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We establish central limit theorems for the volumes of intersections of
Bn

p (the unit ball of !n
p) with uniform random subspaces of codimension d

for fixed d and n ! ∞. As a corollary we obtain higher-order approxima-
tions for expected volumes, refining previous results by Koldobsky and Lif-
schitz and approximations obtained from the Eldan–Klartag version of CLT
for convex bodies. We also obtain a central limit theorem for the Minkowski
functional of the intersection body of Bn

p , evaluated on a random vector dis-
tributed uniformly on the unit sphere.

1. Introduction. An important aspect of stochastic geometry is the investigation of vol-
umes of random sets. They have been studied in a variety of contexts, including, for instance,
volumes of convex hulls of i.i.d. Gaussian vectors in Rm (e.g., Bárány and Vu [10], Calka
and Yukich [17]), points selected from the boundary of a fixed convex set (e.g., Reitzner
[73], Schütt and Werner [80], Vu [87], Thäle [83], Turchi and Wespi [84]), projections of
high-dimensional cubes onto a random subspace of fixed dimension (Paouris–Pivovarov–
Zinn [71], Kabluchko–Prochno–Thäle [38]). In the high-dimensional setting, asymptotics and
phase transitions for the expected volume of i.i.d. random points selected from the vertices
of the unit cube or more general product distributions were investigated by Dyer–Füredi–
McDiarmid [22] and Gatzouras and Giannopoulos [29]. Recently, the case of points drawn
from a simplex and from nonproduct convex measures has been studied by Frieze–Pegden–
Tkocz [27] and Chakraborti–Tkocz–Vritsiou [19]. Another important line of research is de-
voted to sets obtained from point processes defined on spaces of geometric objects, for ex-
ample, random tesselations (Gusakova and Thäle [31]) and random cylinder processes (Baci
et al. [8]). Let us finally mention work concerning unions and Minkowski sums of random
sets (see the monograph by Molchanov [64]). While far from exhaustive, the lines of re-
search above give an indication of the rich and diverse perspectives on volumetric questions
in stochastic geometry.

Most of the early results focused on first-order asymptotics in the sense of expectation
or convergence (almost sure or in probability). More recent developments also treat con-
centration inequalities, small ball probabilities, large deviations or weak limit theorems. In
particular, central limit theorems for the volume or log-volume in the respective models were
established in [3, 10, 30, 31, 71, 83]. The three former references treat convex polytopes in
a fixed dimension, whereas the other ones random simplices for the dimension tending to
infinity.

In this article we focus on another model of random sets, namely, on sections of high-
dimensional origin-symmetric bodies by random subspaces (i.e., subspaces drawn from the
Haar measure on the corresponding Grassmann manifold). When the bodies in question are
convex, this model has played a central role in geometric functional analysis, especially via
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probabilistic methods put forth by Vitali Milman in his proof of Dvoretzky’s theorem [61].
Over the years this has grown into the whole new area of asymptotic geometric analysis (see
the classical book [62] and recent monographs [7, 16]). Convexity is often used by invoking
duality, especially between sections and projections, but some key results actually extend to
star-shaped sets (e.g., Litvak et al. [54, 55]). Moreover, star-shaped sets also furnish deeper
dualites in convex geometry, especially in dual Brunn–Minkowski theory (e.g., Lutwak et
al. [34, 56–58]). However, investigation of the asymptotic distributions of the volumes of
random sections of star bodies from a stochastic geometry perspective is a less explored path.
Our focus here is on asymptotic properties of random sections of !n

p-balls, including the
star-shaped case when p ∈ (0,1).

Geometric properties of random sections depend strongly on the relation between the di-
mensions of the ambient space and the section. For convex bodies in special positions, low-
dimensional sections are generically spherical, and their approximate radia can be calculated
in terms of certain geometric characteristics of the body (as stated in Milman’s version of
Dvoretzky’s theorem). Accurate volume approximation in this regime is just one of the im-
portant consequences. At the other extreme, one has sections of small codimension. The
asymptotic behaviour of their volumes has been obtained more recently and is directly re-
lated to the celebrated Klartag’s central limit theorem for convex bodies [40, 41] and sub-
sequent results by Eldan and Klartag [23], which we will now recall briefly (and somewhat
informally). We will also restrict attention to convex bodies, even though these results hold
in the more general setting of log-concave measures. Below by | · | we denote the standard
Euclidean norm on Rn.

Assume thus that K is a convex body in Rn in isotropic position, that is, a random vector
X distributed uniformly in K has mean zero and covariance matrix equal to the identity. Let
E be a random k-dimensional subspace of Rn distributed according to the Haar measure on
the Grassmanian Gn,k . The central limit theorem, due to Klartag, asserts that there exists a
universal constant c > 0 such that with probability at least 1 − e−cnc

on the Grassmanian,
the total variation between γE – the standard Gaussian measure on E (i.e., the measure with
density gE(x) = (2π)−k/2 exp(−|x|2/2) with respect to the k-dimensional Lebesgue measure
on E) and the law L(PEX) of PEX, where PE is the orthogonal projection onto E, satisfies

∥∥γE − L(PEX)
∥∥

TV ≤ 1
cnc

.

Thus, informally, for k ≤ nc and n tending to infinity, almost all k-dimensional marginals of
X are almost Gaussian.

The total variation estimate given by Klartag was subsequently complemented by Eldan
and Klartag [23] with pointwise approximation of density. It turns out that with probability
1 − e−cnc

, where c is again a positive universal constant, for x ∈ E with |x| < nc, the density
f of PEX satisfies

∣∣∣∣
f (x)

gE(x)
− 1

∣∣∣∣ ≤ 1
cnc

.

This result is of particular importance from the point of view of volumes, since f (x) equals to
the ratio Voln−k(K ∩ (x + E⊥))/Voln(K), where Voli stands for the i-dimensional Lebesgue
measure and E⊥ is the orthogonal complement of E. The above approximation holds for
isotropic convex bodies. By an appropriate scaling, one obtains that if Kn ⊆ Rn is a sequence
of convex bodies such that the random vectors uniformly distributed on Kn satisfy EXn = 0,
Cov(Xn) = cnId and Hn is a random subspace of Kn of codimension d ≤ nc, then with
probability tending to one as n ! ∞,

Voln−d(Kn ∩ Hn) = 1
(2πcn)d/2 Voln(Kn)

(
1 + o(1)

)
.(1)
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The result by Eldan and Klartag provides us thus, in particular, with the first-order approxi-
mations for the volumes of random section of fixed codimension d of high-dimensional con-
vex bodies.

The goal of this article is to complement (1) with central limit theorems in the special case
of !n

p-balls. Recall that, for p ∈ (0,∞), the ball Bn
p (the unit ball in the space !n

p) is defined
as

Bn
p =

{

x = (x1, . . . , xn) ∈ Rn :
n∑

i=1

|xi |p ≤ 1

}

,

whereas

Bn
∞ =

{
x ∈ Rn : max

i≤n
|xi | ≤ 1

}
.

Bn
p is a symmetric star-shaped set, and for p ≥ 1, it is convex. One can verify that

Voln
(
Bn

p

) = (2$(1 + 1/p))n

$(1 + n/p)
,(2)

which via Stirling’s approximation shows, in particular, that for fixed p and large n,
Voln(Bn

p)1/n behaves like c(p)/n1/p for some constant c(p).
Finite-dimensional !p-balls are of interest from various points of view, including the func-

tional analytic, geometric and probabilistic. The interplay between these viewpoints is appar-
ent in early research on sections of !n

p-balls (e.g., Ball [9], Meyer and Pajor [60], Koldobsky
[43]). In fact, questions about low codimensional sections of convex bodies have been a
major driving force in convex geometry in the last 30 years [16, 44]. From a probabilistic
perspective, uniform distributions on Bn

p provide examples of natural nonproduct distribu-
tions that nevertheless exhibit properties that arise in the classical theory of independent
random variables. In recent years many strong results in this direction have been established.
In particular, Schechtman–Zinn [77], Sodin [81] and Latała–Wojtaszczyk [51] studied con-
centration and isoperimetric properties. Alonso-Gutiérrez–Prochno–Thäle [4, 5], Gantert–
Kim–Ramanan [28] and Kabluchko–Prochno–Thäle [36, 37] investigated limit theorems to-
gether with large and moderate deviations for various norms of vectors drawn at random
from Bn

p as well as their random projections. Naor and Romik [66, 67] studied proximity
of the normalized cone and surface measures on the boundary of Bn

p and its consequences
for concentration. Eskenazis–Nayar–Tkocz [24, 25] established optimal constants in Khint-
chine inequalities for vectors distributed uniformly on Bn

p . Another reason for investigating
probabilistic aspects of Bn

p is that probabilistic tools can be used in the study of other geo-
metric aspects, seemingly purely deterministic. This approach has been initiated in the work
by Schechtman and Zinn [76] and further continued in the seminal paper [11] by Barthe et
al. and, more recently, for example, by Chasapis, Eskenazis, Nayar, Tkocz (see [20, 24–26,
68]). Geometric results obtained this way include among others monotonicity of various ge-
ometric quantities and identification of subspaces of maximal/minimal volume. Recently, the
interplay between probabilistic and geometric aspects of sections of !n

p balls was also used
to establish sharp isoperimetric inequalities in Brunn–Minkowski theory. In particular, fun-
damental inequalities of Lutwak and Zhang for Lp-centroid bodies [59] were extended to the
star-shaped range p < 1 using a certain model of random sections of !n

p balls [2]. This further
develops a probabilistic approach to proving stochastic versions of isoperimetric inequalities;
see, for example, [70].

Let us mention that some of the results mentioned above are special cases of statements
conjectured for general log-concave measures. In fact, also the CLT for convex bodies was
first established by Anttila–Ball–Perissinaki [6] for Bn

p rescaled to the isotropic position.
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The first-order asymptotics for the expected volume of Bn
p ∩ Hn, where Hn is a random

subspace of fixed codimension d , asymptotically equivalent to (1) (which formally covers
the case of p ≥ 1), were obtained before the result by Eldan–Klartag by Koldobsky and
Lifschitz [45] through a Fourier-analytic approach (in fact, the analysis in [45] covers not
only the convex case but the full range of p > 0). These authors obtained asymptotics also
in the cases of sections of proportional and fixed dimension. The equation (1) specialized to
Bn

p , after some calculations concerning the covariance matrix, gives (see [11], p. 490, for an
explicit formula for moments of coordinates) that, with probability tending to one as n ! ∞,

Voln−d
(
Bn

p ∩ Hn
) =

(3$(1 + 1
p )$(1 + n+2

p )

2π$(1 + 3
p )$(1 + n

p )

)d/2
Voln

(
Bn

p

)(
1 + o(1)

)
(3)

(with Voln(Bn
p) given by (2)). The results by Koldobsky–Lifschitz [45] give the same asymp-

totic behaviour also for the expected volume. We remark that different approaches to the
first-order asymptotics yield different explicit expressions, which turn out to be equivalent
thanks to Stirling’s formula. In particular, it can be read from the above asymptotics that

Voln−d(Bn
p ∩ Hn)

Voln−d(Bn−d
p )

n!∞! ap,d :=
(

$(1/p)

$(3/p)

)d/2 2d/2$(1 + 1/p)d

πd/2(4)

in probability. This formulation is more convenient for higher-order analysis than (3), as it
allows to absorb certain normalization factors.

Our main results allow to complement this approximation with central limit theorems. We
postpone the precise formulation, which involves additional quite complicated formulas, to
Section 3, and here we just state them in a simplified form:

• For p ∈ (0,2) and any fixed d > 0, we show that, for some explicit constants bp,d,%2
p,d ,

the random variable

n3/2
(Voln−d(Hn ∩ Bn

p)

Voln−d(Bn−d
p )

− ap,d − 1
n
bp,d

)

converges weakly and in all Wasserstein distances Wq for q ≥ 1 to a Gaussian random
variable with mean zero and variance %2

p,d (recall that ap,d is defined in (4)). This is the
content of Theorem 3.1.

• As a corollary to the CLT in Wasserstein distance, we obtain higher-order approximations
of E Voln−d(Bn

p ∩ Hn) for p ∈ (0,2) of the form

E Voln−d
(
Bn

p ∩ Hn
) =

(2$(1 + 1
p ))n−d

$(1 + n−d
p )

(
ap,d + bp,d

n
+ o

(
n−3/2))

(Corollary 3.2).
• For d = 1, we extend the weak convergence to arbitrary p > 0 (Theorem 3.4).
• For p = ∞ and d = 1, we establish similar weak convergence also for noncentral sections

parallel to Hn (Theorem 3.5).
• Reinterpreting the result for d = 1 as a CLT for the radial function of the intersection body

of Bn
p evaluated on a random vector from the sphere, we infer a central limit theorem for the

norm induced by the intersection body evaluated on such a random vector (Corollary 3.6).

Our approach relies on probabilistic formulas for volumes of sections developed by Nayar
and Tkocz [68] (for the case p ∈ (0,2)) and Chasapis, Nayar and Tkocz [20] (for p > 2). The
former one allows us to represent the volume in terms of expected determinants involving
some auxiliary random variables, which after applying certain reverse Hölder inequalities for
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polynomials together with some geometric analysis allow to reduce the problem to the central
limit theorem for U -statistics. The latter formula relates the volume of a random section to the
value of the density at zero for a randomly weighted sum of independent random variables,
which allows to apply conditionally an appropriate version of the Edgeworth expansion for
non-i.i.d. sequences. We note that it seems that the lack of a version of Edgeworth expansion
in higher dimension suitable for our randomized setting is the main obstacle in extending our
results for p > 2 to general d . Since the investigation of expansions of this form is rather
distant from the main tools used in this article, we postpone it to future research. We refer
the reader to Remarks 6.2 and 6.3 for detailed comments concerning the difficulties in using
Edgeworth-type results present in the literature and description of recent developments on
randomized central limit theorems and Edgeworth expansions.

The organization of the article is as follows. After introducing the basic notation (Sec-
tion 2), we state our main results (Section 3). Section 4 is devoted to introduction of various
auxiliary results used in the main arguments. Finally, Section 5 is devoted to the proof of
results for p ∈ (0,2) and general d , Section 6 to general p < ∞ and d = 1, while in Sec-
tion 7 we sketch the proof for p = ∞ and d = 1, and in Section 8 we prove the result on the
intersection body of Bn

p .

2. Notation. By C we will denote universal constants, whereas Ca will stand for con-
stants depending only on the parameter a. In both cases the values of constants may change
between occurrences (even within the same line).

For x = (x1, . . . , xn) ∈ Rn and p ∈ (0,∞), we will denote |x|p = (|x1|p +· · ·+ |xn|p)1/p .
We set |x|∞ = maxi≤n |xi |. As a function on Rn, | · |p is a norm for p ≥ 1 and a quasi-norm
for p ∈ (0,1). We will also write | · | for | · |2.

For a random variable X and p ∈ R, by ‖X‖p , we will denote the pth absolute moment of
X, that is, for p += 0, ‖X‖p = (E|X|p)1/p , ‖X‖0 = exp(E log |X|) (in fact, we will use ‖X‖p

for p += 0 only).
For a sequence of random variables Xn and a sequence of positive real numbers an, we

will write Xn = oP(an) if Xn/an converges in probability to zero and Xn = OP(an) if Xn/an

is bounded in probability. Let us also introduce similar notation, which despite being less
standard, will allow us to shorten some formulas. We will write Xn = om(an) (resp., Xn =
Om(an)) if Xn/an converges to zero (resp., is bounded) in all spaces Lq for q > 0 (with
the subscript m corresponding to moments). We note that the speed of convergence (resp.,
implicit constants) may and usually will depend on q .

When dealing with independent random variables, for example, X,Y , we will denote by
EX , EY expectation with respect to just one of them (conditional expectation with respect
to the other one). Variants of this standard convention will be used for larger families of
independent random variables; the exact meaning will be either explicitly introduced or clear
from the context.

By L(X) we will denote the law of a random variable X.
We will often work with multiindices i = (i1, . . . , id) ∈ [n]d . By [n]d we will denote the

set of multiindices with pairwise distinct coordinates. Similarly, for a set I by [n]I (resp.,
[n]I ) we will denote the set of all (resp., all one-to-one) functions from I to [n]. For I ⊂ [d]
and a multiindex i ∈ [n]d by iI , we will denote (i!)!∈I ∈ [n]I . Sometimes, we will also use
the notation iI to denote a stand-alone multiindex, writing, for example,

∑
iI ∈[n]I aiI . For

instance, if I = {2,3}, this notation should be understood as
∑

1≤i2 +=i3≤n ai2i3 .

3. Main results. Recall that for q ≥ 1, the Wasserstein distance Wq(P,Q) between two
probability measures P,Q on Rm is defined via the formula

Wq(P,Q)q = inf
(X,Y ) :

L(X)=P,L(Y )=Q

E|X − Y |q .
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In dimension m = 1, the Wasserstein distance admits a more explicit representation as

Wq(P,Q)q =
∫ 1

0

∣∣F−1
P (t) − F−1

Q (t)
∣∣q dt,

where F−1
P ,F−1

Q are generalized inverses of the cumulative distribution functions of P,Q,
respectively (see, e.g., [85], p. 75).

It is well-known (see, e.g., [85], Theorem 7.12) that a sequence of probability measures
(Pn) converges in Wq to some measure P if and only if it converges weakly and the qth
absolute moments of Pn converge to the qth absolute moment of P .

We are now ready to formulate the first result.

THEOREM 3.1. Let d be a positive integer, and let Hn be a random Haar distributed
subspace of Rn of codimension d . For p ∈ (0,2], define

ap,d =
(

$(1/p)

$(3/p)

)d/2 2d/2$(1 + 1/p)d

πd/2 ,

bp,d = (d + 2)d

(
$(5/p)

$(1/p)
− 3

(
$(3/p)

$(1/p)

)2)(
$(1/p)

$(3/p)

)d/2+2 2d/2−3$(1 + 1/p)d

πd/2 .

(5)

Then the sequence of random variables

n3/2
(Voln−d(Hn ∩ Bn

p)

Voln−d(Bn−d
p )

− ap,d − 1
n
bp,d

)

converges in distribution as n ! ∞ to a mean zero Gaussian random variable with variance

(6) %2
p,d = 2d−4d(d + 5)$(1 + 1/p)2d

πd
·
(

$(5/p)

$(1/p)
− 3

(
$(3/p)

$(1/p)

)2)2(
$(1/p)

$(3/p)

)d+4
.

Moreover, for each q ≥ 1, the convergence holds in the Wasserstein distance Wq .

As a corollary to the convergence in Wasserstein distances, we immediately obtain the
following refinement of the asymptotic expansion (4) of E Voln−d(Bn

p ∩ Hn).

COROLLARY 3.2. In the setting of Theorem 3.1,

E Voln−d
(
Bn

p ∩ Hn
) =

(2$(1 + 1
p ))n−d

$(1 + n−d
p )

(
ap,d + bp,d

n
+ o

(
n−3/2))

.

REMARK 3.3. The implicit constant in o(n−3/2) in the above theorem depends on p
and d . In principle, our proofs allow for obtaining estimates with explicit dependence on
these parameters, also for moments of higher order, which would lead to a concentration of
measure type result. However, we do not pursue this direction.

The method of proof of Theorem 3.1 is restricted to p ∈ (0,2). In the special case of d = 1,
we can, however, extend the central limit theorem to arbitrary p ∈ (0,∞).

THEOREM 3.4. Let Hn be a random Haar distributed subspace of Rn of codimension
one. For p ∈ (0,∞), let ap,1, bp,1,%

2
p,1 be defined by (5) and (6). Then the sequence of

random variables

n3/2
(Voln−1(B

n
p ∩ Hn)

Voln−1(B
n−1
p )

− ap,1 − 1
n
bp,1

)

converges in distribution to a mean zero Gaussian random variable with variance %2
p,1.
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Using the same method as in the proof of Theorem 3.4, we can obtain a result concerning
more general sections of the cube Bn

∞ by random hyperplanes. Note that, while for fixed
p < ∞, Voln(Bn

p) ! 0 as n ! ∞, in the case of p = ∞, we have Voln(Bn
p) = 2n. For this

reason in the limit theorem, it is more convenient to normalize the volume of the section by
2n.

THEOREM 3.5. Let Hn be a random Haar distributed subspace of Rn of codimension
one, and let u be a unit vector normal to Hn. For x ∈ R, set

a(x) =
√

3
2π

e− 3x2
2 ,

b(x) = − 9
√

3

20
√

2π

(
3x4 − 6x2 + 1

)
e− 3x2

2 .

For every x ∈ R, the sequence

n3/2
(

2−n Voln−1
(
Bn

∞ ∩ (xu + Hn)
) − a(x) − b(x)

n

)

converges in distribution to a centered Gaussian variable with variance

%(x)2 = 81
100π

e−3x2(
3x4 − 6x2 + 1

)2
.

Let us conclude the presentation of our results with a corollary concerning the intersec-
tion body of Bn

p . Recall that the radial function of a star-shaped body K ⊂ Rn in direction
u ∈ Sn−1 is defined as ρK(u) = sup{t > 0 : tu ∈ K}. The intersection body of a body K ,
introduced by Lutwak [57], is a star-shaped body IK whose radial function is given by
ρIK(u) = Voln−1(K ∩ u⊥), where u⊥ is the hyperplane orthogonal to u. Thus, our results
for sections of codimension d = 1 can be rephrased as a limit theorem for ρIBn

p
(η) for a

random vector η distributed uniformly on Sn−1. With some additional work one can infer
from it a corollary concerning ‖η‖IBn

p
:= ρIBn

p
(η)−1 – the Minkowski functional associ-

ated to IBn
p . We state it only for p < ∞ but clearly a similar result can be obtained for the

cube.

COROLLARY 3.6. Assume that p ∈ (0,∞), and let ‖ · ‖IBn
p

be the Minkowski functional
of the intersection body IBn

p . Let also η be a random vector distributed uniformly on the
sphere Sn−1, and let ap,1, bp,1 and %2

p,1 be as in Theorem 3.4. Then as n ! ∞, the sequence
of random variables

n3/2
(
‖η‖IBn

p
Voln−1

(
Bn−1

p

) − 1
ap,1

+ bp,1

na2
p,1

)

converges in distribution to a Gaussian random variable with mean zero and variance

a−4
p,1%

2
p,1 = 3π

16

(
$(1/p)

$(3/p)

)3
$(1 + 1/p)−2

(
$(5/p)

$(1/p)
− 3

$(3/p)2

$(1/p)2

)2
.



100 R. ADAMCZAK, P. PIVOVAROV AND P. SIMANJUNTAK

4. Tools.

4.1. Stable random variables and the first volume formula. Recall that, for ( ∈ (0,1), a
positive random variable Y is called a standard positive (-stable random variable if Ee−tY =
e−t( for t ≥ 0. In this case for q < (,

EYq = $(−q/()

($(−q)
.(7)

A positive (-stable variable has a density, which we will henceforth denote by g( . We refer
to [39, 75] for basic information concerning stable random variables.

Our main tool will be the following formula for volumes of sections of Bn
p due to Nayar

and Tkocz [68]. The article [68] provides the proof in the case of p = 1 with a remark that
the same method works for general p. For reader’s convenience and to provide the constants
in the case p += 1, in Appendix 8 we sketch the argument from [68] in full generality.

THEOREM 4.1. Let p ∈ (0,2), and let H be a subspace of Rn of codimension d. Let
u1, . . . , ud be an orthornormal basis in H⊥, and let v1, . . . , vn be the columns of the matrix
with rows u1, . . . , ud . Then

Voln−d
(
Bn

p ∩ H
) = 2n

πd/2

$(1 + 1
p )n

$(1 + n−d
p )

E
(

det

(
n∑

j=1

1
Wj

vjv
T
j

))−1/2

,(8)

where Wj ’s are i.i.d. random variables with density proportional to t .! 1√
t
gp/2(t).

COROLLARY 4.2. In the setting of Theorem 4.1,

Voln−d(Bn
p ∩ H)

Voln−d(Bn−d
p )

=
2d$(1 + 1

p )d

πd/2 E
(

det

(
n∑

j=1

1
Wj

vjv
T
j

))−1/2

.

In the sequel we will need a formula for moments given in the next lemma.

LEMMA 4.3. For ( ∈ (0,1), let W be a random variable with density proportional to
t .! 1√

t
g((t). Then for q < ( + 1/2,

EWq = $(1−2q
2( )$(1

2)

$(1−2q
2 )$( 1

2( )
= $(1−2q

2( )
√

π

$(1−2q
2 )$( 1

2( )
.

PROOF. Let Y be a standard positive (-stable random variable. Noting that the density
of W equals to 1√

tEY−1/2 g((t), we get

EWq = EYq−1/2

EY−1/2 = $(1−2q
2( )$(1

2)

$(1−2q
2 )$( 1

2( )
,

where in the last equality we used (7). !

4.2. The second volume formula. In the proof of Theorem 3.4, we will use another for-
mula for volumes of sections of Bn

p . We will use only the special case for codimension one,
but we formulate it in full generality. The case d = 1 is stated in [20], Corollary 4.8; the
general case also follows from arguments presented therein.
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THEOREM 4.4. Let p ∈ (0,∞), and let H be a subspace of Rn of codimension d . Let
u1, . . . , ud be an orthonormal basis in H⊥, and let v1, . . . , vn be the columns of the matrix
with rows u1, . . . , ud . Let moreover Y1, . . . , Yn be independent random variables with density
e−)

p
p |x|p , where )p = 2$(1 + 1/p). Then

Voln−d(Bn
p ∩ H)

Voln−d(Bn−d
p )

= f (0),

where f : Rd ! [0,∞) is the continuous version of the density of the Rd -valued random
vector

∑n
i=1 viYi .

4.3. Uniform random subspaces and the uniform spherical distribution. Let us now in-
troduce basic facts concerning uniform random subspaces of Rn and uniform distribution on
Sn−1, which we will need in the proofs. We refer the reader, for example, to the classical
monograph [62] by Milman and Schechtman for a more detailed account.

By Gn,k we will denote the Grassmanian, that is, the space of all k-dimensional subspaces
of Rn. It is endowed with the unique normalized Haar measure inherited from the natural
action of the orthogonal group. Whenever we speak about a random k-dimensional subspace
of Rn, we mean a random element of Gn,k distributed according to this measure. It follows
from the uniqueness of Haar measure that H is a random k-dimensional subspace if and only
if its orthogonal complement H⊥ is a random (n − k)-dimensional subspace.

Basic properties of Gaussian random variables imply that if G1, . . . ,Gk are i.i.d. standard
Gaussian vectors in Rn, then span(G1, . . . ,Gk) is a random k-dimensional subspace of Rn.
Moreover, if u1, . . . , uk are obtained from G1, . . . ,Gk as a result of the Gram–Schmidt or-
thogonalization, then each of the random vectors ui is distributed uniformly on the sphere
Sn−1.

An important role in our arguments will be played by integrability properties of the random
vectors ui , which will follow from the classical concentration inequality. It is a consequence
of the isoperimetic inequality on the sphere due to Lévy [53] and Schmidt [78, 79]. Its crucial
role in high-dimensional geometry and probability was first observed by V. Milman in his
proof of the Dvoretzky theorem [61].

THEOREM 4.5. Let u be a random vector distributed uniformly on the sphere Sn−1. Then
for any 1-Lipschitz function f : Sn−1 ! R, and any t > 0,

P
(∣∣f (u) − Ef (u)

∣∣ ≥ t
) ≤ 2 exp

(−cnt2)
,

where c is a universal constant.

4.4. Reverse Hölder inequalities for polynomials. We will also need comparison of mo-
ments for polynomials in independent random variables. Historically, results of this type (for
positive moments) appeared first for Gaussian and Rademacher variables in the work by Nel-
son [69] and Bonami [15] in the context of hypercontractivity of Markov semigroups. Later,
they were extended to more general variables in particular in [46, 48]. We refer to the mono-
graphs [21, 49] for a detailed account.

Apart from comparison of positive moments, we will need a result allowing us to compare
negative moments with the first moment for tetrahedral polynomials with nonnegative coef-
ficients (recall that a multivariate polynomial is called tetrahedral if it is affine in each of the
variables). We have not been able to find results of this spirit in the literature; we provide them
in Lemma 4.10 and Corollary 4.11 below. We remark that certain reverse Hölder inequalities
for negative moments of positive functions in the discrete setting have been considered in
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[65]. Inequalities for general polynomials and log-concave measures were obtained in [18].
For our purposes we need, however, stronger estimates in a simpler setting of independent,
positive random variables.

Let κ > ρ > 1. We say that a random variable X is (κ,ρ) hypercontractive with constant
γ if, for every a, b ∈ R,

‖a + bγX‖κ ≤ ‖a + bX‖ρ .(9)

The following theorem is the real valued case of [46], Proposition 3.2. We remark that
the original formulation is more general, as it involves hypercontractivity for Hilbert space
valued coefficients. Moreover, it provides explicit formulas for the value of the constant γ ,
which we will omit, as it will not be needed in the sequel.

PROPOSITION 4.6. If 1 < ρ ≤ 2 ≤ κ and X is a centered random variable such that
‖X‖κ < ∞, then X is (κ,ρ)-hypercontractive.

As is well-known (see, e.g., [46], Theorem 2.5, or [48], formula (1.4)), hypercontractivity
implies comparison of moments for tetrahedral polynomials.

PROPOSITION 4.7. Let 1 < ρ ≤ κ . If X1, . . . ,Xn are independent random variables,
(κ,ρ)-hypercontractive with the same constant γ , then for all tetrahedral polynomials Q in
n variables

∥∥Q(γX1, . . . ,γXn)
∥∥
κ ≤ ∥∥Q(X1, . . . ,Xn)

∥∥
ρ .

COROLLARY 4.8. Let κ ≥ 2, and let X1, . . . ,Xn be i.i.d. copies of a random variable
X such that E|X|κ < ∞. Then for every ρ > 0, there exists a constant K , depending only
on d,κ,ρ and the law of X, such that, for every tetrahedral polynomial of degree d in n
variables,

∥∥Q(X1, . . . ,Xn)
∥∥
κ ≤ K

∥∥Q(X1, . . . ,Xn)
∥∥
ρ .

PROOF. Since Q(X1, . . . ,Xn) can be written as a tetrahedral polynomial in the variables
X1 − EX, . . . ,Xn − EX, we may and will assume that X is centered. Moreover, we can
assume that ρ ∈ (1,2). Indeed, let Z be a random variable such that, for some κ > ρ > 0 and
a constant D,

‖Z‖κ ≤ D‖Z‖ρ,

and let ρ′ ∈ (0,ρ). Then by Hölder’s inequality applied with exponents t, t/(t − 1) for t =
(κ − ρ′)/(κ − ρ) > 1, we get, for r = ρ′/(ρt) < 1,

EZρ = EZρrZρ(1−r) ≤ (
EZρrt )1/t (EZρ(1−r)t/(t−1))1−1/t = (

EZρ′)1/t (EZκ)1−1/t

≤ (
EZρ′)1/t

Dκ(1−1/t)(EZρ)κ(1−1/t)/ρ = (
EZρ′)1/t

Dρ(1−r)(EZρ)1−r
,

from which one obtains ‖Z‖ρ ≤ D1/r−1‖Z‖ρ′ and as a consequence ‖Z‖κ ≤ D1/r‖Z‖ρ′ . In
what follows, we will thus assume that ρ ∈ (1,2).

Write Q = Q0 + · · · + Qd , where Qi is the homogeneous part of Q of degree i. By
Propositions 4.6 and 4.7,

∥∥Q(X1, . . . ,Xn)
∥∥
κ ≤

d∑

i=0

∥∥Qi(X1, . . . ,Xn)
∥∥
κ ≤ K

d∑

i=0

∥∥Qi(X1, . . . ,Xn)
∥∥
ρ

for some constant K , as in the statement of the corollary.
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By [1], Proposition 1.2, (see also [47], Lemma 2) the right-hand side above is bounded
from above by CdK‖Q(X1, . . . ,Xn)‖ρ , which ends the proof. !

Above we have considered only tetrahedral polynomials; however, in the Gaussian case,
thanks to infinite divisibility, each polynomial can be approximated by a tetrahedral one. Hy-
percontractivity of Gaussian variables in the sense of (9) goes back to the seminal work of
Nelson, Bonami and Gross related to hypercontractivity for Markov semigroups. As a conse-
quence of their results, we have the following theorem (we remark that explicit constants are
known, but as they are not needed for our proofs, we state the result in a simplified version).

THEOREM 4.9. Let G be a standard Gaussian vector in Rn. For each κ,ρ > 0 and every
polynomial Q : Rn ! R of degree at most d ,

∥∥Q(G)
∥∥
κ ≤ Cκ,ρ,d

∥∥Q(G)
∥∥
ρ .

So far we have dealt only with positive moments; however, a crucial step in the proof of
Theorem 3.1 will be based on comparison of the first moment with negative moments for
positive polynomials in independent random variables. Its proof relies on a similar idea as
the one presented above.

LEMMA 4.10. Let X be a positive random variable such that EX < ∞ and EX−ρ < ∞
for some ρ > 0. Then for any κ ∈ (0,ρ] and any a ≥ 0, b ≥ 0,

E
1

(a + bX)κ
≤ 1

(a + σbEX)κ
,

where σ = ‖X‖−ρ/‖X‖1.

PROOF. We may assume without loss of generality that a, b > 0. Consider the function
, : R+ ! R+, given by

,(z) = 1
(1 + z−1/ρ)κ

.

We have

,′′(z) = −κ(z−1/ρ + 1)−κ(−κ + ρz1/ρ + z1/ρ + ρ)

ρ2z2(z1/ρ + 1)2 ≤ 0

for z > 0. Thus, , is concave on R+. Setting Z = X−ρ , by Jensen’s inequality we get

E
1

(a + bX)κ
= 1

aκ
E

1
(1 + ((a/b)ρZ)−1/ρ)κ

= 1
aκ

E,
(
(a/b)ρZ

) ≤ 1
aκ

,
(
(a/b)ρEZ

)

= 1
(a + b‖X‖−ρ)κ

= 1
(a + σbEX)κ

. !

COROLLARY 4.11. In the setting of Lemma 4.10, let X1, . . . ,Xn be i.i.d. copies
of the random variable X and let (ai1,...,id )i1,...,id∈[n] be an array of nonnegative num-
bers such that ai1,...,id = 0 whenever there exists l += m such that il = im. Let Y =∑n

i1,...,id=1 ai1,...,id Xi1 · · ·Xid . Then

‖Y‖1 ≤ σ−d‖Y‖−κ .
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PROOF. We will prove by induction on n that for any tetrahedral polynomial Q in n
variables with nonnegative coefficients,

E 1
Q(X1, . . . ,Xn)κ

≤ 1
(EQ(σX1, . . . ,σXn))κ

(10)

from which the corollary follows by homogeneity of the d-linear form.
For n = 0, (10) is trivial, while for n = 1 it reduces to the assertion of Lemma 4.10. Assume

thus that (10) holds for 0,1, . . . , n − 1. Any tetrahedral polynomial in n variables with non-
negative coefficients is of the form Q(x1, . . . , xn) = xnQ1(x1, . . . , xn−1)+Q2(x1, . . . , xn−1)
where Q1,Q2 are tetrahedral and also have nonnegative coefficients. Thus, by Lemma 4.10
applied conditionally on X1, . . . ,Xn−1 and the induction assumption we obtain

E
1

Q(X1, . . . ,Xn)κ

= EX1,...,Xn−1EXn

1
(XnQ1(X1, . . . ,Xn−1) + Q2(X1, . . . ,Xn−1))κ

≤ EX1,...,Xn−1

1
((EXnσXn)Q1(X1, . . . ,Xn−1) + Q2(X1, . . . ,Xn−1))κ

≤ 1
(EX1,...,Xn−1((EXnσXn)Q1(σX1, . . . ,σXn−1) + Q2(σX1, . . . ,σXn−1)))κ

= 1
(EQ(σX1, . . . ,σXn))κ

,

where we used the fact that (σEXnXn)Q1(x1, . . . , xn−1) + Q2(x1, . . . , xn−1) is tetrahedral,
which allows us to use the induction assumption. !

4.5. U -Statistics. Let X,X1,X2, . . . be a sequence of i.i.d. random variables with values
in some measurable space (S,F), and let h : Sd ! R be a measurable function. The U -
statistics of order d and kernel h, based on the sequence {Xi}i≥1, are random variables defined
as

Un(h) = U(d)
n (h) = (n − d)!

n!
∑

i∈[n]d
h(Xi1, . . . ,Xid ), n ≥ d.

Define also the unnormalized sum

Sn(h) = S(d)
n =

∑

i∈[n]d
h(Xi1, . . . ,Xid ) = n!

(n − d)!Un(h).

We will also use the above definitions for d = 0 interpreting S0 as a one element set and
identifying functions from S0 into R with constants. Thus, according to this convention for
any constant h, S

(0)
n (h) = U

(0)
n (h) = h.

Going back to general d , note that, by modifying the kernel h, we may assume without
loss of generality that it is invariant under permutation of the arguments. In the subsequent
part, we will work under this assumption.

U -statistics appeared for the first time in the 1940s in the work by Halmos [32] and Ho-
effding [33] in the context of unbiased estimation. Since then, they have found applications,
for example, as higher-order terms in Taylor expansions of smooth statistics [21] or in random
graph theory [35]. In a geometric context, they were used in [86] to prove a CLT for volumes
of Minkowski sums of random convex sets (see also the monograph [64]) and in [71] in the
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proof of the CLT for volumes of low dimensional random projections of the cube. The reason
behind the appearance of U -statistics in these references and our proof are quite different. In
our case they show up as some conditional variances in the one-dimensional Taylor expansion
of functions appearing in the volume formula of Theorem 4.1, whereas in the cited references
they are directly related to mixed volumes and the zonotope volume formula. Yet another line
of research involving a somewhat related but different notion of Poisson U -statistics has been
pursued, for example, in [50, 74] where the authors among other examples consider applica-
tions to intrinsic volumes of sets arising from the Poisson flat process. These results are of
a different flavour than ours, they are related to stochastic analysis on the Poisson space and
concern asymptotic behaviour of random sets in a fixed dimension, when the intensity of the
underlying Poisson process tends to infinity.

Below we describe basic properties of U -statistics, referring for a more detailed descrip-
tion of their asymptotic theory to the monographs [21, 35, 52].

The kernel h (and the corresponding U -statistic) is called canonical if Eh(X,x2, . . . , xd) =
0 for all x2, . . . , xd ∈ S . One of the basic tools in the theory of U -statistics is the Hoeffding
decomposition, which allows to represent any U -statistic based on a square integrable kernel
of mean zero as a sum of uncorrelated canonical ones. Let us now briefly describe how it
works. We will use the notation

µ1 ⊗ · · · ⊗ µdf =
∫

Sd
f (x1, . . . , xd)µ1(dx1) · · ·µd(dxd),

where µ1, . . . ,µd are signed measures on S . For k = 0, . . . , d , we define the kth Hoeffding
projection of h as

πkh(x1, . . . , xk) = (δx1 − P) ⊗ · · · ⊗ (δxk − P) ⊗ P ⊗(d−k)h,

where P is the law of X and δx stands for the Dirac mass at x. For instance,

π0h = Eh(X1, . . . ,Xd),

π1h(x1) = Eh(x1,X2, . . . ,Xd) − Eh(X1, . . . ,Xd),

π2h(x1, x2) = Eh(x1, x2,X3, . . . ,Xd) − Eh(x1,X2, . . . ,Xd)

− Eh(x2,X2, . . . ,Xd) + Eh(X1, . . . ,Xd).

One checks that for k > 0 the kernel πkh is canonical. Moreover,

U(d)
n (h) =

d∑

k=0

(
d
k

)
U(k)

n (πkh)

or in terms of S
(k)
n ,

S(d)
n (h) =

d∑

k=0

(
d
k

)
(n − k)!
(n − d)!S

(k)
n (πkh).(11)

Canonical U -statistics can be thus considered building blocks for the general case. Their
advantage stems from the following elementary estimate for their second moment. If h is
canonical, then

E
∣∣S(d)

n (h)
∣∣2 = n!d!

(n − d)!Eh(X1, . . . ,Xd)2.

Indeed, the left-hand side above equals
∑

i∈[n]d

∑

j∈[n]d
Eh(Xi1, . . . ,Xid )h(Xj1, . . . ,Xjd ),
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and using the canonicity and symmetry, one can easily see that the expectations do not
vanish only if i and j differ just by a permutation of coordinates in which case they equal
Eh2(X1, . . . ,Xd). In particular, since πkh is a canonical kernel of order k, we obtain that for
k > 0,

E
∣∣S(k)

n (πkh)
∣∣2 = n!k!

(n − k)!E
(
πkh(X1, . . . ,Xk)

)2
.(12)

It is also straightforward to check that S
(k)
n (πkh), k = 0, . . . , n are uncorrelated. In partic-

ular (11), for n = d together with (12) give

Eh(X1, . . . ,Xd)2 =
d∑

k=0

(
d
k

)
E

(
πkh(X1, . . . ,Xk)

)2
.(13)

4.6. Hermite polynomials. Recall that Hermite polynomials are orthogonal polynomials
with respect to the standard Gaussian measure. There are many conventions concerning their
normalization, we will use the probabilistic one and define for n ∈ N,

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2.

Thus, in particular,

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,(14)

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3.

We refer, for example, to the monograph [35] for the presentation of various probabilistic
properties and applications of Hermite polynomials. In the sequel only low degree polynomi-
als will appear, in two different settings, to simplify calculation of expectations of Gaussian
polynomials and as ingredients in the Edgeworth expansion.

4.7. Cumulants. Let us now briefly recall the basic properties of cumulants of random
variables.

Let X be a real valued random variable. For n ≥ 1, the cumulants cn = cn(X) are defined
as

cn = i−n dn

dtn
log EeitX

∣∣∣∣
t=0

.

Clearly, cn are well-defined if X has all moments. Moreover, we have the identity (see, e.g.,
[63], equation (1.2))

(15) cn =
∑

1·r1+···+n·rn=n
r1,...,rn∈N

(−1)r1+···+rn−1(r1 + · · · + rn − 1)!n!
(1!)r1(2!)r2 · · · (n!)rnr1! · · · rn!

(EX)r1
(
EX2)r2 · · · (EXn)rn .

In particular,

c1 = EX,

c2 = EX2 − (EX)2 = Var(X),

c3 = 2(EX)3 − 3EXEX2 + EX3 = E(X − EX)3,

c4 = E(X − EX)4 − 3
(
E(X − EX)2)2

.

(16)
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The other important properties of cumulants are

cn(X + t) = cn(X) for n ≥ 2, t ∈ R,

cn(tX) = tncn(X) for t ∈ R

and

cn(X1 + · · · + Xm) = cn(X1) + · · · + cn(Xm)

if X1, . . . ,Xm are independent random variables.
It is also easy to see that odd cumulants of a symmetric random variable vanish.

4.8. Edgeworth expansion. We are also going to need basic results on Edgeworth ex-
pansion of the density for sums of independent nonidentically distributed random variables,
which provides the correction to the local central limit theorem. As references for this topic,
we propose the classical monographs [12, 72].

Consider a sequence X1,X2, . . . of independent centered random variables. Let Bn =∑n
i=1 EX2

i , and for integers k ≥ 2 and n ≥ 1, define the number

.k,n = n(k−2)/2

B
k/2
n

n∑

i=1

ck(Xi)(17)

and a function qk,n : R ! R,

qk,n(x) = 1√
2π

e−x2/2
∑

1·r1+···+k·rk=k
r1,...,rk∈N

Hk+2(r1+···+rk)(x)
k∏

i=1

1
ri !

(
.i+2,n

(i + 2)!
)ri

.

In particular,

q0,n(x) = 1√
2π

e−x2/2,

q1,n(x) = 1√
2π

e−x2/2H3(x)
.3,n

6
,

q2,n(x) = 1√
2π

e−x2/2
(
H4(x)

.4,n

24
+ H6(x)

.2
3,n

72

)
,

q3,n(x) = 1√
2π

e−x2/2
(
H5(x)

.5,n

120
+ H7(x)

.3,n.4,n

144
+ H9(x)

.3
3,n

1296

)
.

(18)

The Edgeworth-type theorem we are going to use is the following special case (l = 1) of
[72], Theorem 7, p. 175.

THEOREM 4.12. Let X1,X2, . . . be independent random variables with mean zero. De-
note Bn = ∑n

i=1 EX2
i . Let K ≥ 3 be an integer. Assume that:

(i) lim infn!∞ Bn
n > 0, lim supn!∞

1
n

∑n
i=1 E|Xi |K < ∞,

(ii) limn!∞ 1
n

∑n
i=1 E|Xi |K1{|Xi |>n/ } = 0 for some positive / < 1/2,

(iii) for ( = (K − 1)/2 and every fixed ε > 0,

lim
n!∞n(

∫

|t |>ε

n∏

i=1

EeitXi dt = 0.(19)
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Then for all n sufficiently large the random variable Sn = B
−1/2
n

∑n
i=1 Xi admits a density

fn such that

fn(x) = 1√
2π

e−x2/2 +
K−2∑

k=1

qk,n(x)

nk/2 + o

( 1
n(K−2)/2

)
(20)

uniformly in x ∈ R.

To apply the above theorem, we will need the following lemma (a corollary to [72],
Lemma 10, and the remark following its proof (p. 174)).

LEMMA 4.13. Let X1,X2, . . . be a sequence of independent centered random variables.
Assume that there exists a set I of positive integers and positive constants ., δ,C,R such that

lim inf
n!∞

|I ∩ [n]|
n.

> 0,

and for all n ∈ I and |t | > R,

∣∣EeitXn
∣∣ ≤ C

|t |δ .(21)

Then the condition (19) is satisfied for any ( > 0. Moreover, the condition (21) is satisfied
for some C, δ,R > 0 if the variables Xn,n ∈ I , have densities of uniformly (with respect to
n ∈ I) bounded variation.

5. Proof of Theorem 3.1. Let us now give the proof of Theorem 3.1. It will be split into
several steps presented in separate sections. To simplify the notation, we will often suppress
the dependence of random variables on the dimension n. It should be remembered that the
asymptotic notation such as o(1), O(n) etc. concerns n ! ∞. The implicit constants may
depend on d,p and some other parameters (independent of n), for example, the order of
moments considered. Recall also the notation Om(·), om(·) introduced in Section 2.

5.1. Preliminary steps. A random subspace of Rn of dimension d may be obtained as
span(G1, . . . ,Gd), where Gi = G

(n)
i = (gi1, . . . , gin), i = 1, . . . , d are i.i.d. standard Gaus-

sian vectors in Rn (i.e., gij , i ∈ [d], j ∈ [n] are i.i.d. Gaussian variables of mean zero and
variance one). If we define u1, . . . , ud as the result of the Gram–Schmidt orthogonaliza-
tion applied to G1, . . . ,Gd , then Hn = span(G1, . . . ,Gd)⊥ = span(u1, . . . , ud)⊥ is a uniform
subspace of codimension d in Rn. More explicitly, we have

ui = Gi − Pi−1Gi

|Gi − Pi−1Gi |
,

where for i = 0, . . . , d − 1, Pi : Rn ! Rn is the orthogonal projection on the random sub-
space span(G1, . . . ,Gi). Note that with probability one this subspace is of dimension i.
Moreover, the random operator Pi−1 is stochastically independent of the random vectors
Gi, . . . ,Gd .

Observe also that each ui is distributed uniformly on the sphere Sn−1. Note that the sec-
ond moment of a single coordinate of ui is equal to 1/

√
n. Therefore, by the concentration

inequality on the sphere (Theorem 4.5) and the union bound, for any t ≥ 1,

P
(

max
i≤d

|ui |∞ ≥ Ct

√
log(n)√

n

)
≤ 2nd exp

(−ct2 logn
)
.(22)



LIMIT THEOREMS FOR THE VOLUMES OF RANDOM SECTIONS 109

As a consequence, we obtain

P
(

max
i≤d

|ui |∞ ≥ C

√
logn√

n

)
= o(1).(23)

Moreover, for any q > 0, (22) and integration by parts give
∥∥∥max

i≤d
|ui |∞

∥∥∥
q

≤ Cd,q

√
logn√

n
(24)

in other words maxi≤d |ui |∞ = Om(
√

(logn)/n) (recall the notation Om,om introduced in
Section 2).

Let W1, . . . ,Wn be i.i.d. random variables with density proportional to 1√
x
gp/2(x) and

Xi = W−1
i . We will assume that the family (Xi)i is stochastically independent of (gij )ij , and

we will denote integration with respect to them by EX and EG, respectively.
Going back to random subspaces, denote by A the d × n matrix with rows u1, . . . , ud , and

let v1, . . . , vn be its columns (thus, vi ’s are random vectors in Rd ). Let also Ã be the matrix
with columns

√
Xivi . Then

n∑

j=1

Xjvjv
T
j = ÃÃT ,

and using the Cauchy–Binet formula, we get

Yn := det

(
n∑

j=1

Xjvjv
T
j

)

=
∑

i∈[n]d
aiXi1 · · ·Xid ,(25)

where for i = (i1, . . . , id) ∈ [n]d ,

ai = 1
d!(detAi)

2,

with Ai being the d × d matrix with columns vi1, . . . , vid (we choose to write the quantities
of interest in terms of summation over the whole set [n]d rather than just over increasing
sequences to simplify bookkeeping of indices which will appear in the sequel). Another ap-
plication of the Cauchy–Binet formula gives

∑

i∈[n]d
ai = det

(
n∑

j=1

vjv
T
j

)

= det(Id) = 1.(26)

Moreover, using the multilinearity of the determinant and the fact that it vanishes for ma-
trices which are not of full rank together with the definition of the vectors uj and vj , one can
expand detAi along the steps of the Gram–Schmidt procedure and see that

ai = 1
d!

1
∏d

!=1 |G! − P!−1G!|2
det($i)

2,(27)

where $i is the d × d matrix with columns $i1, . . . ,$id with $i = (gji)j∈[d].
Moreover, by (23), with probability tending to one as n ! ∞,

max
i∈[n]d

ai ≤ Cd
(logn)d

nd
,(28)

whereas (24) and Hölder’s inequality give

max
i∈[n]d

ai = Om

(
(logn)d

nd

)
.(29)
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Observe that, thanks to Lemma 4.3 (applied with ( = p/2), we have EX
ρ
i < ∞ for all

ρ > 0 and EX
−ρ
i < ∞ for ρ < p/2 + 1/2. Note that p/2 + 1/2 > 1/2. Using Corollary 4.11

together with (26), we obtain that there exists ρ = ρp > 1/2 and a constant Cp,d , depending
only on p and d , such that

EX
1

(
∑

i∈[n]d aiXi1 · · ·Xid )
ρ

≤ Cp,d
1

(
∑

i∈[n]d ai)ρ
= Cp,d .(30)

(Note that thanks to (26) the bound on the random quantity on the left-hand side becomes
deterministic.)

Similarly, by Corollary 4.8 we get that, for all r > 1, there exists Cp,d,r such that, for every
tetrahedral polynomial Q of degree at most d ,

∥∥Q(X1, . . . ,Xn)
∥∥
r ≤ Cp,d,r

∥∥Q(X1, . . . ,Xn)
∥∥

1.(31)

By Corollary 4.2,

Voln−d(Hn ∩ Bn
p)

Voln−d(Bn−d
p )

= 2d$(1 + 1/p)d

πd/2 EX
1√
Yn

,(32)

our goal is thus to obtain a limit theorem for the variable

EX
1√
Yn

− πd/2

2d$(1 + 1/p)d

(
ap,d − 1

n
bp,d

)
.(33)

Note that in the above expression the random variables Xi are integrated out and it is a
function of the random vectors G1, . . . ,Gd .

5.2. Linearization. We will make use of the identity

1√
y

= 1√
µ

− y − µ

2µ3/2 + 3(y − µ)2

8µ5/2 − 5(y − µ)3

16µ7/2

+ (
√

y − √
µ)4(16µ3/2 + 5y3/2 + 20

√
µy + 29µ

√
y)

16µ7/2√y
,

valid for y,µ > 0.
Applying it to y = Yn = ∑

i∈[n]d aiXi1 · · ·Xid and

µ = EXYn = (EX1)
d(34)

(where we used (26)) and integrating with respect to Xi’s, we obtain

EX
1√
Yn

− 1√
µ

= 3EX(Yn − µ)2

8µ5/2 − 5EX(Yn − µ)3

16µ7/2

+ EX
(
√

Yn − √
µ)4(16µ3/2 + 5Y

3/2
n + 20

√
µYn + 29µ

√
Yn)

16µ7/2
√

Yn
(35)

=: T1,n + T2,n + T3,n.

We will first show that T2,n and T3,n are om(n−3/2) as n ! ∞.
Let us start with T2,n. To simplify the notation, for i ∈ [n]d denote

Xi = Xi1 · · ·Xid − EXXi1 · · ·Xid .(36)

For two multiindices i, j ∈ [n]d , let

E(i, j) = {
(k, l) ∈ [d]2 : ik = jl

}
.(37)
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For I, J,K ⊂ [d]2 let

A(I, J,K) = {
(i, j,k) ∈ ([n]d)3 : E(i, j) = I,E(j,k) = J,E(i,k) = K

}
.

Note that if at least two of the sets I, J,K are empty, then by independence of Xi’s, we have
EXXiXjXk = 0 for all (i, j,k) ∈ A(I, J,K).

Thus,

EX(Yn − µ)3 =
∑

I,J,K

∑

(i,j,k)∈A(I,J,K)

aiajakEXXiXjXk,

where the outer summation is over all triples I, J,K of subsets of [d]2 in which at least two
sets are nonempty. To prove that T2,n = om(n−3/2), it thus suffices to show that, for each such
triple,

∑

(i,j,k)∈A(I,J,K)

aiajakEX|XiXjXk| = om
(
n−3/2)

.(38)

Observe first that |A(I, J,K)| ≤ n3d−2. Moreover, by (29) and Hölder’s inequality,

aiajak = Om
(
(logn)3dn−3d)

.

Since X′
is have moments of all orders, another application of Hölder’s inequality gives

EX|XiXjXk| ≤ Cd,p . These three observations imply that, for any q ≥ 1, the left-hand side
of (38) is bounded in Lq by Cd,p,q(logn)3dn−2 = o(n−3/2). Thus indeed, T2,n = om(n−3/2).

We will now pass to T3,n. Recall (30) and (31). Let κ = 4ρ/(2ρ − 1) > 1. Using Hölder’s
inequality applied with exponents κ,κ,2ρ and taking into account that µ = (EX1)

d depends
only on p and d , we obtain that

T3,n = EX
(
√

Yn − √
µ)4(16µ3/2 + 5Y

3/2
n + 20

√
µYn + 29µ

√
Yn)

16µ7/2
√

Yn

≤ Cp,d
(
EX|

√
Yn − √

µ|4κ)1/κ

× (
EX

(
16µ3/2 + 5Y 3/2

n + 20
√

µYn + 29µ
√

Yn
)κ)1/κ(

EXY−ρ
n

)1/(2ρ)
.

Using (31) and (34), we see that the second factor on the right-hand side above is bounded
from above by Cp,d , whereas an application of (30) shows that the third factor is bounded by
Cp,d ; thus, to prove that T3,n = om(n−3/2), it is enough to show that

(
EX|

√
Yn − √

µ|4κ)1/κ = om
(
n−3/2)

.(39)

Using the inequality |√y − √
µ| ≤ µ−1/2|y − µ|, we get

(
EX|

√
Yn − √

µ|4κ)1/κ ≤ Cp,d
(
EX|Yn − µ|4κ)1/κ ≤ Cp,d

(
EX(Yn − µ)2)2

,

where in the last inequality we used (31).
Thus, it is enough to show that EX(Yn − µ)2 = om(n−3/4). Note that EX(Yn − µ)2 is pro-

portional to the term T1,n in (35). In the next step of the proof, we will perform a careful
analysis of this term from which it will in particular follow that it is Om(n−1). For trans-
parency, let us, however, provide now a simple argument showing that it is indeed om(n−3/4).
Some of the calculations will be also used in the said more precise analysis.

Recall the notation (37). Similarly as for T2,n, for I ⊂ [d]2, define A(I) = {(i, j) ∈
([n]d)2 : E(i, j) = I }. By independence of Xi’s, we have

EX(Yn − µ)2 =
∑

∅ +=I⊂[d]2

∑

(i,j)∈A(I)

aiajEX(XiXj).(40)
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For fixed I and q ≥ 1, by the triangle inequality in Lq we obtain that, as n ! ∞,
∥∥∥∥

∑

i,j∈[n]d
E(i,j)=I

aiajEX(XiXj)

∥∥∥∥
q

≤ Cp,d

∣∣A(I)
∣∣
∥∥∥ max

i∈[n]d
a2

i

∥∥∥
q

≤ Cp,d,q

∣∣A(I)
∣∣(logn)2d

n2d
,(41)

where we again used the fact that Xi have all moments and (29).
For I += ∅, we have |A(I)| ≤ n2d−1, and so the right-hand side above is bounded by

Cp,d,q(logn)2dn−1 = o(n−3/4).
Summing over I , we get the claimed estimate.

5.3. Analysis of randomly normalized U -statistics. We will now analyze the term T1,n =
3EX(Yn−µ)2

8µ5/2 . We will use the notation introduced at the end of the previous section. Note that

if I ⊂ [d]2 satisfies |I | ≥ 2, then |A(I)| ≤ n2d−2. Thus, by (40) and (41), we see that

EX(Yn − µ)2 =
∑

I⊂[d]2,|I |=1

∑

i,j∈[n]d
E(i,j)=I

aiajEX(XiXj) + om
(
n−3/2)

.

Since Xi’s are i.i.d, for all i, j such that |E(i, j)| = 1, we have

EXiXj = EX2
1

2d−1∏

k=2

Xk − (EX1)
2d = (EX1)

2d−2 Var(X1) =: ν.(42)

Thus,

T1,n = 3ν

8µ5/2

∑

I⊂[d]2,|I |=1

∑

i,j∈[n]d
E(i,j)=I

aiaj + om
(
n−3/2)

.(43)

Recall that $1, . . . ,$n are the columns of the matrix with rows G1, . . . ,Gd . Recall also
the definition (27) of the coefficients ai, which implies that

Zn :=
∑

I⊂[d]2,|I |=1

∑

i,j∈[n]d
E(i,j)=I

aiaj = Sn

Vn
,(44)

where

Vn =
d∏

!=1

|G! − P!−1G!|4(45)

and (recall the notation concerning U -statistics from Section 4.5)

Sn = Sn(h) =
∑

i∈[n]2d−1

h($i1, . . . ,$i2d−1)(46)

is a U -statistic of order 2d − 1 with kernel h : (Rd)2d−1 ! R defined as

h(x1, . . . , x2d−1)
(47)

= 1
(2d − 1)!

2d−1∑

k=1

∑

J⊂[2d−1]\{k}
|J |=d−1

det
({xk} ∪ {x!}!∈J

)2 det
({xk} ∪ {x!}!∈[2d−1]\{k}\J

)2
.

We slightly abuse the notation and treat here the determinant squared as a function of a set
rather than a sequence of vectors. Note that h is a symmetric function.
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Let us first establish a law of large numbers-type behaviour of the denominator on the
right-hand side of (44). Denote H̃! = span(G1, . . . ,G!−1), and note that, conditionally on
G1, . . . ,G!−1, P!−1G! is a standard Gaussian vector on H̃!. In particular, using Theorem 4.9,
we obtain that

E|P!−1G!|q = EE
(|P!−1G!|q |G1, . . . ,G!−1

) ≤ Cq
q dq/2.

Moreover, H̃! is almost surely of dimension ! − 1 ≤ d − 1 and |G! − P!−1G|2 = |G!|2 −
|P!−1G!|2. Using the fact that by Chebyshev’s inequality and Theorem 4.9, ||G!|2 − n| =
Om(

√
n), together with Hölder’s inequality, one can see that

d∏

!=1

|G! − P!−1G!|2 =
d∏

!=1

|G!|2 + Om
(
nd−1) = nd + Om

(
nd−1/2)

.

As a consequence, again by Hölder’s inequality,

Vn =
d∏

!=1

|G!|4 + Om
(
n2d−1) = n2d + Om

(
n2d−1/2)

.(48)

Observe also that if G is a standard Gaussian vector in Rm and m > q +3, then integrating
in polar coordinates together with the Stirling formula gives

E|G|−q = E|G|2 2(m−q−2)/2$(m−q
2 )

2m/2$(m
2 + 1)

≤ Cqm−q/2.

Conditionally on G1, . . . ,G!−1, the random vector G! − P!−1G! is a standard Gaussian
vector on H̃⊥

! , which is of dimension at least n − d . Thus, conditioning successively, we
obtain that, for n > Cd,q ,

∥∥∥∥
n2d

Vn

∥∥∥∥
q

≤ Cd,q .(49)

Let us now pass to the numerator. To shorten the notation, denote Eh = Eh($1, . . . ,

$2d−1). By the Hoeffding decomposition (11), applied with 2d − 1 instead of d , we have

Sn = n!
(n − 2d + 1)!Eh +

2d−1∑

k=1

(
2d − 1

k

)
(n − k)!

(n − 2d + 1)!S
(k)
n (πkh).(50)

By (12) and (13), we have

E
∣∣S(k)

n (πkh)
∣∣2 = n!k!

(n − k)!E
(
πkh($1, . . . ,$k)

)2 ≤ n!k!
(n − k)!Eh($1, . . . ,$2d−1)

2.

The variables S
(k)
n (πkh) are polynomials in the Gaussian vectors G1, . . . ,Gd of degree at

most 4d . Thus, the above estimate in combination with Theorem 4.9 shows that

(n − k)!
(n − 2d + 1)!S

(k)
n (πkh) = Om

(
n2d−1−k/2)

.

Hölder’s inequality and (49) thus give

(n − k)!
(n − 2d + 1)!

S
(k)
n (πkh)

Vn
= Om

(
n−1−k/2)

.
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Combined with (44) and (50), this shows that

Zn = n!
(n − 2d + 1)!

Eh

Vn
+ (2d − 1)

(n − 1)!
(n − 2d + 1)!

S
(1)
n (π1h)

Vn
+ Om

(
n−2)

= n2d−1 Eh

Vn
+ (2d − 1)

(n − 1)!
(n − 2d + 1)!

S
(1)
n (π1h)

Vn
+ Om

(
n−2)

,

(51)

where in the second equality we again used (49).
Let us now derive the announced more precise asymptotics for the denominator. In what

follows, we will repeatedly and without a direct reference use Theorem 4.9 to pass from
boundedness of absolute moments of some fixed order for a sequence of Gaussian polynomi-
als to the assertion that this sequence is, in fact, Om(1).

Using (48), we obtain

Vn =
d∏

!=1

|G!|4 + Om
(
n2d−1)

=
d∏

!=1

∣∣∣∣∣

n∑

j=1

g2
!,j

∣∣∣∣∣

2

+ Om
(
n2d−1)

=
∑

i∈[n]2d

d∏

!=1

g2
!,i2!−1

g2
!,i2!

+
∑

i∈[n]2d\[n]2d

d∏

!=1

g2
!,i2!−1

g2
!,i2!

+ Om
(
n2d−1)

.

Using boundedness of moments of g!,i’s together with Hölder’s inequality and the fact that
|[n]2d \ [n]2d | ≤ Cdn2d−1, one obtains that the first moment of the second summand on the
right-hand side above is O(n2d−1). Thus,

Vn =
∑

i∈[n]2d

d∏

!=1

g2
!,i2!−1

g2
!,i2!

+ Om
(
n2d−1) =

∑

i∈[n]2d

2d∏

j=1

g2
3(j+1)/24,ij + Om

(
n2d−1)

=
∑

I⊆[2d]

(n − |I |)!
(n − 2d)!

∑

iI ∈[n]I

∏

j∈I

(
g2

3(j+1)/24,ij − 1
) + Om

(
n2d−1)

.

For I += ∅, using independence of g!,i’s and the equality E(g2
!,i − 1)2 = 2, we get

E
( ∑

iI ∈[n]I

∏

j∈I

(
g2

3(j+1)/24,ij − 1
))2

= 2|I | n!|I |!
(n − |I |)! ,

thus
(n − |I |)!
(n − 2d)!

∑

iI ∈[n]I

∏

j∈I

(
g2

3(j+1)/24,ij − 1
) = Om

(
n2d−|I |/2)

.

For |I | ≥ 2, this is Om(n2d−1), and so we obtain that

Vn = n!
(n − 2d)! + 2

(n − 1)!
(n − 2d)!

d∑

!=1

n∑

i=1

(
g2

!,i − 1
) + Om

(
n2d−1)

= n2d + 2
(n − 1)!
(n − 2d)!

d∑

!=1

n∑

i=1

(
g2

!,i − 1
) + Om

(
n2d−1)

= n2d + 2
(n − 1)!
(n − 2d)!

n∑

i=1

(|$i |2 − d
) + Om

(
n2d−1)

.
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Going back to (51), we can write

Zn − Eh

n

= (Eh)
n2d − Vn

nVn
+ (2d − 1)

(n − 1)!
(n − 2d + 1)!

S
(1)
n (π1h)

Vn
+ Om

(
n−2)

= n2d

Vn

(n − 1)!
(n − 2d)!n2d

(

−2(Eh)
1
n

n∑

i=1

(|$i |2 − d
) + (2d − 1)

1
n − 2d + 1

n∑

i=1

π1h($i )

)

+ Om
(
n−2)

,

where in the second equality we used once more (49) and Hölder’s inequality.
Taking into account that Vn/n2d converges in probability to one and that the random vector

(
1√
n

n∑

i=1

(|$i |2 − d
)
,

1√
n

n∑

i=1

π1h($i )

)

converges weakly to a Gaussian vector with covariance matrix
(

2d Cov
(|$i |2 − d,π1h($1)

)

Cov
(|$i |2 − d,π1h($1)

)
E

(
π1h($1)

)2

)

,

we obtain that

n3/2
(
Zn − Eh

n

)

converges weakly to a mean zero Gaussian variable with variance

8(Eh)2d + (2d − 1)2E
(
π1h($1)

)2 − 4(2d − 1)Eh · Cov
(|$1|2 − d,π1h($1)

)
.

Moreover, another application of (49) together with Theorem 4.9 and Hölder’s inequality
shows that, for each q > 0, the qth absolute moment of n3/2(Zn − Eh

n ) is bounded indepen-
dently of n, which shows that the convergence in fact holds in Wq for any q ≥ 1 (see the
remark before Theorem 3.1).

Using (43) and (44) together with (35) and the fact that T2,n and T3,n are om(n−3/2), we
obtain that

n3/2
(

E 1√
Yn

− 1√
µ

− 3νEh

8µ5/2n

)
= n3/2

(
T1,n − 3νEh

8µ5/2n

)
+ om(1)

converges in Wq to a centered Gaussian variable with variance

%̃2
p,d = 9ν2

64µ5

(
8(Eh)2d + (2d − 1)2E

(
π1h($1)

)2

− 4(2d − 1)Eh · Cov
(|$1|2 − d,π1h($1)

))
.

(52)

5.4. Calculation of the parameters. In order to obtain an explicit formula for %2
p,d , we

need to calculate

µ,ν,Eh($1, . . . ,$2d−1),E
(
π1h($1)

)2
,Cov

(|$1|2 − d,π1h($1)
)
.

The calculation of the first two parameters is straightforward, as they are expressed in
terms of moments of the random variable X1, which are known thanks to (7). The remain-
ing parameters are moments of Gaussian polynomials of fixed degree and their calculation
involves additional combinatorial arguments.
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Recalling that µ = EYn = (EX1)
d where X1 = W−1

1 and W1 has density proportional to
x−1/2gp/2(x) and using Lemma 4.3 with ( = p/2 and q = −1, we obtain

µ = (
EW−1

1
)d =

(
$(3/p)$(1/2)

$(3/2)$(1/p)

)d

=
(

2
$(3/p)

$(1/p)

)d

.(53)

Similarly,

ν = (EX1)
2d−2 Var(X1) = (

EW−1
1

)2d−2(
EW−2

1 − (
EW−1

1
)2)

(54)

=
(

$(3/p)$(1/2)

$(3/2)$(1/p)

)2d−2(
$(5/p)$(1/2)

$(5/2)$(1/p)
−

(
$(3/p)$(1/2)

$(3/2)$(1/p)

)2)

=
(

2
$(3/p)

$(1/p)

)2d−2(4$(5/p)

3$(1/p)
−

(
2
$(3/p)

$(1/p)

)2)
.

Let us now pass to the calculation of Eh and π1h($1). Recall that

π1h($1) = E$2,...,$2d−1h($1, . . . ,$2d−1) − Eh.

We will calculate the first summand and then integrate it to get the other one. To simplify the
notation, let us denote E′ := E$2,...,$2d−1

Recalling the definition of h, given in (47), one can see that

E′h($1, . . . ,$2d−1) = 1
(2d − 1)!

(
2d − 2
d − 1

)(
(2d − 2)D1 + D2

)
,

where

D1 = E′ det
({$1, . . . ,$d})2 det

({$2,$d+1, . . . ,$2d−1}
)2

,

D2 = E′ det
({$1, . . . ,$d})2 det

({$1,$d+1, . . . ,$2d−1}
)2

.

Let Qi , i = 0, . . . , d − 1, be the orthogonal projection onto span($1, . . . ,$i)
⊥ ⊂ Rd , Q′

1 be
the orthogonal projection onto span($2)

⊥ and Q′
i , i = 2, . . . , d be the orthogonal projection

onto span($2,$d+1, . . . ,$d+i−1)
⊥. Then using the interpretation of the determinant as the

volume of the paralellopiped we get

D1 = |$1|2E′|Q1$2|2 · · · |Qd−1$d |2 · |$2|2
∣∣Q′

1$d+1
∣∣2 · ∣∣Q′

2$d+2
∣∣2 · · · ∣∣Q′

d−1$2d−1
∣∣2.

Since conditionally on $2, . . . ,$i , Qi$i+1 is a standard Gaussian vector on a certain sub-
space of dimension d − i and an analogous property holds for Q′

i$d+i , we have

D1 = |$1|2E′|Q1$2|2|$2|2(d − 2)!(d − 1)!
= (d − 2)!(d − 1)!|$1|2E′(|Q1$2|4 + |Q1$2|2|$2 − Q1$2|2

)
.

Using the fact that, conditionally on $1, the random vectors Q1$2 and $2 − Q1$2 are in-
dependent and have standard Gaussian distributions on spaces of dimension d − 1 and 1
respectively, we obtain

D1 = (d − 2)!(d − 1)!|$1|2
(

E
(

d−1∑

i=1

g2
i

)2

+ E
(

d−1∑

i=1

g2
i

)

g2
d

)

,

where gi’s are i.i.d. N (0,1) variables. Thus,

D1 = (d − 2)!(d − 1)!|$1|2
(
3(d − 1) + (d − 1)(d − 2) + d − 1

) = (d − 1)!2(d + 2)|$1|2.
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Similarly (the calculations are simpler),

D2 = |$1|4(d − 1)!2,
so we get

E′h($1, . . . ,$2d−1)

= 1
(2d − 1)!

(
2d − 2
d − 1

)(
(2d − 2)(d − 1)!2(d + 2)|$1|2 + (d − 1)!2|$1|4

)

= 1
2d − 1

(
(2d − 2)(d + 2)|$1|2 + |$1|4

)
.

Integrating E′h($1, . . . ,$2d−1), we get

Eh = 1
2d − 1

(
(2d − 2)(d + 2)d + 3d + d(d − 1)

) = (d + 2)d,(55)

and finally,

π1h($1) = 1
2d − 1

(
(2d − 2)(d + 2)

(|$1|2 − d
) + (|$1|4 − 3d − d(d − 1)

))
.(56)

To calculate the variance of π1h($1) and its covariance with |$1|2 −d , it will be convenient
to express it in terms of Hermite polynomials of the variables g!,1. To simplify the notation,
let us denote from now on g! = g!,1. We have

π1h($1) = 1
2d − 1

(

2d(d + 2)
d∑

!=1

(
g2

! − 1
) +

d∑

!=1

(
g4

! − 6g2
! + 3

)

+
∑

1≤i +=j≤d

(
g2

i − 1
)(

g2
j − 1

)
)

.

Taking into account that the summands above are uncorrelated and that the second moment
of the kth Hermite polynomial equals k!, we get

Var
(
π1h($1)

) = 8d3(d + 2)2 + 24d + 4d(d − 1)

(2d − 1)2(57)

and

Cov
(
π1h($1), |$1|2 − d

) = 4d2(d + 2)

2d − 1
.(58)

Combining (52)–(58), we finally obtain

%̃2
p,d = 9ν2

64µ5

(
8(Eh)2d + (2d − 1)2E

(
π1h($1)

)2

− 4(2d − 1)Eh · Cov
(|$1|2 − d,π1h($1)

))

=
9(4$(5/p)

3$(1/p) − 4($(3/p)
$(1/p) )

2)2

64(2$(3/p)
$(1/p) )

d+4
×

×
(

8(d + 2)2d2 · d + (2d − 1)2 8d3(d + 2)2 + 24d + 4d(d − 1)

(2d − 1)2

− 4(2d − 1)(d + 2)d · 4d2(d + 2)

2d − 1

)
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=
($(5/p)
$(1/p) − 3($(3/p)

$(1/p) )
2)2

2d+6($(3/p)
$(1/p) )

d+4

(
8(d + 2)2d3 + 8d3(d + 2)2

+ 24d + 4d(d − 1) − 16(d + 2)2d3)

=
($(5/p)
$(1/p) − 3($(3/p)

$(1/p) )
2)2

2d+4($(3/p)
$(1/p) )

d+4
d(d + 5).

Recalling that

n3/2
(

E
1√
Yn

− 1√
µ

− 3νEh

8µ5/2n

)

converges to a centered Gaussian variable with variance %̃2
p,d and going back to (32) and (33)

allows us to conclude the proof.

6. Proof of Theorem 3.4. The proof of Theorem 3.4 will be based on the volume for-
mula of Theorem 4.4 and the Edgeworth expansion given in Theorem 4.12.

PROOF OF THEOREM 3.4. Let g1, g2, . . . be a sequence of i.i.d. standard Gaussian ran-
dom variables, and let un = (g1,...,gn)√

g2
1+·+g2

n

. Then Hn = span{un}⊥ is a random Haar distributed

subspace of Rn of codimension one, and it is clearly enough to prove the theorem for this
choice of Hn.

Let Y1, Y2, . . . be a sequence of independent random variables with density e−)
p
p |x|p where

)p = 2$(1 + 1/p). According to Theorem 4.4,

Voln−1(B
n
p ∩ Hn)

Voln−1(B
n−1
p )

= fg1,...,gn(0),(59)

where for (1, . . . ,(n ∈ R, f(1,...,(n : R ! [0,∞) is the continuous density of the linear com-
bination (1Y1+···+(nYn√

(2
1+···+(2

n

. To shorten the notation, let us suppress the dependence on the se-

quence (gi) and write simply fn instead of fg1,...,gn (this is a slight abuse of notation which,
however, should not lead to misunderstanding). We may assume that the probability space
we consider is of the form (2,F,P) = (21 × 22,F1 ⊗ F2,P1 ⊗ P2) and that the variables
gi depend only on the first coordinate while the variables Yi on the second one. With some
abuse of notation, we will thus sometime think of gi’s as random variables defined on 21
and Yi ’s as random variables defined on 22. Denote also Xi = giYi . We will treat Xi’s as
random variables on the space 22, for the moment fixing the sequence gi . Let us also denote
Gn = (g1, . . . , gn). Thus, fn can be also interpreted as conditional density of 1

|Gn|
∑n

i=1 giYi

with respect to the σ -field generated by gi’s.
In what follows, we will write EG and EY to denote integration with respect to G and Y .
The variables Yn are symmetric, so their odd moments and cumulants vanish. Moreover,

all moments of Yn are finite and a simple calculation shows that

EY 2
n = $(3/p)

4$(1/p)$(1 + 1/p)2 , EY 4
n = $(5/p)

16$(1/p)$(1 + 1/p)4 .

Thus, by (16) we have

c2(Yn) = $(3/p)

4$(1/p)$(1 + 1/p)2 ,

c4(Yn) = 1
16$(1 + 1/p)4

(
$(5/p)

$(1/p)
− 3

$(3/p)2

$(1/p)2

)
.

(60)
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We will now apply the Edgeworth expansion given in Theorem 4.12 to fn. Let us verify
that the sequence (Xi) satisfies the assumptions of this theorem PG-almost surely. We will
use the notation introduced in the formulation of the theorem.

We have

Bn = (
EY 2

1
) n∑

i=1

g2
i ,

and thus by the strong law of large numbers lim infn!∞ 1
nBn = EY 2

1 , PG-a.s. Similarly,

1
n

n∑

i=1

EY |Xi |K = (
E|Y1|K

)1
n

n∑

i=1

|gi |K < ∞

PG-a.s. for any K > 0. Thus, the condition (i) holds with PG-a.s.
We have EY |Xi |K1{|Xi |>n/ } ≤ EY |Xi |K+1///n = 1

n |gi |K+1//E|Y1|K+1// . Thus,

1
n

n∑

i=1

EY |Xi |K1{|Xi |>n/ } ≤ (
E|Y1|K+1// ) 1

n2

n∑

i=1

|gi |K+1// .

Again, by the strong law of large numbers, for every / > 0, the right-hand side converges
PG-a.s. to zero, which shows validity of the condition (ii).

To verify the condition (iii), we will use Lemma 4.13. Let h be the density of Yn, note
that h′ is integrable and so h has finite variation, say V . Moreover, the density of giYi is of
the form |gi |−1h(g−1

i ·), and thus its variation equals |gi |−1V ≤ V for i ∈ I = {j : |gj | > 1}.
Using one more time the strong law of large numbers, we see that PG-a.s.

lim
n!∞

|I ∩ [n]|
n

= P
(|g1| > 1

)
> 0.

Therefore, the condition (iii) of Theorem 4.12 is satisfied PG-a.s. by Lemma 4.13.
We have thus proved that the assumptions of Theorem 4.12 hold PG-a.s. for all K ≥ 3. We

will, however, use it for K = 5 and only for x = 0. Thanks to the symmetry of Xn (recall that
it implies that odd cumulants vanish), the expansion (20) will be actually simplified. Recall
also that cm(Xi) = gm

i cm(Yi). Using the notation of Section 4.8, we obtain by (17) that

.3,n = .5,n = 0

and

.4,n = n
c4(Y1)

(EY 2
1 )2

∑n
i=1 g4

i

(
∑n

i=1 g2
i )

2
.

Combining this with (18) and (14), we get

q0,n(x) = 1√
2π

e−x2/2,

q1,n(x) = q3,n(x) = 0,

q2,n(x) = 1

24
√

2π
e−x2/2(

x4 − 6x2 + 3
)
n

c4(Y1)

(EY 2
1 )2

∑n
i=1 g4

i

(
∑n

i=1 g2
i )

2
.

Thus, PG-a.s. we have, as n ! ∞,

fn(0) = 1√
2π(EY 2

1 )1/2

(
1 + 1

8
c4(Y1)

(EY 2
1 )2

∑n
i=1 g4

i

(
∑n

i=1 g2
i )

2

)
+ o

(
n−3/2)

.(61)
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Note that the asymptotic behaviour of the random variable
∑n

i=1 g4
i

(
∑n

i=1 g2
i )2 has already been

analysed as a special case d = 1 in the proof of Theorem 3.1. However, since the elementary
and easy analysis is hidden there in the rather involved formalism of general U -statistics, let
us repeat it here for completeness.

We have

n3/2
( ∑n

i=1 g4
i

(
∑n

i=1 g2
i )

2
− 3

n

)

=
(

(n − 3)
∑n

i=1(g
4
i − 6g2

i + 3)

n3/2

−
12

∑n
i=1(g

2
i − 1) + 3

∑
1≤i +=j≤n(g

2
i − 1)(g2

j − 1) + 6n

n3/2

)

× n2

(
∑n

i=1 g2
i )

2
.

The last factor on the right-hand side above converges a.s. to 1 by the law of large numbers.
The second quotient in parentheses converges in probability to zero, as can be easily seen by
calculating the variances (note that the summands in the numerator are multiples of Hermite
polynomials of different degrees or products of Hermite polynomials in different variables
and are thus uncorrelated). The first quotient converges weakly by the CLT to a mean zero
Gaussian variable with variance 24.

Using (61), (59) and (60), we thus obtain that
Voln−1(B

n
p ∩ Hn)

Voln−1(B
n−1
p )

− ap,1 − 1
n
bp,1

=
Voln−1(B

n
p ∩ Hn)

Voln−1(B
n−1
p )

−
√

2$(1 + 1/p)$(1/p)1/2
√

π$(3/p)1/2

(
1 + 3

8n

(
$(1/p)

$(3/p)

)2(
$(5/p)

$(1/p)
− 3

$(3/p)2

$(1/p)2

))

=
(
fn(0) − 1√

2π(EY 2
1 )1/2

(
1 + 3

8n

c4(Y1)

(EY 2
1 )2

))

= c4(Y1)

8
√

2π(EY 2
1 )5/2

( ∑n
i=1 g4

i

(
∑n

i=1 g2
i )

2
− 3

n

)
+ oP

(
n−3/2)

,

and thus

n3/2
(Voln−1(B

n
p ∩ Hn)

Voln−1(B
n−1
p )

− ap,1 − 1
n
bp,1

)

converges in distribution to a mean zero Gaussian variable with variance
c4(Y1)

2

128π(EY 2
1 )5

· 24

= 24
128π

(4$(1/p)$(1 + 1/p)2

$(3/p)

)5 1
256$(1 + 1/p)8

(
$(5/p)

$(1/p)
− 3

$(3/p)2

$(1/p)2

)2

= 3
4π

(
$(1/p)

$(3/p)

)5
$(1 + 1/p)2

(
$(5/p)

$(1/p)
− 3

$(3/p)2

$(1/p)2

)2
= %2

p,1,

which ends the proof of Theorem 3.4. !
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REMARK 6.1. Note that the term o(n−3/2) in (61), in general, depends on the values
of the sequence (gi) and is not given explicitly. For this reason using Theorem 4.12 as a
black box will not lead to convergence in Wasserstein distance, contrary to the proof of The-
orem 3.1.

REMARK 6.2. In principle, the method of proof of Theorem 3.4 should work for general
d . What one would need is a suitable version of multidimensional Edgeworth expansion for
the density of sums of independent but nonidentically distributed random vectors (actually
only for the value of density at zero). The majority of the literature on Edgeworth expansions
in higher dimensions focuses on sums of i.i.d. variables; however, there are several results
concerning the non-i.i.d. setting (see, e.g., the monograph [12]). One of the main difficulties
in applying such theorems as black boxes for d > 1 is that, due to the Gram–Schmidt orthog-
onalization performed for each n in order to relate a random basis of H⊥

n to Gaussian vectors,
one actually would need Edgeworth expansions not for infinite sequences of random variables
but for triangular arrays. We are not aware of a result of this type for densities, which would
be easily applicable in our setting. It is quite likely that such a result can be obtained by an
appropriate adaptation of the proofs of known theorems for sequences of random vectors.
Such an extension is, however, beyond the scope of this article.

REMARK 6.3. Let us note that Edgeworth expansions for randomly weighted sums of
independent real-valued random variables have been recently investigated in [13]. The results
obtained therein concern rather approximations of cumulative distribution functions than den-
sities and the average error in the Edgeworth expansion up to order four. While not directly
applicable to our setting, they share some similarities; in particular, they show that the average
approximation error for the Edgeworth expansion with deterministic terms (i.e., independent
of the direction) in a typical situation is of the order n−3/2, which agrees with the normaliza-
tion in our limit theorems. The results obtained in [13] complement an earlier work [42] in
which Berry–Esseen bounds for randomly weighted sums were investigated. Related Berry–
Esseen bounds for random vectors in higher dimension were also recently investigated in
[14]. Let us mention that actually this line of research was initiated already by V.N. Sudakov
in the late 1970s [82].

7. Proof of Theorem 3.5. The proof is similar and simpler than the proof of Theo-
rem 3.4, so we will just indicate the necessary modifications.

Considering again an i.i.d. sequence g1, g2 . . . of standard Gaussian variables and letting
un = (g1,...,gn)√

g2
1+···+g2

n

, it is now straightforward to see that

2−n Voln−1
(
Bn

∞ ∩ (xu + Hn)
) = fn(x),

where fn is the conditional density of
∑n

i=1 giYi√
g2

1+···+g2
n

, where Y1, Y2, . . . is a sequence of i.i.d.

random variables, uniform on [−1,1] and independent of the sequence (gi) (we condition on
(gi)).

Thus, repeating the steps related to (61), we obtain that

2−n Voln−1
(
Bn

∞ ∩ (xu + Hn)
)

= 1√
2π(EY 2

1 )1/2
exp

(
− x2

2EY 2
1

)(
1 + 1

24

(
x4

(EY 2
1 )2

− 6
x2

EY 2
1

+ 3
)

c4(Y1)

(EY 2
1 )2

∑n
i=1 g4

i

(
∑n

i=1 g2
i )

2

)

+ oP
(
n−3/2)

.
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By the analysis from the proof of Theorem 3.4, we thus see that

2−n Voln−1
(
Bn

∞ ∩ (xu + Hn)
)

= 1√
2π(EY 2

1 )1/2
exp

(
− x2

2EY 2
1

)(
1 + 1

24

(
x4

(EY 2
1 )2

− 6
x2

EY 2
1

+ 3
)

c4(Y1)

(EY 2
1 )2

(3
n

+ Un

))

for a sequence Un of random variables such that n3/2Un converges weakly to a Gaussian
variable with mean zero and variance 24. To finish the proof, it is now enough to rearrange the
terms and substitute the values of variance and fourth cumulant of the uniform distribution.

8. Proof of Corollary 3.6. The following argument is a simple application of a delta
type method in combination with Theorem 3.4.

PROOF OF COROLLARY 3.6. By Theorem 3.4 we have
ρIBn

p
(η)

Voln−1(B
n−1
p )

= ap,1 + Rn,

where Rn is a random variable such that n3/2(Rn − bp,1/n) converges in distribution to a
centered Gaussian variable with variance %2

p,1. In particular, nRn converges in probability to
bp,1.

Thus,

n3/2
(

Voln−1
(
Bn−1

p

)‖η‖IBn
p

− 1
ap,1

+ bp,1

na2
p,1

)
= n3/2

( 1
ap,1 + Rn

− 1
ap,1

+ bp,1

na2
p,1

)

= n3/2R2
n

a2
p,1(ap,1 + Rn)

− n3/2

a2
p,1

(
Rn − bp,1

n

)
.

To finish the proof, it suffices to note that the first summand on the right-hand side above
converges in probability to zero, the second one to N (0,%2

p,1/a
4
p,1). !

APPENDIX: PROOF OF THEOREM 4.1

The argument we present below mimics the proof in [68] provided there for p = 1; there-
fore, we will only present a sketch. Our main objective is to derive correct constants on the
right-hand side of (8).

PROOF OF THEOREM 4.1. Let H(ε) = {x ∈ Rn : |〈x,uj 〉| ≤ ε/2, j = 1, . . . , d}. By a
well-known formula for volumes of sections (see [68] for a discussion and references),

$
(
1 + (n − d)/p

)
Voln−d

(
H ∩ Bn

p

)

= lim
ε!0

1
εd

∫

H(ε)
e
−∑n

j=1 |xi |p dx(62)

= (
2$(1 + 1/p)

)n lim
ε!0

1
εd

P
(∣∣∣∣∣

n∑

i=1

Xivi

∣∣∣∣∣∞
≤ ε/2

)

,

where X1, . . . ,Xn are i.i.d. random variables with density 1
2$(1+1/p) exp(−|x|p). By [24],

Lemma 23, Xi’s have the same distribution as (2Wi)
−1/2gi , where G = (g1, . . . , gn) is a se-

quence of independent standard Gaussian variables independent of the sequence (Wi). Thus,

P
(∣∣∣∣∣

n∑

i=1

Xivi

∣∣∣∣∣∞
≤ ε/2

)

= P
(∣∣∣∣∣

n∑

i=1

giṽi

∣∣∣∣∣∞
≤ ε/2

)

= P
(
G ∈ (ε/2)K

)
,
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where ṽi = (2Wi)
−1/2vi and K = A−1Bd

∞ with A being the d × n matrix with columns ṽi .
Let V := (KerA)⊥ and G̃ be the orthogonal projection of G onto V . Then G ∈ (ε/2)K if
and only if G̃ ∈ (ε/2)(K ∩ V ). Conditionally on Wi ’s, G̃ is a standard Gaussian vector on
the d-dimensional subspace V . It has a continuous and bounded density with respect to the
Lebesgue measure on V , whose value at zero equals (2π)−d/2. As a consequence, by the
Fubini and Lebesgue dominated convergence theorems

lim
ε!0

1
εd

P
(∣∣∣∣∣

n∑

i=1

giṽi

∣∣∣∣∣∞
≤ ε/2

)

= EW lim
ε!0

1
εd

PG
(
G̃ ∈ (ε/2)(K ∩ V )

)

= 2−d(2π)−d/2EW Vold(K ∩ V )

= 2−3d/2π−d/2EW Vold(K ∩ V ).

It remains to observe that A is a linear isomorphism between V and Rd , and it maps K ∩V
onto Bd

∞, which is of volume 2d . Thus,

Vold(K ∩ V ) = (
det

(
AAT ))−1/22d = 23d/2

(

det

(
n∑

j=1

1
Wj

vjv
T
j

))−1/2

,

which, combined with the previous formula and (62), gives

Voln−d
(
Bn

p ∩ H
) = 2n

πd/2

$(1 + 1/p)n

$(1 + (n − d)/p)
E

(

det

(
n∑

j=1

1
Wj

vjv
T
j

))−1/2

.
!
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