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1. Introduction

Non equilibrium dynamics of open quantum systems has attracted a lot of attention in recent
ears [1–5]. The interest is mostly stimulated by a rapid progress in design and manufacturing of
rototypical quantum computers with dozens and hundreds of qubits [6–16]. The very essence of
ubits as controllable quantum systems dictates both their non-equilibrium nature as well as their
oupling to extensive number of external degrees of freedom.
An economic and, in many cases, justified way of treating such driven dissipative quantum

ystems is to employ the Markovian (i.e. time-local) approximation. Under such assumption dy-
amics of a reduced density matrix is given by a Lindblad equation [17,18]. Historically, the study
f Lindbladian dynamics was primarily restricted to systems with a few degrees of freedom, with
ost of the focus coming from the quantum optics literature [19–22]. For example, Lindbladian
volution of a single two-level system is fully equivalent to the set Bloch equations. Other examples
nclude the dynamics of parametrically driven oscillators [23–25], cavity QED and coupled cold
tom–cavity systems [26,27], etc. Their considerations lead to a number of insightful physical results
nd powerful theoretical approaches.
The modern quantum computation platforms, such as Josephson or ionic traps, fall squarely into

he realm of many-body systems. In addition to these, we also mention driven-dissipative quantum
luids and Bose condensates [28–36], dynamics of large networks of coupled parametric oscillators
nd optical cavities [37–43], and monitored dynamics of spatially extended systems [44–47], all of
hich implicitly involve extensively large numbers of degrees of freedom. Indeed, already N = 50
onnected qubit devices gives rise to the Hilbert space dimension N = 250, which is well beyond
traditional single-particle matrix manipulation techniques. This calls for the developing of many-
body field theoretical techniques geared towards description of the Lindbladian (as opposed to von
Neumann) evolution.

An important step in this direction is consideration of many-body bosonic or fermionic systems,
traditionally described in the occupation number basis via the algebra of creation/annihilation
operators. In this approach both many-body effective Hamiltonian and a set of many-body quantum
jump operators are all expressed as polynomials of such creation/annihilation operators. It is
important to remember, though, that despite of a deceptively simple appearance all these operators
act in the exponentially large (in the number of the degrees of freedom) Hilbert space. Therefore a
brute force numerical solution of the corresponding Lindblad equation requires diagonalization of
N 2

× N 2 matrix (for, e.g., fermionic case). Clearly this is not a productive direction.
Various techniques have been developed for studying dynamics of quadratic Lindbladians,

i.e. those with the Hamiltonian given by a quadratic form, while all quantum jump operators
by linear forms of the creation/annihilation operators. One such approach is provided by the so-
called ‘‘third quantization’’ technique [48–52], based on the use of algebras of bosonic or fermionic
superoperators. This approach shows that N 2 eigenvalues of a quadratic many-body Lindbladian
may be constructed from N complex eigenvalues of a certain N × N non-Hermitian matrix, using
conventional bosonic or fermionic occupation numbers.

Let us also mention the notable topological classification of Lindbladian fermions [53–56] and
various results pertaining to both bosonic and fermionic Gaussian states [57–64]. These techniques
have been variously applied to the study numerous problems, including the Bogoliubov spectrum
of driven-dissipative condensates [29], exact solutions of nonlinear integrable systems [65], and the

study topological properties of various low-dimensional dissipative systems [66–70].
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The purpose of this manuscript is to review and further develop an alternative apparatus, based
on coherent state functional integral field-theoretical treatment of the Lindbladian dynamics, pio-
nered by Sieberer, Buchhold, and Diehl [3]. This technique originates from the Keldysh theory [71]
of the underlying Von Neumann dynamics of the interacting system–bath pair. Upon integrating
out the bath degrees of freedom and adopting Markovian approximation for the bath-induced
self-energy, one ends up with a time-local effective action. The latter is fully equivalent to the many-
body operator Lindblad equation [3]. It constitutes, however, a more convenient starting point for
calculation of various observables, correlation functions, linear response characteristics, collective
modes, etc. It is also indispensable for generalizations beyond the quadratic theory.

In the quadratic approximation this approach naturally reproduces the results of the third quan-
tization for the spectra of the Lindbladian superoperators. Its advantage is in making unmistakably
clear that this information is only part of the whole picture. While in equilibrium systems, both
statistical weights and the dynamics are determined by the same set of energies, this is not the case
or driven-dissipative Lindbladian dynamics. In this case the complex spectrum of the dynamical
elaxation is not directly related to (real) statistical weights of the stationary (but non-equilibrium)
ensity matrix. The latter is determined by the stationary distribution function F̌st, which naturally
merges as one of the main building blocks of the Keldysh treatment.
One of the main goals of this text is to draw distinctions between the transient relaxation

pectra (derived from the eigenvalues of a certain non-Hermitian N×N matrix Ȟ) and a Hermitian
× N stationary distribution F̌st. Already for quadratic Lindbladians finding F̌st requires solving a

inear kinetic equation. The latter takes the form of the so-called continuous-time Lyapunov matrix
quation, well-known in the dynamical systems literature in the context of stability and control
f linear systems [72]. We show that, on the one hand, F̌st determines a host of observables and
orrelation function of physics interest. On the other hand, its properties are often qualitatively
ifferent from those of Ȟ . While the latter are frequently emphasized in the literature, the former
re undeservedly overlooked. For example, certain non-analyticities (associated with the exceptional
oints) in the Ȟ spectra, do not show up in the F̌st spectra. Similarly, while the band structure of

Ȟ often exhibits interesting topological characteristics, the band structure of the corresponding F̌st
may be topologically trivial.

The structure of the manuscript is rather straightforward. In Section 2 we develop major
aspects of the field-theoretical treatment of the Lindbladian dynamics for bosonic and fermionic
many-body systems. Here we emphasize the role of the stationary distribution and explain the
origin of the Lyapunov equation. We also derive generic expressions for observables and linear
response and consider exceptional points. Section 3 is devoted to a number of pedagogic examples
illustrating various aspects of many-body Lindbladian dynamics. Some technicalities are delegated
to appendices.

2. Formalism

This section discusses the general formalism of quadratic theories of both bosons and fermions.
It begins with an introduction to the Keldysh formalism as it relates to Lindbladians. With this
established, one can obtain the many-body Lindbladian spectrum and stationary density matrix
using the Keldysh Green’s function formalism.

2.1. Lindblad and Keldysh

In the operator formalism approach to open quantum systems, one studies the reduced density
matrix, ρ, of the system of interest, resulting from tracing out the environment Hilbert space. The
tracing out of environmental degrees of freedom coupled to the system generates additional terms
in the evolution equation for ρ alongside the standard von-Neumann part, resulting in an effective
non-equilibrium dynamics. In situations where memory effects may be neglected, time evolution
of ρ is described by the Lindblad master equation [19],

ˆ
∂tρ = L̂ρ, (1a)

3



F. Thompson and A. Kamenev Annals of Physics 455 (2023) 169385

w
a
o
i

t
d

ˆ̂L = −i[Ĥ, ·] +
∑
v

(
L̂v · L̂†

v −
1
2
{L̂†

vL̂v, ·}
)
, (1b)

here the latter equation defines the Lindbladian superoperator. The Hermitian operator Ĥ is
n effective (possibly renormalized by the environment) Hamiltonian of the system. The jump
perators L̂v (in general non-Hermitian) specify channels through which the system is coupled to
ts environment.

The Lindbladian plays a role analogous to the Hamiltonian in closed quantum systems in
hat determining its eigenvectors and eigenvalues provides complete knowledge of the system’s
ynamics. One thus seeks to solve the superoperator eigenvalue problem ˆ̂LρΛ = ΛρΛ. A given

density matrix ρ will be a superposition of the Lindbladian eigenvectors ρΛ. The corresponding
Lindbladian eigenvalues will generically be complex, coming in complex-conjugate pairs, with the
real and imaginary parts corresponding to the rates of decay and coherent (phase) rotation of the
ρΛ component of ρ.

Dynamical stability at long times requires all Λ to have non-positive real parts. This requirement
is comparable to a Hamiltonian spectrum being bounded from below in dynamics of a closed
quantum system. The ρΛ with purely imaginary Λ play a special role: they do not dissipate. There
is always at least one zero eigenvalue, corresponding to a stationary state ρst. In general there may
be multiple stationary states spanning a multidimensional operator subspace. The structure and
dimension of the space of stationary states is determined by the symmetries of the system [73–78].
For a generic Lindbladian without additional symmetry however, the stationary state is unique.

The focus of this manuscript is on many-body Lindbladians, in which the Hilbert space of states
is either a bosonic or fermionic Fock space. It is thus convenient to use the creation/annihilation
operator basis âj and â†

j , where j ≤ N is a generic internal index encompassing e.g. spin, flavor,
orbital number, space or momentum, etc. In this basis, Ĥ = H(â†

j , âj) and L̂v = Lv(â
†
j , âj) where

H and Lv without hats are polynomial functions. The focus below is on H quadratic and Lv linear.
In such theories, the Lindbladian dynamics is akin to non-interacting Hamiltonian dynamics: it is
possible to solve exactly the full many-body problem from studying single-particle quantities. In
particular, a generic many-body eigenvalue takes the form:

Λn1...n2N = −i
∑
s

nsϵs, (2)

where the 2N quantum numbers ns are integer-valued occupation numbers and ϵs are the solutions
to a single-particle non-Hermitian eigenvalue problem. The stationary state density matrix can be
obtained from stationary solution to the single-particle quantum kinetic equation.

The formal machinery used to extract this information is the Keldysh path integral and the
corresponding theory of non-equilibrium Green’s functions [71]. Using the formalism of [3], the
dynamics encoded in the Lindblad equation can be mapped to a coherent state path integral. In
broad strokes, this is achieved by expressing the density matrix at time t in terms its value at an
initial time t0 via a time evolution superoperator ρ(t) = ˆ̂Utρ(t0), defined by exp(t ˆ̂L). One may then
introduce the Keldysh partition function as the superoperator analog of the propagator,

Z = tr
(
ˆ̂Utρ(t0)

)
. (3)

which is always identically equal to 1 due to the density matrix normalization. Z can be brought
into the form a path integral by cutting the time interval into infinitesimal slices via the Trotter
formula, so that one may write exp(δt ˆ̂L) ≃ 1 + δt ˆ̂L on each time slice where δt is the duration of
a slice. By inserting factors of a coherent state resolution of identity in-between each slice on both
sides of the density matrix, operators are converted into fields. For a single bosonic mode, one uses
the bosonic coherent states defined by â|φ⟩ = φ|φ⟩ where φ is a complex number (generalization
to N bosons is automatic, for details on fermionic Keldysh integrals, see Section 2.6). Each coherent
state component |φ+

1 ⟩⟨φ
−

1 | of the density matrix at time t , being acted upon by the superoperator
ˆ̂L, leads to the following matrix elements:

+ ˆ̂ + − − φ̄+2 φ
+

1 +φ̄−1 φ
−

2 K(φ̄+, φ+, φ̄−, φ−), (4)
⟨φ2 |L(|φ1 ⟩⟨φ1 |)|φ2 ⟩ = −ie 2 1 1 2

4
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here the Keldysh ‘‘Hamiltonian’’ K has the same form as the Lindbladian upon replacing creation
perators â, that multiply the density matrix on the left/right, with φ± respectively. Provided the

functional form of the Hamiltonian H and jump operators Lv are normal ordered, one may write:

K(φ̄+, φ+, φ̄−, φ−) = H+
−H−

+ iD(φ̄+, φ+, φ̄−, φ−), (5a)

D(φ̄+, φ+, φ̄−, φ−) =
∑
v

(
L̄−

v L
+

v −
1
2
L̄+

v L
+

v −
1
2
L̄−

v L
−

v

)
, (5b)

here H±
= H(φ̄±, φ±) and L±

v = Lv(φ̄±, φ±). Note that the second equality holds for quadratic
heories considered here because the normal ordering of the product L̂†

vL̂v is equivalent to the
roduct of the normal ordering up to a trivial constant.
Upon re-exponentiation in the limit δt → 0, this retrieves a functional integral in terms

f two sets of fields φ±(t), φ̄±(t) corresponding to multiplication of the density matrix by the
reation/annihilation operators â, â† on the left or right side in the Lindbladian. It is conventional to
resent this functional integral using the Keldysh rotated basis of ‘‘classical‘‘ and ‘‘quantum’’ fields,
c,q

= (φ+
± φ−)/

√
2. All together, one has for the partition function [3],

Z =

∫
Dφ̄αDφαeiS[φ̄

α ,φα ], (6)

ith α = c, q. The Keldysh action S is the given by the time integral of a Lagrangian defined by the
eldysh Hamiltonian K defined as a function of φ± by Eq. (5a),

S =

∫
dt
(
φ̄qi∂tφc

+ φ̄ci∂tφq
− K(φ̄α, φα)

)
. (7)

he value of density matrix ρ(t0) at the initial time is contained in the boundary conditions of the
ath integral.
With the Keldysh path integral in hand, n-point correlation functions can be calculated via

perator insertion at different times on either side of the density matrix. By extension, the
xpectation of a quadratic observable Ô = Â†ǑÂ, where Â = [â â†

] is the Nambu space spinor
nd Ǒ is a matrix, at a finite time can be computed as the expectation inside the function integral,

⟨Ô(t)⟩ =
∫

Dφ̄αDφαeiSO
(
φ̄−(t), φ+(t)

)
, (8)

here O(φ̄, φ) = Φ̄ǑΦ is the classical function of operators replaced with fields, with Φ = [φ φ̄]
he Nambu space vector. The integral can performed by expressing O as a function of the Keldysh
ields. As an example which will be relevant below, one may consider the single-particle bosonic
ovariance matrix ⟨{Â, Â†

}⟩. This Nambu space matrix-valued expectation reduces to the equal time
wo-point expectation of classical fields ⟨{Â, Â†

}⟩(t) = ⟨Φc(t)Φ̄c(t)⟩.
One of the main advantages of the Keldysh formalism is that this procedure is straight-forwardly

eneralized to expectations of fields with different time arguments. For a quadratic theory, the two-
oint functions are the most important as they can be used to compute all higher-order n-point
unctions via Wick’s theorem. Combining all four fields together into a single Keldysh-Nambu vector
= [φc φ̄c φq φ̄q

], the two-point functions define the spectral and Keldysh Green’s functions,[
iǦK(t, t ′) iǦR(t, t ′)
iǦA(t, t ′) 0

]
= ⟨Φ(t)Φ̄(t ′)⟩. (9)

Note that Green’s functions defined using this convention are matrices on the Nambu space so as
to account for the possibility of non-zero anomalous expectations e.g. ⟨φα(t)φβ (t ′)⟩. The Keldysh
Green’s function ǦK contains information about the distribution function of the system; at equal
times one can see that it is just the covariance matrix from the example above, ǦK(t, t) =

⟨{Â, Â†
}(t)⟩. It is conventional to represent the Green’s functions diagrammatically, as shown in

Fig. 1. This relation generalizes to N particles and, as discussed below, can be used to compute
the stationary state density matrix. The spectral Green’s functions ǦR,A contain purely dynamical
information and are independent of the state of the system. As discussed in the following section,
they are related to the single-particle eigenvalue spectrum.
5
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Fig. 1. Diagrammatic representations of the three Green’s functions from the Keldysh theory. The solid lines denotes the
lassical field φc and the dashed line, the quantum field φq .

2.2. Bosons

A generic quadratic Lindbladian for a system of N Bosons is defined by a quadratic Hamiltonian
and a set of linear Jump operators,

Ĥ =

N∑
i,j

(
∆ijâ

†
i âj + λijâiâj + λ

∗

ijâ
†
i â

†
j

)
, (10a)

L̂v =
N∑
j

(µvjâj + νvjâ
†
j ), (10b)

where the hat âj’s are bosonic creation operators, [âj, â
†
i ] = δij. One can in principle allow the

parameter matrices to vary as functions time, but for simplicity here only time-independent models
are considered. The corresponding Keldysh action of Eq. (7) can be arranged into a quadratic form:

S =
1
2

∫
dt Φ̄

[
0 τ̌ 3i∂t − Ȟ0 − iQ̌

τ̌ 3i∂t − Ȟ0 + iQ̌ iĎ

]
Φ, (11)

here τ̌ i are the Pauli matrices acting in Nambu space and the fields φα are understood as vectors
ith N entries φαj so that the Keldysh-Nambu spinor Φ has a total of 4N entries.
The operators Ȟ0, Q̌ , and Ď are Hermitian 2N × 2N Nambu space matrices:

Ȟ0 =

[
∆ 2λ†

2λ ∆T

]
, (12a)

Q̌ =
1
2

[
γ − γ̃ η

†
a

ηa γ̃ T
− γ T

]
, (12b)

Ď =

[
γ + γ̃ η

†
s

ηs γ T
+ γ̃ T

]
, (12c)

here

γij =
∑
v

µ∗

viµvj, γ̃ij =
∑
v

νviν
∗

vj, ηij =
∑
v

ν∗viµvj, (13)

and ηs,a = η ± ηT. The N × N parameter matrices have index symmetries:

∆ = ∆†, λ = λT, γ = γ †, γ̃ = γ̃ †, ηs,a = ±ηTs,a. (14)

ote that the matrix Ȟ0 is nothing more than the single-particle Hamiltonian, Ĥ =
1
2 Â

†Ȟ0Â. The
matrices Q̌ and Ď are determined entirely by the coupling to the environment through the jump
operators.

The dynamic matrix Ȟ = τ̌ 3(Ȟ0− iQ̌ ) is a non-Hermitian matrix that replaces the single-particle
Hamiltonian in coherent many-body systems. Its 2N eigenvalues are the obtained by solving the
non-Hermitian eigenvalue problem,

Ȟ|s⟩ = ϵ |s⟩, (15)
s

6
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here ϵs are the eigenvalues of Ȟ obtained through diagonalization by a generically non-Unitary
atrix Ǔ ,(

ǓȞǓ−1)
ss′ = ϵsδss′ . (16)

ote that the complex eigenvalues of Ȟ come in complex-conjugate pairs on due to the Nambu
pace particle-hole symmetry. The ϵs act as eigenvalues of the single-particle sector of the Lindbla-
ian. In the standard quantum theory, the absence of interactions implies the energies of the full
any-body system to be determined by filling the single particle states with various numbers of
articles. This is essentially true in the Lindbladian theory as well, except that the single-particle
tates |s⟩ have a finite lifetime on account of the complex single-particle ‘‘energies’’ ϵs having
igrated into the bottom half of the complex plane, see Fig. 2. The expression in Eq. (2) for a
any-body eigenvalue is just the assigning of bosonic occupation numbers to this single-particle
ector. Demonstrating this fact explicitly can be achieved either by semiclassical quantization of the
eldysh action (see Appendix A) or through the third quantization formalism [48] (see Appendix B
or connections between the Keldysh and third quantization formalisms).

To gain further intuition about the nature of the dynamics, consider the classical mechanics of
he Keldysh action Eq. (11). The equation of motion of the classical field Φc

= [φc φ̄c
] with the

uantum field set to zero Φq
= [φq φ̄q

] = 0 is

i∂tΦc
= ȞΦc. (17)

his is a non-Hermitian Schrödinger equation where the classical field acts as the single-particle
ave function. This can equivalently be conceptualized in first-quantized language as an equation of
otion for the coordinate on the N-particle phase space. Due to the non-Hermiticity of the dynamic
atrix, the classical mechanics this equation encodes is dissipative: the phase portrait will consist
f spiraling paths centered at the origin. The dynamics are only stable when all of the eigenvalues
f Ȟ have non-positive imaginary part, so that all phase space trajectories fall into the origin rather
han running to infinity. This behavior is not ensured for generic choices of the parameter matrices
nd can fail if the magnitudes of λ or γ̃ are large compared to other parameters. These situations are
nphysical, being associated with either an unstable Hamiltonian in which the potential of one or
ore coordinates in the phase space is inverted or with a situation where the rate of particle gain is
reater than loss, resulting in an uncontrolled pumping of quanta into the system. At the threshold
f such an instability the eigenvalues of Ȟ can be purely imaginary, resulting in a coherent orbiting
round the origin. This corresponds to a closing of the dissipative gap in the Lindbladian spectrum
nd stable long-time dynamics beyond a single stationary state.
The spectral Green’s functions ǦR,A(t, t ′) contain the same dynamical information in their pole

tructure. They can be read off as the off-diagonal blocks of the inverse of the quadratic form in
q. (11). This is equivalent to inverting the differential operator in Eq. (17). The spectral Green’s
unctions are independent of the distribution of the system and are thus always functions of the
ifference of their time arguments,

ǦR(t, t ′) = −iθ (t − t ′)e−i(t−t ′)Ȟ τ̌ 3, ǦA(t, t ′) = iθ (t ′ − t)τ̌ 3e−i(t−t ′)Ȟ†
. (18)

pon Fourier transform with respect to the difference of the time arguments t − t ′, they are adopt
simple form of the resolvent of the dynamic matrix,

ǦR(ϵ) =
1

ϵ − Ȟ
τ̌ 3, ǦA(ϵ) = τ̌ 3

1

ϵ − Ȟ†
. (19)

he poles of the Green’s functions are located at the eigenvalues ϵs. This can be compared to the
ssociation between the energies of single-particle states and poles in standard quantum theory.

.3. Lyapunov equation

In this section, the stationary state of the Lindbladian is discussed. Contrasting to the spectral
reen’s functions discussed above, the Keldysh Green’s function ˇ K
G depends on the distribution of

7
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Fig. 2. Example spectra of Ȟ plotted in the complex plane of the eigenvalues ϵs . The eigenvalues labeled in red correspond
o eigenvectors that evolve in a purely dissipative way. The purple eigenvalues correspond to modes with simultaneous
issipation and coherent rotation. The black eigenvalue at the origin denotes the stationary state(s), which can be compared
o energy eigenstates in a closed quantum system. The blue eigenvalues aligned along the real axis correspond to limiting
ycles which do not decay at long times; these are analogous to coherent superpositions of different energy eigenstates.

he system. Conventionally, one parameterizes the Keldysh Green’s function in terms of the spectral
reen’s functions and a Hermitian matrix F̌ (t, t ′),

ǦK
= ǦR

◦ τ̌ 3F̌ − F̌ τ̌ 3 ◦ ǦA, (20)

where the composition ◦ denotes matrix composition both in the time argument and the Nambu
space. Note the additional factor of τ̌ 3 here compared to the standard convention in [71] is a
consequence of the symplectic structure of the bosonic Nambu space. The matrix F̌ acts as a single-
article distribution matrix. Acting on this equation on the left by τ̌ 3ǦR−1 and on the right by ǦA−1τ̌ 3

etrieves the quantum kinetic equation for F̌ ,

[∂t
◦,F̌ ] = −i

(
ȞF̌ − F̌ Ȟ†)

+ τ̌ 3Ďτ̌ 3, (21)

where the ∂t and Ď are understood to be diagonal functions of their two time arguments, i.e. coming
with factors of δ(t−t ′). Note the use of the relation iĎ = −ǦR−1

◦ǦK
◦ǦA−1 obtained by inverting the

quadratic form in the action Eq. (11) to derive this equation. This is valid because the path integral
in Eq. (6) is Gaussian on the bulk of the time contour, except possibly at the initial time t0 in the
case of a non-Gaussian initial density. The initial density lives on the boundary of the time contour
and determines the boundary condition of the quantum kinetic equation.

In a stationary state, ǦK and by extension F̌ are independent of the central time t + t ′. This
nullifies the left-hand side of Eq. (21), meaning the right-hand side must be independently nullified
by a stationary solution. This is achieved by a time-diagonal ansatz, F̌ (t − t ′) = F̌stδ(t − t ′), where
F̌st is a time-independent matrix in the orbital and Nambu spaces obeying the relation:

0 = −i
(
ȞF̌st − F̌stȞ†)

+ τ̌ 3Ďτ̌ 3. (22)

This is a complex Lyapunov equation. There is a unique solution provided that all of the eigenvalues
of Ȟ have finite imaginary parts [72]. This implies that the Lindblad equation possesses a unique
stationary state that arbitrary initial conditions converge towards at long times. The existence of
additional stationary states for bosonic quadratic Lindbladians thus occurs only at the brink of
dynamical instability, when a parameter is tuned so that the dissipative gap closes.

Provided the stationary state is unique, one can solve Eq. (22) in the eigenbasis of Ȟ ,(
Ǔ F̌stǓ†)

ss′ =
−i

∗

(
Ǔ τ̌ 3Ďτ̌ 3Ǔ†)

ss′ . (23)

ϵs − ϵs′

8
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ote that Ď is generically not diagonal in this basis, meaning that off-diagonal elements of F̌st
re finite. This can be compared to the equilibrium theory, in which the preferred stationary F̌
s the thermal distribution, which is diagonal in Nambu space in the eigenbasis of the single-
article Hamiltonian. The relation in Eq. (20) is equivalent to the Fluctuation-Dissipation theorem

for each particle species. In the Lindbladian setting, F̌st is ϵ-independent and generically develops
off-diagonal elements in the eigenbasis of Ȟ and so is more naturally thought of as a matrix. An
alternative but equivalent interpretation of F̌ is given by integrating Eq. (20), giving the relation
iǦK(t, t) = F̌st. That is, F̌st is equivalent to the covariance matrix ⟨{Â, Â†

}⟩ discussed in Section 2.1.
As an alternative to Eq. (23), one can instead express F̌st in its eigenbasis. Letting ǓF be a

diagonalizing transformation of τ̌ 3F̌st, one has [79]:

ǓF τ̌
3F̌stǓ

†
F = diag

(
coth(β1/2), . . . ,− coth(β1/2), . . .

)
, (24)

where the N numbers βj parametrize the eigenvalues of F̌st and act as effective inverse temperatures
for the jth eigenvector. For a dynamically stable theory, 0 < βj ≤ ∞. As mentioned above, this is
in general not the same basis in which the dynamic matrix Ȟ is diagonal, Ǔ ̸= ǓF . This is in stark
contrast to the equilibrium theory of quadratic Hamiltonians, in which the thermal state is the
Gaussian state with Ĥst = Ĥ. In equilibrium, the bases in which the dynamics and the distribution
are diagonal are the same. Out of equilibrium, as is the case for the Lindbladian theory, this is
generically untrue.

The form of the stationary density matrix ρst can be obtained using the identity of F̌st as the
covariance matrix. The covariance matrix is a central object in the theory of Gaussian states and is
known to be equivalent to full knowledge of such a state [57–59]. A Gaussian state is a state with
a density matrix given by the exponentiation of some quadratic operator of the form of Eq. (10a).
For a quadratic Lindbladian with a unique stationary state, the state will be Gaussian. As such, one
can write the stationary density matrix ρst in terms of an effective Hermitian Hamiltonian,

ρst ∝ exp(−Ĥst), (25a)

Ĥst =
1
2
Â†ȞstÂ, (25b)

here the proportionality is determined by the normalization tr(ρ) = 1 and Ȟst is generically not
he same as Ȟ0. The effective Hamiltonian can be found from the stationary distribution matrix
through the relation [60]:

F̌stτ̌ 3 = coth(τ̌ 3Ȟst/2). (26)

In the eigenbasis of F̌st, it adopts a particularly simple form,

Ĥst =

N∑
j

βjb̂
†
j b̂j, (27)

where the diagonal basis bosons are defined by [b̂ b̂†
] = ǓF [â â†

]. The βj determine the average
populations of the b̂ bosons in the stationary state. Note that in situations where there is not a
unique stationary state, some stationary states may be non-Gaussian and the value of the Keldysh
Green’s function at long times depends on the initial conditions.

2.4. Observables and response

With the stationary distribution in hand, one can compute the stationary expectation of observ-
ables. As an example, consider a quadratic observable Ô = Â†ǑÂ. The expectation at arbitrary finite
time after reaching the stationary state is:

⟨Ô⟩ =
1
tr
(
Ǒ
(
F̌st − τ̌ 3

))
. (28)
2
9



F. Thompson and A. Kamenev Annals of Physics 455 (2023) 169385

T

T
(
o
t

i
t
n
p

e
s

I

S
T

w
s
w

E
b
c

r

he quantity 1
2 (F̌st − τ̌ 3) thus acts like am effective single-particle density matrix. Alternatively,

naming the classical and quantum parts of the observable Oc,q
=

1
2 (Φ̄

+ǑΦ+
± Φ̄−ǑΦ−), one has

⟨Oc
⟩ =

1
2
tr
(
ǑF̌st

)
(29)

hus, single-particle traces with the distribution matrix by itself generates moments of the classical
Weyl-ordered) parts of observables. Correlations of different observables at different times and
bservables containing products of more than two field operators can be obtained using Wick’s
heorem.

The response of the system in its stationary state can be studied by introducing perturbations. It
s assumed that the system has been prepared then allowed to relax to its stationary state. Formally,
his amounts to pushing the initial time into the infinite past t0 → ∞ so that the system retains
o memory of its initial condition. Then, at a later finite time ti, some potentially time-dependent
erturbations are switched on, ˆ̂L → ˆ̂L+ δ ˆ̂L(t)θ (t − ti). One may of course consider perturbing the

system directly by modifying the Hamiltonian Ĥ → Ĥ+ δĤ(t). For a quadratic perturbation, this is
quivalent to changing the single-particle Hamiltonian by the inclusion of a matrix-valued classical
ource Ȟ0 → Ȟ0+δȞ0(t). In a Lindbladian problem, one may additionally consider variations to the
dissipative part of the evolution, either by introducing a new jump operator or by varying an existing
jump operator. In both cases, this leads to a modification of the other two parameter matrices
Q̌ → Q̌ +δQ̌ (t) and Ď → Ď+δĎ(t). In the prior case, δQ̌ and δĎ are of the same form as in Eq. (12).
n the latter, one may take perturbations to the jump operators by modifying µ→ µ+ δµ(t) and
ν → ν + δν(t) in Eq. (13) and keeping only whatever order in δµ and δν is required.

In the path integral formalism, this is equivalent to introducing a perturbation to the action
→ S+δS. This translates to a perturbation of the Keldysh Hamiltonian in Eq. (5a), K → K+δK(t).
he perturbations from varying Ȟ0, Q̌ , and Ď respectively are given by:

δH0K(t) =
1
2
σ̌ 1
αβΦ̄

αδȞ0(t)Φβ (30a)

δQK(t) = −
1
2
σ̌ 2
αβΦ̄

αδQ̌ (t)Φβ (30b)

δDK(t) = −
i
2
Φ̄qδĎ(t)Φq (30c)

here σ̌ i denotes the Pauli matrices in the space of Keldysh indices. For weak perturbations, it
uffices to keep only the first order correction to the measure. This gives the linear response, for
hich one obtains for the expectation of an observable Ô at any finite time,

⟨Ô⟩(t) ≃ ⟨Ô⟩st − i
∫ t

ti

dt ′⟨Oc(t)δK(t ′)⟩st. (31)

This is nothing but the Kubo formula generalized to the Lindbladian context. The first term in this
expression is given by Eq. (28). The latter term includes only the classical part Oc because only F̌ in
q. (28) receives perturbative corrections. It can be computed using Wick’s theorem, which leads to
ubble diagram contributions depicted in Fig. 3. Note that one must be careful to only keep terms
orresponding to fully connected diagrams, see Appendix C.
For a purely Hamiltonian perturbation, one finds a correction in the standard form of the retarded

esponse function,

⟨Oc(t)δH0K(t ′)⟩st = ⟨Oc(t)δHq(t ′)⟩st

= −
1
2
tr
(
ǦR(t, t ′)

(
τ̌ 3F̌stδȞ0(t ′)− δȞ0(t ′)F̌stτ̌ 3

)
ǦA(t ′, t)Ǒ

)
.

(32)

Perturbations to the dissipative couplings cannot be expressed as expectations of products of the
quantum and classical parts of observables. They do however admit simple expressions in terms of
the distribution matrix,

⟨Oc(t)δKQ (t ′)⟩st = −
i
tr
(
ǦR(t, t ′)

(
τ̌ 3F̌stδQ̌ (t ′)+ δQ̌ (t ′)F̌stτ̌ 3

)
ǦA(t ′, t)Ǒ

)
, (33)
2
10
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Fig. 3. Bubble diagrams contributing to the linear response of a Lindbladian perturbation. A Hamiltonian perturbation as
n Eq. (32) corresponds to the difference of the retarded and advanced polarization bubbles, as depicted by the leftmost
wo diagrams. Dissipative perturbations modifying Q̌ as in Eq. (33) are comparably given by the of these two bubbles.
he rightmost diagram appears in perturbations modifying Ď as in Eq. (34). This diagram in contrast plays no role in the
oherent linear response theory.

⟨Oc(t)δKD(t ′)⟩st =
i
2
tr
(
ǦR(t, t ′)δĎ(t ′)ǦA(t ′, t)Ǒ

)
. (34)

Note that both expressions appropriately have a retarded causality, despite not being expectations
of classical and quantum observables like Eq. (32). Also note that the linear response theory
for Lindbladians was studied in [80] using the superoperator formalism. The above formulas are
comparable to the results presented there specialized to many-body bosons.

To go beyond the linear response, rather than keeping higher orders in the perturbation theory
one can instead solve the quantum kinetic equation Eq. (21) to determine the full the non-stationary
F̌ . The assumption that the system reached its stationary state before the perturbation is encoded
in the boundary condition F̌ (t, t ′) = F̌st for all t, t ′ < ti. Because the perturbation to the Lindbladian
is assumed to be local in time, one can always seek a solution that is time-diagonal, with F̌ (t, t ′) =
δ(t − t ′)F̌ (t). With this ansatz, the kinetic equation adopts the local form,

∂t F̌ (t) = −i
(
Ȟ(t)F̌ (t)− F̌ (t)Ȟ†(t)

)
+ τ̌ 3Ď(t)τ̌ 3. (35)

Assuming one can solve this equation, the expectations of quadratic observables at finite times can
be computed using the appropriate generalizations of Eqs. (28) and (28),

⟨Ô⟩(t) =
1
2
tr
(
Ǒ
(
F̌ (t)− τ̌ 3

))
, (36a)

⟨Oc(t)⟩ =
1
2
tr
(
ǑF̌ (t)

)
. (36b)

The classical parts of observables containing products more than two field operators can again be
obtained using Wick’s theorem. This is valid even with the non-stationary distribution because
the path integral is still a Gaussian functional integral with the time dependent perturbations; the
density matrix remains a Gaussian state as it evolves in time.

As a check, one can compare the two approaches by combining and rearranging Eqs. (32), (33),
and (34). The correction to ⟨Ô⟩ in Eq. (31) is given by the trace of Ǒ multiplied by the object:∫ t

ti

dt ′ǦR(t, t ′)τ̌ 3
(
−i
(
δȞ(t ′)F̌st − F̌stδȞ†(t ′)

)
+ τ̌ 3δĎ(t ′)τ̌ 3

)
τ̌ 3ǦA(t ′, t), (37)

which is just the leading-order perturbative solution to Eq. (35).

2.5. Exceptional points

This section addresses subtleties that emerge due non-Hermiticity that have thus far been
ignored. The dynamic matrix Ȟ , and by extension the Lindbladian itself, may be non-diagonalizable.
This occurs at so-called exceptional points of the parameter space, at which two or more eigenvalues
merge. This occurs in a fundamentally different way than in standard Hermitian quantum mechan-
ics, in which the crossing of energy levels is generally avoided and degeneracies are traditionally
11
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Fig. 4. Example of tuning a parameter through an exceptional point separating an under-damped to over-damped
dynamical bifurcation. As a parameter is tuned, a pair of eigenvalues initially located as a conjugate pair in the left
half of the complex plane begin moving towards the real axis towards one another. After colliding, they will remain stuck
on the real axis but split and move in opposite directions.

understood to be a consequence of some underlying symmetry. The coalescing of eigenvalues at an
exceptional point should instead marks a bifurcation in the dynamics and is unrelated to dynamical
symmetry.

The prototypical example for how this occurs is the collision of two eigenvalues on the real axis,
ee Fig. 4. The eigenvalues of the matrix −iȞ , and by extension eigenvalues of the Lindbladian,
ome in complex-conjugate pairs. An exceptional point on the real axis thus corresponds to the
pontaneous breaking of this ‘particle-hole symmetry.’ This signals an under-damped to over-
amped bifurcation, in which the corresponding eigenmodes undergoing damped coherent rotation
efore the collision experience pure dissipation after. There is a resonant damping at the exceptional
oint, resulting in the transient algebraic gain of one eigenmode. This transient gain is the generic
ignature of exceptional points.
To see how this works, suppose the dynamic matrix Ȟ has an exceptional point where M

igenvalues have collided at the value ϵs. The dynamic matrix is non-diagonalizable but it can be
rought to Jordan canonical form by a non-unitary similarity transformation Ǔ ,

ǓȞǓ−1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

ϵs 1

ϵs
. . .

. . . 1
ϵs

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (38)

n this basis, Ȟ is almost diagonal except on the M × M block for the eigenvalue ϵs, for which
here are factors of 1 above the upper diagonal. As a consequence, there are fewer than 2N total
igenvectors of Ȟ . As a technical replacement for the missing eigenvectors, it is convenient to
ntroduce additional basis vectors of the Jordan block. Letting |s, 1⟩ denote an eigenvector of Ȟ
or the eigenvalue ϵs, one may introduce |s, n⟩ with n ≤ M defined through the relation,

Ȟ|s, n⟩ = ϵs|s, n⟩ + |s, n− 1⟩. (39)

he vectors |s, n⟩ comprise a complete basis spanning the single-particle Hilbert space.
In the presence of such a Jordan block the appearance the spectral Green’s functions develop

igher-order poles. In particular, for s ≤ s1 < s2 ≤ s + M in the same Jordan block, there appears
he factor:(

Ǔ
1

ϵ − Ȟ
Ǔ−1

)
s1s2

=

( 1
ϵ − ϵs

)1+s2−s1
. (40)

Written as functions of the time t , these off-diagonal components possess polynomial coefficients
in front of the exponent |t|s2−s1 exp(−iϵ t), resulting in transient algebraic gain of certain initial
s

12



F. Thompson and A. Kamenev Annals of Physics 455 (2023) 169385

c
r

f
r

2

n
a
o
c
o
o

t
f
r
f

G
a

orrelations. This behavior does not survive away from the exceptional point: generic perturbations
estore the diagonalizability of Ȟ . There is an extreme sensitivity to perturbations at an exceptional
point. This manifests in the analytic structure of the eigenvalues, which develop fractional power
law non-analyticities [81]. This is anomalous compared to conventional, fully analytic Hermitian
perturbation theory. Consequences of these non-analyticities are explored in some of the examples
in Section 3.

It is natural to wonder if there is some analytic signature of an exceptional point present in
the stationary density. Examining the Lyapunov equation Eq. (22), one can see the answer to be
negative. Both the matrices Ȟ and Ď are analytic functions in neighborhoods of exceptional points
in parameter space [81]. By expanding all terms in series and matching powers, one can see that
only integer powers are permitted for F̌st. As a consequence, F̌st and by extension Ȟst are analytic
unctions on the parameter space even at exceptional points. Thus, there will generically be no
esidual signature of the anomalous nature of the dynamics left over at long times.

.6. Fermions

In this section, the above formalism is adapted to study fermionic Lindbladians. To begin, one
eeds a fermionic version of the Keldysh path integral. This is obtained in essentially the same way
s its bosonic counterpart, though some additional care must be taken with respect to the ordering
f the anti-commuting fields. The fundamental building block for the path integral is the fermionic
oherent state defined by ĉ|ψ⟩ = ψ |ψ⟩, where ψ is a complex Grassmann number. The relevant
verlap formula for the Lindbladian action on two sets of Grassmann coherent states is the mirror
f Eq. (4),

⟨ψ+

2 |
ˆ̂L(|ψ+

1 ⟩⟨ψ
−

1 |)|ψ
−

2 ⟩ = −ieψ̄
+

2 ψ
+

1 +ψ̄−

1 ψ
−

2 K(ψ̄+

2 , ψ
+

1 , ψ̄
−

1 , ψ
−

2 ), (41)

where the Keldysh Hamiltonian is given by Eq. (5) with Grassmann fields ψ± in place of the bosonic
fields. Note that in Eq. (5b) the ordering of fields in the first term is non-trivial, chosen so that
backwards fields (ψ̄−, ψ−) always appear before the forwards fields (ψ̄+, ψ+) in the dissipative
erm D. With this, one can massage the partition function Eq. (3) into the form of a fermionic
unctional integral. It is standard to use the Larkin–Ovchinnikov convention, in which the Keldysh-
otated fields defined ψ1,2

= (ψ+
± ψ−)/

√
2 and ψ̄1,2

= (ψ̄+
∓ ψ̄−)/

√
2. The resulting partition

unction is:

Z =

∫
Dψ̄aDψaeiS[ψ̄

a,ψa
], (42a)

S =

∫
dt
(
ψ̄1i∂tψ1

+ ψ̄2i∂tψ2
− K(ψ̄a, ψa)

)
. (42b)

rouping all four fields together into the Keldysh-Nambu vector Ψ = [Ψ 1 Ψ 2
], where Ψ 1

= [ψ1 ψ̄2
]

nd Ψ 2
= [ψ2 ψ̄1

], the matrix of two-point functions defines the fermion Green’s functions:[
iǦR(t, t ′) iǦK(t, t ′)

0 iǦA(t, t ′)

]
= ⟨Ψ (t)Ψ̄ (t ′)⟩. (43)

These play the same role as in the bosonic theory.
A quadratic Lindbladian system of N fermions is defined by the Hamiltonian and jump operators:

Ĥ =

N∑
i,j

(
εijĉ

†
i ĉj +∆ijĉiĉj +∆∗

ij ĉ
†
j ĉ

†
i

)
, (44a)

L̂v =
N∑

(µvjĉj + νvjĉ
†
j ), (44b)
j

13
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here the ĉj’s are fermion creation operators, {ĉi, ĉ
†
j } = δij. The corresponding Keldysh action is:

S =
1
2

∫
dtΨ̄

[
i∂t − Ȟ0 + iQ̌ iĎ

0 i∂t − Ȟ0 − iQ̌

]
Ψ , (45)

The operators Ȟ0, Q̌ , and Ď are Hermitian 2N × 2N matrices in Nambu space:

Ȟ0 =

[
ε 2∆†

2∆ −εT

]
, (46a)

Q̌ =
1
2

[
γ + γ̃ η

†
s

ηs γ T
+ γ̃ T

]
, (46b)

Ď =

[
γ − γ̃ η

†
a

ηa γ̃ T
− γ T

]
, (46c)

here γ , γ̃ , and η are defined the same as in the bosonic theory as per Eq. (13). The N×N parameter
atrices have the index symmetries:

ε = ε†, ∆ = −∆T, γ = γ †, γ̃ = γ̃ †, ηs,a = ±ηTs,a. (47)

he matrix Ȟ0 is the single-particle Hamiltonian, Ĥ =
1
2 Ĉ

†Ȟ0Ĉ, where Ĉ = [ĉ ĉ†
] is the Nambu

space vector of fermion creation operators.
Note that the definitions of the matrix Q̌ and Ď are reversed compared to the bosonic theory.

The consequence is that dynamical stability is guaranteed for all choices of the parameters. To
see why, define the fermion single-particle dynamic matrix Ȟ = Ȟ0 − iQ̌ . Analogous to the
bosonic theory, dynamical stability of the theory requires all eigenvalues of this matrix to have
non-positive imaginary parts. To see why this is guaranteed, first introduce the Nambu space
vectors |v1v⟩ = [µ∗

v ν
∗
v ] and |v2v⟩ = [νv µv]. Then Q̌ =

1
2

∑
a,v|vav⟩⟨vav| is just a sum of one-

imensional projection operators. As a consequence, all of its eigenvalues are strictly non-negative.
ow consider an eigenvector |ϵ⟩ of Ȟ . Then the imaginary part of the corresponding eigenvector
s Im(ϵ) = −⟨ϵ|Q̌ |ϵ⟩ ≤ 0. The physical reason behind this is Pauli exclusion: there is a limit to
he number of fermions each state can hold, preventing an uncontrolled number of particles from
ntering the system even when the rate of particle pumping is greater than the rate of loss.
As for bosons, the many-body Lindbladian eigenvalues are given by assigning occupation num-

ers to each eigenvalue of Ȟ via Eq. (2). For fermions, this must be done with the understanding
hat the ns are fermionic occupation numbers, equal only to either 0 or 1.

The fermionic spectral Green’s functions are given by:

ǦR(t − t ′) = −iθ (t − t ′)e−i(t−t ′)Ȟ , ǦA(t − t ′) = iθ (t ′ − t)e−i(t−t ′)Ȟ†
. (48)

n frequency space, this becomes the resolvent of Ȟ:

ǦR(ϵ) =
1

ϵ − Ȟ
, ǦA(ϵ) =

1

ϵ − Ȟ†
. (49)

The poles of the Green’s functions are located at the complex eigenvalues of Ȟ .
The Keldysh Green’s function is parametrized through the distribution matrix F̌ (t, t ′) through:

ǦK
= ǦR

◦ F̌ − F̌ ◦ ǦA. (50)

The distribution matrix obeys the quantum kinetic equation:

[∂t
◦,F̌ ] = −i

(
ȞF̌ − F̌ Ȟ†)

+ Ď, (51)

where Ď and ∂t come with factors of δ(t − t ′). In the stationary limit, one has F̌ (t, t ′) = F̌stδ(t − t ′)
where F̌st obeys the Lyapunov equation,

0 = −i
(
ȞF̌ − F̌ Ȟ†)

+ Ď. (52)
st st

14



F. Thompson and A. Kamenev Annals of Physics 455 (2023) 169385

P

w

F
E

aralleling Eq. (23), in the eigenbasis of Ȟ , one may solve for the components of F̌ss as:(
Ǔ F̌stǓ†)

ss′ =
−i

ϵs − ϵ
∗

s′

(
ǓĎǓ†)

ss′ . (53)

The stationary distribution matrix F̌st is equivalent to the stationary equal time Keldysh Green’s
function, which itself is equal to the fermion covariance matrix, F̌st = iǦK(t, t) = ⟨[Ĉ, Ĉ†

]⟩.
When the stationary state is unique, the stationary density matrix is a fermionic Gaussian state

of the form of Eq. (25a), with

Ĥst =
1
2
Ĉ†ȞstĈ. (54)

The effective Hamiltonian is related to the distribution matrix through [61]:

F̌st = tanh(Ȟst/2). (55)

Diagonalizing F̌st, one finds 2N eigenvalues of Ȟst that determine the population numbers of ρst in
its diagonal basis [63]:

ǓF F̌ Ǔ−1
F = diag

(
tanh(β1/2), . . . ,− tanh(β1/2), . . .

)
. (56a)

Ĥst =

N∑
j

βjd̂
†
j d̂j, (56b)

ith [d̂ d̂†
] = Ǔ[ĉ ĉ†

]. In contrast to the bosonic theory, there are no bounds on the inverse effective
temperatures βj; they may be negative.

The expectations of observables, in the presence of sources, can be evaluated by solving the
fermionic analog Eq. (35) and using that of Eq. (36),

∂t F̌ (t) = −i
(
Ȟ(t)F̌ (t)− F̌ (t)Ȟ†(t)

)
+ Ď(t). (57a)

⟨Ô⟩(t) =
1
2
tr
(
Ǒ
(
1− F̌ (t)

))
, (57b)

⟨Oc(t)⟩ = −
1
2
tr
(
ǑF̌ (t)

)
. (57c)

or weak perturbations from the stationary state, the linear response formulas which replace
qs. (32), (33), and (34) are:

⟨Oc(t)δH0K(t ′)⟩st =
1
2
tr
(
ǦR(t, t ′)

[
F̌st, δȞ0(t ′)

]
ǦA(t ′, t)Ǒ

)
, (58a)

⟨Oc(t)δKQ (t ′)⟩st =
i
2
tr
(
ǦR(t, t ′)

{
F̌st, δQ̌ (t ′)

}
ǦA(t ′, t)Ǒ

)
, (58b)

⟨Oc(t)δKD(t ′)⟩st = −
i
2
tr
(
ǦR(t, t ′)δĎ(t ′)ǦA(t ′, t)Ǒ

)
. (58c)

3. Examples

Below, the formalism presented above is developed to study examples of Lindbladian band
theory, semiclassical kinetics, and mean-field theory. While by no means an exhaustive list, these
examples demonstrate how both quadratic and nonlinear Lindbladians may be studied using the
Keldysh language and serve to illustrate important differences compared to the equilibrium theory.
15
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.1. Parametrically driven oscillator

As a warm up, consider first a model with one degree of freedom: a single linear bosonic
scillator in contact with a thermal bath and subjected to a parametric drive. This simple model
s prototypical of much of the phenomena unique to Lindbladian dynamics described above. The
amiltonian and jump operators for the parametrically driven oscillator in the rotating frame of a
rive are given by:

Ĥ = ∆â†â+ λ(â†2
+ â2), (59a)

L̂1 = â, L̂2 = â†. (59b)

he jump operators describe the loss and gain of quanta to and from the environment at the
orresponding rates γ and γ̃ . The rates can be related to the strength of the coupling between
he system and the bath κ , the bath temperature T , and the natural frequency of the system ω0 by:

2κ = γ − γ̃ , coth(ω0/2T ) =
γ + γ̃

γ − γ̃
. (60)

Note the appearance of the Bose function 2nB + 1 = coth(ω0/2T ) at the bath temperature and
ystem frequency.
The dynamic matrix Ȟ is given by:

Ȟ =

[
∆− iκ 2λ
−2λ −∆− iκ

]
. (61)

The spectral Green’s functions are given by Eq. (19),

ǦR,A(ϵ) =
1

(ϵ ± iκ)2 −Ω2

[
ϵ +∆± iκ 2λ

2λ ϵ −∆± iκ

]
, (62)

here Ω2
= ∆2

− 4λ2 is the Bogoliubov frequency of the Hamiltonian part of Ȟ . The eigenvalues
f Ȟ match the poles of the spectral Green’s functions from the numerator in the above expression,

ϵ1,2 = −iκ ∓Ω. (63)

rom this, one can see that the system is stable so long as the coupling κ is positive, which occurs
hen the rate of loss of quanta is greater than the rate of gain, γ > γ̃ . Additionally, the model is
nly stable when the drive strength is small enough, 2λ ≤

√
∆2 + κ2. When the bound is saturated,

ne of the two eigenvalues is tuned to zero and the theory is at the brink of instability. The matrix
ˇ performing the diagonalization is equivalent to the coherent Bogoliubov rotation matrix in the
bsence of the coupling to the bath:

Ǔ =
1
√
2

⎡⎣√ ∆
Ω
+ 1

√
∆
Ω
− 1√

∆
Ω
− 1

√
∆
Ω
+ 1

⎤⎦ (64)

The matrix Ď is proportional to the identity matrix by the factor 2κ coth(ω0/2T ). The Keldysh
reen’s function is given by:

ǦK(ϵ) =
−2iκ coth(ω0/2T )(

(ϵ + iκ)2 −Ω2
)(
(ϵ − iκ)2 −Ω2

)
×

[
(ϵ +∆)2 + κ2

+ 4λ2 −4λ(∆+ iκ)
−4λ(∆− iκ) (ϵ −∆)2 + κ2

+ 4λ2

]
. (65)

olving Eq. (21) gives the stationary distribution matrix:

F̌st =
coth(ω0/2T )

2 2

[
∆2

+ κ2
−2λ(∆+ iκ)

2 2

]
. (66)
κ +Ω −2λ(∆− iκ) ∆ + κ
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he eigenvalues of F̌st are related to the diagonal frequency β of the effective Hamiltonian Ĥst
hrough Eq. (24),

coth(β/2) = coth(ω0/2T )

√
κ2 +∆2

κ2 +Ω2 . (67)

The diagonalizing transformation ǓF is given by:

ǓF =
1
√
2

⎡⎢⎢⎣e−iθ

√√
κ2+∆2

κ2+Ω2 + 1 eiθ
√√

κ2+∆2

κ2+Ω2 − 1

e−iθ

√√
κ2+∆2

κ2+Ω2 − 1 eiθ
√√

κ2+∆2

κ2+Ω2 + 1

⎤⎥⎥⎦ , (68)

where θ = arg(∆ + iκ). As discussed above, the bases in which the distribution and dynamic
matrices are diagonal are not the same, Ǔ ̸= ǓF .

To gain more intuition for the model, consider the limits of strong versus weak dissipation. When
the dissipation is very weak compared to all other scales in the problem κ → 0, the two Lindbladian
eigenvalues −iϵs are complex conjugates with a small negative real part. The dynamics in this limit
are weakly under-damped coherent rotation. Up to corrections of order κ the stationary state is
diagonal in the basis Bogoliubov quasi-particles of the coherent problem. That is, ǓF = Ǔ + O(κ).
With this, the stationary state effective Hamiltonian in its diagonal basis is given by:

Ĥst = βb̂†b̂, (69)

with [b̂ b̂†
] = ǓF [â â†

]. This is equal to the original Hamiltonian Ĥ up to a proportionality constant
β = Ω/Teff,

coth(Ω/2Teff) =
∆

Ω
coth(ω0/2T ). (70)

The stationary state is thus a thermal state of the coherent dynamics, but with a different effective
temperature than the bath temperature. Note that even in the limit T → 0, the effective
emperature Teff is finite. This phenomenon is known as quantum heating [23–25].

Alternatively, one may consider the limit of strong dissipation, κ → ∞. In this limit, the drive
trength can stably be larger than the detuning, 2λ > ∆, past the point of coherent stability. In
his situation, the Lindbladian eigenvalues −iϵs are purely imaginary and the dynamics are that of
ver-damped pure dissipation without any coherent rotation. Up to corrections of the order of the
amiltonian parameters ∆ and λ, the dynamic matrix Ȟ is proportional to the identity with a factor
f κ . Thus, the diagonal basis for the dynamics is the starting basis of the problem, Ǔ = 1̌. Similarly,

examining Eq. (66) in this limit, one sees that F̌st is also proportional to the identity, so that ǓF = 1̌.
The stationary state effective Hamiltonian is given by:

Ĥst =
ω0

T
â†â. (71)

he stationary state is a thermal state of the un-driven Hamiltonian ω0â†â with a temperature equal
o the bath temperature.

Thus, tuning the dissipation strength between the extreme limits κ → 0 and κ → ∞ changes
he diagonal basis of both the dynamics and stationary state between the Bogoliubov basis of the
b̂, b̂†) bosons and the original basis of the (â, â†) bosons. In both of these limits, these basis are the
same, Ǔ = ǓF ; this will cease the be the case in between these two extremes. Interstitial between
these two regimes, there is an exceptional point at which the two Lindbladian eigenvalues −iϵs
coalesce to the value −κ and the dynamics is a resonantly damped dissipation. This occurs at the
threshold of coherent instability 2λ = ∆. At this point, the matrix Ȟ is non-diagonalizable and is
brought to Jordan canonical form by the similarity transformation:

Ǔ =

[
0 −1

]
(72)
2λ 2λ
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ote that this expression is not the equal to the limiting form of Eq. (64), which itself does not exist.
n contrast, the distribution matrix is a smooth function of the parameters even at this point, as are
he diagonal frequencies of the effective Hamiltonian and the diagonal basis of bosons determined
y ǓF . These are given by their limiting forms in terms of the above general expressions. The
xceptional point is reflected in the limiting form of the spectral Green’s functions as second-order
ole:

ǦR,A(ϵ) =
1

(ϵ ± iκ)2

[
ϵ + 2λ± iκ 2λ

2λ ϵ − 2λ± iκ

]
. (73)

The non-diagonalizability results in the linear gain of certain non-stationary densities.
To exemplify this, consider increasing ∆ slightly above or below the critical value of 2λ. This

removes the eigenvalue degeneracy, thus eliminating the polynomial gain of any initial correlations.
The resulting decay at rates are determined by differences of the perturbed eigenvalues ϵs − ϵ∗s′ .
Writing ∆ − 2λ = δ, expanding Eq. (63) around the exceptional point δ = 0 gives a series in
powers of δ1/2:

ϵ1,2 = −iκ ∓ 2
√
λδ + O(δ). (74)

s a consequence, introducing a small detuning causes initial densities with off-diagonal terms
n the perturbed basis of Ȟ eigenvalues to coherently rotate at a rate 4

√
λδ that is a non-

nalytic function of the deviation λ. This demonstrates a stronger sensitivity to perturbations at
he exceptional point than the usual O(δ) corrections in Hermitian systems. Further implications
of the square root singularity in eigenvalues near exceptional points is explored in the following
section.

3.2. Non-Hermitian band theory

This section examines two simple Lindbladian tight binding models. For simplicity the focus is
restricted to one-dimensional chains, though the general principles discussed hear can naturally be
extended to higher dimensions. Much like clean coherent models, Lindbladian lattice systems with
translational invariance are described in terms of the band theory. The bands in a Lindbladian sys-
tem are the momentum-dependent eigenvalues of the dynamic matrix Ȟ , and as such are generically
omplex. Beyond having an imaginary part, there are additional complications that emerge due to
he non-Hermiticity of Ȟ , specifically relating to the potential existence of exceptional points. This
ubtlety is showcased in two simple models below. Note that the theory of non-Hermitian bands
n connection with Lindbladian dynamics is still under construction and the following discussion is
ar from exhaustive, see [82–88].

As a first example, consider a chain of identical parametric oscillators from the preceding section
oupled linearly to their nearest neighbors. The Hamiltonian and jump operators are:

Ĥ =

N∑
j=1

(
∆0â

†
j âj + τ (â

†
j+1âj + â†

j âj+1)+ λ0(â2j + â†2
j )
)
, (75a)

L̂1j = âj, L̂2j = â†
j . (75b)

ith periodic boundary conditions, it is convenient to change to the momentum representation,

φα(k) =
1

√
N

∑
j

eijkφαj , (76)

here k ∈ [0, 2π ) is the crystal momentum. In momentum space, writing Φα(k) = [φα(k) φ̄α(−k)]
rings the Keldysh action to the standard form of Eq. (11), where the parameter matrices are
iagonal functions of k,

S =
1
∫

dtdk Φ̄
[

0 τ̌ 3i∂t − Ȟ0(k)− iQ̌ (k)
3 ˇ ˇ ˇ

]
Φ. (77)
2 τ̌ i∂t − H0(k)+ iQ (k) iD(k)
18
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he parameter matrices are given by a k-dependent version of Eq. (12) with η = 0 and the other
arameters,

∆(k) = ∆0 + 2τ cos(k), λ(k) = λ0, (78a)

γ (k) = 2κ(nB + 1), γ̃ (k) = 2κnB, η(k) = 0. (78b)

ith nB defined by 2nB+1 = coth(ω0/2T ) and κ , ω0, and T the dissipative coupling, system natural
requency, and bath temperature defined in Eq. (60).

With this, one can read off the Green’s functions from the previous section using Eqs. (62) and
65) and replacing the appropriate quantities with their k-dependent analogs. There are two bands
f eigenvalues of Ȟ(k), given by an k-dependent version of Eq. (63),

ϵ1,2 = −iκ ∓
√(
∆0 + 2τ cos(k)

)2
− 4λ20. (79)

his defines a pair of complex-valued bands. As λ0 is tuned from being small to large, the two bands
o from being complex with a constant imaginary part to purely imaginary. These two regimes
orrespond to completely under-damped and over-damped dissipation. The transition between
hese two limits occurs via an extended intermediate regime in which the bands touch and both
ver- and under-damped dissipation occurs in different momentum ranges. This is depicted in Fig. 5.
he points in the Brillouin zone where the bands touch define the exceptional momenta kEP, here
iven by:

kEP = arccos
(
2λ0 −∆0

2τ

)
, (80)

hich has two solutions when ∆0−2τ < 2λ0 < ∆0+2τ . Unlike in a Hermitian band touching, the
ouching of complex bands occurs at exceptional points in the parameter space of Ȟ . This results
n a resonant damping at the exceptional momenta kEP.

One can solve the kinetic equation for the stationary state by looking for translationally invariant
olutions. This reduces Eq. (22) to a k-dependent Lyapunov equation,

0 = −i
(
Ȟ(k)F̌st(k)− F̌st(k)Ȟ†(k)

)
+ τ̌ 3Ď(k)τ̌ 3. (81)

The solution to this equation can be read off from the solution to the single parametric oscillator
in Eq. (66) by appropriately replacing parameters by their k-dependent generalization. Just like the
single parametric oscillator, the stationary distribution has no signature of the exceptional points:
there are no non-analyticities at the exceptional momenta. Response to translationally-invariant
perturbations can be computed using the formalism from Section 2.4 and replacing matrices with
their k-dependent versions. Variations that are not spatially homogeneous but which vary smoothly
over large distances can be studied using a semiclassical approach; this is discussed in Section 3.4.

The above example exemplifies that the degeneration of bands in Lindbladian models occurs
at exceptional points and thus differs from Hermitian band touching. This naively suggests that as
long as there are no spectral degeneracies, the band theory of Lindbladian systems is similar to
conventional Hermitian systems save for the additional imaginary part of each band. This intuition
however is badly wrong. Due to the non-analytic structure of eigenvalues near exceptional points,
non-Hermitian bands can exhibit unusual structures even if they do not cross. In the simplest
situation with a 2 × 2 non-Hermitian matrix, an exceptional point corresponds to a degeneration of
two eigenvalues and, as demonstrated in the preceding sections, leads to a square root singularity.
Revolving around the exceptional point in parameter space induces a monodromy in which the two
eigenvalues are exchanged upon a single winding rather than returning to where they started. In
a one-dimensional tight binding model with two bands, one can imagine tuning a parameter past
the regime of band touching so that the bands remain intertwined and mutually wind around the
exceptional point, exhibiting monodromy over one period of the Brillouin zone.

This clearly does not occur in the chain of parametric oscillators discussed above. One can
construct a simple model that demonstrates this phenomenon using a Lindbladian generalization of
the SSH model. Similar models were studied in [83,84], though not in the context of the Lindbladian
19
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Fig. 5. Plots of the real and imaginary parts of the complex bands Eq. (79) with κ = 5, ∆ = 2, τ = 1/2. The three
olumns show the bands in the completely under-damped, mixed, and completely over-damped regime, corresponding
o λ = 0, 1, and 1.7, going from left to right.

ynamics. The SSH Hamiltonian is defined by assigning two species of fermions, ĉA and ĉB, to
ach site on a one-dimensional chain. Hopping is allowed between species on-site and between
earest-neighbors,

Ĥ =

N∑
j=1

(
ε0(ĉ

†
AjĉAj + ĉ†

BjĉBj)+ τ1(ĉ
†
AjĉBj + ĉ†

BjĉAj)+ τ2(ĉ
†
Aj+1ĉBj + ĉ†

BjĉAj+1)
)
. (82)

n addition, consider on-site gain and loss of particles via a superposition of the A and B fermions,

L̂1j =
√
2κ(ĉAj + eiθ1 ĉBj), L̂2j =

√
2κ(ĉ†

Aj + e−iθ2 ĉ†
Bj), (83)

The restriction to purely loss and gain processes in combination with the lack of pair-creation terms
in the Hamiltonian gives the model an overall U(1) symmetry, with the associated charge being the
total number of particles. This symmetry is weak [77], and so does not imply the conservation of
particle number in time. A consequence of this symmetry is that the anomalous off-diagonal blocks
of the Nambu space Green’s functions vanish. As such, it is convenient to define by G without a
check the upper left block of Ǧ and similarly for other quantities.

The momentum space Keldysh action is then given by:

S =

∫
dtdk ψ̄

[
i∂t − H0(k)+ iQ (k) iD(k)

0 i∂t − H0(k)− iQ (k)

]
ψ, (84)

where ψ = [ψ1 ψ2
], ψa

= [ψa
A(k), ψ

a
B (k)], and the un-checked parameter matrices are the upper-

left blocks of their Nambu-space counterparts in the main text Eq. (45). The parameter matrices
are:

H0(k) =
[

ε0 τ1 + τ2eik

τ + τ e−ik ε

]
, (85a)
1 2 0
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Fig. 6. Three regimes of the complex bands of Eq. (86) plotted as paths in the complex plane. The solid points indicate
he values of ϵj(0) and the arrows show the directed path traced out by varying k from 0 to 2π . The three regimes
orrespond to the two disconnected untwisted loops, intersecting loops, and a single untwisted loop for τ2 less than,
qual to, and greater than κ respectively.

Q (k) = κ

[
2 e−iθ1 + e−iθ2

eiθ1 + eiθ2 2

]
, (85b)

D(k) = 2κ
[

0 e−iθ1 − e−iθ2

eiθ1 − eiθ2 0

]
(85c)

ue to the symmetry in the problem it suffices to study only the two eigenvalue bands of H =

0 − iQ ; the other two single-particle eigenvalue bands are given by their complex conjugates.
For a simple demonstration of the concept discussed above, one can choose different phases for

oss and gain, θ1 = π/2 and θ2 = 0. Fixing in addition τ1 = κ , the eigenvalues of the dynamic
matrix H(k) are given by:

ϵ1,2(k) = ε0 − 2iκ ∓

√
τ 22 − κ2 + 2κτ2 cos(k)− 2iκ

(
κ + τ2

(
cos(k)+ sin(k)

))
(86)

rom this expression one can see that for τ2 = κ , the eigenvalues degenerate to an exceptional
oint at kEP = 3π/2. For τ2 < κ , the eigenvalues are periodic functions of k and the two bands
re disconnected. For τ2 > κ however, the sign of the argument of the square root develops a
egative real part for k near 3π/2. As a consequence, sweeping over the Brillouin zone smoothly
raverses from one branch of the square root Riemann sheet to another, introducing the monodromy
1,2(k → 2π−) = ϵ2,1(k → 0+). These three scenarios are depicted in Fig. 6. In other words,
he square root singularity of the exceptional point effects the analytic structure of the eigenvalue
ands even when they do not collide with it. From encircling of the exceptional point there are no
onger two distinct disconnected bands, but rather a single continuous band that double-covers the
rillouin zone.
Recent literature has understood this sort of atypical feature of non-Hermitian band theory in

he context of braids and knots [85–88]. The eigenvalues of the dynamic matrix H(k) define paths in
he complex plain parametrized by k. Due to the periodicity of k, the paths must close and so define
oops, which can braid together and link up. This phenomenon does not have a Hermitian analog,
s the eigenvalues of Hermitian matrices live on the real line, a space of too low dimension for the
notting of paths. In the model considered above, the transition through the exceptional point can
e understood as a transition from two disconnected unknots to one. In the language of braids, this
s a transition from two upbraided paths to a pair of paths with a single twist, separated by a point
here the paths collide.
In more general models on one-dimensional lattices, eigenvalues may braid multiple times with

ne another in a more complicated fashion. This can result in the paths of eigenvalues tracing
ut collections of linked knots. In the language of braids, an N band model in a given range of
arameters will correspond to an element of the braid group with N generators. Transitions between
ifferent braid group elements/knot configurations occurs via the joining and separating of paths
y moving through exceptional points. Higher-dimensional generalizations of this phenomenon are
arder to visualize, as they entail the mapping of higher-dimensional Brillouin zones (tori) into
he complex plane. This problem has received some recent attention (see for example [87]) but in

eneral warrants future study.

21



F. Thompson and A. Kamenev Annals of Physics 455 (2023) 169385

d
d

e
w
q
e
a
t

3

m
s
g
a
a
M
d

H
L
i
r
c
t
S
I
s
r

Fig. 7. Plot of the two bands of the bands of stationary eigenvalues βj(k) of the Lindbladian SSH chain, showing the three
ifferent dynamical regimes. The non-analytic structure of the dynamic eigenvalues ϵj(k) is not retained by the stationary
istribution; at all values of k, the curves vary smoothly across the transition.

As discussed above, the stationary solution to the kinetic theory, F̌st, displays no signature of
xceptional points. This remains true of the model considered here: the stationary distribution,
hile non-trivial, varies smoothly across the crossing of the exceptional point and does not differ
ualitatively on either side of the transition. The full expressions for the bands βj(k) of stationary
igenvalues of F̌st(k) via Eq. (55) are somewhat cumbersome and so are not reproduced here; they
re plotted below, at, and above the transition in Fig. 7. There are no apparent signatures these
opological features present in the different regimes in the stationary distribution.

.3. Disordered fermions

This section examines a simple model of disordered Lindbladian fermions. A U(1) symmetric
odel of N flavors of fermions that are otherwise featureless is studied. In contrast to the preceding
ections discussing ‘clean’ systems, the model considered here gives insight into the behavior of
eneric quadratic Lindbladians. The U(1) symmetry provides a meaningful distinction between loss
nd gain even in the absence of additional symmetry. In preparing this manuscript, a paper [89]
ppeared up on arXiv which discusses ideas very similar to those presented here. They focus on
ajorana fermions instead of the Dirac fermions considered here and provide a more detailed
iscussion of the spectrum and level statistics of both dynamic matrix and steady state.
The model examined here can be compared to various studies on Lindbladians in which the

amiltonian and jump operators are random matrices, which are aimed at understanding generic
indbladian dynamics in the absence of any additional structure [90–95]. As will be shown below,
n certain limits the single-particle quantities of the random quadratic Lindbladian match the pure
andom matrix results, but generically they different. This runs counter to the usual intuition from
oherent systems. For equilibrium disordered fermions the many-body spectrum is determined by
he single-particle Hamiltonian, which in turn is characterized by Hermitian random matrix theory.
olving the many-body problem is achieved by solving the pure randommatrix quantummechanics.
n the Lindbladian framework, the single-particle dynamic matrix and stationary distribution are
eparate quantities and do not define any sort of ‘single-particle Lindbladian.’ In this sense, the
andom quadratic problem is not equivalent to the random matrix Lindblad problem.

The Hamiltonian and jump operators defining the model are:

Ĥ =

N∑
(H0)ijĉ

†
i ĉj, (87a)
i,j
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L̂1v =

N∑
j

µvjĉj, L̂2v =

N∑
j

νvjĉ
†
j , (87b)

here there are a total of M jump operators, v ≤ M . The parameters H0, µ, and ν are be Gaussian
andom variables. The disorder averaging is defined by:

[...] =

∫
DH0DµDνe

−
N
2 tr(H2

0 )−
M
γ

∑
j,v |µvj|

2
−

M
γ̃

∑
j,v |νvj|

2
(...). (88)

f interest here is the large N limit where the ratio m = M/N is held finite. In this limit, the model
as a total of three parameters: m and the two parameters that control the ratio of loss and gain
s. the strength of the Hamiltonian, γ and γ̃ .
In the corresponding coherent model, one solves the random matrix theory problem of the

ingle-particle Hamiltonian. This is exactly solvable in the large N limit, with the density of states
(ϵ) ≡ [tr δ(ϵ − H0)] given by the well-known Wigner semicircle distribution. In the Lindbladian

setting, one can determine the spectrum by solving the non-Hermitian random matrix problem
for the eigenvalue distribution ϱH (ϵ) = [tr δ(ϵ − H)], which is the probability distribution of the
single particle eigenvalues ϵj in the complex ϵ plain. This problem turns out to involve more subtle
features than its Hermitian counterpart. In the large N limit, the limit shape of the distribution
changes shape as a function of the model parameters, with different phases defined by the number
of connected components. In addition to the spectrum, one can also analyze the stationary state,
in which the object of interest is the density of states of the stationary effective Hamiltonian,
ϱst(β) = [tr δ(β − Hst)], which is the probability distribution of the real-valued βj. For this one
must solve a random Lyapunov equation. Compared to the spectral random matrix problem, this
problem is hard to solve exactly, even in the large N limit. Simple numerical computations show
that the transitions in the dynamics are mirrored by transitions in the stationary state.

Consider first the simple case of pure random loss γ → ∞, so that the H0 and ν are dropped. The
single-particle dynamic matrix is a Wishart matrix, given by a sum of one-dimensional projection
operators:

Hij = −i
M∑
v

µ∗

viµvj. (89)

In the large N limit, its eigenvalue distribution is given by the well-known Marchenko–Pastur
law [96], with the eigenvalue distribution ϱH (ϵ) given by,

ϱH (ϵ) = −i

(
m
γ ϵ

√
γ 2

m
−

1
4

(
ϵ −

γ

m
(1+m)

)2

+ π (1−m)θ (1−m)δ(ϵ)

)
, (90)

here θ is the Heaviside function. When m > 1, all eigenvalues have finite imaginary part and the
tationary state is unique, being given by the Fock vacuum state with zero particles. When m < 1,
here are always a subset of modes that do not dissipate, reflected in ϱH (ϵ) by the delta measure at
he origin. The stationary state is not unique. The critical point m = 1 divides the two regimes. At
his point, the dissipative gap closes and the uniqueness of the stationary state breaks down. Note
hat for all values of m, the eigenvalues are purely imaginary, so that ϱH (ϵ) is supported only on
he imaginary axis. This is qualitatively different from the results reported for general disordered
indbladians with random matrix jump operators and no Hamiltonian, in which the distribution of
indbladian eigenvalues occupies a lemon shaped region in the complex plane with a finite area [91].
Adding in the Hamiltonian part but keeping ν = 0, the Marchenko–Pastur distribution is

eformed into the complex plane. The distribution ϱH is supported on compact subsets of the
omplex ϵ plane with a finite area. For large enough γ , the large and small m phases deform into
hases in which the support of ϱH (ϵ) has one and two connected components respectively. Example
pectra in the different phases are shown in Fig. 8. The shapes of the eigenvalue distribution can
e determined for large N using non-Hermitian random matrix theory. Similar problems have been
tudied in the context of chaotic scattering [97–99]; for a more detailed discussion of the shape of
23
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Fig. 8. Example spectra of H for different values of m, with N = 500 and γ = 1 and γ̃ = 0. The leftmost plot depicts
he small m phase in which there are two disconnected connected components of ϱH (ϵ). Note that in the small m limit,
ne of the two regions of eigenvalues is very close to real axis, but still possesses a finite imaginary part. The second to
he left is near the critical m (which generically differs from 1 with a Hamiltonian term), in which the two regions are
starting to merge. The two on the right show the large m phase, for which ϱH (ϵ) possesses a single connected component.
The rightmost plot shows the large m limit, in which the limiting shape of the support of ϱH (ϵ) can be seen to approach
Ginibre disk centered around 1/2 on the imaginary axis. This limit matches the known behavior for random matrix
indbladians with both Hamiltonian and jump operators [91].

he distribution for the Lindbladian problem one may refer to [89]. With the Hamiltonian part, all
igenvalues now have a finite imaginary part for all m. In contrast to the above situation without a
amiltonian discussed above, with a Hamiltonian the dissipative gap becomes finite even for small
. As a consequence, the stationary state is always unique. It is easy to check that the stationary
tate is still the zero particle Fock vacuum for all values of m.
Turning finally to the general model with gain and loss, one finds similar geometric transitions

epending on the value of m. There are multiple different phases with a maximum of three
onnected components, which can merge and split in various ways depending on the relative
trengths of gain vs. loss vs. Hamiltonian. The stationary state is generically a non-trivial mixed state.
or largem, ϱst(β) is a Wigner semicircle, with a width that scales with 1/m and is off-centered from
ero by an amount determined by γ̃ /γ . For smaller m, ϱst(β) has support on multiple disconnected
egions of the real line, each of which deviates from the semi-circle law. A detailed classification of
he various phases is not presented here, but several different examples of ϱM and the corresponding
st(β) are depicted in Fig. 9.

.4. Lindbladian gas

This section discusses a Fermi gas in d dimensions subject to loss and gain of particles through
arkovian exchange with a thermal bath. This provides a simple example of a theory on a spatial
ontinuum. Like the preceding section, here a U(1) symmetry is imposed to avoid complexity from
he Nambu space. For simplicity also, no additional matrix structure due to spin, orbitals, flavor, etc.
s considered. Note that even though a fermionic gas is considered here, because of the symmetry,
ifferences between the bosonic and fermionic Nambu spaces do not enter and so the details are
ssentially the same for the Lindbladian Bose gas.
In terms of the fermionic creation/annihilation operators ĉ(r) and ĉ†(r), the many-body Hamil-

onian can be expressed in terms of the single-particle Hamiltonian H0(r, r′) as:

Ĥ =

∫
dr dr′ ĉ†(r)H0(r, r′)ĉ(r′). (91)

There are two families of jump operators:

L̂1v(r) =
∫

dr′ µv(r, r′)ĉ(r′), L̂2v(r) =
∫

dr′ νv(r, r′)ĉ†(r′), (92)
24
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Fig. 9. Example spectra of H plotted above the corresponding ϱst(β) for finite γ and γ̃ , with N = 500. The leftmost plot
depicts a phase with in which the support of ϱH (ϵ) has three connected components, which occurs when m is small
and gain is meaningfully smaller or larger than loss. In this phase, ϱst(β) is supported on two disconnected regions, with
the density mostly to the left of the origin. The middle plot shows a two-component phase with large balanced loss
and gain. In this regime, ϱst(β) is supported on three disconnected regions, with most measure centered at zero. In the
rightmost plot, m is large and ϱH (ϵ) is approaching the Ginibre disk limit. The stationary state distribution is nearly a
Wigner semicircle with a positive finite mean, corresponding to the fact that γ > γ̃ .

in terms of which the single-particle dissipation matrices are given by:

Q (r, r′) =
1
2

∑
v

∫
dr1dr2

(
µ∗

v(r, r1)µv(r
′, r2)+ νv(r, r1)ν∗v (r

′, r2)
)
, (93a)

D(r, r′) =
∑
v

∫
dr1dr2

(
µ∗

v(r, r1)µv(r
′, r2)− νv(r, r1)ν∗v (r

′, r2)
)
. (93b)

The action for the Lindbladian Bose gas is given by:

S =

∫
dt dr dr′

[
ψ̄1 ψ̄2

]
r

[
i∂t − H0 + iQ iD

0 i∂t − H0 − iQ

]
r,r′

[
ψ1

ψ2

]
r′
. (94)

In the simplest situation, the single-particle matrices are local differential operators, so that
H0(r, r′) = δ(r − r′)H0(r,−i∂r) and similarly for the dissipative matrices. When this is the case,
the action is local in spacetime,

S =

∫
dx
[
ψ̄1(x) ψ̄2(x)

] [i∂t − H0 + iQ iD
0 i∂t − H0 − iQ

][
ψ1(x)
ψ2(x)

]
. (95)

where x = (t, r) denotes a spacetime coordinate.
One obtains a semi-classical kinetic equation by Wigner transform and truncation of the gradient

expansion of matrix products. Upon Wigner transform, the parameter matrices become functions
on the single-particle phase space,

H0(r, k) =
∫

dr′e−ikr′H0

(
r+

r′

2
, r−

r′

2

)
, (96)

and similarly for Q (r, k) and D(r, k). In the limit of slow variations, it is often appropriate to truncate
the Wigner expansion to first order in gradients. This amounts to a semiclassical treatment of
the problem and is known as the Wigner approximation. In this approximation, kinetic equation
becomes a Boltzmann equation with a linear collision integral,

∂ F − ∂ H ∂ F + ∂ H ∂ F = −2QF + D. (97)
t r 0 k k 0 r
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ote that in a bosonic system, this kinetic equation will be of exactly the same form. Going beyond
his approximation by incorporating higher-order terms, one finds the leading quantum corrections
o the collision integral,

−
1
2
∂r1∂r2Q∂k1∂k2F −

1
2
∂k1∂k2Q∂r1∂r2F + ∂r1∂k2Q∂k1∂r2F . (98)

The inclusion of these terms brings the Boltzmann equation to the form of a Fokker-Plank equation.
This contrasts to the purely coherent situation, in which there are no leading quantum corrections
to the Boltzmann equation in the absence of multiple bands.

For concreteness, specialize to a local single-particle Hamiltonian that is a generalized
Schrödinger operator, H0(r,−i∂r) = ε(−i∂r) + V (r). Then the phase space function H0(r, k) =

ε(k)+V (r) will be of the form of a dispersion relation plus a potential. In addition, suppose that the
coupling to bath is translationally invariant, so that the dissipation matrices are only functions of k
in phase space. Then the kinetic equation is identifiable as a Boltzmann equation in the relaxation
time approximation,(

∂t + vk∂r − (∂rV )∂k
)
F =

F0 − F
τ

, (99)

where vk = ∂kε is the group velocity and τ (k) = 1/2Q (k) is the relaxation time. The distribution
F0(k) = D(k)/2Q (k) takes the place of the equilibrium distribution; in the absence of an external
potential V = 0, one finds Fst(k) = F0(k).

3.5. Mean field theory

This section illustrates how the above formalism can be extended to treat non-linear systems.
Using a mean-field approach, the semiclassical kinetics of the previous section can be extended
to self-consistently accommodate interactions. For specificity, bosonic systems will be focused on,
though as with the previous section the details are similar for the fermionic analog.

Like the previous section, no additional matrix structure is considered beyond the spatial degrees
of freedom. Only terms respecting the U(1) particle number symmetry are considered, so that no
Nambu space structure has to be dealt with. Additionally, the Hamiltonian and jump operators are
assumed to be invariant under spatial translations and rotations. The non-interacting Hamiltonian
and jump operators are given by the bosonic versions of Eqs. (91) and (92). Because of translational
symmetry, in the Wigner representation H0, Q and D are only functions of k,

Q (k) =
1
2

∑
v

(
µ∗

v(k)µv(k)− νv(k)ν
∗

v (k)
)
, (100a)

D(k) =
∑
v

(
µ∗

v(k)µv(k)+ νv(k)ν
∗

v (k)
)
. (100b)

Non-linearity can occur either on the level of the Hamiltonian or in the jump operators. For
simplicity, consider a contact interaction,

Ĥint =
U
2

∫
dr â†(r)â†(r)â(r)â(r). (101)

or the jump operators, consider a local two-body loss and gain,

L̂3(r) =
M
√
2
â(r)â(r), L̂4(r) =

N
√
2
â†(r)â†(r). (102)

ote that the corresponding Lindbladian defined this way is similar to various models for driven-
issipative condensates [3,29–31]. Here the nonlinear interactions are consider only as a weak
erturbation to a stable linear theory. A condensate occurs when the theory is unstable on the
inear level and is not treated here.
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Fig. 10. The left two figures depict the vertices depicting the interactions in the nonlinear action Eq. (104). The leftmost is
omparable to one of the vertices that appears in the equilibrium theory, but come with additional imaginary factor. The
vertex has no equilibrium analog and is purely dissipative. The left two figures are diagrammatic representations of the
ean-field contributions to the action from the interactions. The collective field ϕ enters as a fully renormalized bubble

formed from two classical legs. The left and right respectively renormalize the single-particle dispersion and distribution.
Note that the latter is uniquely a feature of the Lindbladian dynamics; in equilibrium theory there is no modification to
the Keldysh component of Eq. (104) on the mean-field level.

The Keldysh action has the form S = S0 + Sint, where quadratic part of the action S0 is given by
the bosonic version of Eq. (95),

S0 =
∫

dx
[
φ̄c(x) φ̄q(x)

] [ 0 i∂t − H0 − iQ
i∂t − H0 + iQ iD

][
φc(x)
φq(x)

]
. (103)

The non-linear part of the action is:

Sint = −
1
2

∫
dx
(
U(φ̄cφc

+ φ̄qφq)(φ̄qφc
+ φ̄cφq)

−iJ(φ̄cφc
− φ̄qφq)(φ̄qφc

− φ̄cφq)− iRφ̄cφcφ̄qφq
)
, (104)

here J and R are defined similarly to Q and D,

J =
1
2

(
|N|2 − |M|

2), R = 2
(
|N|2 + |M|

2) (105)

iagrammatically, these interactions are four-point vertices as represented in Fig. 10.
While in principle the full range of diagrammatic techniques can be applied to study this model,

ere a mean-field treatment is discussed as an extension of the quadratic formalism. To achieve
his, one should replace factors of φ̄cφc in the action with their expectation value. This reduces
he nonlinearities to a quadratic coupling to the collective field ϕ(x) = 1

2 ⟨φ
c(x)φ̄c(x)⟩ whose value

an be determined self-consistently from this definition. To be specific, all three of the parameter
atrices are modified,

δH0(x) = Uϕ(x), δQ (x) = Jϕ(x), δD(x) = Rϕ(x). (106)

ollowing Section 2.4, one can seek a solution to the now time-dependent kinetic equation Eq. (35).
In the Wigner approximation, this will be of the same form as Eq. (99),(

∂t + vk∂r − (∂rV )∂k
)
F =

F0 − F
τ

, (107)

ith vk = ∂kH0(k), V (x) = Uϕ(x), τ−1
= 2Q (k)+ 2Jϕ(x) and F0/τ = D(k)+ Rϕ(x).

Solutions to the kinetic equation determine F as a function of ϕ. This in turn can be fed into the
definition of ϕ to determine its value self-consistently. To be precise, in the Wigner approximation
one can express the spectral Green’s function as:

GR(x, p) ≃
1

ϵ − H0(k)+ iQ (k)− (U − iJ)ϕ(x)
, (108)

here p = (ϵ, k). Comparably, the Keldysh Green’s function at equal spacetime points is given
pproximately by:

iGK(x, x) ≃ i
∫

dϵ dk
F (x, k)

(
GR(x, p)− GA(x, p)

)
. (109)
2π (2π )d
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he integral over ϵ is just the frequency integral of the spectral function and is thus equal to 1. Note
hat unlike in the equilibrium theory, there is no assumption that the spectral function is sharply
eaked. A quasi-particle approximation is generally not valid, as for general Lindbladian systems
ue to the presence of dissipative terms which are not generically small. Despite this, the frequency
ependence of the distribution function may anyways be dropped in this mean-field treatment due
o the Markovian nature of the dynamics. This gives the self-consistency condition for the collective
ield ϕ(x) = i

2G
K(x, x),

ϕ(x) =
1
2

∫
dk

(2π )d
F (x, k). (110)

his together with the Boltzmann equation Eq. (107) constitute a closed system of two equations
or F and ϕ.

In the stationary limit, Fst and ϕst are fully isotropic. The stationary solution can be read off from
he Boltzmann equation as F0. Together with the self-consistency condition, this gives the set of
quations:

Fst(k) =
D(k)+ Rϕst

2Q (k)+ 2Jϕst
, ϕst =

1
2

∫
dk

(2π )d
Fst(k). (111)

low relaxation can be studied by linearizing the kinetic equation around this stationary solution.
riting F = Fst + δF and ϕ = ϕst + δϕ, one has the closed system of equations:(

∂t + vk∂r + 2Q + 2Jϕst
)
δF = ∂rδϕ∂kFst + (R− 2JFst)δϕ, (112a)

δϕ(x) =
1
2

∫
dk

(2π )d
δF (x, k). (112b)

By Fourier transforming in the spacetime coordinate x = (t, r) to (ω, q), one may algebraically solve
for δF . In doing so, the self-consistency condition gives the condition for a non-trivial solution ϕ,

1+
1
2

∫
dk

(2π )d
Uq∂kFst − i(R− 2JFst)
ω − qvk + 2i(Q + Jϕst)

= 0. (113)

his relation fixes ω as a function of q, which specifies the dispersion of collective modes which
overn the relaxation the density field ϕ.
In the absence of dissipation Q = 0 = D and J = 0 = R, this equation determines the dispersion

of a coherent sound mode ω(q) ≃ c|q| at small momenta, where the speed of sound c is determined
from the relation

1+
U
2

∫
dk

(2π )d
q∂kFst

c|q| − qvk
= 0, (114)

here in the equilibrium theory Fst is the equilibrium quasi-particle distribution function. This
is the familiar equilibrium zero-sound mode. To examine the how this is modified due to the
presence of dissipation, consider first the simpler situation of a weak purely linear dissipation that
is independent of k, so that R = 0 = J and Q (k) = 1/2τ . Then for small q one finds,

ω(q) ≃ −i/τ + c|q|, (115)

where c is the speed of sound determined from Eq. (114) with Fst(k) = τD(k). Thus, for momenta
small compared to the inverse relaxation time, |q| ≪ 1/cτ , the sound mode becomes over-damped.

In the more generic setting with non-linear dissipation, it is difficult to make general statements
without a specific form of the single-particle dispersion. However, one can see that the above
behavior is generic for small momenta. The zero momentum limit of Eq. (113) gives the relation:

1+
1
2

∫
dk

(2π )d
2JFst − R

2(Q + Jϕst)− Γ
= 0, (116)

here Γ = iω(q = 0), demonstrated by this equation to be purely real. Thus, while the specific
form of the collective mode dispersion ω(q) for finite q depends on the microscopic details of the
ingle-particle dispersion, it is always over-damped for sufficiently small momenta.
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. Conclusion

We have presented a tutorial treatment of a many-body Lindbladian dynamics of driven-
issipative systems. We have employed the functional formalism, which naturally follows from
he generic closed time contour formalism, under the assumption of Markovian (i.e. time-local)
ath correlators. As demonstrated, it allows one to evaluate local observables, various correlation
unctions, linear response characteristics, and collective modes spectra.

One of the major goals of this review is to emphasize the existence of two distinct quantities,
haracterizing dynamics of these non-equilibrium models: the complex effective Hamiltonian, Ȟ ,
nd the stationary distribution function F̌st. The complex effective Hamiltonian, determines the
ransient relaxation spectrum as well as the linear response to certain perturbations. On the other
and, F̌st dictates steady-state observables, shows up in spectra of collective modes, and participates
n some linear responses. While in equilibrium the two are rigidly related through the fluctuation–
issipation theorem, they are essentially independent within the Lindbladian dynamics framework.
oreover, as is repeatedly demonstrated above, they exhibit qualitatively different properties. For
xample, complex spectra of the effective Hamiltonian generically exhibit exceptional points, where
wo or more eigenvalues collide. The relaxation characteristics feature non-analytic behavior in the
icinity of such exceptional points in the parameter space. Yet, F̌st and the long time stationary
roperties are completely smooth. We provide other examples illustrating qualitative differences
etween the two quantities in the non-equilibrium setting.
While spectra (and to some extent eigenfunctions) of the complex Hamiltonian received some

ttention, the stationary distribution went largely unexplored. We have shown here that it is
etermined by the effective kinetic equation. In the particular case of linear systems, such kinetic
heory acquires the form of the so-called Lyapunov equation of the matrix algebra. Although there
re not many standard analytic tools to deal with it, it may be treated with stable and efficient
umerical algorithms.
The tools, outlined here, allow one to completely solve quadratic many-body Lindbladian pro-

lems by diagonalizing N × N complex Hamiltonian and solving N × N Lyapunov equation for the
tationary distribution. Notice that the dimensionality of the corresponding fermionic Hilbert space
s 2N . Therefore one achieves the exponential reduction in the problem’s complexity. An immediate
xtension of the quadratic theory is the mean-field approximation, which deals with the linearized
reatment near a certain (self-consistent) state.

There is still a lot to be done for better understanding truly non-linear many-body Lindbladian
ynamics. In our opinion, the techniques presented here are indispensable for this goal. One of the
ost exciting applications of the functional methods is in the study of non-perturbative (instanton)
ffects [100], which provide, eg., an ultimate floor for the qubit decoherence rate. Other examples
f essentially non-linear phenomena include studies of non-equilibrium phase transitions [101–
03], various applications of the functional renormalization group to driven-dissipative problems
3,31,104–106], dynamics and topological properties of particle number-conserving Lindblad sys-
ems [107], and studies of strongly correlated matter out of equilibrium [108,109]. In addition, we
ention recent proposals to extend the Keldysh field theory technique to study time-local problems
eyond Lindbladian dynamics, for example in continuously measured systems [110].
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ppendix A. Keldysh-Nambu Diagonalization

This appendix examines the classical mechanics of the Keldysh action. One can diagonalize
he quadratic form by means of a complex coordinate transformation. This is a generalized form
f Bogoliubov rotation, extended to the Keldysh phase space. In this new set of coordinates, the
ynamics can be understood through semiclassical quantization.
For bosons, one must perform a complex canonical transformation on the Keldysh phase space.

o this end, one should write the Keldysh action in the form of a Hamiltonian-Lagrangian. Ignoring
he constant term, the action from Eq. (11) is:

S =

∫
dt
(
Φqi∂tΦc

−
1
2
ΦαǨαβΦβ

)
, (A.1)

here here Φq
= [φ̄q

−φq
] is defined differently than in the main text. The classical field Φq plays

he role of the canonical position and the quantum field Φq, its conjugate momentum. The matrix
ˇ
αβ is given by:

Ǩ =

[
0 ȞT

Ȟ −iτ̌ 3Ďτ̌ 2

]
. (A.2)

ote that this is a symmetric matrix on the full 4N × 4N Keldysh-Nambu space.
The classical mechanics of the Keldysh action is a generalized Hamiltonian mechanics on the

4N-dimensional Keldysh phase space. The equations of motion are given by Hamilton’s equations

∂tΦ
α
= −[K,Φα

]PB, (A.3)

here the Keldysh Poisson bracket is defined by:

[·, ·]PB = σ̌ 2
αβ

⃗∂Φα ∂⃗Φβ , (A.4a)

[Φc
s ,Φ

q
s′ ]PB = −iδss′ . (A.4b)

he matrix J̌ = iσ̌ 2 defines the symplectic form of the Keldysh classical mechanics.
With the correct choice of coordinates, one can express K in a diagonal form. Because Ǩ is a

ymmetric matrix, J̌ Ǩ is an element of the complex symplectic algebra sp(4N), defined through the
elation J̌(J̌ Ǩ ) + (J̌ Ǩ )T J̌ = 0. It can be brought to Jordan canonical form by a (generically complex)
symplectic matrix V̌ ∈ Sp(4N,C),

V̌ J̌ Ǩ V̌−1
=

[
ǓȞǓ−1 0

0 −(ǓȞǓ−1)T

]
. (A.5)

As a symplectic matrix, V̌ obeys V̌ T J̌ V̌ = J̌ . The 2N × 2N blocks of this matrix V̌αβ are given by:

V̌cc = Ǔ, V̌cq = Ǔ F̌stτ̌ 1, V̌qc = 0, V̌qq = ǓT−1, (A.6)

where V̌ obeys the symplectic condition V̌ T J̌ V̌ = J̌ . This matrix defines a complex canonical
transformation to a new set of coordinates,[

ζ

ζ̄

]
= V̌

[
Φc

Φq

]
, (A.7)

Note that each of the new 2N fields not related by complex conjugation, ζ̄s ̸= ζ ∗s . They are however
symplectic conjugates, obeying the relation:

[ζs, ζ̄s′ ]PB = δss′ . (A.8)

In these coordinates, the action is brought to a canonical form in terms of decoupled fields. In
the diagonalizable case, this is:

S =

∑∫
dt ζ̄s(i∂t − ϵs)ζs. (A.9)
s
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ritten in this form, one can see that there are 2N integrals of the classical motion, Is = ζ̄sζs.
They are related to the Keldysh Hamiltonian through K =

∑
s ϵsIs. Applying the Bohr-Sommerfeld

quantization rule, one puts Is = ns with ns a set of positive integers. The Lindbladian spectrum is
given by the quantized values taken by the Keldysh Hamiltonian, −iK = −

∑
s nsϵs. In the non-

iagonalizable, there are less than 2N integrals Is, corresponding to the degeneracy of eigenvalues.
n this situation, the action will have additional terms of the form ζ̄sζs+1 depending on the Jordan
lock structure of Ȟ .
A similar argument can be made for fermions. Writing the fermion action in a Hamiltonian form,

ne has:

S =

∫
dt
(
Ψ 2i∂tΨ 1

−
1
2
Ψ aǨabΨ

b
)
, (A.10)

ith Ψ 2
= [ψ̄1 ψ2

] defined differently than in the main text. The matrix Ǩ is given by:

Ǩ =

[
0 −ȞT

Ȟ −iĎτ̌ 1

]
. (A.11)

ote that this is an antisymmetric matrix on the Keldysh-Nambu space.
The pseudo-classical fermionic equations of motion can be defined in terms of a fermionic

oisson bracket,

∂tΨ
a
= −{K,Ψ a

}PB. (A.12)

he bracket is symmetric and defined through the Grassmann derivatives:

{·, ·}PB = −iσ̌ 1
ab

⃗∂Ψ a ∂⃗Ψ b , (A.13a)

{Ψ 1
s ,Ψ

2
s′ }PB = −iδss′ . (A.13b)

he matrix σ̌ 1 defines the inner product on the Keldysh Grassmann algebra. As such, the product
σ̌ 1Ǩ is an element of the complex orthogonal algebra so(4N), obeying the relation σ̌ 1(σ̌ 1Ǩ ) +
σ̌ 1Ǩ )Tσ̌ 1

= 0. It can be brought to Jordan canonical form by a complex orthogonal transformation
ˇ ∈ SO(4N,C), which preserves the inner product V̌ Tσ̌ 1V̌ = σ̌ 1. The block components of V̌ are
he same as in Eq. (A.7), by replacing index names c → 1 and q → 2. The new set of Grassmann
ields are given by:[

ξ

ξ̄

]
= V̌

[
Ψ 1

Ψ 2

]
. (A.14)

he semiclassical quantization of the moments Is = ξ̄sξs gives the same result as for bosons, with
he occupation numbers ns restricted to 0 or 1.

The usefulness of this representation beyond quadratic theory is limited. Because the diagonal
basis incorporates the stationary distribution matrix F̌st into its definition, it is not obvious how to
se this representation in an interacting theory or in the presence of time-dependent perturbations.
onventionally F̌ is defined self-consistently on the quadratic level to derive a renormalized quan-
um kinetic equation that is non-linear in F̌ . It is unclear how this procedure could be performed,
f at all, with F̌ absorbed into the definition of the fields.

ppendix B. Superoperator quantization

In this appendix, the connection between the formalism presented here and the third quanti-
ation superoperator formalism of [48,49] is established. The quantization of the Keldysh action
eproduces the superoperator formulation of the Lindbladian dynamics. The connection between
he two approaches is analogous to the relation between the Hilbert space and path integral
ormulations of standard quantum theory, but has an added wrinkle: due to the complex nature of
he Keldysh classical mechanics, the quantization must be ‘‘non-canonical’’ in that the generators
f the boson and fermion superoperator algebras are not related by adjoint.
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For the bosonic theory, one can introduce the right/left boson superoperators defined by:

ˆ̂a+jρ = âjρ; ˆ̂a−jρ = ρâj. (B.1)

These superoperators are bosonic in that they obey the bosonic commutation algebra:

[ˆ̂a+j, ˆ̂a
†
+i] = δij = [ˆ̂a†

−j, ˆ̂a−i], [ˆ̂a+j, ˆ̂a−i] = 0. (B.2)

With these, the Keldysh action is quantized by replacing the Keldysh fields with the Keldysh-rotated
superoperators, ˆ̂ac,qj = ( ˆ̂a+j± ˆ̂a−j)/

√
2, and the Keldysh Poisson structure from Appendix A Eq. (A.4)

ith the quantum commutator,

[·, ·]PB → −i[·, ·], (B.3a)

φα → ˆ̂aα; φ̄α → ˆ̂a†
α. (B.3b)

sing this procedure, the Keldysh Hamiltonian −iK of the action Eq. (11) is translated back into the
Lindbladian defined by Eq. (10).

The quantum and classical superoperators define the bosonic algebra:

[ˆ̂acj, ˆ̂a
†
qi] = δij, [ˆ̂acj, ˆ̂a

†
ci] = 0 = [ˆ̂acj, ˆ̂aqi], (B.4)

The superoperator algebra in this basis reflects the complex nature of the Keldysh classical me-
chanics. The canonical conjugate and complex conjugate fields are note equivalent; the canonical
conjugate of the field φc is φ̄q, not φ̄c. As a consequence, the bosonic superoperator algebra is non-
conjugate. The classical superoperators ˆ̂acj and ˆ̂a†

cj act as creation operators, while the quantum
superoperators ˆ̂a†

qj and −ˆ̂aqj are their corresponding annihilation operators respectively, despite not
being their adjoints.

The Lindbladian can be brought to Jordan canonical form by a generalized Bogoliubov transfor-
mation of the bosonic superoperator algebra. This is achieved by a change of basis implemented by
V̌ from Eq. (A.7). The resulting set of bosonic superoperators ( ˆ̂b, ˆ̂b′) obey a non-conjugate version
f the bosonic commutation algebra given by the quantization of Eq. (A.8),

[ˆ̂bs, ˆ̂b′s′ ] = δss′ , [ˆ̂bs, ˆ̂bs′ ] = 0 = [ˆ̂b′s,
ˆ̂b′s′ ], (B.5)

where the prime denotes the creation superoperator that in general is not related to the annihilation
superoperator through adjoint, ˆ̂b†

s ̸= ˆ̂b′s. A diagonalizable Lindbladian written in this basis adopts
the familiar form of a sum over number operators:

ˆ̂L = −i
∑
s

ϵs
ˆ̂b′s
ˆ̂bs. (B.6)

For a non-diagonalizable Lindbladian, there will be additional terms of the form ˆ̂b′s
ˆ̂bs+1. This results

in a sequence of Jordan blocks in full Lindbladian of ascending size for each n-particle sector.
For the fermionic theory, the situation is messier still. This owes to the fact that the naive

definition of fermionic left/right superoperators akin to Eq. (B.1) turns out to give the wrong particle
statistics. With such a construction, left and right superoperators will commute instead of anti-
commuting, yielding a parafermion algebra. This issue can be fixed with non-conjugate version of
a Klein transformation, amounting to the addition of an additional factor in the definition of one of
the superoperators:

ˆ̂c+jρ = ĉjρ, ˆ̂c ′
+jρ = ĉ†

j ρ, ˆ̂c−jρ = P̂ρP̂ ĉj, ˆ̂c ′
−jρ = P̂ρP̂ ĉ†

j , (B.7)

where P̂ = exp(iπ
∑

j ĉ
†
j ĉj) is the fermion parity operator. This definition ensures the superoperators

are fermionic, obeying the fermionic commutation relations:

{ˆ̂c , ˆ̂c ′ } = δ , {ˆ̂c , ˆ̂c } = 0 = {ˆ̂c ′ , ˆ̂c ′ }. (B.8)
±j ±i ji +j −i +j −i
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Fig. C.11. Disconnected loop diagrams featuring in the linear response formulas. The left two diagrams are the retarded
and advanced loops, the sums of which cancel. The rightmost diagram is the Keldysh loop, which generically always
appears as a prefactor in front of canceling terms.

With this construction, the Keldysh rotated fermionic superoperators, ˆ̂c1,2j = ( ˆ̂c+j± ˆ̂c−j)/
√
2 and

ˆ̂c ′1,2j = ( ˆ̂c ′
+j ∓

ˆ̂c ′
−j)/

√
2 replace the Keldysh Grassmann fields and the anti-commutator replaces the

ermionic Poisson bracket from Appendix A Eq. (A.13) in the quantization of the fermionic theory,

{·, ·}PB → −i{·, ·}, (B.9a)

ψa
→ ˆ̂ca; ψ̄a

→ ˆ̂c ′a. (B.9b)

he fermionic superoperators obey the fermionic canonical anti-commutation relations:

{ˆ̂caj, ˆ̂c ′bi} = δijδab, {ˆ̂caj, ˆ̂cbi} = 0 = {ˆ̂c ′aj, ˆ̂c
′

bi}. (B.10)

his is a non-conjugate representation of the fermion anti-commutation algebra. Diagonalizing the
indbladian can be achieved through the quantization of the diagonal Grassmann fields of Eq. (A.14)
o a new set of fermion superoperators ( ˆ̂d, ˆ̂d′), obeying the fermionic algebra:

{ˆ̂ds, ˆ̂d′s′} = δss′ , {ˆ̂ds, ˆ̂ds′} = 0 = {ˆ̂d′s,
ˆ̂d′s′}. (B.11)

ike Eq. (B.6), the Lindbladian is diagonal expressed in this basis,

ˆ̂L = −i
∑
s

ϵs
ˆ̂d′s
ˆ̂ds. (B.12)

In this formulation, the stationary state ρst is the superoperator Fock vacuum. All other eigen-
alues of the Lindbladian can be explicitly constructed by creating on the vacuum with the boson
r fermion creation superoperators, ˆ̂b′s or ˆ̂d′s respectively. These eigenvectors are not states in the
ense of density matrices but rather are traceless operators.

ppendix C. Disconnected diagrams

In this appendix, the cancellation of disconnected diagrams in the Lindblad Keldysh theory
s addressed. In the Keldysh diagrammatic theory, disconnected diagrams cancel identically as a
onsequence of the Keldysh causality structure. This is in contrast, for example, to the Matsubara
quilibrium theory in which cancellation happens due to competing contributions from the numer-
tor and denominator of the partition function. Disconnected diagrams in the Keldysh theory always
ome in pairs which translate to sums of retarded and advanced objects at equal times, which in
urn vanish identically. In the simplest case one may have factors of retarded and advanced Green’s
unctions at equal times,

ǦR(t, t)+ ǦA(t, t) = 0. (C.1)

his term appears for instance in the Wick contraction of the Hamiltonian linear response formula
rom the left-hand side of Eq. (32). Diagrammatically it is sum of disconnected loops; see Fig. C.11.

As a check on the validity of the Lindblad theory, one can verify that the normalization of the
artition function in Eq. (6) remains Z = 1 under the response to a perturbation. The normalization
33
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o
e

f ρ, and therefore Z , should receive no perturbative corrections at any order. Thus, expanding the
xponentiated perturbation to the action in Z , exp(iδS) = 1+ i δS+· · · , one expects all sub-leading

terms to vanish identically. To leading order, this mandates ⟨δS⟩st = 0, or equivalently ⟨δK(t)⟩st = 0,
where ⟨·⟩st denotes the averaging with respect to the unperturbed system in its stationary state.

For simplicity, consider a quadratic perturbation as discussed in Section 2.4. The expectation of a
Hamiltonian perturbation δH0K possesses a sum of disconnected retarded and advanced loops as in
Eq. (C.1). This is zero by virtue of being a sum of equal-time retarded and advanced objects as noted
above. The perturbation to Ď gives only a factor of quantum-quantum correlation ⟨ΦqΦ̄q

⟩ and so is
trivially also zero. The perturbation to Q̌ however appears to include the difference of the retarded
and advanced loops, ǦR(t, t) − ǦA(t, t), which naively appears to be non-vanishing. It is tempting
to replace this difference with a factor of the constant matrix τ̌ 3, thus suggesting a non-vanishing
contribution from disconnected terms of the form tr(τ̌ 3δQ̌ ). This is of course erroneous. The origin
of the cancellation of these terms can be traced to the physical origin of the Lindbladian dynamics
as arising from integrating out the environment of an open system.

Schematically, this procedure begins with a system coupled to a large number of bath degrees
of freedom. Upon integrating out the bath, bare system quantities are renormalization by the bath.
In the case of a quadratic theory, interactions with the bath leads to modification of the bare Green
function by a self-energy, yielding an effective action for the system of the form:

S =

∫
dtdt ′Φ̄(t)

(
Ǧ−1
0 (t, t ′)− Σ̌(t, t ′)

)
Φ(t ′), (C.2)

where the bare inverse Green’s function is of the form of the quadratic form in Eq. (11) without
the dissipative terms. Under the Markovian approximation for the Lindbladian theory, the self-
energy Σ̌ is local in time Σ̌(t, t ′) ∝ δ(t − t ′). In the operator language, the imaginary parts of
self energy generate the dissipative part of the Lindbladian evolution (D from Eq. (5)). The retarded
and advanced components specify Q̌ ,

Im
(
Σ̌R,A(t, t ′)

)
≃ ±δ(t − t ′)Q̌ . (C.3)

Note however that the continuum notation is deceptive here. The regularization of the retarded
and advanced components of Σ̌ are different even in the Markovian approximation: the arguments
of the delta functions should be understood as differing by an infinitesimal time step in opposite
directions δR,A(t − t ′) ∼ δt,t±δt . As such, the perturbative corrections to the dissipative part of the
Lindbladian action should be understood as a modifications to the spectral components of the self-
energy. Leading-order contributions are thus not of the form of just the difference of the retarded
and advanced loops from Fig. C.11, but rather should be understood implicitly as:

tr
(
ǦR

◦ Σ̌R
+ ǦA

◦ Σ̌A
)
, (C.4)

where the trace is taken over both the time and matrix spaces. This is appropriately the sum of
retarded and advanced objects, and as such should be understood as zero. In practice, one can
safely use the continuum notation for calculations using the formalism presented in the main body
with the understanding that disconnected diagrams should always cancel due to the underlying
regularization.
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