SHORT COMMUNICATION

Stony coral tissue loss disease (SCTLD) induced mass mortality at Arecibo, Puerto Rico

Matthew Q. Lucas^{1,2} • Denis L. Collazo Roman^{1,3} • Miguel A. Mercado² • Emma J. Fain^{2,4} • Daniel A. Toledo-Rodríguez³ • Ernesto Weil³

Received: 8 April 2023 / Revised: 15 November 2023 / Accepted: 17 November 2023 © The Author(s), under exclusive licence to Senckenberg Gesellschaft für Naturforschung 2024

Abstract

Stony coral tissue loss disease (SCTLD) is a highly contagious disease, causing mass coral mortalities in the Atlantic/Caribbean since 2014. In Puerto Rico, SCTLD was first reported in 2019 off the east coast, spreading to the north-central region by early February 2021. Benthic surveys were conducted at Cueva del Indio (CI) and Peñón de Mera (PM) off Arecibo to (1) quantify coral species-specific SCTLD prevalence using four 10×1 -m² belt transects and (2) acquire time-series photo and video surveys to illustrate the impact of SCTLD, to evaluate coral species-specific susceptibilities, and estimate the timing of onset in Arecibo. A total of 650 corals in six species (*Pseudodiploria strigosa*, *P. clivosa*, *Montastraea cavernosa*, *Siderastrea siderea*, *Orbicella annularis*, *Porites astreoides*) were recorded inside the belt transects at both sites. SCTLD prevalence varied between 54% (*P. strigosa*) and 35.5% (*M. cavernosa*) at CI, and between 87.5% (*S. siderea*) and 25% (*O. faveolata*) at PM. Photo/video surveys revealed that SCTLD caused partial mortality in 11 species and full mortality in *P. strigosa*, *P. clivosa*, *S. siderea*, *M. cavernosa*, and *Dendrogyra cylindrus*. The results are discussed in view of prior research and contribute to understanding the spread and impact of SCTLD around Puerto Rico, which can be applied to predict its spread to other regions in the Caribbean.

Keywords Coral diseases · Biodiversity loss · Climate change · Caribbean corals · Marine protected area

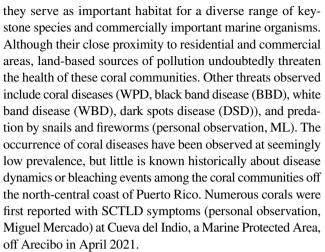
Introduction

In 2014, coral reefs off Florida began experiencing yet another outbreak of an aggressive "white-type" (whitening syndrome) called stony coral tissue loss disease (SCTLD, hereafter). Since then, SCTLD has caused rapid, partial/total colony mortality in > 22 of the 45 coral species inhabiting the Florida Reef Tract (FRT, hereafter) (Precht et al. 2016;

Communicated by B. W. Hoeksema

Published online: 01 February 2024

- Matthew Q. Lucas mlucas@arecibo.inter.edu
- Department of Science & Technology, Interamerican University, Arecibo, PR, USA
- ² Caribbean Reef Life Conservation, LLC #741 Santana, Arecibo, PR, USA
- Department of Marine Science, University of Puerto Rico, Mayagüez, PR, USA
- Department of Earth & Environment, Florida International University, Boca Raton, FL, USA


Walton et al. 2018; Aeby et al. 2019; Kramer et al. 2019). Overall, SCTLD has impacted > 30 species of corals in Florida and the northern Caribbean (Miller et al. 2006; AGRRA 2019; Kramer et al. 2019; Weil et al. 2019), similar to the white plague diseases (WPDs) of the early 2000s (Weil et al. 2009a, b; Weil and Rogers 2011; Cróquer et al. 2021; Morais et al. 2022). SCTLD is defined as focal, multifocal, locally extensive diffuse areas of acute to subacute tissue loss distributed basally, peripherally, or both (Meyer et al. 2019; Aeby et al. 2019). SCTLD was first observed in Virginia Key, FL, and within 1 year, it spread to southeast Florida near Miami, and by 2019, it has been documented from the northernmost reaches of the FRT in Martin County, down to Key West and in several other locations of the northern Caribbean, including Puerto Rico (Precht et al. 2016; Aeby et al. 2019; AGRRA 2019; Kramer et al. 2019; Meyer et al. 2019; Weil et al. 2019). The potential origin of SCTLD is associated with dredging and a thermal anomaly in Florida (Miller et al. 2016; Precht 2019; Dobbelaere et al. 2020a; Muller et al. 2020), but the connection between these events and the initial SCTLD outbreak in Florida have yet to be

confirmed. The number of different coral species impacted, transmissibility, high prevalence, and incidence, with high mortality rates, indicate that SCTLD is a highly contagious and deadly disease, causing significant losses of live coral on every reef it infects (Weil et al. 2019; Cróquer et al. 2021; Alvarez-Filip et al. 2022).

SCTLD transmission is by direct contact, water currents, coral predators, and ship ballast water, which may explain the emergence of the SCTLD on coral reefs distant from Florida that do not follow prevailing ocean current patterns (Dobbelaere et al. 2020b; Dahlgren et al. 2021; Korein 2021). Within-reef scales, snails, fireworms, reef fish (Lucas et al. 2014; Aeby et al. 2019; Montano et al. 2022) and resuspended sediments are potential vectors of SCTLD (among other diseases) (Rosenau et al. 2021; Studivan et al. 2022). A study using 16S rRNA sequencing has shown that SCTLD is associated with a shift in the bacterial community of the host coral (Meyer et al. 2019) but the putative pathogen(s) have yet to be confirmed (Meyer et al. 2019; Muller et al. 2020). In contrast, research using transmission electron microscopy on healthy and SCTLD-infected corals indicated a possible viral disease of the algal symbionts (LaJeunesse et al. 2018) that lead to the host's death (Landsberg et al. 2020; Work et al. 2021). Coral tissues infected with SCTLD exhibit a breakdown of the host's cells and algal symbionts, rather than the bacterial communities associated with necrosis (Work et al. 2021). Additionally, biological and or chemical pollution cannot be ruled out as causative or antagonistic agents of SCTLD's severity. SCTLD has been documented in most of northern Caribbean countries, from the eastern Caribbean to Belize and Honduras (AGRRA 2019; Kramer et al. 2019). SCTLD was first observed in Puerto Rico's waters off the west coast of Culebra in November (2019) and has since moved westward along the northern and southern coasts (Kramer et al. 2019; Weil et al. 2019; Korein 2021). A few reports indicate SCTLD has been observed off Aruba, Bonaire, and Curação (see maps at AGRRA 2019; Kramer et al. 2019) but these accounts of SCTLD in the southern Caribbean need to be confirmed (Kramer et al. 2022).

Around Puerto Rico, the most extensive coral communities exist off the northeast and southwest coasts (Ballantine et al. 2008). In contrast, the northern coast of Puerto Rico's hard bottom coral communities are not as developed due to the narrow shelf-edge and high wave energy (Ballantine et al. 2008). Nonetheless, substantial nearshore coral communities occur off Hatillo, Arecibo, and Manati. Some are mono-specific, such as *Acropora palmata* reefs, while others are dominated by a few very abundant species, such as *Pseudodiploria strigosa*, *P. clivosa*, *Montastraea*. *cavernosa*, *Orbicella faveolata*, *O. annularis*, and *Porites* spp. Other coral species occurring off north-central Puerto Rico include *Dendrogyra cylindrus*, *Siderastrea siderea*, and to a much lesser extent, *Acropora cervicornis*. Despite these coral communities being less extensive,

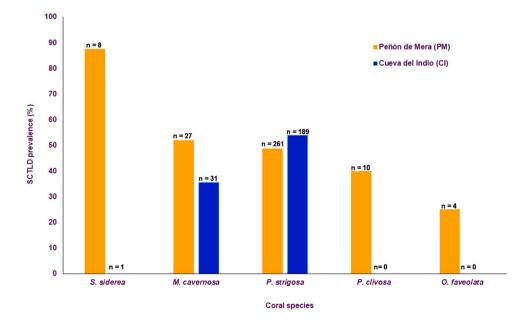
Because defining coral species-specific SCTLD susceptibility and transmission patterns are important for understanding the spread, ecological consequences, and management of SCTLD (Brandt and McManus 2009; Meiling et al. 2020; Costa et al. 2021; Korein 2021; Korein et al. 2023), the objectives of this study were to (1) quantify coral species-specific and coral community SCTLD prevalence and (2) study the spread and impact of SCTLD at Cueva del Indio (CI) and Peñón de Mera (PM), two coral communities off the coast of Arecibo. The collective goal of this study was to evaluate coral species-specific susceptibility patterns, estimate the potential onset of SCTLD in the Arecibo area, and assess the overall impact of SCTLD. The results are discussed in view of prior research and contribute to understanding the spread and geographic impact of SCTLD on coral communities around Puerto Rico.

Material and methods

Benthic assessments (belt transects) were first conducted on May 30, 2021, at CI (~18°29'35.53" N, 66°38'34.42" W) and on June 29, 2021 at PM (~18°29'19.37" N, 66°40′37.91″ W) off Arecibo (Fig. S1). The area studied at PM (~5 m depth) is located on the backreef of the lagoon whereas the transect area studied at CI (~10 m depth) is located on the forereef (Fig. S1). To quantify SCTLD prevalence (proportion of infected colonies in the population) among coral species, data was recorded in situ by swimming four, randomly stratified $10 \times 1 \text{ m}^2$ belt transects (Raymundo et al. 2008; Randall and van Woesik 2015; Jordán-Dahlgren et al. 2018), each separated by ~ 10 m, and counting the number of coral colonies for each species with SCTLD signs (white, tissue-devoid areas, tissue sloughing) and the number of healthy colonies (no SCTLD signs). Most SCTLD infected colonies had characteristic signs; however, given the similarity with WPD, it is possible that a few colonies were infected with

Marine Biodiversity (2024) 54:10 Page 3 of 8 10

WPD (Cróquer et al. 2021). No statistical analyses were performed due to the small number of transects per treatment (survey dates, different habitats and depths, coral species composition between sites). Instead, prevalence data from each site was pooled for descriptive comparisons and plotted (XLStat 2007). Separate photo and video surveys at both sites were acquired using a Nikon W300. Photos and videos were analyzed on-screen to evaluate the potential onset of SCTLD and to illustrate the impact of SCTLD on Arecibo's coral communities.


Results

At the two study sites, a total of 650 coral colonies across six coral species were recorded inside the belt transects, together covering 160 m^2 of reef area (Table 1). A total of 263 coral colonies were recorded at CI, *P. strigosa* showed the highest disease prevalence (54%, n = 189), *M. cavernosa* the lowest (35.5%), and *P. astreoides* had no infected colonies (n = 42) (Table 1; Fig. 1). *Pseudodiploria clivosa* and *O. faveolata* were not observed in the transects at CI. At PM, 387 colonies were recorded, with *S. siderea* showing

Table 1 Coral species-specific SCTLD prevalence (%) at each site (four pooled transects), the number of colonies presenting SCTLD symptoms (+), the number of healthy colonies per species, total colonies per species, depth, and transect survey dates

Coral species	SCTLD (+) colonies	Healthy colonies	Total colonies	SCTLD preva- lence (%)	Depth (m)	Transect survey dates
Cueva del Indio (CI), Arecibo						
Pseudodiploria strigosa	102	87	189	54.0%	10	30 May 2021
Montastraea cavernosa	11	20	31	35.5%	10	30 May 2021
Porites astreoides	0	42	42	0.0%	10	30 May 2021
Siderastrea siderea	0	1	1	0.0%	10	30 May 2021
Pseudodiploria clivosa	0	0	0	0.0%	10	30 May 2021
Orbicella faveolata	0	0	0	0.0%	10	30 May 2021
Peñón de Mera (PM), Arecibo						
Siderastrea siderea	7	1	8	87.5%	5	29 June 2021
Montastraea cavernosa	14	13	27	51.9%	5	29 June 2021
Pseudodiploria strigosa	127	134	261	48.7%	5	29 June 2021
Pseudodiploria clivosa	4	6	10	40.0%	5	29 June 2021
Orbicella faveolata	1	3	4	25.0%	5	29 June 2021
Porites astreoides	0	77	77	0.0%	5	29 June 2021

Fig. 1 SCTLD prevalence (%) in five of the most severely impacted coral species at (PM) Peñón de Mera (orange) and (CI) Cueva del Indio (blue) in 2021. n= the total number of colonies of each species recorded in the band transects

the highest SCTLD prevalence (87.5%, n = 8), O. faveolata the lowest (25%, n = 4), and all P. astreoides were healthy (Table 1; Fig. 1). The impact of SCTLD in respect to tissue loss in four coral species is illustrated in Fig. 2. Similar impacts were observed in 11 coral species monitored at both sites (Fig. S2). Other coral species (A. cervicornis, A.

palmata, Agaricia spp., Madracis auretenra, M. decactis, P. porites, and P. astreoides) did not present SCTLD signs at the time of these surveys. Acropora palmata colonies had small white patches of possibly white pox. At the end of 2021 field season (October 2021), numerous colonies P. strigosa, P. clivosa, D. cylindrus, S. siderea, and M.

Fig. 2 Time-series photos (left to right) of four coral species presenting various levels of tissue-loss; a, b A colony of S. siderea was near full colony mortality in 15 days after SCTLD infection (CI); c, d A colony of D. cylindrus reached near full colony mortality in 57 days (~8 weeks) (PM); e, f A colony of C. natans was near full colony mortality at the first observation and died a few weeks later (PM); e, f A colony of O. annularis showing slower, but near full colony mortality (~2 months) (PM)

Marine Biodiversity (2024) 54:10 Page 5 of 8 10

cavernosa from offshore to nearshore suffered near to full colony mortality at PM (Fig. S2; Fig. S3) and CI (Fig. S2; Fig. S4). By April 2022, SCTLD had spread and infected the coral community near the municipality of Hatillo, Puerto Rico (Fig. S5).

Discussion

This study combined coral species-specific SCTLD prevalence data and photo/video surveys to identify species susceptibility patterns, estimate the onset of SCTLD, and illustrate the overall impacts of SCTLD on the coral communities at Cueva del Indio and Peñón de Mera off the coast of Arecibo in 2021. Overall, we report 11 coral species impacted and SCTLD induced mass mortality in five coral species. Given the coral lesions observed in May 2021, we estimate that SCTLD arrived in Arecibo in early February to March 2021.

SCTLD prevalence data indicated that five coral species are most susceptible to SCTLD at the two sites (Table 1; Fig. 1). Although because of low sampling (only four transects per site), it is uncertain that coral species-specific SCTLD prevalence represented the entire coral community at either site. While we did not measure colony size or SCTLD progression (virulence = tissue loss rates) but observed different-sized coral colonies presenting variable levels of impact ranging from little to intermediate tissue loss, to near or full colony mortality (Fig. 2a–f; Fig. S2–S4). Because in highly SCTLD susceptible coral species, full mortality ranges from 1 week for smaller coral colonies to full mortality in 1-2 months for larger coral colonies (> 1 m), given the observed coral lesions at the time of our first observation (late April 2021 at Cueva del Indio), we estimate that SCTLD arrived on Arecibo's coral communities sometime between late February to mid-March 2021. By the end of the 2021 field season (October 2021) SCTLD had moved into shallow waters at both sites and 11 coral species were severely impacted (high prevalence, see Fig. 1) and where mass coral mortalities occurred from offshore to nearshore, and across depths (Fig. 2; Fig. S2–S4).

The coral species-specific SCTLD susceptibility patterns observed in this study are consistent with those in Florida (Precht et al. 2016; Aeby et al. 2019, 2021; Sharp et al. 2020), NE Brazil (Morais and Santos 2022), Mexico (Randazzo-Eisemann et al. 2022), and other localities in Puerto Rico (Weil et al. 2019). We observed highly susceptible coral species *P. trigosa*, *P. clivosa*, *D. cylindrus*, *D. stokesii*, and *D. labyrinthiformis* experiencing partial to full mortality throughout the study (Figs. 1 and 2; Figs. S2–S4). These coral species are the first to show rapid tissue loss and, in some colonies, full mortality due to SCTLD (Precht et al. 2016; NOAA 2018; Aeby et al. 2019, 2021; Meiling

et al. 2020; Sharp et al. 2020). Siderastrea siderea and M. cavernosa are considered as intermediately susceptible to SCTLD (NOAA 2018). In the case of S. siderea, it often shows distinct disease signs, which produces confusion, and they show up before signs in other highly susceptible coral species, during and after a SCTLD outbreak has progressed through a coral community (NOAA 2018; Sharp et al. 2020; Cróquer et al. 2021; Morais et al. 2022). Furthermore, our observations revealed concurrent multiple infections in S. siderea populations (BBD, DSD, and SCTLD); however, after the onset of SCTLD, rapid tissue loss was followed by near full colony mortality in only a few weeks (Fig. 2a, b). A study in the Florida Keys monitored SCTLD prevalence in *P. strigosa* and *S.* siderea on nearshore and offshore reefs and found higher SCTLD prevalence in offshore colonies versus nearshore colonies (Sharp et al. 2020). Initially, our observations showed a similar nearshore-offshore pattern, with higher SCTLD prevalence in offshore versus nearshore colonies of P. strigosa, P. clivosa, and M cavernosa (13 June 2021; Figs. S2–S4); however, S. siderea seemed equally impacted across the nearshore-offshore gradient, and many colonies suffered full mortality (Fig. 1a, b; Figs. S2-S4). This result is also consistent with Sharp et al. (2020) who found differential SCTLD prevalence between the offshore and nearshore coral communities.

The species M. cavernosa has also been identified as an intermediately susceptible species in Florida (Shilling et al. 2021) and highly susceptible in Puerto Rico (Weil et al. 2019; Korein 2021). Our results are similar and M. cavernosa showed high susceptibility and near or full mortality in numerous colonies at both sites (Fig. 1; Fig. S2). Morais and Santos (2022) compared prevalence, the extent of bleaching, and diseases in Siderastrea stellata and M. cavernosa in shallow and at mesophotic depths and found high prevalence in S. stellata (75%) regardless of depth, but the colony area impacted was about two times greater in mesophotic than shallow reefs (14.4%) vs. (6.6%), respectively. While these authors were unable to compare M. cavernosa between shallow and mesophotic depths, M. cavernosa had lower prevalence than S. stellata at mesophotic depths. Incidentally, M. cavernosa consists of two ecomorphs that co-occur, but have differential depth distributions (Ruiz 2004; Budd et al. 2012). As a result, the reported geographic variation in SCTLD susceptibility (or resistance) (Korein 2021; Shilling et al. 2021; Korein et al. 2023) could be related to genotypic differences between M. cavernosa ecomorphs. Similar to other reports, our results indicate that O. faveolata is "intermediately" susceptible to SCTLD, but O. faveolata seems to be slightly more resistant than O. annularis (Fig. 1g, h; Figs. **S2–S4**).

SCTLD is one of the most devastating coral diseases on record and is rapidly decimating coral reefs across the

northern Caribbean causing coral mass mortalities which significantly reduce live coral cover and species abundances, resulting in benthic community shifts, commonly to algae dominated assemblages (Alvarez-Filip et al. 2019; Estrada-Saldívar et al. 2021; Alvarez-Filip et al. 2022; Morais et al. 2022; Randazzo-Eisemann et al. 2022). Because of SCTLD, and the high potential for the emergence of more virulent coral diseases in the future, there is imminent need to take actions that rescue and protect genetic diversity as well as discover resistant genotypes that could aid in the adaptive capacity and resilience of foundational coral species.

Results of this short study, albeit lacking spatial and temporal observations, are particularly concerning because the coral communities off north-central Puerto Rico are not spatially extensive, have low density populations of a reduced number of species with presumably low genetic variability, and are also negatively impacted by human activities, storms, and thermal anomalies (Walton et al. 2018; Baums et al. 2019; Costa et al. 2021). Thus, these coral communities are perhaps highly susceptible to the emergence of new coral diseases and the impacts of thermally induced bleaching, which makes future recovery difficult and slow. Some mitigation protocols to reduce the impact of SCTLD on coral communities have been tested (Korein 2021; Neely et al. 2021; Walker et al. 2021; Korein et al. 2023). The most common is the use of a wide spectrum antibiotic paste that is applied to the edge of the lesion, which has some recognized caveats at different scales (reviewed in Kraemer et al. 2019; Weber et al. 2019; Neely et al. 2021; Shilling et al. 2021; Walker et al. 2021; Zheng et al. 2021; Connelly et al. 2022). Novel SCTLD treatments that use "human skin wound" treatment materials have been successfully used to cure coral lesions (Contardi et al. 2020) and a probiotic treatment has also recently shown promising results in treating SCTLD (Ushijima et al. 2023).

Continuing work should focus on the identity and origin of the SCTLD pathogen(s) to implement management strategies that mitigate and prevent SCTLD and other disease outbreaks. Coral restoration programs should focus on propagating surviving corals (SCTLD-resistant genotypes) in parallel with holistic and assisted evolutionary approaches that aim to increase survivorship of genetically diverse and more resilient corals to be outplanted to degraded reefs.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12526-023-01393-6.

Acknowledgements We thank two anonymous reviewers for their helpful comments that greatly improved the outcome of this short report.

Funding This study was funded by seed funds from Sea Grant Puerto Rico to ML (Project No. PD-359, Award No. NA18OAR4170089) and NSF funding to EW (RAPID-Grant No. 2000863).

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval No animal testing was performed during this study.

Sampling and field studies The study does not contain sampling material or data from field studies.

Data availability Data, photo, and video files are available without reservation: mlucas@arecibo.inter.edu.

Author contributions ML and EW drafted the report. All authors contributed by helping in the field, data collection, and reviewed the manuscript. Photo/video credits: ML and DCR.

References

- Aeby G, Ushijima B, Campbell JE, Jones S, Williams GJ, Meyer JL, Häse C, Paul VJ (2019) Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract. Front Mar Sci 6:678. https://doi.org/10.3389/fmars.2019.00678
- Aeby G, Ushijima B, Bartels E, Walter C, Kuehl J, Jones S, Paul VJ (2021) Changing stony coral tissue loss disease dynamics through time in *Montastraea cavernosa*. Front Mar Sci 8:699075. https://doi.org/10.3389/fmars.2021.699075
- AGRRA (2019) Atlantic and Gulf Rapid Reef Assessment. Coral Disease Outbreak. https://www.agrra.org/. Accessed Jan 2023
- Alvarez-Filip L, Estrada-Saldívar N, Pérez-Cervantes E, Molina-Hernández A, González-Barrios FJ (2019) A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7:e8069 https://doi.org/10.7717/peerj.8069.
- Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N (2022) Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Comm. Biol 5:440. https://doi.org/10.1038/s42003-022-03398-6
- Ballantine DL, Appeldoorn RS, Yoshioka P, Weil E, Armstrong R, Garcia JR, Otero E, Pagan F, Sherman C, Hernandez-Delgado EA, Bruckner A, Lilyestrom C (2008) Biology and ecology of Puerto Rican Coral Reefs. In: Riegl B, Dodge RE (eds) Coral Reefs of the USA. Springer, Netherlands, pp 375–406. https://doi.org/10.1007/978-1-4020-6847-8_9.
- Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JW, Shantz AA (2019) Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol Appl 29(8):e01978. https://doi.org/10.1002/eap.1978
- Brandt ME, McManus JW (2009) Disease incidence is related to bleaching extent in reef-building corals. Ecology 90:2859–2867. https://doi.org/10.1890/08-0445.1
- Budd AF, Flavia LD, Weil E, Pandolfi JM (2012) Polymorphism in a common Atlantic reef coral (*Montastraea cavernosa*) and its long-term evolutionary implications. Ecol Evol 26:265–290. https://doi.org/10.1007/s10682-010-9460-8
- Connelly MT, McRae CJ, Liu PJ, Martin CE, Traylor-Knowles N (2022) Antibiotics alter Pocillopora coral-Symbiodiniaceae-bacteria interactions and cause microbial dysbiosis during heat stress. Front Mar Sci 8:814124. https://doi.org/10.3389/fmars. 2021.814124
- Contardi M, Montano S, Liguori G, Heredia-Guerrero JA, Galli P, Athanassiou A, Bayer IS (2020) Treatment of coral wounds by combining an antiseptic bilayer film and an injectable

Marine Biodiversity (2024) 54:10 Page 7 of 8 10

- antioxidant biopolymer. Sci Rep 10:988. https://doi.org/10.1038/s41598-020-57980-1
- Costa SV, Hibberts SJ, Olive DA, Budd KA, Long AE, Meiling SS, Miller MB, Vaughn KM, Carrión CI, Cohen MB, Savage AE, Souza MF, Buckley L, Grimes KW, Platenberg R, Smith TB, Blondeau J, Brandt ME (2021) Diversity and disease: the effects of coral diversity on prevalence and impacts of stony coral tissue loss disease in Saint Thomas, U.S. Virgin Islands. Front Mar Sci 8:682688. https://doi.org/10.3389/fmars.2021.682688
- Cróquer A, Weil E, Rogers CS (2021) Similarities and differences between two deadly Caribbean coral diseases: white plague and stony coral tissue loss disease. Front Mar Sci 8
- Dahlgren C, Pizarro V, Sherman K, Greene W, Oliver J (2021) Spatial and temporal patterns of stony coral tissue loss disease outbreaks in the Bahamas. Front Mar Sci 8:682114. https://doi.org/10.3389/fmars.2021.682114
- Dobbelaere T, Muller EM, Gramer L, Holstein D (2020a) Report on the potential origin of the SCTLD in the Florida Reef Tract. FL Dept Env Prot. https://floridadep.gov/sites/default/files/report_ onset_2014%20508%20compliant.pdf
- Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E (2020b) Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly dredging the Port of Miami, Florida USA. PeerJ 4:e2711. https://doi.org/10.7717/peerj.2711
- Estrada-Saldívar N, Quiroga-García BA, Pérez-Cervantes E, Rivera-Garibay OO, Alvarez-Filip L (2021) Effects of the stony coral tissue loss disease outbreak on coral communities and the benthic composition of Cozumel reefs. Front Mar Sci 8:632777. https://doi.org/10.3389/fmars.2021.632777
- Jordán-Dahlgren E, Jordán-Garza AG, Rodríguez-Martínez RE (2018) Coral disease prevalence estimation and sampling design. PeerJ 6:e6006. https://doi.org/10.7717/peerj.6006
- Korein E (2021) Stony coral tissue loss disease. DRNA Puerto Rico Report. https://www.drna.pr.gov/wp-content/uploads/2021/08/ Stony-Coral-Tissue-Loss-Disease.pdf
- Korein E, Vega-Rodriguez M, Metz Estrella T (2023) Developing recommendations for coral disease management in Puerto Rico using key informant interviews and participatory mapping. Ocean Coast Manag 236:106488 https://doi.org/10.1016/j. ocecoaman.2023.106488.
- Kraemer S, Ramachandran A, Perron G (2019) Antibiotic pollution in the environment: from microbial ecology to public policy. Microrganisms 7:180. https://doi.org/10.3390/microorganisms7 060180
- Kramer PR, Roth L, Lang J (2019) Map of stony coral tissue loss disease outbreak in the Caribbean. https://www.agrra.org. ArcGIS Online. Accessed Jan 2023
- Kramer PR, Kramer J, Roth L, Larios D (2022) Field guide to monitoring coral disease outbreaks in the Mesoamerican region. Integrated ridge to reef management of the Mesoamerican reef ecoregion project (MAR2R-CCAD/GEF-WWF and MAR Fund). Guatemala City, Guatemala. https://www.agrra.org/coral-disease-outbreak/. Accessed January 2023.
- LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580. https://doi.org/10.1016/j.cub. 2018.07.008
- Landsberg JH, Kiryu Y, Peters EC, Wilson PW, Perry N, Waters Y, Maxwell KE, Huebner LK, Work TM (2020) Stony coral tissue loss disease in Florida is associated with disruption of host-zooxanthellae physiology. Front Mar Sci 7:576013. https://doi.org/10. 3389/fmars.2020.576013
- Lucas MQ, Rodríguez LR, Sanabria DJ, Weil E (2014) Natural prey preferences and spatial variability of predation pressure by *Cyphoma gibbosum* (mollusca: gastropoda) on

- octocoral communities off La Parguera. Puerto Rico ISRN Ecol 2014:742387. https://doi.org/10.1155/2014/742387
- Meiling S, Muller EM, Smith TB, Brandt ME (2020) 3D photogrammetry reveals dynamics of stony coral tissue loss disease (SCTLD) lesion progression across a thermal stress event. Front Mar Sci 7:597643. https://doi.org/10.3389/fmars.2020.597643
- Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ (2019) Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Front Microbiol 10:2244. https://doi.org/10.3389/fmicb. 2019 02244
- Miller J, Waara R, Muller E, Rogers C (2006) Coral bleaching and disease combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs 25:418. https://doi.org/10.1007/ s00338-006-0125-6
- Miller MW, Karazsia J, Groves CE, Griffin S, Moore T, Wilber P, Gregg K (2016) Detecting sedimentation impacts to coral reefs resulting from dredging the Port of Miami, Florida USA. PeerJ 17:e2711. https://doi.org/10.7717/peerj.2711
- Montano S, Aeby G, Galli P, Hoeksema BW (2022) Feeding behavior of Coralliophila sp. on corals affected by Caribbean ciliate infection (CCI): a new possible vector? Diversity 14:363. https://doi.org/10.3390/d14050363
- Morais J, Santos BA (2022) Prevalence and extent of coral diseases in shallow and mesophotic reefs of the Southwestern Atlantic. Coral Reefs 41:1317–1322. https://doi.org/10.1007/s00338-022-02287-y
- Morais J, Cardoso APL, Santos BA (2022) A global synthesis of the current knowledge on the taxonomic and geographic distribution of major coral diseases. Environ Adv 8:100231. https://doi.org/10.1016/j.envadv.2022.100231
- Muller EM, Sarto C, Alcaraz NI, van Woesik R (2020) Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar Sci 7:163. https://doi.org/10.3389/fmars.2020.00163
- Neely KL, Shea CP, Macaulay KA, Hower EK, Dobler MA (2021) Short-and long-term effectiveness of coral disease treatments. Front Mar Sci 8
- NOAA (2018) Stony coral tissue loss disease case definition. Florida Keys National Marine Sanctuary. https://floridadep.gov/sites/default/files/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf. Accessed Jan 2023
- Precht WF (2019) Failure to respond to a coral disease outbreak: potential costs and consequences. PeerJ Preprints 7:e27860v2. https://doi.org/10.7287/peerj.preprints.27860v2
- Precht WF, Gintert BE, Robbart ML, Fura R, van Woesik R (2016) Unprecedented disease-related coral mortality in Southeastern Florida. Sci Rep 6:31374. https://doi.org/10.1038/srep31374
- Randall C, van Woesik R (2015) Contemporary white-band disease in Caribbean corals driven by climate change. Nat Clim Change 5:375–379. https://doi.org/10.1038/nclimate2530
- Randazzo-Eisemann Á, Garza-Pérez JR, Figueroa-Zavala B (2022) The role of coral diseases in the flattening of a Caribbean coral reef over 23 years. Mar Pollut Bull 181
- Raymundo LJ, Couch CD, Harvell CD (2008) Coral disease handbook, guidelines for assessment, monitoring, and management. Australia: Coral reef targeted research and capacity building for management program. https://gefcoral.org/Portals/53/downloads/ disease_products/CRTR_Disease%20Handbook_Final.pdf
- Rosenau NA, Gignoux-Wolfsohn S, Everett RA, Whitman Miller A, Minton MS, Ruiz GM (2021) Considering commercial vessels as potential vectors of Stony Coral Tissue Loss Disease. Front Mar Sci 8:709764. https://doi.org/10.3389/fmars.2021.709764
- Ruiz H (2004) Morphometric examination of corallite and colony variability in the Caribbean coral *Montastraea cavernosa* (Linnaeus 1766). MSc. Thesis, Department of Marine Sciences, University of Puerto Rico, Mayaguez

10 Page 8 of 8 Marine Biodiversity (2024) 54:10

Sharp WC, Shea CP, Maxwell KE, Muller EM, Hunt JH (2020) Evaluating the small-scale epidemiology of the stony-coral -tissue-loss disease in the middle Florida Keys. PLoS ONE 15:e0241871. https://doi.org/10.1371/journal.pone.0241871

- Shilling EN, Combs IR, Voss JD (2021) Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on *Montastraea cavernosa*. Sci Rep 11:8566. https://doi.org/10.1038/s41598-021-86926-4
- Studivan MS, Rossin AM, Nash RE, Soderberg N, Holstein DM, Enochs IC (2022) Reef sediments can act as a stony coral tissue loss disease vector. Front Mar Sci 8:815698. https://doi.org/10.3389/fmars.2021.815698
- Ushijima B, Gunasekera SP, Meyer JL, Tittl J, Pitts KA, Thompson S, Sneed JM, Ding Y, Chen M, Houk LJ, Aeby GS, Häse CC, Paul VJ (2023) Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun Biol 6:248. https://doi.org/10.1038/s42003-023-04590-y
- Walker BK, Turner NR, Noren HG, Buckley SF, Pitts KA (2021) Optimizing stony coral tissue loss disease (SCTLD) intervention treatments on *Montastraea cavernosa* in an endemic zone. Front Mar Sci 8:666224. https://doi.org/10.3389/fmars.2021.666224
- Walton CJ, Hayes NK, Gilliam DS (2018) Impacts of a regional, multiyear, multi-species coral disease outbreak in Southeast Florida. Front Mar Sci 5:323. https://doi.org/10.3389/fmars.2018.00323
- Weber L, Gonzalez-Díaz P, Armenteros M, Apprill A (2019) The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr 64:2373–2388. https://doi.org/10.1002/lno.11190
- Weil E, Croquer A, Urreiztieta I (2009a) Temporal variability and consequences of coral diseases and bleaching in La Parguera, Puerto

- Rico from 2003–2007. Carib J Sci 45:221–246. https://doi.org/ 10.18475/cjos.v45i2.a10
- Weil E, Cróquer A, Urreiztieta I (2009b) Yellow band disease compromises the reproductive output of the reef-building coral *Montastraea faveolata* (Anthozoa, Scleractinia). Dis Aquat Org 87:45–55. https://doi.org/10.3354/dao02103
- Weil E, Rogers CS (2011) Coral reef diseases in the Atlantic-Caribbean. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition, Springer, Dordrecht, pp 465–491. https://doi.org/10.1007/978-94-007-0114-4-27
- Weil E, Hernández-Delgado EA, Gonzalez M, Williams S, Suleimán-Ramos S, Figuerola M, Metz-Estrella T (2019) Spread of the new coral disease "SCTLD" into the Caribbean: implications for Puerto Rico. Reef Encounter 34:38–43. https://www.agrra.org/wp-content/uploads/2020/08/Weil-et-al.-2020-Reef-Encounter.pdf. Accessed Jan 2023
- Work TM, Weatherby TM, Landsberg JH, Kiryu Y, Cook SM, Peters EC (2021) Viral-like particles are associated with algal symbionts pathology in Florida corals affected by stony coral tissue loss disease. Front Mar Sci 8:750658. https://doi.org/10.3389/fmars. 2021.750658
- XLSTAT (2007) Statistical software for Excel. https://www.xlstat.com Zheng D, Yin G, Liu M, Cheng C, Jiang Y, Hou L, Zheng Y (2021) A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci Total Environ 777:46009. https://doi.org/10.1016/j.scitotenv.2021.146009

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

