
Widespread scope for coral adaptation
under combined ocean warming
and acidification
Christopher P. Jury and Robert J. Toonen

Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at
Mānoa, Honolulu, HI 96744, USA

 CPJ, 0000-0002-9926-5038

Reef-building coral populations are at serious risk of collapse due to the
combined effects of ocean warming and acidification. Nonetheless, many
corals show potential to adapt to the changing ocean conditions. Here
we examine the broad sense heritability (H2) of coral calcification rates
across an ecologically and phylogenetically diverse sampling of eight of
the primary reef-building corals across the Indo-Pacific. We show that all
eight species exhibit relatively high heritability of calcification rates under
combined warming and acidification (0.23–0.56). Furthermore, tolerance to
each factor is positively correlated and the two factors do not interact in
most of the species, contrary to the idea of trade-offs between temperature
and pH sensitivity, and all eight species can co-evolve tolerance to elevated
temperature and reduced pH. Using these values together with historical
data, we estimate potential increases in thermal tolerance of 1.0–1.7°C
over the next 50 years, depending on species. None of these species are
probably capable of keeping up with a high global change scenario and
climate change mitigation is essential if reefs are to persist. Such estimates
are critical for our understanding of how corals may respond to global
change, accurately parametrizing modelled responses, and predicting rapid
evolution.

1. Background
Coral reef ecosystems and reef-building coral populations are at serious
risk of collapse within the next few decades due to ocean warming and
acidification [1–4]. Ocean warming can lead to coral bleaching, reduced
growth, interruptions in reproduction, increased susceptibility to disease, and
mortality [5], whereas acidification often results in lower calcification [6–9]
and may reduce coral recruitment [10,11]. Projected changes in coral cover on
reefs as well as the potential for coral persistence under future, global change
rely on modelled responses [1,2,12–14]. Such predictions, however, are only as
accurate as the parameter estimates and assumptions included in the models
[15,16]. Most parameter estimates are based on a few species examined in the
laboratory over relatively short timescales (days to weeks) and may not reflect
the longer-term responses of these organisms under a changing climate [17–
19]. While critical to our understanding, short-term studies may underesti-
mate realistic levels of coral adaptation over decadal timescales and therefore
may lead to more severe projected outcomes than should be expected. The
scope for coral adaptation to warming and acidification (and especially the
combination of these two factors simultaneously) remains largely unknown,
as does the extent to which variation in warming and acidification is heritable.

The phenotype of an organism depends on both heritable and environmen-
tal influences, but only heritable variation can be passed to offspring and
acted upon by selection. Hence, the heritability of a trait provides a critical
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predictor of the evolutionary potential of that species or population when experiencing selective pressure. Heat stress and ocean
acidification both tend to reduce coral calcification rates, though responses to these stressors vary substantially among taxa
[20] as well as among individuals within species [7,8,21,22]. Calcification appears to be intimately tied to coral fitness, and
calcification responses under novel conditions may result in selection for phenotypes that better match the new environment
[7,8,22]. Recent studies have shown that many corals exhibit surprisingly high heritability in a number of key traits under
thermal stress [21,22], and our recent work demonstrates that the heritability of calcification rates under acidification is likewise
high across a diverse group of coral species [7]. Still, it is unclear if corals will be able to mount adaptive responses to warming
and acidification simultaneously, and if there might be trade-offs associated with these capacities. For example, reaction norms
from three Hawaiian corals reveal that Pocillopora acuta and Montipora capitata shift their relative temperature tolerances under
warmer conditions, whereas Porites compressa shifts its relative pH tolerance under more acidic conditions, but all three react
differently to dual stressors under future ocean conditions [8].

Organisms often exhibit trade-offs among different aspects of their physiological performance. Shown frequently among
plants [23,24], heavy investment into particular functions or strategies typically leaves fewer resources available to engage
in others, which almost certainly happens in corals as well. For example, hosting certain types of thermally tolerant algal
symbionts tends to result in higher bleaching thresholds for the host coral [25,26]. These thermally tolerant symbionts, however,
tend to be less productive than their more sensitive counterparts, leading to reduced coral growth rates [25,27,28]. That is,
selection for one trait (thermal tolerance) comes at the expense of another trait (growth). Likewise, a single trait may exhibit
contrasting responses to different stressors. For example, for some corals, increased thermal tolerance and higher survivorship
under heat stress are associated with lower resistance to pathogens and reduced survivorship under that stressor [29]. Hence,
adaptive responses to one environmental challenge can result in a trade-off and reduced capacity to respond to a different
challenge within the same trait. If trade-offs exist between warming and acidification on coral calcification rates, then corals may
show reduced capacity or inability to adapt to both factors simultaneously.

On the other hand, a common life history strategy employed by some corals, and many other organisms, is one of general
stress tolerance. Stress-tolerant species or individuals may invest heavily in processes such as cellular homeostasis, tissue repair
and other aspects related to stress response, thereby allowing them to survive through environmental challenges where others
may not. If corals exhibit calcification trade-offs between temperature and pH tolerance, then one would expect that their
responses to experimental warming and acidification should be negatively correlated between the individual stressors and/or
should show a synergistic negative effect under the combined stressors. That is, tolerance to one factor should be associated
with a cost and increased sensitivity to the other, or increased sensitivity under the combination of factors. Conversely, if their
calcification responses to each of warming and acidification are positively correlated and do not show a synergistic negative
interaction, then it would suggest that individuals within these species show variable levels of general stress tolerance, and that
some individuals are especially well equipped to deal with these future ocean stressors.

Heritability can be measured in the narrow or broad sense [30,31]. Narrow sense heritability (h2) includes only additive
genetic variation and can differ significantly from broad sense (H2, based on the total genetic variance) if intra-locus dominance,
maternal effects, epistatic or epigenetic interactions occur [30,31]. Narrow sense heritability (h2) is logistically difficult to
measure, particularly in most natural populations, requiring precise pedigrees over multiple generations and/or substantial
genomic information [32]. Even when this substantial effort is made, estimates of heritability are notoriously underpowered
and require large sample sizes to estimate with confidence [33,34]. However, broad-sense heritability (H2) is commonly used
to predict the response to selection in plant breeding trials or human quantitative genetics where identical twin studies can be
used [30,31,34,35], because they focus on the proportion of a phenotypic response in a trait that is attributable to the underlying
genotypic variance [36], and the large sample sizes needed can be more easily obtained using clonal replicates of each genotype.
Furthermore, complex traits controlled by many loci tend to be dominated by additive genetic variation which typically exceeds
over half, and often close to 100%, of the total genetic variance, lending further value to estimation of H2 as the upper limit for
narrow sense heritability [37]. Regardless, whether H2 is a precise estimation or the upper limit of coral heritability, estimating
thermal and acidification tolerances of scleractinian corals and their potential to respond to increasing global temperatures and
declining pH remains a critical gap in our understanding of likely responses to future ocean conditions [21].

Here, we take advantage of the ability to sample genetically distinct coral colonies (genets) to produce genetically identical
clonal fragments (ramets) and use an identical twin design to estimate the broad sense heritability (H2) and potential for
adaptation of coral calcification rates under warming, acidification and the combination of both factors. Corals of eight species
were exposed to one of four treatments: (i) control (present-day temperature and pH), (ii) ocean warming (+2°C and present-day
pH), (iii) ocean acidification (present-day temperature and −0.2 pH units), or (iv) combined future ocean (+2°C and −0.2 pH
units). This study was conducted over 1 year, providing the corals with time to acclimatize to the treatments and helping to
ensure that the measured calcification responses were a result of heritable variation among them rather than differences in
their short-term histories. Furthermore, these responses were assessed in biologically diverse reef mesocosms, to ensure that the
environment was as realistic as possible. These eight species are ecologically and phylogenetically diverse, representing three of
the most common reef-building coral families worldwide (Acroporidae, Pocilloporidae and Poritidae), both major evolutionary
lineages of scleractinian corals (Complexa and Robusta), and all four of the major coral life history strategies including three
competitive species (Montipora capitata, Porites compressa and Pocillopora meandrina), two generalist species (Montipora flabellata
and M. patula), two stress-tolerant species (Porites evermanni and Porites lobata) and one weedy species (Pocillopora acuta). These
species, or their close relatives [38,39], include some of the most common corals across the Indo-Pacific [40], yielding broad
relevance for our study. In addition to estimates of H2, we test for possible trade-offs associated with temperature and pH
tolerance within each of these species. Finally, we calculate selection coefficients for these corals, derived from our estimates of
H2 along with historical data and estimate potential increases in thermal tolerance for these species over the next century.
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2. Methods
(a) Coral collection
Corals were collected using a hammer and chisel at 2 ± 1 m depth from a total of six locations around O‘ahu, Hawai‘i (figure
1). Each species was collected from three to five of the sites, depending on their local abundances and sizes, for a total of 22
colonies of Montipora flabellata and 30 colonies (genets) of the remaining seven species. The eight species examined in this study
were Montipora capitata, Montipora flabellata, Montipora patula, Porites compressa, Porites evermanni, Porites lobata, Pocillopora acuta
and Pocillopora meandrina.

After collection, corals were returned to the Hawai‘i Institute of Marine Biology (HIMB) on Moku o Lo‘e (Coconut Island),
fragmented into 4–12 replicate nubbins (3–5 cm coral fragments, referred to as ‘ramets’) using a diamond-coated band saw,
individually attached to a labelled ceramic tile using cyanoacrylate gel, and allowed to recover for 2.5 months in a common
garden under present-day average temperature for O‘ahu and ambient pH conditions, with both temperature and pH following
the seasonal cycle (electronic supplementary material, figure S1).

(b) Approach
There was a need to include both within-genet variation and among-genet variation in our estimates. Given logistical con-
straints about how many coral ramets could possibly be accommodated, we attempted to balance these conflicting needs by
including (i) three replicate ramets from four genets for each coral species within each treatment, and (ii) one ramet per genet
per treatment for the remaining genets (n = 22 total genets for Montipora flabellata; n = 30 for the other seven species, four of
which were replicated within treatments per species). All coral ramets were randomly divided among mesocosms with no more
than one ramet per genet in each mesocosm, resulting in three–four ramets per species within each mesocosm tank (figure 1).

This experiment was part of a larger mesocosm project, other components of which have been described elsewhere [41–47].
The experimental system received constant flow-through of unfiltered seawater from the adjacent reef and was initially set up
with reef sand, rubble, algae, invertebrates and fish to provide a reef-like habitat (see electronic supplementary information for
additional details regarding the mesocosm design). Temperature and pH of the incoming seawater were adjusted according to
treatment in a series of header tanks, using aquarium heaters and CO2 gas injection, prior to flowing into the 70 l mesocosms
at a rate of approximately 1.2 l min−1, for a residence time of approximately 1 h. Additional water circulation (4900 l h−1) was
generated by seawater pumps within each mesocosm to provide water flow speeds (10–15 cm s−1) similar to those in situ. Both
temperature and pH were allowed to vary according to natural daily and seasonal cycles while maintaining appropriate offsets
according to treatment: control treatment (present-day temperature and pH), ocean warming treatment (+2°C and present-day
pH), ocean acidification treatment (present-day temperature and −0.2 pH units), or combined future ocean treatment (+2°C and
−0.2 pH units) with 10 replicate mesocosms per treatment in a 40 mesocosm system (see electronic supplementary material,
figure S1). The corals were then randomly assigned to a mesocosm with either one or three replicate nubbins (ramets) per
colony (genet) in each treatment, and no more than one ramet per genet in each mesocosm.

After 2.5 months of acclimatization in a common garden, temperature and pH were slowly adjusted starting on 1 February
2016 until target values were reached on 20 February 2016. The corals were then allowed 5.5 months to acclimatize to treatment
conditions before calcification rates were evaluated, thereby excluding short-term history as a factor in their responses. Corals
experienced heat stress during the final nine weeks of the study, during which the calcification assay was conducted (electronic
supplementary material, figure S1). Calcification rates were assessed via the buoyant weighing technique [48], with initial
weights taken 3–15 August 2016 (shortly after the onset of thermal stress in the heated treatments), final weights taken 26
September to 8 October 2016 (shortly after the seasonal peak in temperatures), and calcification rates were normalized to initial
weight. In total, the study was conducted over nearly 1 year with approximately eight months of exposure under experimental
treatment conditions, and the calcification assay was conducted over the last nine weeks of the experiment.

(c) Coral genotyping
Multi-locus genotyping of coral hosts was performed following published methods [49,50]. Briefly, total genomic DNA was
isolated using the E.Z.N.A. Tissue DNA Kit (Omega Bio-tek, Inc., Norcross, GA, USA) following the manufacturer’s protocol.
Amplicons were generated via polymerase chain reaction (PCR) using microsatellite primers [51], but with short unique
barcodes [52] added to each primer to identify each position in a 96-well plate. Amplicons were pooled equimolarly, and a
dual-index system of adaptors was used to identify individuals on each plate and libraries were sequenced on an Illumina
MiSeq platform (v. 3 2 × 300 PE) at the Hawai‘i Institute of Marine Biology. We used a custom bioinformatic genotyping
workflow pipeline [49] to call alleles, which were then converted to GenoDive v. 2.0b27 [53] file format for analyses. Individual
genotypes were created using two different methods. First, we used sequence length (equivalent to peak calling in a microsatel-
lite fragment analysis sensu [54]), such that all sequences of the same length, regardless of underlying sequence variation, would
be scored as the same allele (sequence length). Second, we identified alleles by their sequence (ID) so that only two exactly
identical alleles had the same ID, whereas alleles with the same length but differing in nucleotide composition would have
different allelic IDs. Similar to previous findings [49], both approaches gave the same result. Using the ‘assign clones’ feature of
GenoDive [55], we tested whether coral colonies sampled in the field had a unique multi-locus genotype. To be conservative, we
allowed for up to two scoring errors among individuals and checked potential clones against the location of collection.
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(d) Historical temperature tolerances
Over the last 50 years, the mean seawater temperature around O‘ahu has warmed at a rate of 1.9°C per century and acidified
at a rate of 0.13 pH units per century [19,56] (but note that pH data first became available in 1992) (electronic supplementary
material, figure S2). The rate of acidification will accelerate in the future as a consequence of reduced seawater buffer capacity
[57]. In 1970, survivorship of corals exposed to temperatures near their upper thermal limits (31.0°C) was assessed for two of
the species included in this study (Montipora capitata and Pocillopora acuta) [58]. In 2017, this study was repeated (31.4°C) [19]
(data shown in the original publications). We examined changes in their temperature tolerances by fitting logistic regressions
to survivorship using the R package ‘MASS’ in the following way (given differences in data overlap among datasets). For
Montipora capitata, we assessed the LD20 (degree heating weeks, DHW, which results in 20% mortality at these upper thermal
limits) and for Pocillopora acuta, we assessed the LD50 (DHW which result in 50% mortality at these upper thermal limits)
in each of 1970 and 2017, again using ‘MASS’ to define these values. These fits resulted in the following estimates: LD20 for
Montipora capitata of 1.30 ± 0.39 and 20.17 ± 2.46 DHW in 1970 and 2017, respectively; LD50 for Pocillopora acuta of 1.47 ± 0.56
and 18.68 ± 1.24 DHW in 1970 and 2017, respectively. We then estimated the change in these DHW tolerances for each species as
proxies for their responses to selection (R) over the period 1970–2017, as described below.

(e) Statistics
To examine treatment effects on calcification rates, for each species individually, an ANOVA was fit with temperature, pH and
collection site as fixed factors, and coral colony (genet), header tank and mesocosm as nested factors. Due to the smaller sample

3–5 sites per species

(a)

(d)

(b)

(c)

20 km

4 genets per species
3 ramets per genet per treatment

10 mesocosms per treatment
Coral genets randomly divided by treatment mesocosm

No more than 1 ramet per genet in each mesocosm

18 genets (Montipora flabellata) or
26 genets (other 7 species)

1 ramet per genet per treatment

40 mesocosm system

+

Figure 1. Diagram illustrating the experimental design used in this study. Representative photos of each coral are shown in (a) From top-left to bottom-right these
are: Montipora capitata, Montipora flabellata, Montipora patula, Porites compressa, Porites evermanni, Porites lobata, Pocillopora acuta and Pocillopora meandrina. Corals
were collected from a total of six locations around O‘ahu, Hawai‘i as indicated by the black dots (b) with each species collected from three to five of the locations,
depending on local abundance. The corals were then fragmented into a series of clonal nubbins (ramets) with four genotypes (genets) per species each contributing
three ramets per treatment, whereas the remaining 18 genets (Montipora flabellata) or 26 genets (other seven species) each contributed one ramet per genet per
treatment, yielding a total of 22 genets for Montipora flabellata and 30 genets for the remaining seven species (c) The ramets were randomly allocated among
mesocosms, which were themselves randomly divided among treatments, and with no more than one ramet per coral genet in each mesocosm (d) Mesocosms are
colour-coded according to treatment: control (blue), ocean acidification (light blue), ocean warming (red) and combined future ocean (purple). Photos courtesy of
Keoki Stender.
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size for Montipora flabellata, there were an insufficient number of degrees of freedom to fit the full model. Instead, we first fit
a model with all factors included except coral genet. Mesocosm effects were not significant, so this factor was dropped and a
second model was then fit which included genet. Model fits were assessed via diagnostic plots of the residuals and in all cases
the data adequately satisfied ANOVA assumptions. A Tukey honestly significant difference (HSD) was used as a post hoc to
examine significant treatment effects.

Broad sense heritability (H2) was estimated using a Bayesian modelling approach, similar to that used in previous work
[59,60]. The models were fit with the R package ‘MCMCglmm’ [61] with temperature and pH as fixed effects and coral genet,
collection site, header tank and mesocosm as random effects. Models were run for 100 000 iterations, storing the Markov chain
every 50 iterations, and with the first 15 000 iterations used as a burn-in period. Heritability was estimated as the proportion of
the phenotypic variance which was explained by genotype [59,60].

To test for possible trade-offs between temperature and pH tolerance, and the hypothesis that these tolerances are related to
a general stress-tolerance strategy, the association between temperature and pH response was examined for each species using
Pearson’s correlation. Temperature tolerance was calculated as the change in mean calcification rate between the control and the
ocean warming treatment, whereas pH tolerance was the difference between the control and the ocean acidification treatment.
Furthermore, we considered if there were interactive effects between temperature and pH on calcification rates identified by the
ANOVAs, as another indicator of trade-offs in these tolerances.

For Montipora capitata and Pocillopora acuta, we estimated their responses to selection (R) based on changes in their LD20
and LD50 values, respectively, from 1970 to 2017. The error associated with these estimates was determined from Monte Carlo
simulations using the R package ‘propagate’ and derived from 100 000 simulations. Along with our heritability estimates, as
described above, as well as the classical (univariate) breeder’s equation, R = H2S, we estimate the selection coefficients for these
species under the selective pressure that they have experienced over the last 50 years, where H2 is the broad sense heritability
(including additive, dominance and epistatic variance) which represents the proportion of the selection differential (S) that can
be realized as the response (R) to selection [30,36,59,62], and with the error associated with S propagated in the same way.
Again, we assume that broad sense heritability (H2) provides an upper bound for narrow sense heritability (h2), though the
two values are probably similar if these traits are influenced by many genetic loci. Selection differentials for the remaining six
species are unknown, so to be conservative we assumed that they experience selection similar to that for Montipora capitata (the
lower of the two selection coefficients) and estimated their responses to selection (R) based on these assumed values and their
measured heritabilities, with uncertainties propagated as above.

Analyses were performed in R v. 4.0.3 [63].

(f) Effects of unbalanced sampling design
We considered how an unbalanced sampling design might affect our estimates. In particular, our study was slightly unbalanced
because most of the coral genets contributed one ramet per treatment whereas four genets per species contributed three ramets
per treatment. In addition, a small percentage of the ramets died during the acclimatization phase (18 nubbins, or 1.5% of
the total, and affecting 12 of the 232 genets) resulting in representation of 87–100% of the genets across all four treatments,
depending on species.

For the ANOVAs, this slight unbalance has very little effect. ANOVA is highly robust to modest discrepancies in sample size
and missing observations, such as occur in this study. With the heritability estimates, modelling work [36,62] suggests that our
sampling design results in a less than 3% additional uncertainty in H2 for Pocillopora acuta and Pocillopora meandrina, and far
less among the other species. This small uncertainty yields only a trivial effect on our estimates of selection coefficients (S) or
responses to selection (R).

3. Results
(a) Coral collection and genotyping
Depending on local abundances, each coral species was sampled from three to five of the six collection locations around O‘ahu
resulting in 22 parent colonies for Montipora flabellata and 30 parent colonies for each of the remaining seven species (figure 1,
electronic supplementary material, table S1). Each of the 232 parent colonies samples exhibited a unique multi-locus genotype
[42,64]. To be conservative, we allowed for up to two scoring errors in these microsatellite analyses which returned only a single
potential clonal pair among these corals (Porites compressa colonies #1 and #3 from Waimānalo). These two corals, however,
displayed highly distinctive coloration (yellow-grey vs. tan) and morphology (smoother vs. knobbier branches) which they
maintained for a year while growing in a common garden with the other colony. This gave us confidence that none of the coral
colonies sampled for this study were clonally derived and that each colony represents a distinct genet.

(b) Environmental conditions
We exposed the corals to the target treatment conditions, consisting of present-day mean temperature and pH as well as
warming of +2°C and acidification of −0.2 pH units while preserving the natural daily and seasonal fluctuations of these
parameters (electronic supplementary material, figure S1). In the heated treatments (ocean warming and combined future
ocean) the corals accumulated approximately 14 DHW during the calcification assay.
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(c) Coral survivorship
A small number of coral nubbins (18 ramets, or 1.5% of the 1184 ramets total) died during the acclimatization phase. Mortality
was restricted primarily to one genet of Pocillopora meandrina, wherein 7 of the 12 ramets died. In addition, one ramet each from
11 of the 232 coral genets also died. These dead nubbins were excluded from the analyses. During the nine-week heat stress
event, when the calcification assay was being conducted, an additional 14 nubbins (1.2% of the total) also died, but these ramets
were included in the analyses to avoid biasing the data against the most thermally sensitive individuals.

(d) Treatment effects on calcification rates
For all eight species, there were significant main effects of temperature on calcification rates, with all eight species experiencing
reduced calcification at elevated temperature (figure 2, electronic supplementary material, table S2). In addition, five of the
species also experienced a significant main effect of acidification, and calcification tended to decrease under reduced pH for
Montipora capitata, Montipora flabellata, Porites evermanni and Porites lobata, yet increased for Pocillopora meandrina. Only one
species, Pocillopora meandrina, exhibited a significant Temp × pH interaction, because the resistance of this species to acidification
was diminished under heating. As is typical for most corals, linear extension rates ranged from approximately 1 to 10 cm yr− 1,
depending on species and genet.

(e) Heritability
Estimates of heritability (H2) ranged from a low of 0.23 in Pocillopora acuta to a high of 0.56 in Montipora capitata, and calcification
rates were significantly heritable for all eight species (figure 3). See table 1 for a summary of major findings from this study
according to species.

(f) Temperature and pH tolerance correlations
We define relative temperature tolerance as the change in calcification in the ocean warming treatment compared with the
control, and relative acidification tolerance as the change in calcification in the ocean acidification treatment as compared
with the control. Five of the species (Montipora capitata, Montipora patula, Porites lobata, Pocillopora acuta and Pocillopora mean‐
drina) exhibited a significant positive correlation between temperature and pH tolerance, whereas the remaining three species
(Montipora flabellata, Porites compressa and Porites evermanni) showed similar, non-significant trends (figure 4, electronic supple-
mentary material, table S3). None of the corals exhibited negative correlations between temperature and acidification tolerance,
as would be expected if there were trade-offs between these tolerances.

(g) Responses to selection
We project that all eight species are capable of evolving an increase in thermal tolerance over the next 50 years. These values
ranged from a low of 8.5 DHW in Porites lobata to a high of 20.0 DHW in Montipora capitata (figure 5).

4. Discussion
The scope for corals to adapt to combined warming and acidification will play a key role in their responses to global change
over coming decades [4,9,12,15,16,18,48]. While studies have sometimes assumed that corals exhibit low evolutionary potential
and therefore the responses of future generations will mirror those of today [1,2,4,65,66], there is mounting evidence that many

Table 1. Summary of major findings from this study according to species. Columns show treatment effects on coral calcification due to heating (temp effects),
acidification (pH effects), interactive effects between factors (temp × pH interaction) and estimates of broad sense heritability (H2).

species family life history strategy temp effects pH effects temp × pH interaction H2

Montipora capitata Acroporidae competitive negative negative no 0.56

Montipora flabellata Acroporidae generalist negative negative no 0.44

Montipora patula Acroporidae generalist negative neutral no 0.34

Porites compressa Poritidae competitive negative neutral no 0.39

Porites evermanni Poritidae stress tolerant negative negative no 0.24

Porites lobata Poritidae stress tolerant negative negative no 0.23

Pocillopora actua Pocilloporidae weedy negative neutral no 0.23

Pocillopora meandrina Pocilloporidae competitive negative positive yes 0.49
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Figure 3. Broad sense heritability (H2) for each coral species under combined warming and acidification. Points show best estimates and error bars are 95% confidence
intervals. n = 22 genotypes (genets) for Montipora flabellata and n = 30 genets for the remaining seven species.

7

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241161

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 Ja

nu
ar

y 
20

25
 



coral species harbour greater capacity to adapt to the changing climate than is often appreciated [8,19,21,22]. Because of the
imminent threat that ocean warming poses to corals, most studies examining their capacity to adapt or acclimatize to novel
conditions have focused on heat tolerance [21,22]. In contrast, and in spite of a rich literature characterizing coral responses to
ocean acidification [6,9,18], far less is known about their capacity to adapt to reduced pH, and very few studies have examined
their capacity to adapt to the combination of these two factors [59,60].

Corals often experience reduced calcification rates under acidification [9,18,48,65], but many of the species in this study
showed comparatively small responses to reduced pH. Coral responses to acidification, however, are not necessarily linear
[8,67–69]. Indeed, three of these species (Montipora capitata, Pocillopora acuta and Porites compressa) tend to achieve higher
calcification rates under modest acidification (−0.15 pH units) [8] yet experience reduced calcification under more severe pH
reductions (−0.3 to −0.4 pH units) [7], and all eight species tend to experience reduced calcification under severe acidification
(−0.4 pH units) [7]. Coral responses to acidification, however, are complex and the mechanisms that govern them are not yet
fully understood [9,18,70,71]. Under acidification, corals probably benefit from increased bicarbonate supply yet also suffer
due to increased proton concentration [9,70]. The −0.2 pH unit change included in this study may roughly split the difference
between the positive effects of carbon enrichment and the negative effects of higher proton concentration on calcification rates
for many of these species.
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Figure 4. Scatterplot of relative pH and temperature tolerances for each coral species. Relative pH tolerance is defined as the change in calcification rate in the ocean
acidification treatment relative to the control treatment whereas relative temperature tolerance is defined as the change in calcification rate in the ocean warming
treatment relative to the control treatment for each species (a–h) Grey line in each plot is a linear regression of the relationship between pH and temperature tolerance
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compressa and Porites evermanni) exhibit similar, non-significant trends. This analysis tests for possible calcification trade-offs between pH and temperature tolerance.
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for the remaining five species.
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None of the eight coral species examined here exhibited significant negative correlations between temperature and pH
tolerance, and only one of the species (Pocillopora meandrina) exhibited a significant Temp × pH interaction, because its pH
resistance was diminished under heating. Hence, none showed calcification responses consistent with there being clear
trade-offs in their sensitivity to ocean warming and acidification and all eight species appear to be capable of adapting to
each factor independently as well as the combination of both factors. For Pocillopora meandrina, however, the significant Temp 
× pH interaction suggests that this species has lower capacity to adapt to combined warming and acidification than it does to
either factor by itself. If, however, there were no cost to maintaining comparatively high temperature or pH tolerance then these
traits should have already gone to fixation within the populations, in which case we would have found very low heritability
of this trait. Given the comparatively high heritability in all species, trade-offs may exist with unmeasured variables such as
tolerance to other important environmental characteristics such as resistance to wave energy, reproductive output or disease
tolerance. Rather, corals often show parabolic performance curves over a range of temperature and pH conditions [8,67–69], and
there is no reason to think that all corals are best adapted to a particular set of conditions. Instead, these data suggest that coral
individuals within populations exhibit a range of environmental tolerances and some corals are inherently better adapted to
certain environments than are others.

In contrast to trade-offs, most of the species showed a significant positive correlation between temperature and pH tolerance.
These responses are consistent with the hypothesis that sensitivity to both warming and acidification is related to general
stress tolerance among colonies within these species. If that is the case, then these stress-tolerant individuals may also show
higher performance under other sorts of environmental insults. Indeed, Wright et al. [59] found that tolerance to heat stress,
acidification and pathogen exposure all tend to be positively correlated in an Australian coral. Furthermore, this relationship
suggests that pH and temperature tolerance can co-evolve in all eight species.

The opportunity for adaptive change of populations in response to natural or artificial selection relies on the genetic variance
underlying phenotypic traits, and predictive models of adaptation to global change require estimates of the proportion of that
trait variance which is explained by heritable genetic factors [30,31]. This explanative proportion is most accurately estimated by
narrow sense heritability (h2), which depends strictly on additive genetic variance and provides the fodder for natural selection
[33]. Such studies, however, require enormous investment of resources to produce precise pedigrees or substantial genomic
information [34]. In contrast, broad sense heritability (H2), as we measure here, is easier and faster to estimate, but also includes
other heritable factors, such as dominance, epistatic, maternal and epigenetic effects. Thus, H2 provides an upper bound for
narrow sense (h2) heritability [30,31,72]. However, both theory and data demonstrate that non-additive interactions at the level
of individual genes are unlikely to greatly impact variance for complex traits controlled by many genes, such as thermal and
acidification tolerances, and often close to 100% of the total observed variation is additive [37]. Despite the importance of
heritability estimates, they remain elusive for scleractinian corals [21]. Thus, broad sense heritability (H2) provides a reasonable
first pass at estimating the underlying genetic variance for coral thermal and pH tolerance, and at worst, provides an upper
bound for the value. Here we show that the broad sense heritability of coral calcification rates under combined ocean warming
and acidification is fairly high, ranging from 0.23 to 0.56, and consistent with other organisms in which life history traits
are linked directly to fitness [73–75]. These values are also consistent with previous reports examining the heritability of
scleractinian calcification under warming alone (H2 approx. 0.25–0.5) [21] or acidification alone (H2 approx. 0.32–0.61) [7]. A
useful parameter is derived from the classical breeder’s equation, R = h2S, where R is the response to selection, h2 is the narrow
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Figure 5. Estimated responses to selection for each species over the next 50 years. For Montipora capitata and Pocillopora acuta, values were empirically derived based
on observed change in DHW tolerance between 1970 and 2017. For the remaining species, the values were estimated based on the heritability values derived here and
assuming a selection coefficient similar to that for Montipora capitata. Horizontal lines show the mean annual DHW accumulation at warming levels of 1.0, 1.4, and
1.8°C, based on NOAA data for the main Hawaiian islands.
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sense heritability and S is the selection coefficient. Given caveats such as the fact that most coral populations are very large [76],
the breeder’s equation provides a useful metric for our understanding of how coral populations may evolve in the future. While
it is commonly assumed that corals are under strong selective pressure for higher temperature tolerances, given their recent
and predicted future declines due to heating [1–4], and that they might be under selective pressure due to acidification [7], the
paucity of quantitative data for selection coefficients contributes uncertainty to model predictions regarding coral responses to
global change and the potential for adaptation.

Here, we empirically estimate not only the broad sense heritability (H2) of coral calcification rates under combined warming
and acidification but also the selection coefficients (S) and responses to selection (R) for two of the species (Montipora capitata
and Pocillopora acuta), derived from historical data, and assuming that h2 and H2 are similar. It is important to note that these
selection coefficients represent the average strength of selection over the period 1970–2017. Without a doubt, both selection
and responses to selection will vary over space and time depending on the environmental characteristics that coral populations
experience. Given these caveats, and assuming that the remaining six coral species exhibit similar selection coefficients, we
estimate that these coral species can probably increase their thermal tolerances by a mean of 8.5 DHW (Porites lobata) to 20.0
DHW (Montipora capitata) over the next 50 years. Considering the uncertainties in these estimates, these values correspond to an
increase of approximately 1.0–1.7°C, depending on species. Under a high CO2 emissions scenario [77], none of these species are
probably capable of keeping up with the greater than 3°C of warming expected by the end of the century. In contrast, if climate
change is limited to no more than 2°C above the pre-industrial (approx. 0.8°C above present-day), in line with Paris Climate
Agreement targets [78], then all of these species might be able to persist, albeit very likely with changes in coral reef community
structure [47,64]. Hence, while these data show that diverse coral taxa possess heritable variation with clear capacity to respond
to selection for both ocean warming and acidification, substantial climate change mitigation efforts remain essential if coral reefs
are to persist over the twenty-first century and beyond.
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