distance

using the Euclidean norm between two unique points: one

point p′ on a line segment of the robot, and the other p′

on the ellipse. This is, in fact, equivalent to the SDF of the

ellipse evaluated at p′ by the uniqueness of these two points.

Therefore, let p′ = li(τ
∗) for some 0 ≤ i < M , then

d(E ′,P ′) = ψE(p
′) = ψE(li(τ

∗)). (23)

Then, its gradient with respect to p′ is ∇ψE(p
′) =

p′−p′

‖p′−p′‖ .

However, note that p′ is a point transformed from the

polygonal robot’s frame using (7), which depends on the

configurations of the elliptical obstacle and the robot. Hence

the partial derivatives can be computed as follows.

Proposition IV.2. Let E ′ and P ′ be the elliptical obstacle

and polygonal robot, respectively, in the obstacle’s frame.

Let p′ and p′ be determined from Proposition IV.1, then

∂d

∂q
=

(

∂d

∂qx
,
∂d

∂qy

)

= −R∇ψE(p
′), (24)

∂d

∂R
= ∇ψE(p

′)⊗ (R̃p̃+ (q̃− q)), (25)

∂d

∂q̃
=

(

∂d

∂q̃x
,
∂d

∂q̃y

)

= R∇ψE(p
′), (26)

∂d

∂R̃
= R(∇ψE(p

′)⊗ p̃). (27)

Furthermore, (25) and (27) are derivatives with respect to

the rotation matrices; one may compute the derivatives with



respect to the rotation angle as

∂d

∂θ
= ∇ψE(p

′)⊤

[

∂R

∂θ

⊤

(R̃p̃+ (q̃− q))

]

= tr

[

∂d

∂R

∂R

∂θ

]

,

(28)

∂d

∂θ̃
= ∇ψE(p

′)⊤

[

R⊤ ∂R̃

∂θ̃
p̃

]

= tr

[

∂d

∂R̃

∂R̃

∂θ̃

⊤
]

. (29)

Following both propositions above, we compute the dis-

tance function

Φ(q,R, q̃, R̃) = d(E ,P) = d(E ′,P ′) (30)

for the elliptical obstacle E(q,R, a, b) and the polygonal

robot P(q̃, R̃, {p̃i}).

V. POLYGON-SHAPED ROBOT SAFE NAVIGATION IN

DYNAMIC ELLIPSE ENVIRONMENTS

In this section, using the distance formula in (30) and

assuming the known motion of the ellipse obstacles, we

derive TV-CBFs to ensure safety for polygon-shaped robots

operating in dynamic elliptical environments.

A. Time-Varying Control Barrier Function Constraints

We assume that there are a total of N elliptical obstacles

in the environment, each having a rigid-body motion with

linear velocity vi and angular velocity ωi around its center

of mass. We define each time-varying CBF as

hi(x, t) := Φ(qi(t),Ri(t), q̃, R̃), (31)

where Φ is the collision function and qi(t) and Ri(t) denotes

the position and orientation of the i-th ellipse at time t.
Now, by utilizing the known motion of the ellipses with

linear and angular velocity vi and ωi, we can express the

CBC condition as:

CBCi(x,u, t) :=

[

∂Φ(qi,Ri,x)

∂x

]⊤

F (x)u+
∂Φ(qi,Ri)

∂qi

vi

+
∂Φ(qi,Ri)

∂Ri

∂Ri

∂θi
ωi + αh(Φ(qi,Ri,x)) ≥ 0.

B. Ground-Robot Navigation

Suppose the robot has a polygonal shape with {p̃i}
denoting the vertices, and governed by unicycle kinematics,





ẋ
ẏ

θ̇



 =





cos(θ) 0
sin(θ) 0

0 1





[

v
ω

]

, (32)

where v, ω represent the robot linear and angular velocity,

respectively. The state and input are x := [x, y, θ]⊤ ∈ R
2 ×

[−π, π), u := [v, ω]⊤ ∈ R
2. The CLF for the unicycle model

is defined as a quadratic form V (x) = (x−x∗)⊤Q(x−x∗),
where x∗ denotes the desired equilibrium and Q is a positive-

definite matrix [30]. We define the goal region G as a disk

centered at the 2D position of the desired state x∗, with a

radius r.

By writing the robot’s position as q̃ = [x, y]⊤ and its

orientation via the rotation matrix R̃(θ), we write the shape

S(x) of the robot in terms of its state:

S(x) := conv{q̃+ R̃(θ)p̃i} (33)

where p̃i denotes the vertices of the polygon and conv{·}
denotes the convex hull of points. With this definition, we

can derive the CBF for the polygon-shaped unicycle model,

as in (31).

C. K-joint Robot Arm Safe Stabilizing Control

In this section, we discuss methods for controlling a

2D K-joint robot arm in a dynamical ellipse environment

by utilizing our proposed CBF construction approach. For

such robots, the links are intrinsically interconnected due to

kinematic chaining. This means that controlling any one link

will influence the pose of all subsequent links.

The dynamics of the robot arm are captured by:

θ̇ = ω, (34)

where θ = [θ̃1, θ̃2, . . . , θ̃K ]⊤ and ω = [ω1, ω2, . . . , ωK ]⊤.

For the robot arm, each link has an associated 2D shape,

denoted as Si(θ), which depends on the state of the arm.

The overall shape of the robot arm, is given by the union of

these shapes S(θ) =
⋃K

i=1 Si(θ). For simplicity, we assume

each Si is a line segment.

For each link i, its state in SE(2) consists of a posi-

tion q̃i = [xi, yi]
⊤: xi = xi−1 + Li cos

(

∑i
j=1 θ̃j

)

and

yi = yi−1 + Li sin
(

∑i
j=1 θ̃j

)

, and a rotation matrix R̃i

corresponding to θi :=
∑i

j=1 θ̃j . For simplicity, we suppose

x1 = 0 and y1 = 0, and Li represents the length of

the i-th link. The robot state can also be represented as

multiple SE(2) configurations corresponding to each link,

from (q̃1, R̃1) to (q̃K , R̃K). Additionally, we denote q̃K+1

as the end effector.

We define the CLF for the K-joint robot arm as V (θ) =
(θ− θ

∗)⊤Q(θ− θ
∗), where Q is a positive-definite matrix,

and θ
∗ is the desired joint states. The goal region G is

specified as a disk centered at the position of the end effector

corresponding to state θ
∗, with a defined radius r.

For safety assurance, the CBF is constructed using the

distance between the robot arm and elliptical obstacles:

hi(θ) = min
j∈[K]

Φ(qi,Ri, q̃j , R̃j). (35)

VI. EVALUATION

In this section, we show the efficacy of our proposed CBF

construction techniques using simulation examples, focusing

on ground-robot navigation and 2-D robot arm control.

Fig. 1 contrasts the SE(2) distance function with the

R
2 counterpart by visualizing their level sets. Our proposed

SE(2) approach incorporates the orientation of the rigid-

body robot, yielding notably improved results, particularly

when the robot is close to obstacles.

To highlight the significance of accurate robot shape

representation, we draw a comparison with a baseline cir-

cular robot CBF formulation. In Fig. 2, we compare safe



Fig. 1: Comparative analysis of the SE(2) and R2 signed distance functions for elliptical obstacles. The cyan triangle represents the rigid-body robot, with
its orientation varying across the sequence. The importance of considering robot orientation in distance computations becomes evident: while the SE(2)
function accounts for this orientation, the R2 approximation treats the robot as an encapsulating circle with radius 1. Level sets at distances 0.2 and 2 are
depicted for both functions.

(a) Initial Pose (b) Time t = 1.66 sec (c) Time t = 4.12 sec (d) Final Pose (e) Circular Robot

Fig. 2: Safe navigation in a dynamical elliptical environment. (a) shows the initial pose of the triangular robot and the environment. (b) shows the triangular
robot passing through the narrow space between two moving ellipses. (c) shows the robot adjusts its pose to avoid the moving obstacle. (d) shows the final
pose of the robot that reaches the goal region. In (e), we plot the trajectory of navigating a circular robot in the same environment.

(a) Initial Pose (b) Time t = 4.12 sec (c) Time t = 4.92 sec (d) Time t = 6.28 sec (e) Final Pose

Fig. 3: Safe stabilization of a 3-joint robot arm. The green circle denotes the goal region, and the gray box denotes the base of the arm. The arm is shown
in blue and the trajectory of its end-effector is shown in red. The trajectories of the moving elliptical obstacles are shown in purple.

navigation using our proposed SE(2) CBF approach with

a regular R
2 CBF approach. For both methods, we set

k(x) = [vmax, 0]
⊤ where vmax = 3.0 is the maximum

linear velocity. The remaining parameters were λ = 100,

αV (V (x)) = 2V (x), and αh(h(x, t)) = 3h(x, t).

We demonstrate safe navigation to a goal state. In Fig. 2a,

the triangular robot starts the navigation with position cen-

tered at (0, 0) and orientation θ = π/4. In Fig. 2b, the robot

adeptly navigates the narrow passage between two dynamic

obstacles. In Fig. 2d, we see that the robot is able to reach

the goal region without collision. In Fig. 2e, when the robot

is conservatively modeled as a circle navigating the identical

environment, it is evident that the robot has to opt for a more

circuitous route to circumvent obstacles. This is due to its

inability to traverse certain constricted spaces, as illustrated

in Fig. 2b. These outcomes underscore the superior perfor-

mance of our SE(2) CBF methodology. Another advantage

of the SE(2) formulation lies in its assurance of a uniformly

relative degree of 1 for the constructed CBF, obviating the

need to model a point off the wheel axis [31].

In the following set of experiments, we consider safe

stabilization of a 3-joint robot arm in a dynamical elliptical

environment. We set k(x) = [0, 0, 0]⊤ and restrict the joint

control bounds with |ωi| ≤ 3. In Fig. 3, the robot arm is able

to elude the mobile ellipses by nimbly adjusting its pose. In

Fig. 4, we show the control inputs of each joint over time.

We see that when the robot arm is close to the obstacles,

it is able to take large control inputs in adjusting its pose.

In Fig. 5, we show the CLF and CBF values over time.

A consistently positive CBF value throughout the trajectory

signifies safety assurance, while the decreasing CLF values

indicates the convergence to the desired state. Moreover, the

CLF value may increase when the arm is close to obstacles

(i.e. CBF value is low), this comes from the relaxation of

the CLF-CBF QP to ensure the feasibility of the program.



Fig. 4: Control input of the 3-joint robot arm.

Fig. 5: Lyapunov function and barrier function values over time.

VII. CONCLUSION

We present an analytic distance formula between elliptical

and polygonal objects. Leveraging this formula, we con-

struct a time-varying control barrier function that ensures

the safe autonomy of a polygon-shaped robot operating

in dynamical elliptical environments. The efficacy of the

proposed approach is demonstrated in rigid-body navigation

and multi-link robot arm problems. Future work will consider

extending the formulation to 3-D robot arm manipulation and

estimating the geometry and dynamics of the environment

with on-board sensing.
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