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We establish central limit theorems for the volumes of intersections of

B;’, (the unit ball of E;’,) with uniform random subspaces of codimension d

for fixed d and n — oo. As a corollary we obtain higher-order approxima-
tions for expected volumes, refining previous results by Koldobsky and Lif-
schitz and approximations obtained from the Eldan—Klartag version of CLT
for convex bodies. We also obtain a central limit theorem for the Minkowski
functional of the intersection body of B, evaluated on a random vector dis-
tributed uniformly on the unit sphere.

1. Introduction. An important aspect of stochastic geometry is the investigation of vol-
umes of random sets. They have been studied in a variety of contexts, including, for instance,
volumes of convex hulls of i.i.d. Gaussian vectors in R” (e.g., Barany and Vu [10], Calka
and Yukich [17]), points selected from the boundary of a fixed convex set (e.g., Reitzner
[73], Schiitt and Werner [80], Vu [87], Thile [83], Turchi and Wespi [84]), projections of
high-dimensional cubes onto a random subspace of fixed dimension (Paouris—Pivovarov—
Zinn [71], Kabluchko—Prochno-Thile [38]). In the high-dimensional setting, asymptotics and
phase transitions for the expected volume of i.i.d. random points selected from the vertices
of the unit cube or more general product distributions were investigated by Dyer—Fiiredi—
McDiarmid [22] and Gatzouras and Giannopoulos [29]. Recently, the case of points drawn
from a simplex and from nonproduct convex measures has been studied by Frieze—Pegden—
Tkocz [27] and Chakraborti—-Tkocz—Vritsiou [19]. Another important line of research is de-
voted to sets obtained from point processes defined on spaces of geometric objects, for ex-
ample, random tesselations (Gusakova and Théle [31]) and random cylinder processes (Baci
et al. [8]). Let us finally mention work concerning unions and Minkowski sums of random
sets (see the monograph by Molchanov [64]). While far from exhaustive, the lines of re-
search above give an indication of the rich and diverse perspectives on volumetric questions
in stochastic geometry.

Most of the early results focused on first-order asymptotics in the sense of expectation
or convergence (almost sure or in probability). More recent developments also treat con-
centration inequalities, small ball probabilities, large deviations or weak limit theorems. In
particular, central limit theorems for the volume or log-volume in the respective models were
established in [3, 10, 30, 31, 71, 83]. The three former references treat convex polytopes in
a fixed dimension, whereas the other ones random simplices for the dimension tending to
infinity.

In this article we focus on another model of random sets, namely, on sections of high-
dimensional origin-symmetric bodies by random subspaces (i.e., subspaces drawn from the
Haar measure on the corresponding Grassmann manifold). When the bodies in question are
convex, this model has played a central role in geometric functional analysis, especially via
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probabilistic methods put forth by Vitali Milman in his proof of Dvoretzky’s theorem [61].
Over the years this has grown into the whole new area of asymptotic geometric analysis (see
the classical book [62] and recent monographs [7, 16]). Convexity is often used by invoking
duality, especially between sections and projections, but some key results actually extend to
star-shaped sets (e.g., Litvak et al. [54, 55]). Moreover, star-shaped sets also furnish deeper
dualites in convex geometry, especially in dual Brunn—Minkowski theory (e.g., Lutwak et
al. [34, 56-58]). However, investigation of the asymptotic distributions of the volumes of
random sections of star bodies from a stochastic geometry perspective is a less explored path.
Our focus here is on asymptotic properties of random sections of ¢',-balls, including the
star-shaped case when p € (0, 1).

Geometric properties of random sections depend strongly on the relation between the di-
mensions of the ambient space and the section. For convex bodies in special positions, low-
dimensional sections are generically spherical, and their approximate radia can be calculated
in terms of certain geometric characteristics of the body (as stated in Milman’s version of
Dvoretzky’s theorem). Accurate volume approximation in this regime is just one of the im-
portant consequences. At the other extreme, one has sections of small codimension. The
asymptotic behaviour of their volumes has been obtained more recently and is directly re-
lated to the celebrated Klartag’s central limit theorem for convex bodies [40, 41] and sub-
sequent results by Eldan and Klartag [23], which we will now recall briefly (and somewhat
informally). We will also restrict attention to convex bodies, even though these results hold
in the more general setting of log-concave measures. Below by | - | we denote the standard
Euclidean norm on R".

Assume thus that K is a convex body in R” in isotropic position, that is, a random vector
X distributed uniformly in K has mean zero and covariance matrix equal to the identity. Let
E be a random k-dimensional subspace of R" distributed according to the Haar measure on
the Grassmanian G, . The central limit theorem, due to Klartag, asserts that there exists a
universal constant ¢ > 0 such that with probability at least 1 — e~“"* on the Grassmanian,
the total variation between yg — the standard Gaussian measure on E (i.e., the measure with
density gr (x) = (2) %2 exp(—|x|?/2) with respect to the k-dimensional Lebesgue measure
on E) and the law L(PgX) of PgX, where Pg is the orthogonal projection onto E, satisfies

1
lve — LPEX) |y < s

Thus, informally, for k£ < n¢ and n tending to infinity, almost all k-dimensional marginals of
X are almost Gaussian.

The total variation estimate given by Klartag was subsequently complemented by Eldan
and Klartag [23] with pointwise approximation of density. It turns out that with probability
1 — =", where c is again a positive universal constant, for x € E with |x| < n°, the density
f of PgX satisfies

‘ 1
1< —.
~ cn¢

f )
ge(x)
This result is of particular importance from the point of view of volumes, since f(x) equals to
the ratio Vol,,_x (K N (x + E1))/Vol, (K), where Vol; stands for the i -dimensional Lebesgue
measure and E~ is the orthogonal complement of E. The above approximation holds for
isotropic convex bodies. By an appropriate scaling, one obtains that if K,, € R" is a sequence
of convex bodies such that the random vectors uniformly distributed on K, satisfy EX,, =0,
Cov(X,) = ¢,1d and H, is a random subspace of K, of codimension d < n°, then with
probability tending to one as n — 00,

(1) Vol,_q (K, N Hy) = Vol,, (Kp)(1 + o(1)).

Q2mey)d/?
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The result by Eldan and Klartag provides us thus, in particular, with the first-order approxi-
mations for the volumes of random section of fixed codimension d of high-dimensional con-
vex bodies.

The goal of this article is to complement (1) with central limit theorems in the special case
of E’I’,—balls. Recall that, for p € (0, c0), the ball B; (the unit ball in the space E'I’,) is defined
as

n
B;:{xz(xl,...,xn)eR": Z|xi|p§1}’

i=I

whereas

n __ n., .
BOO_{xG]R : T§$|xl|51}.

B}, is a symmetric star-shaped set, and for p > 1, it is convex. One can verify that

o QU +1/p)"
@) Vol (B") = F‘(Tnji)

which via Stirling’s approximation shows, in particular, that for fixed p and large n,
Vol,,(B;’,)l/’1 behaves like c(p)/n'/P for some constant c(p).

Finite-dimensional £ ,-balls are of interest from various points of view, including the func-
tional analytic, geometric and probabilistic. The interplay between these viewpoints is appar-
ent in early research on sections of K’;—balls (e.g., Ball [9], Meyer and Pajor [60], Koldobsky
[43]). In fact, questions about low codimensional sections of convex bodies have been a
major driving force in convex geometry in the last 30 years [16, 44]. From a probabilistic
perspective, uniform distributions on B}, provide examples of natural nonproduct distribu-
tions that nevertheless exhibit properties that arise in the classical theory of independent
random variables. In recent years many strong results in this direction have been established.
In particular, Schechtman—Zinn [77], Sodin [81] and Latata—Wojtaszczyk [51] studied con-
centration and isoperimetric properties. Alonso-Gutiérrez—Prochno—Thile [4, 5], Gantert—
Kim-Ramanan [28] and Kabluchko—Prochno-Thile [36, 37] investigated limit theorems to-
gether with large and moderate deviations for various norms of vectors drawn at random
from B}, as well as their random projections. Naor and Romik [66, 67] studied proximity
of the normalized cone and surface measures on the boundary of B), and its consequences
for concentration. Eskenazis—Nayar—Tkocz [24, 25] established optimal constants in Khint-
chine inequalities for vectors distributed uniformly on Bj,. Another reason for investigating
probabilistic aspects of BZ is that probabilistic tools can be used in the study of other geo-
metric aspects, seemingly purely deterministic. This approach has been initiated in the work
by Schechtman and Zinn [76] and further continued in the seminal paper [11] by Barthe et
al. and, more recently, for example, by Chasapis, Eskenazis, Nayar, Tkocz (see [20, 24-26,
68]). Geometric results obtained this way include among others monotonicity of various ge-
ometric quantities and identification of subspaces of maximal/minimal volume. Recently, the
interplay between probabilistic and geometric aspects of sections of £, balls was also used
to establish sharp isoperimetric inequalities in Brunn—Minkowski theory. In particular, fun-
damental inequalities of Lutwak and Zhang for L ,-centroid bodies [59] were extended to the
star-shaped range p < 1 using a certain model of random sections of £/, balls [2]. This further
develops a probabilistic approach to proving stochastic versions of isoperimetric inequalities;
see, for example, [70].

Let us mention that some of the results mentioned above are special cases of statements
conjectured for general log-concave measures. In fact, also the CLT for convex bodies was
first established by Anttila—Ball—Perissinaki [6] for BZ rescaled to the isotropic position.
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The first-order asymptotics for the expected volume of BZ N H,, where H, is a random
subspace of fixed codimension d, asymptotically equivalent to (1) (which formally covers
the case of p > 1), were obtained before the result by Eldan—Klartag by Koldobsky and
Lifschitz [45] through a Fourier-analytic approach (in fact, the analysis in [45] covers not
only the convex case but the full range of p > 0). These authors obtained asymptotics also
in the cases of sections of proportional and fixed dimension. The equation (1) specialized to
B;‘,, after some calculations concerning the covariance matrix, gives (see [11], p. 490, for an
explicit formula for moments of coordinates) that, with probability tending to one as n — oo,

31+ DI (1+ 252)
2rT(1+ )T (1 +2)

2
3) Vol, (B 1 Hy) = ( ) Vol, (B)(1+ o(1))

(with Vol, (B;’,) given by (2)). The results by Koldobsky—Lifschitz [45] give the same asymp-
totic behaviour also for the expected volume. We remark that different approaches to the
first-order asymptotics yield different explicit expressions, which turn out to be equivalent
thanks to Stirling’s formula. In particular, it can be read from the above asymptotics that

Vol,—a(By N Hy) ysoo —— (T(1/p)\¥222T(1 4+ 1/p)*
4) — dpd'= <F(3/p)> 2d/2

Vol,—a(By ™)
in probability. This formulation is more convenient for higher-order analysis than (3), as it
allows to absorb certain normalization factors.
Our main results allow to complement this approximation with central limit theorems. We
postpone the precise formulation, which involves additional quite complicated formulas, to
Section 3, and here we just state them in a simplified form:

e For p € (0,2) and any fixed d > 0, we show that, for some explicit constants b, 4, 212) d>
the random variable

n3/2(Voln_d(Hn N BZ) i lb )
n—d p.d p.d
VOln—d(Bp ) n

converges weakly and in all Wasserstein distances WV, for ¢ > 1 to a Gaussian random
variable with mean zero and variance 2127, 4 (recall that ap, 4 is defined in (4)). This is the
content of Theorem 3.1.

e As a corollary to the CLT in Wasserstein distance, we obtain higher-order approximations
of IECVOI,,_d(B}“7 N H,) for p € (0, 2) of the form

@r(+ )"

EVol,_,(B"NH,) =
n=d(By 1 Hy) r(+24)

<ap,d + bl};—’d + o(n_3/2)>
(Corollary 3.2).

e For d =1, we extend the weak convergence to arbitrary p > 0 (Theorem 3.4).

e For p =00 and d = 1, we establish similar weak convergence also for noncentral sections
parallel to H,, (Theorem 3.5).

e Reinterpreting the result for d = 1 as a CLT for the radial function of the intersection body
of B} evaluated on a random vector from the sphere, we infer a central limit theorem for the
norm induced by the intersection body evaluated on such a random vector (Corollary 3.6).

Our approach relies on probabilistic formulas for volumes of sections developed by Nayar
and Tkocz [68] (for the case p € (0, 2)) and Chasapis, Nayar and Tkocz [20] (for p > 2). The
former one allows us to represent the volume in terms of expected determinants involving
some auxiliary random variables, which after applying certain reverse Holder inequalities for
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polynomials together with some geometric analysis allow to reduce the problem to the central
limit theorem for U -statistics. The latter formula relates the volume of a random section to the
value of the density at zero for a randomly weighted sum of independent random variables,
which allows to apply conditionally an appropriate version of the Edgeworth expansion for
non-i.i.d. sequences. We note that it seems that the lack of a version of Edgeworth expansion
in higher dimension suitable for our randomized setting is the main obstacle in extending our
results for p > 2 to general d. Since the investigation of expansions of this form is rather
distant from the main tools used in this article, we postpone it to future research. We refer
the reader to Remarks 6.2 and 6.3 for detailed comments concerning the difficulties in using
Edgeworth-type results present in the literature and description of recent developments on
randomized central limit theorems and Edgeworth expansions.

The organization of the article is as follows. After introducing the basic notation (Sec-
tion 2), we state our main results (Section 3). Section 4 is devoted to introduction of various
auxiliary results used in the main arguments. Finally, Section 5 is devoted to the proof of
results for p € (0,2) and general d, Section 6 to general p < co and d = 1, while in Sec-
tion 7 we sketch the proof for p = oo and d = 1, and in Section 8 we prove the result on the
intersection body of B)).

2. Notation. By C we will denote universal constants, whereas C, will stand for con-
stants depending only on the parameter a. In both cases the values of constants may change
between occurrences (even within the same line).

For x = (x1,...,x,) € R" and p € (0, 00), we will denote |x|, = (|x{ |7 +-- -+ lxp |PHYP
We set |x]|oo = max; <, |x;|. As a function on R", | - |, is a norm for p > 1 and a quasi-norm
for p € (0, 1). We will also write | - | for | - |.

For a random variable X and p € R, by || X||,, we will denote the pth absolute moment of
X, thatis, for p £ 0, | X, = EIX|IPHYP, || X]lo =exp(Elog|X|) (in fact, we will use 1X1p
for p # 0 only).

For a sequence of random variables X, and a sequence of positive real numbers a,, we
will write X,, = op(a,) if X,/a, converges in probability to zero and X, = Op(ay) if X,,/aj,
is bounded in probability. Let us also introduce similar notation, which despite being less
standard, will allow us to shorten some formulas. We will write X, = oy, (a,) (resp., X, =
Owm(ay)) if X, /a, converges to zero (resp., is bounded) in all spaces L, for g > 0 (with
the subscript m corresponding to moments). We note that the speed of convergence (resp.,
implicit constants) may and usually will depend on g.

When dealing with independent random variables, for example, X, Y, we will denote by
Ex, Ey expectation with respect to just one of them (conditional expectation with respect
to the other one). Variants of this standard convention will be used for larger families of
independent random variables; the exact meaning will be either explicitly introduced or clear
from the context.

By £(X) we will denote the law of a random variable X.

We will often work with multiindices i = (i, ...,iq) € n]9. By [n]¢ we will denote the
set of multiindices with pairwise distinct coordinates. Similarly, for a set I by [n]! (resp.,
[n]L) we will denote the set of all (resp., all one-to-one) functions from [ to [n]. For I C [d]
and a multiindex i € [n]¢ by i, we will denote (i¢)¢ey € [n]!. Sometimes, we will also use
the notation i; to denote a stand-alone multiindex, writing, for example, ) ; el i, - For
instance, if I = {2, 3}, this notation should be understood as | <;, 4, <, @iyi3-

3. Main results. Recall that for ¢ > 1, the Wasserstein distance W, (P, Q) between two
probability measures P, Q on R™ is defined via the formula
g _ : —_vie
Wy (P, Q)1 = &rg_ ElX —Y|?.

LX)=P,L(Y)=0
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In dimension m = 1, the Wasserstein distance admits a more explicit representation as
1
-1 -1
W, (P, Q)1 = /O |Fp (1) = Fo (n)|7dt1,

where Fp LF 0 I are generalized inverses of the cumulative distribution functions of P, Q,
respectively (see, e.g., [85], p. 75).

It is well-known (see, e.g., [85], Theorem 7.12) that a sequence of probability measures
(P,) converges in WV, to some measure P if and only if it converges weakly and the gth
absolute moments of P, converge to the gth absolute moment of P.

We are now ready to formulate the first result.

THEOREM 3.1. Let d be a positive integer, and let H,, be a random Haar distributed
subspace of R" of codimension d. For p € (0, 2], define

<F<1/p))d/22d/2r<1 +1/p)?

apd =

) r'(3/p) md/? ’
LG/p) L (TG/P\\(TA/p)\*>2 242731 +1/p)
bpa=(d+2 d( _3( ) )( ) |
rd =N TG, T \ram) Nrarm 2
Then the sequence of random variables
Vol,,—s(H, N BY) 1
3/2 p’ _p )
" ( Vol,_q(Bl 4y 4T e

converges in distribution as n — o0 to a mean zero Gaussian random variable with variance
6 x2,-2dd+Srd+1/p* <r<5/p> 3<F(3/p>>2)2<r(1/p)>d+4
P md rda/py “\rd/p/) ) \r@/p)

Moreover, for each q > 1, the convergence holds in the Wasserstein distance W, .

As a corollary to the convergence in Wasserstein distances, we immediately obtain the
following refinement of the asymptotic expansion (4) of Voln_d(BZ N H,).

COROLLARY 3.2. In the setting of Theorem 3.1,
@r 4+
n—d
'+ T)

by

E Vol,_q (B!, N Hy) = (ap’d $224 4 0(n3/2)>_

REMARK 3.3. The implicit constant in o(n~3/?) in the above theorem depends on p
and d. In principle, our proofs allow for obtaining estimates with explicit dependence on
these parameters, also for moments of higher order, which would lead to a concentration of
measure type result. However, we do not pursue this direction.

The method of proof of Theorem 3.1 is restricted to p € (0, 2). In the special case of d =1,
we can, however, extend the central limit theorem to arbitrary p € (0, 00).

THEOREM 3.4. Let H, be a random Haar distributed subspace of R" of codimension
one. For p € (0,00), let ap 1,bp 1, 2127’1 be defined by (5) and (6). Then the sequence of
random variables

Vol,,_ (B N Hy,) 1
n3/2< n p 1n Cay— —pr)
Vol,_1(Bp™ ) n

converges in distribution to a mean zero Gaussian random variable with variance Zi 1
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Using the same method as in the proof of Theorem 3.4, we can obtain a result concerning
more general sections of the cube B[ by random hyperplanes. Note that, while for fixed
p < 00, Voln(BZ) — 0 as n — 00, in the case of p = 0o, we have Voln(BZ) = 2", For this
reason in the limit theorem, it is more convenient to normalize the volume of the section by
2",

THEOREM 3.5. Let H, be a random Haar distributed subspace of R" of codimension
one, and let u be a unit vector normal to H,,. For x € R, set

a(x) = _ne 2,

93
20+/27

342

b(x) = — (Bx* —6x*+1)e 7.

For every x € R, the sequence

n3/2 (z—n Vol,,—1(B5 N (xu + Hy)) —a(x) — @)
n

converges in distribution to a centered Gaussian variable with variance

81  _3x25 4 2 2
— 3x"—6 1)°.
T (3x x”+ 1)

T’ =
Let us conclude the presentation of our results with a corollary concerning the intersec-
tion body of B). Recall that the radial function of a star-shaped body K C R" in direction
u € "1 is defined as ok (u) = sup{t > 0: tu € K}. The intersection body of a body K,
introduced by Lutwak [57], is a star-shaped body ZK whose radial function is given by
pzk () = Vol,_1 (K N ut), where ut is the hyperplane orthogonal to u. Thus, our results
for sections of codimension d = 1 can be rephrased as a limit theorem for ,OIB;;(U) for a
random vector 7 distributed uniformly on $”~!. With some additional work one can infer
from it a corollary concerning ||77||IBZ = sz;;(n)_l — the Minkowski functional associ-
ated to 7 BZ. We state it only for p < oo but clearly a similar result can be obtained for the
cube.

COROLLARY 3.6. Assume that p € (0,00), and let || - || B! be the Minkowski functional
of the intersection body IBj,. Let also n be a random vector distributed uniformly on the

sphere $" 1 and let ap,1,bp1 and 212, | be as in Theorem 3.4. Then as n — 00, the sequence
of random variables

— 1 b ’1
”3/2(||17I|IB;17V01"_1(B; 1)__+ p2 )
ap.1 na,

converges in distribution to a Gaussian random variable with mean zero and variance

4, 3w (F(l/p)

2\ 2
a2 _ LG/p) _LG/p) )
rG/p)

3
)
)F““/”) (r(l/m (1/p)?

p.17p,1 16
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4. Tools.

4.1. Stable random variables and the first volume formula. Recall that, for o € (0, 1), a
positive random variable Y is called a standard positive a-stable random variable if Ee 'Y =
e~ for > 0. In this case for g < a,

7 gye — L(=4/®)
al(—q)

A positive «-stable variable has a density, which we will henceforth denote by g,. We refer
to [39, 75] for basic information concerning stable random variables.

Our main tool will be the following formula for volumes of sections of B}, due to Nayar
and Tkocz [68]. The article [68] provides the proof in the case of p = 1 with a remark that
the same method works for general p. For reader’s convenience and to provide the constants
in the case p # 1, in Appendix 8 we sketch the argument from [68] in full generality.

THEOREM 4.1. Let p € (0,2), and let H be a subspace of R" of codimension d. Let

ui,...,uq be an orthornormal basis in HL, and let V1, ..., U, be the columns of the matrix
with rows uy, ...,uq. Then
2n T+ )" " 2
n _ )4 .7
(8) Vol,—a(B, N H) = — rag %)E det ]2 ;i :

where W;’s are i.i.d. random variables with density proportional to t — %gp/z(t).

COROLLARY 4.2. In the setting of Theorem 4.1,

Voln_d(BZﬂH)_ZdF(l—F%)d( (” 1 T))‘”

— = t —V;v;
Vol,_q (B~ /2 ,2 Wi

In the sequel we will need a formula for moments given in the next lemma.

LEMMA 4.3. For @ € (0, 1), let W be a random variable with density proportional to
t— %ﬁga(t). Then for g <o +1/2,

_ TOEDHIG) _ Teghvr

EwWY? = = .
rdz2ris)  rdHrid)

PROOF. Let Y be a standard positive «-stable random variable. Noting that the density
of W equals to m ga (1), we get

Eyi~'2  T(ZHr3)

EWq == - )
EY-12 TEFNHr(G)

where in the last equality we used (7). U

4.2. The second volume formula. 1In the proof of Theorem 3.4, we will use another for-
mula for volumes of sections of B;,. We will use only the special case for codimension one,
but we formulate it in full generality. The case d =1 is stated in [20], Corollary 4.8; the
general case also follows from arguments presented therein.
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THEOREM 4.4. Let p € (0,00), and let H be a subspace of R" of codimension d. Let
Ui, ..., ug be an orthonormal basis in H+, and let vy, ..., v, be the columns of the matrix
with rows uy, ...,uq. Let moreover Yy, ..., Y, be independent random variables with density

e PV where B, =2T(1+ 1/p). Then
Vol,_q(BI N H)
Vol,_q(Bj ™)

= f(0),

where f:R? — [0, 00) is the continuous version of the density of the R-valued random
vector Y i v;Y;.

4.3. Uniform random subspaces and the uniform spherical distribution. Let us now in-
troduce basic facts concerning uniform random subspaces of R” and uniform distribution on
§"=1, which we will need in the proofs. We refer the reader, for example, to the classical
monograph [62] by Milman and Schechtman for a more detailed account.

By G, we will denote the Grassmanian, that is, the space of all k-dimensional subspaces
of R”. It is endowed with the unique normalized Haar measure inherited from the natural
action of the orthogonal group. Whenever we speak about a random k-dimensional subspace
of R”, we mean a random element of G, ; distributed according to this measure. It follows
from the uniqueness of Haar measure that H is a random k-dimensional subspace if and only
if its orthogonal complement A is a random (n — k)-dimensional subspace.

Basic properties of Gaussian random variables imply that if G, ..., G are i.i.d. standard
Gaussian vectors in R”, then span(G1, ..., G) is a random k-dimensional subspace of R”".
Moreover, if uy, ..., u; are obtained from G, ..., Gy as a result of the Gram—Schmidt or-
thogonalization, then each of the random vectors u; is distributed uniformly on the sphere
sn=1

An important role in our arguments will be played by integrability properties of the random
vectors u;, which will follow from the classical concentration inequality. It is a consequence
of the isoperimetic inequality on the sphere due to Lévy [53] and Schmidt [78, 79]. Its crucial
role in high-dimensional geometry and probability was first observed by V. Milman in his
proof of the Dvoretzky theorem [61].

THEOREM 4.5.  Let u be a random vector distributed uniformly on the sphere S"~. Then
for any 1-Lipschitz function f: S"!' - R, and any t > 0,

P(|f (u) = Ef ()| > 1) < 2exp(—cnt?),

where c is a universal constant.

4.4, Reverse Holder inequalities for polynomials. We will also need comparison of mo-
ments for polynomials in independent random variables. Historically, results of this type (for
positive moments) appeared first for Gaussian and Rademacher variables in the work by Nel-
son [69] and Bonami [15] in the context of hypercontractivity of Markov semigroups. Later,
they were extended to more general variables in particular in [46, 48]. We refer to the mono-
graphs [21, 49] for a detailed account.

Apart from comparison of positive moments, we will need a result allowing us to compare
negative moments with the first moment for tetrahedral polynomials with nonnegative coef-
ficients (recall that a multivariate polynomial is called tetrahedral if it is affine in each of the
variables). We have not been able to find results of this spirit in the literature; we provide them
in Lemma 4.10 and Corollary 4.11 below. We remark that certain reverse Holder inequalities
for negative moments of positive functions in the discrete setting have been considered in
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[65]. Inequalities for general polynomials and log-concave measures were obtained in [18].
For our purposes we need, however, stronger estimates in a simpler setting of independent,
positive random variables.

Let k > p > 1. We say that a random variable X is (k, p) hypercontractive with constant
y if, for every a, b e R,

) lla+by Xl <lla+bX]l,.

The following theorem is the real valued case of [46], Proposition 3.2. We remark that
the original formulation is more general, as it involves hypercontractivity for Hilbert space
valued coefficients. Moreover, it provides explicit formulas for the value of the constant y,
which we will omit, as it will not be needed in the sequel.

PROPOSITION 4.6. If1 < p <2 <k and X is a centered random variable such that
| X|lx < oo, then X is (k, p)-hypercontractive.

As is well-known (see, e.g., [46], Theorem 2.5, or [48], formula (1.4)), hypercontractivity
implies comparison of moments for tetrahedral polynomials.

PROPOSITION 4.7. Let 1 < p <«k. If X1,..., X, are independent random variables,
(x, p)-hypercontractive with the same constant y, then for all tetrahedral polynomials Q in
n variables

o Xy, ...y X, =[QX1s . X)),

COROLLARY 4.8. Let k =2, and let X1, ..., X, be i.i.d. copies of a random variable
X such that E|X|¢ < oo. Then for every p > 0, there exists a constant K, depending only
on d,k, p and the law of X, such that, for every tetrahedral polynomial of degree d in n
variables,

loXi, ... X, = K[|QX1, ..., Xn) | ,-

PROOF. Since Q(X1, ..., X;;) can be written as a tetrahedral polynomial in the variables
X1 —EX,..., X, —EX, we may and will assume that X is centered. Moreover, we can
assume that p € (1, 2). Indeed, let Z be a random variable such that, for some ¥ > p > 0 and
a constant D,

I1Zlle < DIZllp,
and let p’ € (0, p). Then by Holder’s inequality applied with exponents ¢, ¢/(t — 1) for r =
(k — p")/(k — p) > 1, we get, forr = p'/(pt) < 1,
EZP = Ezprzp(l—r) < (Ezprt)l/t(Ezp(l—r)z/(z—l))l—l/t _ (Ezp/)l/t(EZ,()l—l/t
< (Ezp/)l/lDK(l—l/t)(EZp)K(lfl/t)/p _ (Ezp/)l/tDp(l—r) (Ezp)lfr’

from which one obtains || Z]|, < pl/r=1 | Z|l,» and as a consequence || Z]|, < Dl/’||Z||pr. In
what follows, we will thus assume that p € (1, 2).

Write Q = Qo + -+ + Qg, where Q; is the homogeneous part of Q of degree i. By
Propositions 4.6 and 4.7,

d d
loX,.... X)), <D o1QiX0, .., X)), <K Y 1Qi(X1, -, X)),

i=0 i=0
for some constant K, as in the statement of the corollary.
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By [1], Proposition 1.2, (see also [47], Lemma 2) the right-hand side above is bounded
from above by C4K || Q(X1, ..., X»)ll», which ends the proof. []

Above we have considered only tetrahedral polynomials; however, in the Gaussian case,
thanks to infinite divisibility, each polynomial can be approximated by a tetrahedral one. Hy-
percontractivity of Gaussian variables in the sense of (9) goes back to the seminal work of
Nelson, Bonami and Gross related to hypercontractivity for Markov semigroups. As a conse-
quence of their results, we have the following theorem (we remark that explicit constants are
known, but as they are not needed for our proofs, we state the result in a simplified version).

THEOREM 4.9. Let G be a standard Gaussian vector in R". For each k, p > 0 and every
polynomial Q: R" — R of degree at most d,

|0, = Cpal 2@,

So far we have dealt only with positive moments; however, a crucial step in the proof of
Theorem 3.1 will be based on comparison of the first moment with negative moments for
positive polynomials in independent random variables. Its proof relies on a similar idea as
the one presented above.

LEMMA 4.10. Let X be a positive random variable such that EX < oo and EX™° < o0
for some p > 0. Then for any k € (0, p] and any a >0, b > 0,
1 1
E < ;
(a+bX) ~— (a +obEX)¥

where o = || X |-/l X]]1.

PROOF. We may assume without loss of generality that a, b > 0. Consider the function
¢: Ry — Ry, given by

()= 1

N T

We have
k(@VP+ 1) (=K + pz" /P + 217 + p)
,02Z2(Z1/'0 + 1)2
for z > 0. Thus, ¢ is concave on R.. Setting Z = X ~”, by Jensen’s inequality we get
1 1 E 1

P— -
(@+bX)< a* (1+((a/b)rz)-1/ry

¢"(2)=— <0

1 1
= a—KIEgo((a/b)pZ) < a—Kgo((a/b)pEZ)

1 1
T (@+bIX|-p)¥  (a+obEX)< O

COROLLARY 4.11. In the setting of Lemma 4.10, let Xi,...,X, be i.i.d. copies
of the random variable X and let (a;,,.. i,)i,....izcln] be an array of nonnegative num-
bers such that a;,,.. ;, = 0 whenever there exists | # m such that ij = iy. Let ¥ =

i ,'dX,'I---X,'d.Thel’l

i1yeig=1%1,...,

1Yl <o Y.
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PROOF. We will prove by induction on n that for any tetrahedral polynomial Q in n
variables with nonnegative coefficients,
E 1 - 1

OXy,.... X" — (EQ(o Xy, ...,0X,))"

from which the corollary follows by homogeneity of the d-linear form.
For n = 0, (10) is trivial, while for n = 1 it reduces to the assertion of Lemma 4.10. Assume

(10)

thus that (10) holds for 0, 1, ..., n — 1. Any tetrahedral polynomial in n variables with non-
negative coefficients is of the form Q(xy, ..., x;) =x, 0Q1(x1, ..., Xn—1) + OQ2(x1, ..., Xn—1)
where Q1, 0> are tetrahedral and also have nonnegative coefficients. Thus, by Lemma 4.10
applied conditionally on X1, ..., X,—1 and the induction assumption we obtain
1
Q(Xls '--7XH)K
1
=Ex,...x,_Ex,
! ! (Xan(leaXn—1)+Q2(X1»-’Xn—1))K
1
= EX] ..... Xn—1 P
- 1
~ (Ex,...x,(Ex,0Xn) 010 X1,...,0Xy—1) + Q200 X1, ..., 0 X,—1)))"
. 1
EQ0X1,....0X,))*
where we used the fact that (cEx, X,,) Q1(x1,...,x,—1) + Q2(x1, ..., x,—1) is tetrahedral,

which allows us to use the induction assumption. [

4.5. U-Statistics. Let X, X1, X», ... be a sequence of i.i.d. random variables with values
in some measurable space (S, .F), and let &: 89 — R be a measurable function. The U-
statistics of order d and kernel /2, based on the sequence {X;};>1, are random variables defined
as

(n—4d)!
Un(h) = U P () ==—== 3 hXiy, ..., Xi), n=d.

ie[n]d
Define also the unnormalized sum

n!
Sp() =8 = 3" h(X,-l,...,X,-d):mUn(h).
ic[n]d ’

We will also use the above definitions for d = 0 interpreting S as a one element set and
identifying functions from S into R with constants. Thus, according to this convention for
any constant 4, S,5°> (h) = ,EO) (h)=h.

Going back to general d, note that, by modifying the kernel /4, we may assume without
loss of generality that it is invariant under permutation of the arguments. In the subsequent
part, we will work under this assumption.

U -statistics appeared for the first time in the 1940s in the work by Halmos [32] and Ho-
effding [33] in the context of unbiased estimation. Since then, they have found applications,
for example, as higher-order terms in Taylor expansions of smooth statistics [21] or in random
graph theory [35]. In a geometric context, they were used in [86] to prove a CLT for volumes
of Minkowski sums of random convex sets (see also the monograph [64]) and in [71] in the
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proof of the CLT for volumes of low dimensional random projections of the cube. The reason
behind the appearance of U -statistics in these references and our proof are quite different. In
our case they show up as some conditional variances in the one-dimensional Taylor expansion
of functions appearing in the volume formula of Theorem 4.1, whereas in the cited references
they are directly related to mixed volumes and the zonotope volume formula. Yet another line
of research involving a somewhat related but different notion of Poisson U -statistics has been
pursued, for example, in [50, 74] where the authors among other examples consider applica-
tions to intrinsic volumes of sets arising from the Poisson flat process. These results are of
a different flavour than ours, they are related to stochastic analysis on the Poisson space and
concern asymptotic behaviour of random sets in a fixed dimension, when the intensity of the
underlying Poisson process tends to infinity.

Below we describe basic properties of U -statistics, referring for a more detailed descrip-
tion of their asymptotic theory to the monographs [21, 35, 52].

The kernel 4 (and the corresponding U -statistic) is called canonical if EA (X, x2, ..., xg) =
0 for all x2,...,x7 € S. One of the basic tools in the theory of U -statistics is the Hoeffding
decomposition, which allows to represent any U -statistic based on a square integrable kernel
of mean zero as a sum of uncorrelated canonical ones. Let us now briefly describe how it
works. We will use the notation

i ®"'®,U«df=/5df(xlv-"’xd)'ul(dxl)"'Md(dxd)’

where i1, ..., g are signed measures on S. For k =0, ..., d, we define the kth Hoeffding
projection of £ as

Tkh(x1, . X)) = By — P)® -+ ® (85, — P) ® PP Mp,
where P is the law of X and §, stands for the Dirac mass at x. For instance,
moh =Eh(Xy, ..., Xa),
wih(x) =Eh(x1, X2, ..., Xa) —Eh(X1, ..., Xa),
moh(xy, x2) =Eh(xy, x2, X3, ..., Xq) —Eh(x1, X2,...,X2)
—Eh(xa, Xo,..., Xg) + Eh(Xq, ..., Xq).

One checks that for k£ > O the kernel 7r; 4 is canonical. Moreover,
d

d
U=y (k> UM ()
k=0
or in terms of S,gk),
d
Dy =S (1) =0
(11) SOmy=Yy" (k> - d)!S” (rrh).

k=0
Canonical U -statistics can be thus considered building blocks for the general case. Their

advantage stems from the following elementary estimate for their second moment. If / is
canonical, then

nld!

n _d)'Eh(Xl,...,Xd)z.

E|S (h)|* =

Indeed, the left-hand side above equals
> > Eh(Xiy, .. Xiph(Xj, ... X)),

ie[n]d je[n]d
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and using the canonicity and symmetry, one can easily see that the expectations do not
vanish only if i and j differ just by a permutation of coordinates in which case they equal

Ehz(X 1, .-, Xq). In particular, since mih is a canonical kernel of order k, we obtain that for
k>0,
13 2 : 2
(12) E‘Sn (nkh)’ = (n—k)!E(nkh(Xl"”’Xk)) .
It is also straightforward to check that S,gk) (mxh), k=0, ..., n are uncorrelated. In partic-
ular (11), for n = d together with (12) give
d
d
(13) Eh(xl,...,xd)2=Z<k>E(nkh(X1,...,Xk))2.
k=0

4.6. Hermite polynomials. Recall that Hermite polynomials are orthogonal polynomials
with respect to the standard Gaussian measure. There are many conventions concerning their
normalization, we will use the probabilistic one and define for n € N,

dn
Hy(x) = (—1)1e¥ /25 _g=x/2,

dx"
Thus, in particular,
Hp(x) =1,
Hi(x)=x,
(14) Hy(x) =x*—1,

Hs(x) =x3 — 3x,
Hy(x) = x* —6x2 +3.

We refer, for example, to the monograph [35] for the presentation of various probabilistic
properties and applications of Hermite polynomials. In the sequel only low degree polynomi-
als will appear, in two different settings, to simplify calculation of expectations of Gaussian
polynomials and as ingredients in the Edgeworth expansion.

4.7. Cumulants. Let us now briefly recall the basic properties of cumulants of random
variables.

Let X be a real valued random variable. For n > 1, the cumulants ¢, = ¢, (X) are defined
as

n
¢ =1"—logEe"X| .
" dr" s =0
Clearly, ¢, are well-defined if X has all moments. Moreover, we have the identity (see, e.g.,
[63], equation (1.2))

15 o= >

Lry+-+n-rp=n

(=1 gy 4y = Dind
(ANTQ2NY2 - () --ry)!

(EX)(EX?)?... (EX")™.

In particular,
¢ =EX,
0 =EX? — (EX)? = Var(X),

(16) 3 2 3 3
3 =2(EX)” - 3EXEX"+EX° =E(X —EX)~,

¢ =E(X —EX)* = 3(E(X —EX)?)*.
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The other important properties of cumulants are
(X +1)=c¢(X) forn>2,telR,
@tX)=1t"c,(X) forteR
and
(X1 4+ Xp) = (X)) + - + 6 (Xm)

if X1, ..., X}, are independent random variables.
It is also easy to see that odd cumulants of a symmetric random variable vanish.

4.8. Edgeworth expansion. We are also going to need basic results on Edgeworth ex-
pansion of the density for sums of independent nonidentically distributed random variables,
which provides the correction to the local central limit theorem. As references for this topic,
we propose the classical monographs [12, 72].

Consider a sequence Xi, X3, ... of independent centered random variables. Let B, =

:’:1 EX 1.2, and for integers k > 2 and n > 1, define the number

nk=2)/2 1
k2 Z e (Xi)

n i=1

a7 A =

and a function g; ,: R = R,

—x2/2 Aivan \"
Gn(¥) = ——=e ™/ Y Hipop+- +rk)(x)l_[ < ) :
2n Lry+etkerp=k ( +2)'
71yl €N

In particular,

—x2/2

e

1
QO,n(X) = \/E

1
qin(x) = \/T_ﬂe
(18) 2

_ 1 —x2/2< )L39”>
g2.n(x) = me 7 )
1 P /2( 3n)“4n A%n)
= Hs(x)—— + Hy — + Ho

The Edgeworth-type theorem we are going to use is the following special case (I = 1) of
[72], Theorem 7, p. 175.

THEOREM 4.12. Let X1, X2, ... be independent random variables with mean zero. De-

note B, =" |EX 12 Let K > 3 be an integer. Assume that:
(1) hmmfnﬁoo B >0, hmsup”_)OO 22 ElX |K
(i1) hmn_>OO m 1 EIX; |K 1 x;|>n7) = Ofor someposztzve T<1/2,

(iii) foroa = (K — 1)/2 and every fixed ¢ > 0,

(19) lim n / [[Ee"¥ dt =o0.
|t|>¢

n—> 00 .
i=1
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Then for all n sufficiently large the random variable S, = B), 12 "_1 Xi admits a density
fn such that

o 2,2 Gk,n (X ) 1
(20) fn(x) = \/27 + Z Sz o\ &2

uniformly in x € R.

To apply the above theorem, we will need the following lemma (a corollary to [72],
Lemma 10, and the remark following its proof (p. 174)).

LEMMA 4.13. Let X1, X», ... be a sequence of independent centered random variables.
Assume that there exists a set 1 of positive integers and positive constants A, §, C, R such that

i |Z N [n]]
1mmf—A >0,
n—oo n
and for alln € T and |t| > R,
C
21 Ee'" X
D | =

Then the condition (19) is satisfied for any a > 0. Moreover, the condition (21) is satisfied
for some C, 5, R > 0 if the variables X,,n € L, have densities of uniformly (with respect to
n € 1) bounded variation.

5. Proof of Theorem 3.1. Let us now give the proof of Theorem 3.1. It will be split into
several steps presented in separate sections. To simplify the notation, we will often suppress
the dependence of random variables on the dimension n. It should be remembered that the
asymptotic notation such as o(1), O(n) etc. concerns n — oco. The implicit constants may
depend on d, p and some other parameters (independent of n), for example, the order of
moments considered. Recall also the notation O,,(-), 0,,(-) introduced in Section 2.

5.1. Preliminary steps. A random subspace of R"” of dimension d may be obtained as
span(G1, ..., Gg), where G; = GE") =(gi1,..-,&in), i =1,...,d are i.i.d. standard Gaus-
sian vectors in R" (i.e., g;j, i € [d], j € [n] are i.i.d. Gaussian variables of mean zero and

variance one). If we define uy,...,uy as the result of the Gram—Schmidt orthogonaliza-
tion applied to Gy, ..., Gg4, then H, = span(G1, ..., Gd)L =span(uy, ..., ud)L is a uniform
subspace of codimension d in R". More explicitly, we have

Gi — Pi1G;

U= —————"-—

|Gi — Pi_1Gi|
where fori =0,...,d — 1, P;: R* — R" is the orthogonal projection on the random sub-
space span(G1, ..., G;). Note that with probability one this subspace is of dimension i.

Moreover, the random operator P;_; is stochastically independent of the random vectors
Gi,...,Gg,.

Observe also that each u; is distributed uniformly on the sphere $”~!. Note that the sec-
ond moment of a single coordinate of u; is equal to 1/./n. Therefore, by the concentration
inequality on the sphere (Theorem 4.5) and the union bound, for any ¢ > 1,

V/Tog(n) )

NG

(22) P(maj [uiloo > Ct < 2nd exp(—ctlogn).
i<
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As a consequence, we obtain

J/logn
23) P(maxhulee = CYZE ) = o)
Moreover, for any g > 0, (22) and integration by parts give
Jlogn
(24) N N

in other words max;<g |#i|co = Op(y/(logn)/n) (recall the notation Oy, 0,, introduced in
Section 2).
Let Wy, ..., W, be ii.d. random variables with density proportional to % gps2(x) and

X = Wl._l. We will assume that the family (X;); is stochastically independent of (g;;);;, and
we will denote integration with respect to them by Ex and Eg, respectively.

Going back to random subspaces, denote by A the d x n matrix with rows u, ..., ug, and
let vy, ..., v, be its columns (thus, v;’s are random vectors in ]Rd) Let also A be the matrix
with columns /X;v;. Then

Z Xjv; j = AAT ,
and using the Cauchy-Binet formula, we get

(25) n:_det(ZX vjv j) > aiXi - Xig,

Jj=1 ie[n]d

where fori= (i1,...,iq) € [n]%,
aj ] (det Aj)~,

with A;j being the d x d matrix with columns v;, ..., v;, (we choose to write the quantities
of interest in terms of summation over the whole set [n]4 rather than just over increasing
sequences to simplify bookkeeping of indices which will appear in the sequel). Another ap-
plication of the Cauchy—Binet formula gives

(26) Y ai= det(z vjv] ) = det(Id) = 1.

ie[n)d

Moreover, using the multilinearity of the determinant and the fact that it vanishes for ma-
trices which are not of full rank together with the definition of the vectors u; and v;, one can
expand det A; along the steps of the Gram—Schmidt procedure and see that

1 1

27 ai=— det(T)?,
d'TT{_, 1Ge — P1Ge?
where T'j is the d x d matrix with columns I';, ..., I';, with I'; = (g;i) je[ay-
Moreover, by (23), with probability tending to one as n — oo,
1 d
(28) max g5 < Cg 28"
ie[n)d n
whereas (24) and Holder’s inequality give
logn)?
(29) max a; = Om( ( g:) )
ie(n)d n
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Observe that, thanks to Lemma 4.3 (applied with ¢ = p/2), we have EX f < oo for all

o > 0and IEXi_p < oo for p < p/2+41/2. Note that p/2+1/2 > 1/2. Using Corollary 4.11
together with (26), we obtain that there exists p = p, > 1/2 and a constant C, 4, depending
only on p and d, such that

1
<Cpg-————=C),
CicpneaiXiy - Xi)? = P Cieppead? "

(Note that thanks to (26) the bound on the random quantity on the left-hand side becomes
deterministic.)

Similarly, by Corollary 4.8 we get that, for all » > 1, there exists C), 4., such that, for every
tetrahedral polynomial Q of degree at most d,

(31) loXi,.... X)), < Cpar|OX1,.... X,
By Corollary 4.2,

(30) Ex d-

Volu—q(Ha NV By)  29T'(1 + 1/p)? 1

(32) = Ex ,
Vol,_a(Bp™%) wd/? VY,

our goal is thus to obtain a limit theorem for the variable

1 mdl? 1
33 E — ——b .
33) X T 29T+ 1/p)d <a”"’ n ”"’)

Note that in the above expression the random variables X; are integrated out and it is a
function of the random vectors G1, ..., G4.

5.2. Linearization. We will make use of the identity

L1 y—p 30 -wF 50 -w?
ﬁ_\/ﬁ 2u3/? 81u5/2 16p7/2
L W = A6 4 5y 420 /iy + 2904/3)
16M7/2ﬁ ’

valid for y, u > 0.
Applyingitto y =Y, = 3 (e aiXi, - - - Xi, and

(34) n=ExY, = EX)
(where we used (26)) and integrating with respect to X;’s, we obtain
po L1 3Ex(u—p)? SEx(Ya—p)?
X /Yn «/ﬁ 8M5/2 16M7/2
3/2
) g, W= V603 4 5Ya'? + 20 /iY, +29/Y,)
X 1617727,

= Tl,n + T2,n + T3,n~

We will first show that 7> ,, and T3, are o, (n=3/?) as n — oo.
Let us start with 75 ;. To simplify the notation, for i € [n]¢ denote

(36) Xi=Xi1”'Xid_EXXil"'Xid-
For two multiindices i, j € [n]4, let

(37) EG,§) =k, ) e [dI*: ix = ji}.
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For I, J, K C [d]? let
A, J,K)={G1j.k) € ([n]¢)3: EG,j)=1E(G. k) =J,EG,k =K}.
Note that if at least two of the sets I, J, K are empty, then by independence of X;’s, we have
ExXiX;Xk =0 forall (i, j, k) € A(/, J, K).
Thus,

Ex (Y, — M)3 = Z Z ajajaxEx XXX,
1,J,K (i,j,k)eA(l,J,K)

where the outer summation is over all triples /, J, K of subsets of [a’]2 in which at least two
sets are nonempty. To prove that 7> , = o, (n_3/ 2), it thus suffices to show that, for each such
triple,

(38) Y aiajakEx|XiXjXy| = o (n3).
(i.j.K)eA,J,K)
Observe first that [A(1, J, K)| < n3¢~2. Moreover, by (29) and Hélder’s inequality,
aiajax = Op ((log n)3dn_3d).

Since X/s have moments of all orders, another application of Holder’s inequality gives
Ex|XiX;Xk| < Cq,,. These three observations imply that, for any g > 1, the left-hand side
of (38) is bounded in L, by Cy. 4(logn)*?n=2 = o(n=3/?). Thus indeed, T, = 0, (n>/?).

We will now pass to T3 ,,. Recall (30) and (31). Let « =4p/(2p — 1) > 1. Using Holder’s
inequality applied with exponents «, «, 2p and taking into account that 1 = (EX)¢ depends
only on p and d, we obtain that

(T — VI (16132 4+ 5Y,* 420 /Y, + 291u/Ty)
16172/Y,

< Cpa(Ex VY, — )/
x (Ex (160> + 5Y3/% 420 /1Y, + 29u/Y, ) ) /* (Bx v, 2) /20,

Using (31) and (34), we see that the second factor on the right-hand side above is bounded
from above by C), 4, whereas an application of (30) shows that the third factor is bounded by
Cp,q; thus, to prove that 73 , = oy, (n=3/2), it is enough to show that

(39) (Ex VY — Vi*) = 0, (3.
Using the inequality |,/y — /| < w2y — |, we get
Ex VY0 — V¥ < Cpa(Bx|Yn — u*)* < Cpa(Ex Yy — 1)),

where in the last inequality we used (31).

Thus, it is enough to show that Ex (Y, — w)? =0, (n=3/%). Note that Ex (Y,, — ,u)2 is pro-
portional to the term 77 , in (35). In the next step of the proof, we will perform a careful
analysis of this term from which it will in particular follow that it is O,,(n~!). For trans-
parency, let us, however, provide now a simple argument showing that it is indeed o,, (n=3/4).
Some of the calculations will be also used in the said more precise analysis.

Recall the notation (37). Similarly as for 7 ,, for I C [d]?, define A(1) = {(, J) €
([n]%)2: £(, j) = 1}. By independence of X;’s, we have

(40) Ex(Yo—w?= ) Y agExXiX).
o#Ic[d]? 1L,))eA)

T3,n = EX
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For fixed I and g > 1, by the triangle inequality in L, we obtain that, as n — o0,

(logn)*
(41) H “Zd aiaj q < c,,,d|A(1)|HiI€r%a2 < CpaglAD =57
bt

where we again used the fact that X; have all moments and (29).

For I # &, we have |[A(])| < n?d=1 and so the right-hand side above is bounded by
Cp.a,q(logn)?@n=t = o(n=3/4).

Summing over I, we get the claimed estimate.

5.3. Analysis of randomly normalized U -statistics. 'We will now analyze the term 77 ,, =

3Ex (Y, —w)?
8M5/2

if I C [d)? satisfies | 7| > 2, then |A(I)| < n??2. Thus, by (40) and (41), we see that

Ex(Y, —w?= Y Y aiagiEx (XiX;) + om(n ).
IC[d, =1 ijemid
£a4,j)=I

. We will use the notation introduced at the end of the previous section. Note that

Since X;’s are i.i.d, for all i, j such that |£(i, j)| = 1, we have

2d—1
(42) EXiXj=EX] [ Xk — BX)* = EX > Var(X)) =: v.
k=2
Thus,
43 _ -3/
( ) T],n—m Z Z aiaj+0m(7l )
IC[d12|1]=1 ijemd
Ehj=I
Recall that ', ..., I',, are the columns of the matrix with rows G1, ..., G4. Recall also

the definition (27) of the coefficients aj, which implies that

(44) Zn:= > aaj=—",

IC[d =1 1J€[njd
EWj=I

where
d

(45) Vo=[]1Ge— Pe—1Gel*
=1

and (recall the notation concerning U -statistics from Section 4.5)

(46) Sp=8a(h)=>_ h(Ti,....Tipy )
le[n]zd 1

is a U-statistic of order 2d — 1 with kernel #: (R9)24~1 — R defined as

h(xt,...,X2a-1)
47)
2d—1

> ) det({xe} U {xe}ees)” det({xi} U (xedeeraa—ingns)*-
k=1 JC2d—11\{k}
J|=d—1

(2d — !

We slightly abuse the notation and treat here the determinant squared as a function of a set
rather than a sequence of vectors. Note that / is a symmetric function.
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Let us first establish a law of large numbers-type behaviour of the denominator on the
right-hand side of (44). Denote ﬁz =span(Gy,...,Gy—1), and note that, conditionally on
Gi,...,Gy¢_1, Pr_1Gy is a standard Gaussian vector on ﬁz. In particular, using Theorem 4.9,
we obtain that

E|Pi-1G ¢l =EE(|/P-1Gel!|G1. ..., Geo1) < CJd/2,

Moreover, ﬁg is almost surely of dimension £ — 1 <d — 1 and |Gy — P,— 1G|2 |Gg|2
|Pr—1G¢|*. Using the fact that by Chebyshev’s inequality and Theorem 4.9, ||G¢|> — n| =
O (4/n), together with Holder’s inequality, one can see that

d d
]_[ |G — P—1Go|* = 1_[ 1Ge)* + O (n9™1) =0 4+ O, (n?7172).
£=1 (=1

As a consequence, again by Holder’s inequality,

d
(48) V, = n 1Ge|* + Om(nz‘l”) —n2d 4 Om(nzdfl/z)'
=1

Observe also that if G is a standard Gaussian vector in R”* and m > ¢ + 3, then integrating
in polar coordinates together with the Stirling formula gives

2(m—q—2)/2r($)
2’”/21“(% +1)

E|G|~Y =E|G|? <Cym™12.

Conditionally on G1, ..., G¢_1, the random vector G, — P;_1G; is a standard Gaussian
vector on HL,J-, which is of dimension at least n — d. Thus, conditioning successively, we
obtain that, forn > Cy 4,

2d
(49) z

=< Cd,q-
q

n

Let us now pass to the numerator. To shorten the notation, denote Eh = EA(I'y, ...,
I'24-1). By the Hoeffding decomposition (11), applied with 2d — 1 instead of d, we have

2d—1

n! 2d — 1 (n—k)! k
50 S, =———FEh S A~ N wh
0 " (m—2d+1)! +Z( k )(n—2d+l)'"( )
By (12) and (13), we have
X nlk! nlk! )
E‘S( )(7-[ h)‘ ey (JTkh(Fl,.. Fk)) = _k)'Eh(FL...,de,]) .
The variables S,(,k) (mrh) are polynomials in the Gaussian vectors G, ..., G4 of degree at

most 4d. Thus, the above estimate in combination with Theorem 4.9 shows that

(n—K! _ 2d—1-k/2
2w Ty S ) = Onn ).

Holder’s inequality and (49) thus give

n—k! S h)
(n—2d+1)! Vi

= Op(n™' 72,
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Combined with (44) and (50), this shows that

n! Eh -1 SVmh) -2
Ip=——"——"+2d—1 (@)
s "Tm=2d+ 1)V, +( )(n —-2d4+1)! V, +Onln™)
Eh -1 S @h) _
2d-1 2
Dy, o)

where in the second equality we again used (49).

Let us now derive the announced more precise asymptotics for the denominator. In what
follows, we will repeatedly and without a direct reference use Theorem 4.9 to pass from
boundedness of absolute moments of some fixed order for a sequence of Gaussian polynomi-
als to the assertion that this sequence is, in fact, O,,(1).

Using (48), we obtain

d

=1

d 2

=11 Zgz, +Op(n*71)
=1

d
= Z 1_[ gtg,izz—lgtg,izz + Z 1_[ g?’mf}g%’izz + Om (n2d71)'

ic[n]2d (=1 ie[n]2d\[n]2d =1

Using boundedness of moments of g, ;’s together with Holder’s inequality and the fact that
|[n]2d \ [n]%| < Cyn%4=1 one obtains that the first moment of the second summand on the
right-hand side above is O(n2¢~!). Thus,

Z Hgﬁlzz 1g5121+0 - 1 Z HgL(H-l)/ZJ l1+0 ( Zd_l)

ie[n]2d {=1 ic[n)2d j=1
_ (=Dt O (21
= Z (n_ ) ) HgL(Hl)/ZJl, 1)+ On (™).
1<[2d] ije[n)l jel

For I # @, using independence of g, ;’s and the equality E(ge —1)2 =2, we get

) i nl!
E Z H(gL(j—H)/szij - 1) =2 (n— I
ije[nlLjel )
thus
(n—Ill)' 2d—|1/2
2 ) Z 1_[ g|.(]+1)/2J ij 1) Om(n 1 )
ijelnlLjel
For |I]| > 2, this is Oy, (n29=1), and so we obtain that
n! (n —1)! "

— 2d—1
=t 2d)'ZZ Onn™™)

{=1i=1

d n
_ 2d 2d—1
=n 2d) ZX; ( )

(n—

2d 2d—1
=n E |F| —d + Oy .
2d) —r (n )
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Going back to (51), we can write

Eh
Zy — —
n
En V| gy D! (i) + O (n™?)
— — n
nV, n=2d+1! V, "

I Gt V) 2 EM LSO —d) + (2d — 1 ! (T
—Wm =2( );;“ il-—d)+(Q2d — )m;ﬂl(z)

+ O (n_z),

where in the second equality we used once more (49) and Holder’s inequality.
Taking into account that V,, /n?¢ converges in probability to one and that the random vector

n n
(% ;umz ~d). JL’; ;mh(l“i))
converges weakly to a Gaussian vector with covariance matrix
2d Cov(|Ty|*> = d, i h(I'y))
(COV(|F,-|2 —d, mh())) E(m1h(T'}))? ) ’
we obtain that
n/? (Zn — E—h>
n

converges weakly to a mean zero Gaussian variable with variance
8(Eh)2d + (2d — 1)*E(m1h(T'1))* — 4(2d — DEh - Cov(|T1 | — d, w1h(T'})).

Moreover, another application of (49) together with Theorem 4.9 and Holder’s inequality
shows that, for each g > 0, the gth absolute moment of n3%(z, — %) is bounded indepen-
dently of n, which shows that the convergence in fact holds in W, for any g > 1 (see the
remark before Theorem 3.1).

Using (43) and (44) together with (35) and the fact that 75 , and T3, are oy, (n=3/%), we

obtain that
1 1 3vEh 3vEh
32fm + L DVEA N3 _ovhn
" <E\/Yn VI 8M5/2n> - (Tl’" 8M5/2n> +om(1)

converges in WV, to a centered Gaussian variable with variance

iz 9\)2
(52) P4 64u’

—4Q2d — DER - Cov(IT'1|*> — d, w1 h(T'1))).

(8(ER)2d + (2d — 1)*E(mih(T')))’

2

5.4. Calculation of the parameters. In order to obtain an explicit formula for X »

need to calculate

1, v, Eh(T'y, ..., Tag_1), E(r1h ()%, Cov(IT1 | — d, mh(T)).

4> We

The calculation of the first two parameters is straightforward, as they are expressed in
terms of moments of the random variable X, which are known thanks to (7). The remain-
ing parameters are moments of Gaussian polynomials of fixed degree and their calculation
involves additional combinatorial arguments.
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Recalling that . = EY,, = (EX )¢ where X| = W I'and W has density proportional to
x‘l/zgp/z(x) and using Lemma 4.3 with « = p/2 and ¢ = —1, we obtain

d d
5 _mw-yd _ (FO/PTU2N _( TG/p)\
63 w=EW (r<3/2>r<1/p>) (r(l/p))
Similarly,
(54) v=(EX))* 2 Var(X,) = EW; Y 2 EW2 — Ew; )
_ (F(3/P)F(1/2))2d—2<r(5/p)r(1/2) _ (F(3/P)F(1/2))2)
I'G/2)r(1/p) I'G/2)r(1/p) 'G/2)r(1/p)
2d—2 2
_ (2LGIDY A (LG
I'(1/p) 30(1/p) I'(1/p)

Let us now pass to the calculation of EA and r14(I"1). Recall that
m1h(T'1) =Er,,.. 1y A1, ..., T2g—1) — Eh.

We will calculate the first summand and then integrate it to get the other one. To simplify the
notation, let us denote E’ := Er,
Recalling the definition of %, given in (47), one can see that

1 (2d—2

Eh@y,...,Tog_1) = ———
(' 2d—1) Gd—Di\d—1

) (2d —2)Dy + D2),

where
D =F det({Fl, e, Fd})zdet({rz, Cat1,.--, de_l})z,
Dy =FE det({T, ..., Tg})* det({T', Tapi, ... Tog_1})™.

Let Q;,i=0,...,d — 1, be the orthogonal projection onto span(I'y, ..., Fi)L Cc R4, Q/1 be
the orthogonal projection onto span(I';)* and Q!,i=2,...,d be the orthogonal projection
onto span(I'2, Cgt1, ..., Fd+,-_1)L. Then using the interpretation of the determinant as the
volume of the paralellopiped we get

2 2 2
Dy =T PR QT2 1Qa—1Tal* - IT2?| Qi Tus1|” - | Q5T 2| - | QY Tau1|"-

Since conditionally on I'p, ..., [';, Q;';;1 is a standard Gaussian vector on a certain sub-
space of dimension d — i and an analogous property holds for Q/I'4;, we have

Dy = I *E| QT2 > (d — 2)i(d — 1)!
=(d —2)!(d — DIT1PE'(|Q1T2|* + Q1T *IT2 — Q1T2)?).

Using the fact that, conditionally on I'y, the random vectors Q' and I'y — Q"> are in-
dependent and have standard Gaussian distributions on spaces of dimension d — 1 and 1
respectively, we obtain

d—1 2 d—1
Dy =(d—2)\(d — 1)!|F1|2(E(Z g?) +E(Z g?)g§>,
i=1 i=1
where g;’s are i.i.d. N'(0, 1) variables. Thus,
Dy=(d—-2)!d—- DM PBA—-D+@d—-1)d—-2)+d—1)=(d—1)*d+2)|" |
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Similarly (the calculations are simpler),

Dy =Ty *(d — 1),

so we get
E'hTy,...,Ta_1)
1 2d -2 2 2 14
= 2d —2)(d — D“(d+2)| d— DI’
i (a2 1) (@d =2 = DE@+ DINE + @ = DEIr Y
2d —2)(d +2)|T r
2d—1(( )(d + 2T + T 4).
Integrating E'A (T, ..., Taq_1), we get
1
(55) Eh = ¥ 1((2d 2)(d+2)d+3d+d(d—l)) (d+2)d,
and finally,

1
56 mh(T) =
(56) 1h(I') = 7
To calculate the variance of 714 (I"1) and its covariance with |I";|*> — d, it will be convenient
to express it in terms of Hermite polynomials of the variables gy 1. To simplify the notation,
let us denote from now on gy = g¢.1. We have

S (2d~ 2)(d +2)(IT1> —d) + (IT1* = 3d —d(d — 1))).

1 d d
=1 Z:l

F Y (- 1><g,2-—1>)-

I<i#j=<d

Taking into account that the summands above are uncorrelated and that the second moment
of the kth Hermite polynomial equals k!, we get

8d3(d +2)2+24d +4d(d — 1)

(57) Var(m h(I'y)) =

2d —1)?
and
4d*(d +2
(58) Cov(mih(Ty), |T1)> —d) = %.

Combining (52)—(58), we finally obtain
= 9p?

ZP d= 6445

—4Q2d — DEh - Cov(IT'1|> — d, m1h(T'1)))

4I'(5/p) '(3/p)\2\2
OGra/y — 47
suaff

(8(Eh)%d + (2d — 1)*E(mri (')

3 2
_ 1)280,’ d+2)+24d +4dd - 1)

22
x (8(d+2) d>-d+ (2d -1
4d*(d +2)
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L'S/p) _ 3(?(3/17))2)2

(F/p) (1/p) 23 L ol 2
= T dro(LOID) \d+d (8(d +2)"d” +8d°(d +2)
r'd/p)

+24d +4d(d — 1) — 16(d + 2)*d?)

L'GS/p) _ 2,LB/p)y242
_ ez 3G

d+4,L3/pP)\d+4
24% (F(l/m) -

d(d +)5).

Recalling that

ST JE 85
converges to a centered Gaussian variable with variance ilz) 4 and going back to (32) and (33)
allows us to conclude the proof.

6. Proof of Theorem 3.4. The proof of Theorem 3.4 will be based on the volume for-
mula of Theorem 4.4 and the Edgeworth expansion given in Theorem 4.12.

PROOF OF THEOREM 3.4. Let g1, g2, ... be a sequence of i.i.d. standard Gaussian ran-

; _ (81,-80) _ 1 ..
dom variables, and let u, = T-ﬁ-%—g%. Then H, = span{u,}— is a random Haar distributed

subspace of R" of codimension one, and it is clearly enough to prove the theorem for this
choice of H,,.

Let Y1, Y2, ... be a sequence of independent random variables with density e Br1” where
Bp =2I'(1 + 1/ p). According to Theorem 4.4,

Vol,—1 (B N Hy)

(39) = fe1,2.(0),
Vol,_(Bp~Yy — TEE
where for oy, ..., 0, €R, fo,,.. o, R— [0, 00) is the continuous density of the linear com-
bination “'Y';’—“‘"ZY" To shorten the notation, let us suppress the dependence on the se-
ajtetoy

quence (g;) and write simply f, instead of fg, . ., (thisis a slight abuse of notation which,
however, should not lead to misunderstanding). We may assume that the probability space
we consider is of the form (2, F,P) = (21 x Q2, F1 ® F2,P1 ® P») and that the variables
gi depend only on the first coordinate while the variables Y; on the second one. With some
abuse of notation, we will thus sometime think of g;’s as random variables defined on €2
and Y;’s as random variables defined on 2;. Denote also X; = g;Y;. We will treat X;’s as
random variables on the space €27, for the moment fixing the sequence g;. Let us also denote
G, =1(g1,...,8n)- Thus, f, can be also interpreted as conditional density of ﬁ Y8
with respect to the o-field generated by g;’s.

In what follows, we will write Eg and Ey to denote integration with respect to G and Y.

The variables Y,, are symmetric, so their odd moments and cumulants vanish. Moreover,
all moments of Y,, are finite and a simple calculation shows that

2 I"(3/p) Ey4 — I'(5/p)
"AT(1/p)T(1+1/p)? "16r(1/p)L(1+1/p)*
Thus, by (16) we have
_ I'3/p)
o 20 = S 1 pmra+ 1/p?
Ca(¥) = I (F(S/p) _3F(3/p)2>
T er (1 + 1/py*\T(/p)  T/p)?)
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We will now apply the Edgeworth expansion given in Theorem 4.12 to f,. Let us verify
that the sequence (X;) satisfies the assumptions of this theorem Pg-almost surely. We will
use the notation introduced in the formulation of the theorem.

We have

n
B, =(EY{)> g
i=1

and thus by the strong law of large numbers liminf,_, 5 %Bn =EY 12, Pg-a.s. Similarly,

1 n
;ZEleil (EY115) Z|gl
i=1

Pg-a.s. for any K > 0. Thus, the condition (i) holds with Pg-a.s.
We have By | X; |5 1x;1=nr) < By |Xi | K7 /n = L1g;|KFVTE Y, K +1/T. Thus,

n n

% > Byl Xil ¥ 1y x50y < (EIYllKH/T)niZ > gl KT

i=1 i=

Again, by the strong law of large numbers, for every v > 0, the right-hand side converges
Pg-a.s. to zero, which shows validity of the condition (ii).

To verify the condition (iii), we will use Lemma 4.13. Let /& be the density of Y, note
that /' is integrable and so & has finite variation, say V. Moreover, the density of g;Y; is of
the form |gi|_1h(gi_1-), and thus its variation equals |g;|~'V <V fori e ZT={j: lgjl > 1}.
Using one more time the strong law of large numbers, we see that Pg-a.s.

lim IZNInll _
im — 1
n

n—oo

P(lg1l > 1) > 0.

Therefore, the condition (iii) of Theorem 4.12 is satisfied Pg-a.s. by Lemma 4.13.

We have thus proved that the assumptions of Theorem 4.12 hold Pg-a.s. for all K > 3. We
will, however, use it for K = 5 and only for x = 0. Thanks to the symmetry of X, (recall that
it implies that odd cumulants vanish), the expansion (20) will be actually simplified. Recall
also that ¢, (X;) = g;" ¢,»(¥;). Using the notation of Section 4.8, we obtain by (17) that

)‘3,11 - )MS,n =0
and

a) i gt
TEYD? (T 8
Combining this with (18) and (14), we get

4n=n

1
Qon(x) = ——e %12,

V2
an(X) = ‘B,n(x) =0

a(r) Y 1g,4

—x2/2 —6x2 4
o I EYH? (1, g)?

q.n(x) = ﬁ

Thus, P;-a.s. we have, as n — o0,

(61) Jn(0) =

R 1 ea(Y) 27 lgz 32
m@ylz)m( TR ED o ) >+0(" )
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Zz 1 g 1
(Zl 18 z
analysed as a special case d = 1 in the proof of Theorem 3.1. However, since the elementary

and easy analysis is hidden there in the rather involved formalism of general U -statistics, let
us repeat it here for completeness.

Note that the asymptotic behaviour of the random variable 5 has already been

We have
n3/2( 2= 1&4 _i)
Q7 18, n
(n—3)27_ (g} — 687 +3)
n3/2
12X @2~ D+ 3 s8R — (g2 — 1)+ 6n
13/2 >
n2
(Zn 182)2

The last factor on the right-hand side above converges a.s. to 1 by the law of large numbers.
The second quotient in parentheses converges in probability to zero, as can be easily seen by
calculating the variances (note that the summands in the numerator are multiples of Hermite
polynomials of different degrees or products of Hermite polynomials in different variables
and are thus uncorrelated). The first quotient converges weakly by the CLT to a mean zero
Gaussian variable with variance 24.

Using (61), (59) and (60), we thus obtain that

VO]n—l (B;l; N Hy) 1

—ap1— —bp
Vol,_(Bp~H) "ot
Voln_l(BZ N H,)
Vol,,_1(Bp ™)

V2L +1/pra/p'? (1 i(F(l/p)f(F(S/p) _3F<3/p>2>>
VAL @3/ p)'/? rG3/p)) \rd/p) “T(/p)?

1 3 (Y
= n ——— —_—
(o m@aylz)vz( & (EYIZ)2>>

(Y1) 1g, g) —-3/2
SN/_(EYZ)S/2<(ZZ_ 8; s +01P>(n )

and thus

Vol,,_1 (B N Hy) 1
VO]nfl(Bg_ ) n

converges in distribution to a mean zero Gaussian variable with variance

ca(Y1)? _

1287 (EY})S
24 (4F(1/p>F(1+1/p)2)5 1 <F(5/1D)_3F<3/p)2>2
1287 I'(3/p) 256I'(1+1/p)8\I'(1/p) ~T'(1/p)?

3 F(1/p)>5 Z(F(S/m F(3/p)2)2 2
— ra+1 -3 =%,

(Farm) "0+ 1P (Farm ~razme) ==
which ends the proof of Theorem 3.4. [J
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REMARK 6.1. Note that the term o(n /) in (61), in general, depends on the values
of the sequence (g;) and is not given explicitly. For this reason using Theorem 4.12 as a
black box will not lead to convergence in Wasserstein distance, contrary to the proof of The-
orem 3.1.

REMARK 6.2. In principle, the method of proof of Theorem 3.4 should work for general
d. What one would need is a suitable version of multidimensional Edgeworth expansion for
the density of sums of independent but nonidentically distributed random vectors (actually
only for the value of density at zero). The majority of the literature on Edgeworth expansions
in higher dimensions focuses on sums of i.i.d. variables; however, there are several results
concerning the non-i.i.d. setting (see, e.g., the monograph [12]). One of the main difficulties
in applying such theorems as black boxes for d > 1 is that, due to the Gram—Schmidt orthog-
onalization performed for each n in order to relate a random basis of HnL to Gaussian vectors,
one actually would need Edgeworth expansions not for infinite sequences of random variables
but for triangular arrays. We are not aware of a result of this type for densities, which would
be easily applicable in our setting. It is quite likely that such a result can be obtained by an
appropriate adaptation of the proofs of known theorems for sequences of random vectors.
Such an extension is, however, beyond the scope of this article.

REMARK 6.3. Let us note that Edgeworth expansions for randomly weighted sums of
independent real-valued random variables have been recently investigated in [13]. The results
obtained therein concern rather approximations of cumulative distribution functions than den-
sities and the average error in the Edgeworth expansion up to order four. While not directly
applicable to our setting, they share some similarities; in particular, they show that the average
approximation error for the Edgeworth expansion with deterministic terms (i.e., independent
of the direction) in a typical situation is of the order n~3/2, which agrees with the normaliza-
tion in our limit theorems. The results obtained in [13] complement an earlier work [42] in
which Berry—Esseen bounds for randomly weighted sums were investigated. Related Berry—
Esseen bounds for random vectors in higher dimension were also recently investigated in
[14]. Let us mention that actually this line of research was initiated already by V.N. Sudakov
in the late 1970s [82].

7. Proof of Theorem 3.5. The proof is similar and simpler than the proof of Theo-
rem 3.4, so we will just indicate the necessary modifications.
Considering again an i.i.d. sequence g1, g2 ... of standard Gaussian variables and letting

U, = 7@21 """ £)_ it is now straightforward to see that
81 +tg3
27" Vol,—1(B% N (xu + Hy)) = fu(x),

n
where f, is the conditional density of %, where Y1, Ys, ... is a sequence of i.i.d.
gt +8;

random variables, uniform on [—1, 1] and independent of the sequence (g;) (we condition on

(8i))-
Thus, repeating the steps related to (61), we obtain that

27" Vol,—1(BS, N (xu + Hy))

:—1 exp(——)62 ><1+i< ! -6 x )M(Yl) 2?218,4 )
V27 (EY2)1/2 2EY? #\EY})? By} @YD) (T, g))?

+op(n=?).
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By the analysis from the proof of Theorem 3.4, we thus see that
27" Vol,—1 (B N (xu + Hy))

1 < x? ><1+1< x* 6x2 N >C4(Y1)<3+U>>
= — X —_—— —_— — —
V2 EYD)12 P\ 2EY? 24\(Ey?? Ey2 ) @y?2\n "
for a sequence U, of random variables such that n3/>U, converges weakly to a Gaussian

variable with mean zero and variance 24. To finish the proof, it is now enough to rearrange the
terms and substitute the values of variance and fourth cumulant of the uniform distribution.

8. Proof of Corollary 3.6. The following argument is a simple application of a delta
type method in combination with Theorem 3.4.
PROOF OF COROLLARY 3.6. By Theorem 3.4 we have
pzey (M)
Vol,_1(Bp~")

where R, is a random variable such that n3/2(R, — bp,1/n) converges in distribution to a
centered Gaussian variable with variance Ei |- In particular, nR,, converges in probability to

=dp,1 + Ry,

bp.1.
Thus,
_ l b 1 1 1 b 1
n3/2(Vo1n_1(B;; Yinllzay — — +L2> :n3/2( _ L )
ap,1  nay,, ap1+ Ry ap; na, |
WPRE ( b,,,l)
) — s\ Rn———)
ap,l(ap,l + R,) a, n

To finish the proof, it suffices to note that the first summand on the right-hand side above
converges in probability to zero, the second one to N (0, 22,1 /a;‘,’l). U

APPENDIX: PROOF OF THEOREM 4.1

The argument we present below mimics the proof in [68] provided there for p = 1; there-
fore, we will only present a sketch. Our main objective is to derive correct constants on the
right-hand side of (8).

PROOF OF THEOREM 4.1. Let H(e) ={x e R": [{(x,u;)| <¢/2,j=1,...,d}. By a
well-known formula for volumes of sections (see [68] for a discussion and references),

L(1+ (n —d)/p) Vol,—a(H N By)

1 R VR
(62) =lim [ Mg
e—>0¢ H(e)
1 n
f— n ] —_— . .
=(2T (1 +1/p)) ah_r)% sdp( ZX,U, < 8/2>,
i=1 00

where X1, ..., X, are i.i.d. random variables with density m exp(—|x|?). By [24],

Lemma 23, X;’s have the same distribution as (2W;)~!/2g;, where G = (g1, ..., g,) is a se-

quence of independent standard Gaussian variables independent of the sequence (W;). Thus,

(o] =) (3

n n
ZXivi Zgiﬁi
i=1 i=1

< g/2> =P(G € (¢/2)K),
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where 7; = 2W;)~/?v; and K = A_le with A being the d x n matrix with columns ;.
Let V := (Ker A)* and G be the orthogonal projection of G onto V. Then G € (¢/2)K if
and only if Ge(e /2)(K N V). Conditionally on W;’s, G is a standard Gaussian vector on
the d-dimensional subspace V. It has a continuous and bounded density with respect to the
Lebesgue measure on V, whose value at zero equals (277)~¢/2. As a consequence, by the
Fubini and Lebesgue dominated convergence theorems

i (5]

i=1

< e/2> =Ew 111% gidIPG(G € (e/2)(KNV))

=2"12n) " PEy Volg(K NV)
=232 =25 1 Vol (K N V).

It remains to observe that A is a linear isomorphism between V and R?, and it maps K NV
onto Bgo, which is of volume 2¢. Thus,

—-1/2
71
—1/24d 3d/2
Vol 1) = @A) =2 s 3 ot ))
j=1
which, combined with the previous formula and (62), gives

" -1/2
2" rd+1/p)n L

Vol._+(B" A H) — E[ det —v;v! )

ol,—q(B), N H) 72T (14 (n—d)/p) ) ;W/vjvj
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