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Abstract—Artificial neural networks (ANNs) are becoming in-
creasingly widespread yet the current hardware implementations
exceed the power, area, and time budget of many applications.
Additionally, the current ANN neurons are a highly simplified
model of their biological counterparts. In this work, we propose a
neuromorphic dendritic synapse that improves the computational
complexity of individual neurons as a foundation for more
efficient implementation of complex ANNSs.

Index Terms—Neuromorphic, Dendrite, Synapse, Resistive
Random-Access Memory

I. INTRODUCTION

Artificial neural networks (ANNs) are becoming increas-
ingly widespread from use in computer vision, speech recog-
nition, medical diagnosis, natural language processing, etc. [1],
[2]. However, many of these applications may require low
power and real-time computation in a small footprint. Unfortu-
nately, current computer architectures are unable to provide the
high memory bandwidth for real-time compute while addition-
ally costing high power and area [1], [3], [8]. To combat these
issues, higher memory bandwidth architectures such as field-
programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) have been employed [1], [8]. These
architectures rely on parallelism and near- or in-memory to
drastically improve the memory bandwidth while also reducing
the power consumption and area.

Biological neural networks have been the inspiration for
many ASICs developed for accelerating neural networks.
However, while biological neural neurons utilize their den-
drites, synapses, and somas for computation, ANNSs primarily
focus on the latter two and still at their most basic states
[2]-[4]. Many current ANNs utilize artificial neurons or
perceptrons which consist of three parts: synaptic weights,
accumulation, and activation. The synaptic weights combine
all the attenuation of the amplitude of the signal in a neuron
into a single net synaptic weight [2], [3], [8]. This synaptic
weight is then used for a weighted sum of inputs which is
accumulated as a total stimulus similar to the functionality
of the soma [2], [3]. This stimulus then produces an output
signal via an activation function acting like the action potential
threshold in biological neurons [8]. Hardware accelerators
have been able to take inspiration from these biological
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Fig. 1. Gated-memristive multiply-accumulate crossbar. The current produced
at each gated-synaptic device is a product of the input voltage and conductance
of the synaptic device. The total current for each neuron is the sum of products
of the inputs and corresponding weights.

neurons to produce the multiply-accumulate (MAC) crossbar
seen in Fig. 1. The conductive elements are able to act as the
net synaptic weights via device physics and governing circuit
laws allow for accumulation of weighted stimulus. However,
there is more to the computational capabilities of neurons than
the functionality described by the net synaptic weight and
accumulation.

The dendrites in neurons have many functions that allow
biological neurons to have drastically more computational
power than many artificial neurons [2]-[6]. There exist both
active and passive dendrites in biological neurons both of
which have their own characteristics and functionality. Active
dendrites are able to provide amplification of signals, feed-
back loops, as well as regulating signals from distal neurons
among other functions [2]-[6]. Recent work in developing and
integrating artificial dendrites, at the time of this writing, has
been focused primarily on these active dendrite functions [2]—
[6]. Many of these works primarily focus on a single function
of active dendrites and produce hardware specialized for that
specific function. Additionally, many of these implementations
lack reconfigurability of these dendritic functions which is
important moving from different applications and datasets [2]—-
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Fig. 2. llustration of gated-RRAM. Oxygen vacancies in the oxide channel
can drift towards or away from the top electrode (TE) and bottom electrode
(BE) interface of the channel depending on the bias on the gate.

[6]. The active aspect of these implementations also requires
more power and signal complexity.

However, there also exist passive dendrites with many cru-
cial functions. Passive dendrites are responsible for encoding
delay into inputs as a function of their distance [6]. This
allows for the neuron to label the input location via its encoded
delay. Additionally, these delays aid in detecting sequences of
inputs. By delaying the most distal input, the distal stimulus is
still retained while a more proximal stimulus occurs resulting
in higher total stimulus [6]. However, reversing the order
from proximal to distal, the proximal stimulus diminishes by
the time the distal stimulus occurs [6]. These delays also
aid in filtering signals by their frequency [6]. In addition to
encoding delay, passive dendrites induce sublinear summation
of stimulus to ensure that a single stimulus or set of stimuli
do not overpower the neuron [6]. In this paper, we propose
a new biologically inspired reconfigurable dendrite-synaptic
element that is able to harness the properties of gated-resistive
random-access memory (gated-RRAM) to implement the func-
tionalities of passive dendrites and synapses in-memory for
improve bio-inspired hardware acceleration. The remainder of
this paper is organized as follows: section II describes the
functionality of the gated-RRAM device, section III details the
dendrite-synaptic element and its functionality, and section IV
illustrates and describes the results.

II. GATED-RRAM DEVICE

Gated-RRAM is a type of gated-memristive device that
has been recently reported [1], [8], [9]. As shown in Fig.
2, gated-RRAM devices consist of a gate, a top electrode, a
bottom electrode, a channel oxide containing oxygen vacancies
(V.21) through which current can flow between top and bottom
electrodes. When a positive bias is applied on the gate with
respect to the top and bottom electrodes, the V2 in the drift
towards the top and bottom electrode interface increasing the
conductance of the device, to a maximum conductance at it
low resistance state (LRS), measured between top and bottom
electrodes. Conversely, when a negative bias is applied on the
gate with respect to the top and bottom electrodes, the V.2 *
in the drift away from the top and bottom electrode interface
decreasing the conductance of the device, to a minimum con-
ductance at it high resistance state (HRS), measured between
top and bottom electrodes. The increase of conductance of the
device is called potentiation while the decrease of conductance
of the device is called depression.
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Fig. 3. llustration of dendritic synapse. Each input (IN[0]-IN[2]) has its own
net dendritic attenuation element (D[0]-D[2]) and net synaptic weight element
(S[0]-S[2]). The remaining crossbar structure of the neuron is similar to that
of the neurons in Fig. 1 in which the total stimulus is accumulated in Cps g ps
as membrane potential.

A. Gated-RRAM Crossbar

Gated-RRAM have been investigated as a synaptic device
for in-memory computing of the MAC operation shown in Fig.
1. Additionally, integrating multi-state gated-RRAM allows for
a more dense memory crossbar since each gated-RRAM device
can store multiple bits. The reconfigurability of gated-RRAM
allows for synaptic weights to be programmed into the neuro-
morphic crossbar. In contrast to other two-terminal memristive
synaptic devices, the additional terminal provided by the gate
allows the synaptic device to be simultaneously programmed
and read for in-memory computation [1], [8]-[11]. This ability
to program via a third terminal can additionally reduce the
programming circuitry required by the architecture.

ITI. DENDRITIC SYNAPSE

Current ANN implementations couple the attenuation of
the amplitude of the signal due to neuronal elements into
the aforementioned net synaptic weight. This results in many
modern neuromorphic architectures and synapses to use a
single synaptic device with programmable conduction [§],
[11], [12]. This drastically simplifies the computation of the
signal attenuation in comparison to complexity in biological
neurons. We decided to enable similar computation simplic-
ity while retaining the computational capabilities of passive
dendrites. We developed a dendritic synapse containing two
sub-components shown in Fig. 3: a net synaptic weight and a
net dendritic attenuation.

A. Net Synaptic Weight

The net synaptic weight is handled by the gated-RRAM
device as a conventional memristive synaptic weight, similar
to those seen in Fig. 1. The net synaptic weight is used to
attenuate the amplitude of the input signal. However, it is
important to note that we placed the net synaptic weight after
the net dendritic attenuation element. This is to reduce the
coupling effects of the synapse on the dendritic attenuation.
We wanted the synaptic and dendritic elements to be able to
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be tuned independently to simplify the programmability of the
dendritic synapse.

B. Net Dendritic Weight

The net dendritic attenuation component consists of a gated-
RRAM device in parallel to a capacitive element. This is
similar to the leaky integrate-and-fire RC component used
in neuromorphic spiking neural networks (SNNs). However,
by implementing a gated-RRAM device we allow for the
rate of leakage to be tuned by programming the conductance
of the gated-RRAM device. Potentiating the gated-RRAM
device allows for reduction in the signal delay while de-
pressing the gated-RRAM device increases the signal delay.
The net dendritic attenuation component is used to attenuate
the frequency of the input pulses via delay. This is similar
to the behavior observed in lossy transmission lines. There-
fore, the programmability of the gated-RRRAM results in
programmability of signal delay. This allows for tuning the
effective distance of the stimulus from the soma of the neuron.
Combining both the dendritic and synaptic elements allow for
complete control over the delay and amplitude of the signals
observed by the soma or accumulation. We demonstrate that
with these two programmable parameters, we can observe the
various functions of passive dendrites in biological neurons.

IV. RESULTS AND DISCUSSION

We simulated neurons integrating the dendritic synapses
using SPICE. We modeled the gated-RRAM device using
the gated-synaptic device model from [9] that was fitted to
fabricated gated-RRAM devices.

We first demonstrated the ability of dendritic elements to
be used for detecting sequences of stimuli using only a single
neuron as shown in Fig. 4. We first ensured that the synaptic
weights were kept constant for all the input stimuli. Then the
net dendritic element for each input was programmed such that
the first input (IN[0]) would have the largest delay while the
last input (IN[2]) would have the smallest delay as shown in
Fig. 4a. This resulted in the neuron becoming sensitive to the
sequence of IN[0], IN[1], IN[2]. We see that by applying the
correct sequence of inputs that membrane threshold was able
to exceed the action potential threshold thus correctly detecting
the sequence. This is because due to the dendritic delay D[0]
and D[1] are still retained by the time IN[2] arrives allowing
for summation of the three stimuli. However, in Fig. 4b, we
reversed the order of the delays due to the dendritic element.
Therefore, the neuron would now be sensitive to the sequence
of IN[2], IN[1], IN[0]. We see this change by applying the
same sequence of inputs as before, IN[O], IN[1], IN[2], the
membrane potential no longer exceeds the action potential
threshold. This is because the dendritic delay of D[0] is not too
small for it to be properly retained by the time IN[2] arrives.
By tuning these delays we can have the neuron be sensitive
to different sequences of stimuli. The synaptic weight can be
used in conjunction to allow for more or less inputs to be
required in the sequence by varying the attenuation of each
stimulus. Conventionally, large networks of multiple neurons
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Fig. 4. SPICE simulation of sequence of three inputs IN[0]-IN[2]. Each input
has the same synaptic weight but different dendritic attenuations D[0]-D[2].
The total stimulus of the neuron is accumulated as the membrane potential.
a) The signal retention or delay is decreasing from D[0]-D[2]. b) The signal
retention or delay is increasing from D[0]-D[2].
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like LSTMs or other recurrent networks have been used for
detection of temporal sequences [7]. However, we demonstrate
that the integration of these programmable dendrites allows
for detection of sequences in a single neuron. Additionally, the
tuning of these delays can be used for coincidence detection of
stimuli. The delay and retention of these signals can be tuned
to increase or decrease the window of coincidence. This is
especially useful with the increasing interest in SNNs which
utilize spike-timing dependent plasticity (STDP) [8].

We also demonstrated the ability of passive dendrites to
allow for filtering signals via their frequency as shown in
Fig. 5. We demonstrate in Fig. 5a that by lowering the delay
of the stimulus the membrane potential rises much slower
and is unable to exceed the action potential. This is because
the stimulus has decayed much faster and is not sufficiently
retained by the time the next pulse arrives. This in conjunction
with the leakage of the accumulation resulting in a lower
total membrane potential. However, by increasing the delay
of the stimulus in Fig. 5b the membrane potential is able to
exceed the action potential threshold with the same frequency
of pulses. This is because each pulse is retained more by the
time the next pulse arrives allowing for better accumulation
of the pulses. Therefore, we are able to tune the frequency
threshold for a spiking stimulus by programming the delay of
the passive dendritic element. Additionally, we can observe
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Fig. 5. SPICE simulation of sequence of three inputs IN[0]-IN[2]. Each input
has the same synaptic weight but different dendritic attenuations D[0]-D[2].
The total stimulus of the neuron is accumulated as the membrane potential.
a) The signal retention or delay is decreasing from D[0]-D[2]. b) The signal
retention or delay is increasing from D[0]-D[2].

that the accumulation of these decaying stimuli is sublinear as
observed in biological passive dendrites as well.

To ensure that the functionality of our passive dendritic
elements was independent of the functionality of the passive
synaptic elements. In Fig. 6, we demonstrate that by simulating
the same neuron as in Fig. 4 with varying synaptic weights.
We see in Fig. 6a that by lowering the synaptic weight to the
HRS of the gated-RRAM, even though the sequence of the
inputs is correct the high attenuation of those stimuli prevents
the membrane potential from exceeding the threshold. In Fig.
6b, we see that by potentiating the synaptic weight back to
LRS, the correct sequence is once again able to be detected
by the neuron. Additionally, we can observe in Fig. 6 that
moving from HRS to LRS in the synaptic weight had little
effect on the delay and amplitude of the signal coming from
the passive dendritic elements. Therefore, the synaptic weight
and dendritic attenuation parameters can be independently
tuned for their corresponding functionality with significant
confidence.

V. CONCLUSION

In conclusion, we propose a reprogrammable dendritic-
synapse architecture for neuromorphic neurons that integrated
gated-RRAM to combine the functionality of synapses and
passive dendrites in biological neurons. These dendritic-
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Fig. 6. SPICE simulation of sequence of three inputs IN[0]-IN[2]. Each input
has the same dendritic attenuations D[0]-D[2] as Fig. 4a. a) The inputs have
lower synaptic weights (HRS). b) The inputs have higher synaptic weights
(LRS)..
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synapses can be used to drastically increase the computational
capabilities of individual neurons as demonstrated via passive
in-memory computation. The temporal aspects these dendrites
introduce may allow for reduction of large recurrent neural
networks into few power efficient neurons as evident by the
single neuron sequence detection. Furthermore, the repro-
grammability of gated-RRAM devices can allow for easier
implementation of these dendritic-synapses for acceleration of
inferencing and even development of algorithms for on-chip
learning that needs to be investigated. We demonstrate by im-
plementing more bio-inspired features into hardware neurons
we are able to improve computational power of individual
neurons. However, further work is required to capitalize on
this additional functionality. Training algorithms must be co-
designed with peripheral architectures to dynamically tune
these available parameters. These algorithms and their corre-
sponding peripheri will need to take into account the dataset,
timing, power budget, and scalability of the target application.
However, our goal in this work is to provide the foundational
structure of these new algorithms by integrating the additional
functions and tuning parameters we have proposed.
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